Staircase Streaming for Low-Latency Multi-Agent Inference

Anonymous ACL submission

Abstract

Recent advances in large language models
(LLMs) opened up new directions for leverag-
ing the collective expertise of multiple LLMs.
These methods, such as Mixture-of-Agents,
typically employ additional inference steps to
generate intermediate outputs, which are then
used to produce the final response. While multi-
agent inference can enhance response quality,
it can significantly increases the time to first
token (TTFT), posing a challenge for latency-
sensitive applications and hurts user experi-
ence. To address this issue, we propose stair-
case streaming for low-latency multi-agent in-
ference. Instead of waiting for the complete
intermediate outputs from previous steps, we
begin generating the final response as soon as
we receive partial outputs from these steps. Ex-
perimental results demonstrate that staircase
streaming reduces TTFT by up to 93% while
maintaining response quality.

1 Introduction

Large language models (LLMs) (Zhang et al., 2022;
Chowdhery et al., 2022; Touvron et al., 2023; Team
et al., 2023; Brown et al., 2020; OpenAl, 2023)
have significantly advanced the field of natural lan-
guage processing, showing remarkable capabilities
across a wide range of tasks and domains. With
the proliferation of LLMs and their impressive
achievements, a new line of research has emerged:
multi-agent inference (Du et al., 2023; Liang et al.,
2023; Chen et al., 2023b; Wang et al., 2024b). It
aims to harness the collective strengths of multiple
LLMs to produce more reliable, consistent, and
high-quality responses, matching or even surpass-
ing state-of-the-art performance.

While multi-agent inference techniques can sig-
nificantly enhance response quality by combining
the outputs of multiple LLMs, they often incorpo-
rate additional inference steps. For example, Multi-
Agent Debate (MAD) (Liang et al., 2023) uses

several models to generate answers independently
and then debate their answers; Mixture-of-Agents
(MoA) (Wang et al., 2024b) employs proposers to
generate initial responses and an aggregator to syn-
thesize a higher-quality response from them. They
both require to wait for all additional generations
to finish before producing the final output, leading
to an increased time to first token (TTFT). This
latency is particularly problematic for real-time ap-
plications such as chatbots, where low latency is
crucial for user experience. This naturally raises
the question: How can we leverage the strengths
of multi-agent inference while minimizing such la-
tency?

To address this question, we propose staircase
streaming, a novel approach for low-latency multi-
agent inference. Instead of waiting for complete
results from all the agents in the previous step,
our approach begins streaming tokens once the first
chunk of tokens becomes available from the preced-
ing step. By leveraging partial results and overlap-
ping the generation processes, staircase streaming
effectively reduces latency while maintaining the
benefits of multi-agent inference.

The intuition behind staircase streaming is based
on two key observations: (1) Effective partial
prompting: Jiang et al. 2023c demonstrate that even
partial tokens within a prompt can effectively in-
struct LLM. Similarly, we found partial generation
results can provide valuable, diverse viewpoints for
other LLMs. (2) Diminishing returns in subsequent
outputs: The most crucial information in a model’s
response is often front-loaded. The first portion of
generation typically contains the main ideas, while
subsequent parts generally add details, examples,
or refinements to these core concepts.

Figure 1 illustrates an example of staircase
streaming applied to MoA. In the normal case (a),
the multi-agent sytem is bottlenecked by the pro-
poser with the longest generation time, resulting
in significant latency. With staircase streaming (b),
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Figure 1: Comparison of normal streaming and staircase streaming using an MoA with 3 proposers and 1 aggregator.
(a) In normal streaming, each LLM generates a full response before proceeding to the next step, leading to a longer
TTFT. (b) Staircase streaming reduces TTFT by initiating the next step once the first chunks of proposed responses
are available, enabling parallel processing between the proposers and the aggregator.

the aggregator begins generating output as soon as
a chunk of tokens is available from each proposer.
Once the aggregator generates a chunk of tokens,
it waits for the next chunk from the proposers, up-
dates its prompt with these newly received tokens,
and continues generating.

The evaluation results on the Arena-Hard and
AlpacaEval benchmarks (Li et al., 2024; Dubois
et al., 2024) demonstrate that our staircase stream-
ing can be effectively adapted to multi-agent infer-
ence methods, reducing latency up to 93% while
maintaining the response quality.

2 Methodology

In this section, we first briefly overview token
streaming. We then introduce staircase streaming,
our approach that minimizes latency while leverag-
ing multi-agent inference strengths. Additionally,
we present a prefix caching optimized variant to
further enhance efficiency.

