
Staircase Streaming for Low-Latency Multi-Agent Inference

Anonymous ACL submission

Abstract001

Recent advances in large language models002
(LLMs) opened up new directions for leverag-003
ing the collective expertise of multiple LLMs.004
These methods, such as Mixture-of-Agents,005
typically employ additional inference steps to006
generate intermediate outputs, which are then007
used to produce the final response. While multi-008
agent inference can enhance response quality,009
it can significantly increases the time to first010
token (TTFT), posing a challenge for latency-011
sensitive applications and hurts user experi-012
ence. To address this issue, we propose stair-013
case streaming for low-latency multi-agent in-014
ference. Instead of waiting for the complete015
intermediate outputs from previous steps, we016
begin generating the final response as soon as017
we receive partial outputs from these steps. Ex-018
perimental results demonstrate that staircase019
streaming reduces TTFT by up to 93% while020
maintaining response quality.021

1 Introduction022

Large language models (LLMs) (Zhang et al., 2022;023

Chowdhery et al., 2022; Touvron et al., 2023; Team024

et al., 2023; Brown et al., 2020; OpenAI, 2023)025

have significantly advanced the field of natural lan-026

guage processing, showing remarkable capabilities027

across a wide range of tasks and domains. With028

the proliferation of LLMs and their impressive029

achievements, a new line of research has emerged:030

multi-agent inference (Du et al., 2023; Liang et al.,031

2023; Chen et al., 2023b; Wang et al., 2024b). It032

aims to harness the collective strengths of multiple033

LLMs to produce more reliable, consistent, and034

high-quality responses, matching or even surpass-035

ing state-of-the-art performance.036

While multi-agent inference techniques can sig-037

nificantly enhance response quality by combining038

the outputs of multiple LLMs, they often incorpo-039

rate additional inference steps. For example, Multi-040

Agent Debate (MAD) (Liang et al., 2023) uses041

several models to generate answers independently 042

and then debate their answers; Mixture-of-Agents 043

(MoA) (Wang et al., 2024b) employs proposers to 044

generate initial responses and an aggregator to syn- 045

thesize a higher-quality response from them. They 046

both require to wait for all additional generations 047

to finish before producing the final output, leading 048

to an increased time to first token (TTFT). This 049

latency is particularly problematic for real-time ap- 050

plications such as chatbots, where low latency is 051

crucial for user experience. This naturally raises 052

the question: How can we leverage the strengths 053

of multi-agent inference while minimizing such la- 054

tency? 055

To address this question, we propose staircase 056

streaming, a novel approach for low-latency multi- 057

agent inference. Instead of waiting for complete 058

results from all the agents in the previous step, 059

our approach begins streaming tokens once the first 060

chunk of tokens becomes available from the preced- 061

ing step. By leveraging partial results and overlap- 062

ping the generation processes, staircase streaming 063

effectively reduces latency while maintaining the 064

benefits of multi-agent inference. 065

The intuition behind staircase streaming is based 066

on two key observations: (1) Effective partial 067

prompting: Jiang et al. 2023c demonstrate that even 068

partial tokens within a prompt can effectively in- 069

struct LLM. Similarly, we found partial generation 070

results can provide valuable, diverse viewpoints for 071

other LLMs. (2) Diminishing returns in subsequent 072

outputs: The most crucial information in a model’s 073

response is often front-loaded. The first portion of 074

generation typically contains the main ideas, while 075

subsequent parts generally add details, examples, 076

or refinements to these core concepts. 077

Figure 1 illustrates an example of staircase 078

streaming applied to MoA. In the normal case (a), 079

the multi-agent sytem is bottlenecked by the pro- 080

poser with the longest generation time, resulting 081

in significant latency. With staircase streaming (b), 082

1

chunk 2 chunk 3

aggregated response

 full response from P2

 full response from P3

Proposer 1

Proposer 2

Proposer 3

Aggregator

TTFT

chunk 1

chunk 1

TTFT time

 full response from P1

chunk 2 chunk 3

chunk 2 chunk 3chunk 1

chunk 1 chunk 2 chunk 3

assem
ble

assem
ble

update

update

(a) Normal Streaming (b) Staircase Streaming

Figure 1: Comparison of normal streaming and staircase streaming using an MoA with 3 proposers and 1 aggregator.
(a) In normal streaming, each LLM generates a full response before proceeding to the next step, leading to a longer
TTFT. (b) Staircase streaming reduces TTFT by initiating the next step once the first chunks of proposed responses
are available, enabling parallel processing between the proposers and the aggregator.

the aggregator begins generating output as soon as083

a chunk of tokens is available from each proposer.084

Once the aggregator generates a chunk of tokens,085

it waits for the next chunk from the proposers, up-086

dates its prompt with these newly received tokens,087

and continues generating.088

The evaluation results on the Arena-Hard and089

AlpacaEval benchmarks (Li et al., 2024; Dubois090

et al., 2024) demonstrate that our staircase stream-091

ing can be effectively adapted to multi-agent infer-092

ence methods, reducing latency up to 93% while093

maintaining the response quality.094

2 Methodology095

In this section, we first briefly overview token096

streaming. We then introduce staircase streaming,097

our approach that minimizes latency while leverag-098

ing multi-agent inference strengths. Additionally,099

we present a prefix caching optimized variant to100

further enhance efficiency.101

2.1 Token Streaming102

Token streaming allows autoregressive LMs to gen-103

erate and return text incrementally, providing users104

with an early indication of content quality and en-105

hancing the user experience. TTFT, measuring the106

latency between initiating a request and generating107

the first token, is a crucial metric for it.108

However, multi-agent inference approaches of-109

ten struggle with token streaming due to depen-110

dencies between multiple models. The first token111

becomes available after all preceding steps com-112

plete and the last step’s prefill finishes. Depending113

on the generation length, this process can incur114

substantial latency, sometimes spanning dozens of115

seconds.116

Algorithm 1 Staircase Streaming for MoA
1: Input: User prompt Q; Proposers P1, ..., PN ; Aggregator A; Chunk

sizes CP,j and CA,j (j = 1, 2, ...)

2: (1) THREAD PROPOSER (i = 1, ..., N):
3: Initialize j ← 0
4: while not end of response
5: j ← j + 1

6: Ri,j ← Pi(Q + ∪j−1
k=1Ri,k) ▷ Generate CP,j tokens

7: Send chunk Ri,j to aggregator A
8: end while
9: (2) THREAD AGGREGATOR:
10: Initialize j ← 0
11: while not end of response
12: j ← j + 1
13: Receive chunks R1,j , ..., RN,j from all proposers or total number

of proposers minus redundancy if redundancy is not 0.
14: Update prompt QA,j for the aggregator with proposed responses so

far [∪j
k=1R1,j , ...,∪j

k=1RN,j] with template in Table 2.
15: Sj ← A(QA,j + ∪j−1

k=1Sk) ▷ Generate CA,j tokens
16: (Streaming Sj to the user)
17: end while
18: Output: ∪j