2.1 Token Streaming

Token streaming allows autoregressive LMs to gen-
erate and return text incrementally, providing users
with an early indication of content quality and en-
hancing the user experience. TTFT, measuring the
latency between initiating a request and generating
the first token, is a crucial metric for it.

However, multi-agent inference approaches of-
ten struggle with token streaming due to depen-
dencies between multiple models. The first token
becomes available after all preceding steps com-
plete and the last step’s prefill finishes. Depending
on the generation length, this process can incur
substantial latency, sometimes spanning dozens of
seconds.

Algorithm 1 Staircase Streaming for MoA

1: Input: User prompt Q; Proposers P, ..., Pn; Aggregator A; Chunk

sizes Cp,jand Cp; (j = 1,2, ...)
(1) THREAD PROPOSER (: = 1, ..., N):
Initialize j <— O
while not end of response
j—J+1 )
Rij + Pi(Q+ Ui_1Ri %)

2:

3

4

5

6: > Generate Cp, ; tokens
7. Send chunk R; ; to aggregator A

8

9:

10:

11:

end while
(2) THREAD AGGREGATOR:
Initialize j <— 0
while not end of response
J=J+1
13: Receive chunks Ry j, ..., R, ; from all proposers or total number
of proposers minus redundancy if redundancy is not 0.
14: Update prompt Q4 ; for the aggregator with proposed responses so
far [U] _; R1,j, ..., Uj,_; R, ;] with template in Table 2.
15: Sj — A(QAJ' + Ui;isk) > Generate CA:J‘ tokens
16: (Streaming S; to the user)

17:  end while
18: Output: U7 _, Sk

2.2 Staircase Streaming

Staircase streaming is proposed to enable low-
latency multi-agent inference by streaming tokens
between models as soon as partial results are avail-
able, rather than waiting for complete outputs. The
key idea is to break the strict sequential dependen-
cies between models, allowing a pipelined execu-
tion pattern where models process partial results
immediately.

MOoA is a typical multi-agent inference system
where multiple proposer models generate initial
responses based on a user prompt. These responses
are then synthesized by an aggregator model to pro-
duce the final output. Algorithm 1 illustrates an
adaptation of staircase streaming for MoA. The pro-
posers and aggregator run in separate threads. Each
proposer generates a chunk of tokens based on the
user prompt and previously generated chunks, and
then immediately sends the new chunk to the aggre-
gator. The aggregator, after receiving chunks from
proposers, updates its prompt by concatenating the
new chunks. And it then generates the next chunk



of the final output based on the updated prompt,
which is streamed to the user. Meanwhile, the pro-
posers process the next chunk of text in parallel.
For multi-layer MoA systems, the same staircase
streaming approach can be applied to each interme-
diate LLM, creating a nested staircase streaming
pipeline.

The chunk sizes Cp j and Cj ; control the gran-
ularity of the streaming process and can be ad-
justed to balance latency and computational effi-
ciency. Smaller chunk sizes lead to more frequent
updates but may require more prefill operations,
while larger chunk sizes can increase TTFT. To
achieve a better trade-off, we use smaller chunk
sizes at the beginning and gradually increase them
as the generation continues.

Following the similar principle, staircase stream-
ing can be applied to general multi-agent systems
by having each agent generate and stream chunks
of tokens in parallel. These chunks are passed
to the next agent or aggregator, which updates its
prompt and continues the process.

Reducing TTFT In staircase streaming, TTFT is
reduced since the aggregator starts generation with
the first chunk R; ; from each proposer rather than
waiting for the complete responses R;. TTFT of
MoA and staircase version can be represented as:

€os
TTFTyoma = max (Z TRM> + Ty (D)
j=1

1<i<N

TTFTstnircase = 1r<n_a<XN (TRq‘,,l) + Tpreﬁll (2)

where T, ; is the time taken by proposer ¢ to
generate the j-th chunk and T} is the time taken
by the aggregator to process the initial chunks.

2.3 Prefix-Caching Optimized Staircase
Streaming

Prefix-caching enhances the efficiency of trans-
former models by reusing previously computed
key-value pairs for identical prompt prefixes
(Zheng et al., 2023). In staircase streaming, we
can leverage this technique by appending new to-
ken chunks to the end of the prompt, keeping the
prefix unchanged. This approach, whose prompt
template is presented in Table 3, allows seamless
updating of the staircase streaming prompt with-
out requiring a full prefill computation. While this
method may fragment responses from the same
proposer, it can save more compute.