k=1Sk

2.2 Staircase Streaming 117

Staircase streaming is proposed to enable low- 118

latency multi-agent inference by streaming tokens 119

between models as soon as partial results are avail- 120

able, rather than waiting for complete outputs. The 121

key idea is to break the strict sequential dependen- 122

cies between models, allowing a pipelined execu- 123

tion pattern where models process partial results 124

immediately. 125

MoA is a typical multi-agent inference system 126

where multiple proposer models generate initial 127

responses based on a user prompt. These responses 128

are then synthesized by an aggregator model to pro- 129

duce the final output. Algorithm 1 illustrates an 130

adaptation of staircase streaming for MoA. The pro- 131

posers and aggregator run in separate threads. Each 132

proposer generates a chunk of tokens based on the 133

user prompt and previously generated chunks, and 134

then immediately sends the new chunk to the aggre- 135

gator. The aggregator, after receiving chunks from 136

proposers, updates its prompt by concatenating the 137

new chunks. And it then generates the next chunk 138

2

of the final output based on the updated prompt,139

which is streamed to the user. Meanwhile, the pro-140

posers process the next chunk of text in parallel.141

For multi-layer MoA systems, the same staircase142

streaming approach can be applied to each interme-143

diate LLM, creating a nested staircase streaming144

pipeline.145

The chunk sizes CP,j and CA,j control the gran-146

ularity of the streaming process and can be ad-147

justed to balance latency and computational effi-148

ciency. Smaller chunk sizes lead to more frequent149

updates but may require more prefill operations,150

while larger chunk sizes can increase TTFT. To151

achieve a better trade-off, we use smaller chunk152

sizes at the beginning and gradually increase them153

as the generation continues.154

Following the similar principle, staircase stream-155

ing can be applied to general multi-agent systems156

by having each agent generate and stream chunks157

of tokens in parallel. These chunks are passed158

to the next agent or aggregator, which updates its159

prompt and continues the process.160

Reducing TTFT In staircase streaming, TTFT is161

reduced since the aggregator starts generation with162

the first chunk Ri,1 from each proposer rather than163

waiting for the complete responses Ri. TTFT of164

MoA and staircase version can be represented as:165

TTFTnormal = max
1≤i≤N

(
eos∑
j=1

TRi,j

)
+ Tprefill (1)166

TTFTstaircase = max
1≤i≤N

(
TRi,1

)
+ Tprefill (2)167

where TRi,j is the time taken by proposer i to168

generate the j-th chunk and Tprefill is the time taken169

by the aggregator to process the initial chunks.170

2.3 Prefix-Caching Optimized Staircase171

Streaming172

Prefix-caching enhances the efficiency of trans-173

former models by reusing previously computed174

key-value pairs for identical prompt prefixes175

(Zheng et al., 2023). In staircase streaming, we176

can leverage this technique by appending new to-177

ken chunks to the end of the prompt, keeping the178

prefix unchanged. This approach, whose prompt179

template is presented in Table 3, allows seamless180

updating of the staircase streaming prompt with-181

out requiring a full prefill computation. While this182

method may fragment responses from the same183

proposer, it can save more compute.184

ArenaHard AlpacaEval TTFT TPS
Win Rate LC Win second tokens/s

Gemma-2-9B-IT 40.6 48.5 0.06±0.01 69.4±0.4

MAD 50.8 55.8 6.70±2.3 35.9±4.4

+ staircase 45.9 55.2 0.45±0.0 44.7±6.6

MoA 47.5 56.8 10.6±3.4 28.3±8.9

+ staircase 48.3 55.1 0.47±0.1 43.4±6.5

+ staircase &
prefix-cache 46.9 53.0 0.45±0.1 45.0±7.0

Table 1: Results of different inference methods.

3 Evaluation 185

3.1 Setup 186

Benchmarks We evaluate on Arena-Hard (Li 187

et al., 2024) and AlpacaEval 2.0 (Dubois et al., 188

2024). For efficiency metrics, we assess the time 189

to first token (TTFT) and the end-to-end tokens 190

per second (TPS)1 on a subset of Arena-Hard and 191

AlpacaEval with 64 samples. 192

Methods We incorporate staircase streaming to 193

Mixture-of-Agents (MoA) and Multi-Agent De- 194

bate (MAD). We use Gemma-2-9B-IT (Team 195

et al., 2024), LLaMA-3.1-8B-Instruct (Dubey 196

et al., 2024), Mistral-7B-Instruct-v0.3 (Jiang et al., 197

2023a), and Qwen-1.5-7B-Chat (Bai et al., 2023); 198

and use Gemma-2-9B-IT as the aggregator. We set 199

the chunk size to 8 for the first chunk, increasing 200

to 128 for the second chunk, and capping at 256 201

for proposers and 128 for the aggregator for later 202

chunks. Benchmarks were conducted using the To- 203

gether Inference API.2 To minimize the effect of 204

queuing times associated with the serverless API, 205

we use redundancy of 2 – we skip the slowest 2 206

models – for the first chunk. To reduce the variance 207

caused by network latency and server load, we run 208

the aggregator model with vLLM on 1 H100 GPU 209

for TTFT and TPS metrics. Detailed setup can be 210

found in Appendix A. 211

3.2 Results 212

Table 1 presents the evaluation results. Our ap- 213

proach significantly reduces TTFT by up to 93% 214

and increases TPS by up to 1.6x, enhancing the 215

responsiveness while preserving the response qual- 216

ity of multi-agent inference. Staircase streaming is 217

effective across MoA and MAD, showing the ver- 218

1TPS = The number tokens generated by the aggregator /
the time elapsed between sending the request and receiving
the last token.

2https://api.together.ai/playground/chat

3

https://api.together.ai/playground/chat

Figure 2: Results on Larger LLMs. The ‘Best Single’
model is WizardLM 8x22B. For MoA, the proposers
include Qwen1.5-72B-Chat, Qwen1.5-110B-Chat, Wiz-
ard 8x22B, Mixtral-8x22B-Instruct-v0.1, and Llama-3-
70B-Instruct. The aggregator is Qwen1.5-110B-Chat.
TTFT was evaluated using the Together serverless end-
point, so the results may vary depending on server load.

satility. While the prefix-cache optimized variant219

slightly reduces the win rate, it further improves220

the efficiency,221

Scaling up Model Size Figure 2 shows AlpacaE-222

val results for larger models. The ’Best Single’223

model achieved a 51% LC win rate. In contrast,224

MoA with 6 proposers achieved 62%, showing the225

benefits of leveraging the expertise from multiple226

LLMs. The staircase version achieved a similar227

LC win rate while maintaining reasonable TTFT.228

This shows staircase streaming effectively scales229

to larger models, achieving good performance with230

manageable latency.231

Effect of Chunk Sizes The first chunk size is232

a crucial hyperparameter for optimizing TTFT, as233

indicated in eq. (2). Figure 3 presents the impact234

of varying the first chunk size on response quality235

and TTFT. As the chunk size increases from 4 to236

32 tokens, the ArenaHard win rate improves, while237

TTFT initially decreases but then significantly in-238

creases for larger chunk sizes. This presents the239

trade-off between response quality and latency in240

staircase streaming, with a chunk size of 8 tokens241

as the sweet point.242

4 Related Work243

4.1 Multi-Agent Inference244

To mitigate the computational costs associated245

with multi-LLM inference, previous studies have246

explored training a router that predicts the best-247

performing model from a fixed set of LLMs for248

a given input (Wang et al., 2024a; Shnitzer et al.,249

Figure 3: The impact of first chunk size on ArenaHard
win rate and TTFT.

2024; Lu et al., 2023; Chen et al., 2023c). Another 250

line of work focuses on collaborative inference be- 251

tween multiple LLMs (Chan et al., 2023; Du et al., 252

2023; Liang et al., 2023; Chen et al., 2023b; Wang 253

et al., 2024b), where models work together to gen- 254

erate more reliable, consistent, and high-quality 255

responses. 256

4.2 Efficient Inference 257

Recent LLM inference optimizations enhance ef- 258

ficiency and resource use. PagedAttention (Kwon 259

et al., 2023) is proposed to manage non-contiguous 260

memory blocks efficiently. To further address the 261

memory consumption of key-value caches, recent 262

research proposes using quantization and sparsi- 263

fication techniques (Hooper et al., 2024; Zhang 264

et al., 2023; Xiao et al., 2023). Speculative de- 265

coding (Leviathan et al., 2022; Chen et al., 2023a) 266

speeds up inference by using extra small models to 267

generate multiple token guesses and validate them 268

in parallel. To the best of our knowledge, there has 269

been limited work for the inference efficiency of 270

multi-agent systems. 271

5 Conclusion 272

In this paper, we introduced staircase streaming, a 273

novel approach to reduce TTFT in multi-agent sys- 274

tems by streaming tokens incrementally between 275

models. The key innovation is to break the strict 276

sequential dependencies inherent in existing multi- 277

agent systems, enabling a pipelined execution pat- 278

tern that leverages partial results to minimize idle 279

waiting time. Our experimental results demonstrate 280

that this approach not only maintains response qual- 281

ity but also significantly reduces TTFT by up to 282

93%. 283

4

6 Limitation284

Our method requires modification to the original285

multi-agent algorithm. While these changes are286

generally minimal, they may impact performance.287

So necessary evaluation is needed before adapting288

staircase streaming to other multi-agent methods289

to ensure the quality does not change significantly.290

The improved TTFT and streaming experience291

comes at a cost of increased prompt token consump-292

tion. To mitigate this, we proposed a prefix-caching293

optimized version that can save a significant num-294

ber of the tokens if the API services or the local295

inference engine supports it. Currently, more and296

more inference engines (Zheng et al., 2023; Kwon297

et al., 2023) and API services roll out the support298

prefix-caching.299

7 Ethical Considerations300

Although multi-agent inference generally improves301

the harmlessness of model outputs, as shown in302

the Mixture-of-Agent paper (Wang et al., 2024b),303

there are still potential risks that the final answer304

may retain biases or harmful content from the inter-305

mediate outputs. This underscores the importance306

of diligent oversight and ethical guidelines in the307

development and deployment of such systems.308

References309

Reza Yazdani Aminabadi, Samyam Rajbhandari, Am-310
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,311
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff312
Rasley, and Yuxiong He. 2022. Deepspeed-inference:313
enabling efficient inference of transformer models at314
unprecedented scale. In Proceedings of the Interna-315
tional Conference on High Performance Computing,316
Networking, Storage and Analysis, SC ’22. IEEE317
Press.318