ArenaHard AlpacaEval TTFT TPS
Win Rate LC Win second tokens/s
Gemma-2-9B-IT 40.6 48.5 0.06i0,01 69.4i0,4
MAD 50.8 55.8 6.70+2.3 359444
+ staircase 45.9 55.2 045100 44. 7166
MoA 47.5 56.8 10.643.4 283159
+ staircase 48.3 55.1 0474101 434465
*staircase & 0 g 53.0 045101 45.017.0

prefix-cache

Table 1: Results of different inference methods.

3 Evaluation

3.1 Setup

Benchmarks We evaluate on Arena-Hard (Li
et al., 2024) and AlpacaEval 2.0 (Dubois et al.,
2024). For efficiency metrics, we assess the time
to first token (TTFT) and the end-to-end tokens
per second (TPS)! on a subset of Arena-Hard and
AlpacaEval with 64 samples.

Methods We incorporate staircase streaming to
Mixture-of-Agents (MoA) and Multi-Agent De-
bate (MAD). We use Gemma-2-9B-IT (Team
et al., 2024), LLaMA-3.1-8B-Instruct (Dubey
et al., 2024), Mistral-7B-Instruct-v0.3 (Jiang et al.,
2023a), and Qwen-1.5-7B-Chat (Bai et al., 2023);
and use Gemma-2-9B-IT as the aggregator. We set
the chunk size to 8 for the first chunk, increasing
to 128 for the second chunk, and capping at 256
for proposers and 128 for the aggregator for later
chunks. Benchmarks were conducted using the To-
gether Inference APL? To minimize the effect of
queuing times associated with the serverless API,
we use redundancy of 2 — we skip the slowest 2
models — for the first chunk. To reduce the variance
caused by network latency and server load, we run
the aggregator model with vLLM on 1 H100 GPU
for TTFT and TPS metrics. Detailed setup can be
found in Appendix A.

3.2 Results

Table 1 presents the evaluation results. Our ap-
proach significantly reduces TTFT by up to 93%
and increases TPS by up to 1.6x, enhancing the
responsiveness while preserving the response qual-
ity of multi-agent inference. Staircase streaming is
effective across MoA and MAD, showing the ver-

'TPS = The number tokens generated by the aggregator /
the time elapsed between sending the request and receiving
the last token.

Zhttps://api.together.ai/playground/chat


https://api.together.ai/playground/chat

Best Single MoA MoA staircase

70% 30
60%

20
50%

10
40%

I

30% 0

AlpacaEval 2 - LC Win T TTFT (s) L

Figure 2: Results on Larger LLMs. The ‘Best Single’
model is WizardLM 8x22B. For MoA, the proposers
include Qwen1.5-72B-Chat, Qwen1.5-110B-Chat, Wiz-
ard 8x22B, Mixtral-8x22B-Instruct-v(.1, and Llama-3-
70B-Instruct. The aggregator is Qwen1.5-110B-Chat.
TTFT was evaluated using the Together serverless end-
point, so the results may vary depending on server load.

satility. While the prefix-cache optimized variant
slightly reduces the win rate, it further improves
the efficiency,

Scaling up Model Size Figure 2 shows AlpacaE-
val results for larger models. The ’Best Single’
model achieved a 51% LC win rate. In contrast,
MoA with 6 proposers achieved 62%, showing the
benefits of leveraging the expertise from multiple
LLMs. The staircase version achieved a similar
LC win rate while maintaining reasonable TTFT.
This shows staircase streaming effectively scales
to larger models, achieving good performance with
manageable latency.

Effect of Chunk Sizes The first chunk size is
a crucial hyperparameter for optimizing TTFT, as
indicated in eq. (2). Figure 3 presents the impact
of varying the first chunk size on response quality
and TTFT. As the chunk size increases from 4 to
32 tokens, the ArenaHard win rate improves, while
TTFT initially decreases but then significantly in-
creases for larger chunk sizes. This presents the
trade-off between response quality and latency in
staircase streaming, with a chunk size of 8 tokens
as the sweet point.

4 Related Work
4.1 Multi-Agent Inference

To mitigate the computational costs associated
with multi-LLM inference, previous studies have
explored training a router that predicts the best-
performing model from a fixed set of LLMs for
a given input (Wang et al., 2024a; Shnitzer et al.,
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Figure 3: The impact of first chunk size on ArenaHard
win rate and TTFT.

2024; Lu et al., 2023; Chen et al., 2023c). Another
line of work focuses on collaborative inference be-
tween multiple LLMs (Chan et al., 2023; Du et al.,
2023; Liang et al., 2023; Chen et al., 2023b; Wang
et al., 2024b), where models work together to gen-
erate more reliable, consistent, and high-quality
responses.