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,319
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei320
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,321
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,322
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,323
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong324
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-325
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,326
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,327
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-328
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang329
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang330
Zhu. 2023. Qwen technical report. arXiv preprint331
arXiv: 2309.16609.332

Tom Brown, Benjamin Mann, Nick Ryder, Melanie333
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind334

Neelakantan, Pranav Shyam, Girish Sastry, Amanda 335
Askell, et al. 2020. Language models are few-shot 336
learners. Advances in neural information processing 337
systems, 33:1877–1901. 338

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, 339
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan 340
Liu. 2023. Chateval: Towards better llm-based eval- 341
uators through multi-agent debate. arXiv preprint 342
arXiv:2308.07201. 343

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, 344
Jean-Baptiste Lespiau, L. Sifre, and John M. Jumper. 345
2023a. Accelerating large language model decoding 346
with speculative sampling. ArXiv, abs/2302.01318. 347

Justin Chih-Yao Chen, Swarnadeep Saha, and Mohit 348
Bansal. 2023b. Reconcile: Round-table conference 349
improves reasoning via consensus among diverse 350
llms. arXiv preprint arXiv:2309.13007. 351

Lingjiao Chen, Matei Zaharia, and James Zou. 2023c. 352
Frugalgpt: How to use large language models while 353
reducing cost and improving performance. arXiv 354
preprint arXiv:2305.05176. 355

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 356
Maarten Bosma, Gaurav Mishra, Adam Roberts, 357
Paul Barham, Hyung Won Chung, Charles Sutton, 358
Sebastian Gehrmann, et al. 2022. Palm: Scaling 359
language modeling with pathways. arXiv preprint 360
arXiv:2204.02311. 361

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and 362
Christopher R’e. 2022. Flashattention: Fast and 363
memory-efficient exact attention with io-awareness. 364
ArXiv, abs/2205.14135. 365

Tri Dao, Daniel Haziza, Francisco Massa, and Grig- 366
ory Sizov. 2023. Flash-decoding for long-context 367
inference. 368

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenen- 369
baum, and Igor Mordatch. 2023. Improving factual- 370
ity and reasoning in language models through multia- 371
gent debate. arXiv preprint arXiv:2305.14325. 372

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 373
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 374
Akhil Mathur, Alan Schelten, Amy Yang, Angela 375
Fan, et al. 2024. The llama 3 herd of models. arXiv 376
preprint arXiv:2407.21783. 377

Yann Dubois, Balázs Galambosi, Percy Liang, and Tat- 378
sunori B Hashimoto. 2024. Length-controlled al- 379
pacaeval: A simple way to debias automatic evalua- 380
tors. arXiv preprint arXiv:2404.04475. 381

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, 382
Michael W. Mahoney, Yakun Sophia Shao, Kurt 383
Keutzer, and Amir Gholami. 2024. Kvquant: To- 384
wards 10 million context length llm inference with 385
kv cache quantization. ArXiv, abs/2401.18079. 386

5

Yichong Huang, Xiaocheng Feng, Baohang Li, Yang387
Xiang, Hui Wang, Bing Qin, and Ting Liu. 2024.388
Enabling ensemble learning for heterogeneous large389
language models with deep parallel collaboration.390
arXiv preprint arXiv:2404.12715.391

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-392
sch, Chris Bamford, Devendra Singh Chaplot, Diego393
de las Casas, Florian Bressand, Gianna Lengyel, Guil-394
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,395
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,396
Thibaut Lavril, Thomas Wang, Timothée Lacroix,397
and William El Sayed. 2023a. Mistral 7b. Preprint,398
arXiv:2310.06825.399

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. 2023b.400
LLM-blender: Ensembling large language models401
with pairwise ranking and generative fusion. In Pro-402
ceedings of the 61st Annual Meeting of the Associa-403
tion for Computational Linguistics (Volume 1: Long404
Papers), pages 14165–14178, Toronto, Canada. As-405
sociation for Computational Linguistics.406

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing407
Yang, and Lili Qiu. 2023c. Llmlingua: Compressing408
prompts for accelerated inference of large language409
models. arXiv preprint arXiv:2310.05736.410

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Ji-411
tendra Malik, Michael W. Mahoney, Amir Gholami,412
and Kurt Keutzer. 2023. Speculative decoding with413
big little decoder. In Neural Information Processing414
Systems.415

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying416
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.417
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-418
cient memory management for large language model419
serving with pagedattention. In Proceedings of the420
ACM SIGOPS 29th Symposium on Operating Systems421
Principles.422

Yaniv Leviathan, Matan Kalman, and Yossi Matias.423
2022. Fast inference from transformers via spec-424
ulative decoding. In International Conference on425
Machine Learning.426

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap,427
Tianhao Wu, Banghua Zhu, Joseph E Gonzalez, and428
Ion Stoica. 2024. From crowdsourced data to high-429
quality benchmarks: Arena-hard and benchbuilder430
pipeline. arXiv preprint arXiv:2406.11939.431

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,432
Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu, and433
Shuming Shi. 2023. Encouraging divergent thinking434
in large language models through multi-agent debate.435
arXiv preprint arXiv:2305.19118.436

Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin,437
Zheng Yuan, Chang Zhou, and Jingren Zhou. 2023.438
Routing to the expert: Efficient reward-guided439
ensemble of large language models. Preprint,440
arXiv:2311.08692.441

OpenAI. 2023. Gpt-4 technical report. Preprint, 442
arXiv:2303.08774. 443

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, 444
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff 445
Dean. 2017. Outrageously large neural networks: 446
The sparsely-gated mixture-of-experts layer. arXiv 447
preprint arXiv:1701.06538. 448

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan 449
Li, Max Ryabinin, Beidi Chen, Percy Liang, Christo- 450
pher Ré, Ion Stoica, and Ce Zhang. 2023. Flexgen: 451
high-throughput generative inference of large lan- 452
guage models with a single gpu. In Proceedings of 453
the 40th International Conference on Machine Learn- 454
ing, ICML’23. JMLR.org. 455

Tal Shnitzer, Anthony Ou, Mírian Silva, Kate Soule, 456
Yuekai Sun, Justin Solomon, Neil Thompson, and 457
Mikhail Yurochkin. 2024. Large language model 458
routing with benchmark datasets. 459

Benjamin Spector and Christal Re. 2023. Accelerat- 460
ing llm inference with staged speculative decoding. 461
ArXiv, abs/2308.04623. 462

Gemini Team, Rohan Anil, Sebastian Borgeaud, 463
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, 464
Radu Soricut, Johan Schalkwyk, Andrew M Dai, 465
Anja Hauth, et al. 2023. Gemini: a family of 466
highly capable multimodal models. arXiv preprint 467
arXiv:2312.11805. 468

Gemma Team, Morgane Riviere, Shreya Pathak, 469
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati- 470
raju, Léonard Hussenot, Thomas Mesnard, Bobak 471
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2: 472
Improving open language models at a practical size. 473
arXiv preprint arXiv:2408.00118. 474

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 475
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 476
Baptiste Rozière, Naman Goyal, Eric Hambro, 477
Faisal Azhar, et al. 2023. Llama: Open and effi- 478
cient foundation language models. arXiv preprint 479
arXiv:2302.13971. 480

Hongyi Wang, Felipe Maia Polo, Yuekai Sun, Souvik 481
Kundu, Eric Xing, and Mikhail Yurochkin. 2024a. 482
Fusing models with complementary expertise. In 483
The Twelfth International Conference on Learning 484
Representations. 485

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, 486
and James Zou. 2024b. Mixture-of-agents enhances 487
large language model capabilities. arXiv preprint 488
arXiv:2406.04692. 489

Qineng Wang, Zihao Wang, Ying Su, Hanghang Tong, 490
and Yangqiu Song. 2024c. Rethinking the bounds of 491
llm reasoning: Are multi-agent discussions the key? 492
arXiv preprint arXiv:2402.18272. 493

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song 494
Han, and Mike Lewis. 2023. Efficient stream- 495
ing language models with attention sinks. ArXiv, 496
abs/2309.17453. 497

6

https://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2023.acl-long.792
https://doi.org/10.18653/v1/2023.acl-long.792
https://doi.org/10.18653/v1/2023.acl-long.792
https://arxiv.org/abs/2311.08692
https://arxiv.org/abs/2311.08692
https://arxiv.org/abs/2311.08692
https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=LyNsMNNLjY
https://openreview.net/forum?id=LyNsMNNLjY
https://openreview.net/forum?id=LyNsMNNLjY
https://openreview.net/forum?id=PhMrGCMIRL