4.2 Efficient Inference

Recent LLM inference optimizations enhance ef-
ficiency and resource use. PagedAttention (Kwon
et al., 2023) is proposed to manage non-contiguous
memory blocks efficiently. To further address the
memory consumption of key-value caches, recent
research proposes using quantization and sparsi-
fication techniques (Hooper et al., 2024; Zhang
et al., 2023; Xiao et al., 2023). Speculative de-
coding (Leviathan et al., 2022; Chen et al., 2023a)
speeds up inference by using extra small models to
generate multiple token guesses and validate them
in parallel. To the best of our knowledge, there has
been limited work for the inference efficiency of
multi-agent systems.

5 Conclusion

In this paper, we introduced staircase streaming, a
novel approach to reduce TTFT in multi-agent sys-
tems by streaming tokens incrementally between
models. The key innovation is to break the strict
sequential dependencies inherent in existing multi-
agent systems, enabling a pipelined execution pat-
tern that leverages partial results to minimize idle
waiting time. Our experimental results demonstrate
that this approach not only maintains response qual-
ity but also significantly reduces TTFT by up to
93%.



6 Limitation

Our method requires modification to the original
multi-agent algorithm. While these changes are
generally minimal, they may impact performance.
So necessary evaluation is needed before adapting
staircase streaming to other multi-agent methods
to ensure the quality does not change significantly.

The improved TTFT and streaming experience
comes at a cost of increased prompt token consump-
tion. To mitigate this, we proposed a prefix-caching
optimized version that can save a significant num-
ber of the tokens if the API services or the local
inference engine supports it. Currently, more and
more inference engines (Zheng et al., 2023; Kwon
et al., 2023) and API services roll out the support
prefix-caching.

7 Ethical Considerations

Although multi-agent inference generally improves
the harmlessness of model outputs, as shown in
the Mixture-of-Agent paper (Wang et al., 2024b),
there are still potential risks that the final answer
may retain biases or harmful content from the inter-
mediate outputs. This underscores the importance
of diligent oversight and ethical guidelines in the
development and deployment of such systems.
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A Detailed Setups

In the code implementation, there are five hyperpa-
rameters that can control the behaviors of staircase
streaming: first_chunk_size, second_chunk_size,
chunk_size, aggregator_chunk_size, and redun-
dancy. When running staircase streaming, Cp 1
and Ca 1 would be set to first_chunk_size. Cp2
and Cp o are set to second_chunk_size. Then
for the rest of the chunks, Cp ; and Cj ; are set
to chunk_size and aggregator_chunk_size respec-
tively for 7 > 2.

Redundancy is introduced to control how many
models’ responses must be ready before the aggre-
gator can start generating. For example, if there are
five proposers and Redundancy=2, then that means
for the first chunk, it only needs responses from
three models before the aggregator can generate the
first chunk. This granular setup allows practition-
ers to have maximum control over the trade-offs
between TTFT and performance.

For our main results in Table 1, we use
first_chunk_size=8, second_chunk_size=128,
chunk_size=256, aggregator_chunk_size=128, and
redundancy=2. These choices is carefully chosen
from the ablation study, and generalize across
different setups.

B Prompt Templates

We present the prompt templates used in our evalu-
ation. For MoA experiments, we mainly followed
the original paper by (Wang et al., 2024b). The
staircase streaming templates are shown in Table 2
and Table 3. For MAD experiments, we adapted
the templates to suit open-ended chat scenarios, as
MAD is originally designed for tasks with short

and deterministic answers, e.g. classification. The
staircase streaming templates is shown in Table 4.

C Related Work
C.1 Multi-Agent Inference

A straightforward solution to leverage multiple
LLMs is ranking outputs from different models.
Jiang et al. (2023b) introduced PAIRRANKER,
which performs pairwise comparisons on candi-
date outputs to select the best one. To alleivate the
substantial computational costs of multi-LL.M infer-
ence, other studies have explored training a router
that predicts the best-performing model from a
fixed set of LLMs for a given input (Wang et al.,
2024a; Shnitzer et al., 2024; Lu et al., 2023). Addi-
tionally, Frugal GPT (Chen et al., 2023c) proposed
reducing the cost of using LLMs by employing
different models in a cascading manner. To better
leverage the responses of multiple models, Jiang
et al. (2023b) trained GENFUSER, a model de-
signed to generate an improved response by cap-
italizing on the strengths of multiple candidates.
Huang et al. (2024) proposed fusing the outputs of
different models by averaging their output proba-
bility distributions.