Susan Zhang, Stephen Roller, Naman Goyal, Mikel498
Artetxe, Moya Chen, Shuohui Chen, Christopher De-499
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.500
Opt: Open pre-trained transformer language models.501
arXiv e-prints, pages arXiv–2205.502

Zhenyu (Allen) Zhang, Ying Sheng, Tianyi Zhou, Tian-503
long Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,504
Yuandong Tian, Christopher Ré, Clark W. Barrett,505
Zhangyang Wang, and Beidi Chen. 2023. H2o:506
Heavy-hitter oracle for efficient generative inference507
of large language models. ArXiv, abs/2306.14048.508

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff509
Huang, Chuyue Sun, Cody Hao Yu, Shiyi Cao, Chris-510
tos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al.511
2023. Efficiently programming large language mod-512
els using sglang. arXiv preprint arXiv:2312.07104.513

A Detailed Setups514

In the code implementation, there are five hyperpa-515

rameters that can control the behaviors of staircase516

streaming: first_chunk_size, second_chunk_size,517

chunk_size, aggregator_chunk_size, and redun-518

dancy. When running staircase streaming, CP,1519

and CA,1 would be set to first_chunk_size. CP,2520

and CA,2 are set to second_chunk_size. Then521

for the rest of the chunks, CP,j and CA,j are set522

to chunk_size and aggregator_chunk_size respec-523

tively for j > 2.524

Redundancy is introduced to control how many525

models’ responses must be ready before the aggre-526

gator can start generating. For example, if there are527

five proposers and Redundancy=2, then that means528

for the first chunk, it only needs responses from529

three models before the aggregator can generate the530

first chunk. This granular setup allows practition-531

ers to have maximum control over the trade-offs532

between TTFT and performance.533

For our main results in Table 1, we use534

first_chunk_size=8, second_chunk_size=128,535

chunk_size=256, aggregator_chunk_size=128, and536

redundancy=2. These choices is carefully chosen537

from the ablation study, and generalize across538

different setups.539

B Prompt Templates540

We present the prompt templates used in our evalu-541

ation. For MoA experiments, we mainly followed542

the original paper by (Wang et al., 2024b). The543

staircase streaming templates are shown in Table 2544

and Table 3. For MAD experiments, we adapted545

the templates to suit open-ended chat scenarios, as546

MAD is originally designed for tasks with short547

and deterministic answers, e.g. classification. The 548

staircase streaming templates is shown in Table 4. 549

C Related Work 550

C.1 Multi-Agent Inference 551

A straightforward solution to leverage multiple 552

LLMs is ranking outputs from different models. 553

Jiang et al. (2023b) introduced PAIRRANKER, 554

which performs pairwise comparisons on candi- 555

date outputs to select the best one. To alleivate the 556

substantial computational costs of multi-LLM infer- 557

ence, other studies have explored training a router 558

that predicts the best-performing model from a 559

fixed set of LLMs for a given input (Wang et al., 560

2024a; Shnitzer et al., 2024; Lu et al., 2023). Addi- 561

tionally, FrugalGPT (Chen et al., 2023c) proposed 562

reducing the cost of using LLMs by employing 563

different models in a cascading manner. To better 564

leverage the responses of multiple models, Jiang 565

et al. (2023b) trained GENFUSER, a model de- 566

signed to generate an improved response by cap- 567

italizing on the strengths of multiple candidates. 568

Huang et al. (2024) proposed fusing the outputs of 569

different models by averaging their output proba- 570

bility distributions. 571

Another line of work focuses on collaborative 572

collaboration, where multiple LLMs act as agents 573

that collectively discuss and reason through given 574

problems interactively. Du et al. (2023); Liang et al. 575

(2023); Chan et al. (2023) established a mechanism 576

for discussions among LLM-based agents. ReC- 577

oncile (Chen et al., 2023b) adopt multi-agent dis- 578

cussion with weighted voting. Wang et al. (2024c) 579

systematically compared collaborative approaches 580

and found that a single agent with a strong prompt, 581

including detailed demonstrations, can achieve 582

comparable response quality to collaborative ap- 583

proaches. Shazeer et al. (2017) adopted a layered 584

structure, using different LLMs as proposers to pro- 585

pose answers and another LLM to aggregate the 586

final answer. 587

C.2 Efficient Inference 588

Recent advancements in LLM inference optimiza- 589

tion focus on enhancing system efficiency and re- 590

source utilization in order to reduce calculation. 591

vLLM (Kwon et al., 2023) addresses fragmenta- 592

tion with PagedAttention, which manages non- 593

contiguous memory blocks efficiently. DeepSpeed- 594

Inference (Aminabadi et al., 2022) combines GPU, 595

CPU, and NVMe memory for high-throughput 596

7

Table 2: Prompt template of staircase streaming for MoA.

Role Content

system You have been provided with a set of responses from various open-source models to the latest user query. Your task
is to synthesize these responses into a single, high-quality response. It is crucial to critically evaluate the information
provided in these responses, recognizing that some of it may be biased or incorrect. Your response should not
simply replicate the given answers but should offer a refined, accurate, and comprehensive reply to the instruction.
Ensure your response is well-structured, coherent, and adheres to the highest standards of accuracy and reliability.

Responses from models:
1. {∪j

k=1R1,k}
2. {∪j

k=1R2,k}
...
N . {∪j

k=1RN,k}

user {Q}

inference of diverse transformer models. Flex-597

Gen (Sheng et al., 2023) increases the throughput598

with optimized GPU memory usage by integrat-599

ing memory and computation from GPUs, CPUs,600

and disks, and quantizes weights to boost inference601

speed. Flash-Decoding (Dao et al., 2023) based602

on FlashAttention (Dao et al., 2022) accelerates603

long-context inference with parallel processing of604

KV pairs with length considered.605

On the algorithm side, KV-Cache optimization606

is a commonly studied topic. During inference607

with LLM, it is necessary to store the KV pairs608

of previously generated tokens in a cache for fu-609

ture token generation. As the length of generated610

tokens increases, this KV cache expands signif-611

icantly, resulting in high memory consumption612

and longer inference times (Hooper et al., 2024;613

Zhang et al., 2023; Xiao et al., 2023). Another614

inference speedup technique is speculative decod-615

ing (Leviathan et al., 2022; Chen et al., 2023a). It616

involves smaller models to have multiple educated617

token guesses in parallel, then validating and prun-618

ing these candidates based on their likelihood and619

consistency with the output, thus reducing com-620

putational load and improving performance. Fol-621

lowing this idea, Staged Speculative (Spector and622

Re, 2023) organizes speculative outputs into a tree623

structure, enhancing batch generation and overall624

performance. BiLD (Kim et al., 2023) proposes a625

fallback policy allowing the small model to defer626

to the target model when uncertain, and a rollback627

policy for correcting small model errors.628

8

Table 3: Prompt template of prefix-caching optimized staircase streaming for MoA.

Role Content

system You have been provided with a set of responses from various open-source models to the latest user query in chunks.
Your task is to synthesize these response chunks into a single, high-quality response. It is crucial to critically
evaluate the information provided in these responses, recognizing that some of it may be biased or incorrect. As
some responses may be incomplete yet, craft your synthesized response to allow for easy updating or expansion as
new information becomes available. Your response should not simply replicate the given answers but should offer a
refined, accurate, and comprehensive reply to the instruction. Ensure your response is well-structured, coherent, and
adheres to the highest standards of accuracy and reliability.

Responses from models:
Chunk 1:
Model 1:
{R1,1}
...
Model N :
{RN,1}

Chunk 2:
Model 1:
{R1,2}
...
Model N :
{RN,2}

...

user {Q}

Table 4: Prompt template of staircase streaming for MAD. MAD puts the model’s own output before the debate
prompt, here we assueme it’s the ‘N‘-th model.

Role Content

user {Q}

assistant {{∪j
k=1RN,k}}

user These are the responses to the query from other agents:

One agent solution: {∪j
k=1R1,k}

One agent solution: {∪j
k=1R2,k}

...

One agent solution: {∪j
k=1RN−1,k}

Using the responses from other agents as additional information, can you provide your response to the query? The
original query is {Q}

9

	Introduction
	Methodology
	Token Streaming
	Staircase Streaming
	Prefix-Caching Optimized Staircase Streaming

	Evaluation
	Setup
	Results

	Related Work
	Multi-Agent Inference
	Efficient Inference

	Conclusion
	Limitation
	Ethical Considerations
	Detailed Setups
	Prompt Templates
	Related Work
	Multi-Agent Inference
	Efficient Inference