Another line of work focuses on collaborative
collaboration, where multiple LLMs act as agents
that collectively discuss and reason through given
problems interactively. Du et al. (2023); Liang et al.
(2023); Chan et al. (2023) established a mechanism
for discussions among LLM-based agents. ReC-
oncile (Chen et al., 2023b) adopt multi-agent dis-
cussion with weighted voting. Wang et al. (2024c)
systematically compared collaborative approaches
and found that a single agent with a strong prompt,
including detailed demonstrations, can achieve
comparable response quality to collaborative ap-
proaches. Shazeer et al. (2017) adopted a layered
structure, using different LLMs as proposers to pro-
pose answers and another LLM to aggregate the
final answer.

C.2 Efficient Inference

Recent advancements in LLM inference optimiza-
tion focus on enhancing system efficiency and re-
source utilization in order to reduce calculation.
vLLM (Kwon et al., 2023) addresses fragmenta-
tion with PagedAttention, which manages non-
contiguous memory blocks efficiently. DeepSpeed-
Inference (Aminabadi et al., 2022) combines GPU,
CPU, and NVMe memory for high-throughput



Table 2: Prompt template of staircase streaming for MoA.

Role Content

system  You have been provided with a set of responses from various open-source models to the latest user query. Your task
is to synthesize these responses into a single, high-quality response. It is crucial to critically evaluate the information
provided in these responses, recognizing that some of it may be biased or incorrect. Your response should not
simply replicate the given answers but should offer a refined, accurate, and comprehensive reply to the instruction.
Ensure your response is well-structured, coherent, and adheres to the highest standards of accuracy and reliability.

Responses from models:
1. {U;ZIRL;@}
2.{U]_,Ro 1}
N. {Ul_,Rn}

user {Q}

inference of diverse transformer models. Flex-
Gen (Sheng et al., 2023) increases the throughput
with optimized GPU memory usage by integrat-
ing memory and computation from GPUs, CPUs,
and disks, and quantizes weights to boost inference
speed. Flash-Decoding (Dao et al., 2023) based
on FlashAttention (Dao et al., 2022) accelerates
long-context inference with parallel processing of
KV pairs with length considered.

On the algorithm side, KV-Cache optimization
is a commonly studied topic. During inference
with LLM, it is necessary to store the KV pairs
of previously generated tokens in a cache for fu-
ture token generation. As the length of generated
tokens increases, this KV cache expands signif-
icantly, resulting in high memory consumption
and longer inference times (Hooper et al., 2024;
Zhang et al., 2023; Xiao et al., 2023). Another
inference speedup technique is speculative decod-
ing (Leviathan et al., 2022; Chen et al., 2023a). It
involves smaller models to have multiple educated
token guesses in parallel, then validating and prun-
ing these candidates based on their likelihood and
consistency with the output, thus reducing com-
putational load and improving performance. Fol-
lowing this idea, Staged Speculative (Spector and
Re, 2023) organizes speculative outputs into a tree
structure, enhancing batch generation and overall
performance. BiLD (Kim et al., 2023) proposes a
fallback policy allowing the small model to defer
to the target model when uncertain, and a rollback
policy for correcting small model errors.



Table 3: Prompt template of prefix-caching optimized staircase streaming for MoA.

Role Content

system  You have been provided with a set of responses from various open-source models to the latest user query in chunks.
Your task is to synthesize these response chunks into a single, high-quality response. It is crucial to critically
evaluate the information provided in these responses, recognizing that some of it may be biased or incorrect. As
some responses may be incomplete yet, craft your synthesized response to allow for easy updating or expansion as
new information becomes available. Your response should not simply replicate the given answers but should offer a
refined, accurate, and comprehensive reply to the instruction. Ensure your response is well-structured, coherent, and
adheres to the highest standards of accuracy and reliability.

Responses from models:
Chunk 1:

Model 1:

[Ri1)

Model N:
{Rna1}

Chunk 2:
Model 1:
{Ri1,2}

Model N:
{Rn,2}

user {Q}

Table 4: Prompt template of staircase streaming for MAD. MAD puts the model’s own output before the debate
prompt, here we assueme it’s the ‘N*-th model.

Role Content

user {Q}

assistant  {{UJ_, Rn 1)}

user These are the responses to the query from other agents:
One agent solution: {U; _; R1 %}

One agent solution: {U{;:lek }

One agent solution: { Ui:IRN, 1,k}

Using the responses from other agents as additional information, can you provide your response to the query? The
original query is {Q}
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