

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING FLEXIBLE LARGE MULTIMODAL MODELS WITH ARBITRARY MODALITY COMBINATIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Multimodal Large Language Models (MLLMs) show strong potential for cross-modal understanding by integrating powerful language models with multimodal encoders. However, extending MLLMs to handle a diverse range of modalities introduces two critical and intertwined challenges: (1) the reliance on fully paired multimodal data, often scarce or costly to acquire across all modalities, and (2) the computational inefficiency from processing numerous modality tokens and requiring substantial model updates for each new modality. To address these challenges, we enable MLLMs to handle missing modalities by generating representations for absent inputs. Furthermore, recognizing that an increasing number of modalities leads to linearly scaling token counts and that lengthy generated sequences can hinder performance, we employ a dual-stage compression mechanism. It first reduces the number of tokens per modality and then condenses information from multiple modalities into a single, compact token sequence. This culminates in Flex-M³, a novel MLLM framework designed for flexible and efficient learning across arbitrary combinations of modalities. Experiments across diverse multimodal benchmarks and backbones demonstrate that Flex-M³ robustly handles varied modality inputs and scales efficiently. Notably, Flex-M³ outperforms its counterpart trained on only full-modality data, with consistent improvements of {2.29%, 3.15%, 11.01%} on multimodal reasoning tasks {NExT-QA, MUSIC-AVQA, SQA3D}. Moreover, Flex-M³ model demonstrates superior robustness during inference, even when a high proportion of modalities are missing from the input samples. Codes are provided in the supplement material.

1 INTRODUCTION

In recent years, Multimodal Large Language Models (MLLM) have become a popular paradigm in multimodal learning. MLLMs leverage the understanding and generative capabilities of pre-trained Large Language Models (Dubey et al., 2024; Achiam et al., 2023; Anil et al., 2023), enhancing them by integrating information from diverse perceptual inputs (*e.g.*, vision (Liu et al., 2024; Wang et al., 2024), speech (Zhang et al., 2023a; Chu et al., 2023), 3D (Xu et al., 2024), biomarker (Zhuo et al., 2024), and tabular information (Zheng et al., 2024)). Recent advancements are pushing towards omnipotent MLLMs which manage numerous modalities to tackle complex scenarios, *i.e.* automated planning (Wei et al., 2024; Wang et al., 2023a) and world simulation (Ge et al., 2024).

However, realizing the full potential of MLLMs is challenged by data acquisition and training efficiency. Firstly, acquiring fully paired multimodal datasets is arduous. This could be attributed to real-world constraints, such as in biomedical settings where measurement devices might destroy paired samples (Xi et al., 2024). Furthermore, collection costs vary drastically across modalities. For example, readily available image-text pairs are far more abundant than data for depth or thermal imaging (Zhu et al., 2024; Girdhar et al., 2023). Prior work has explored data synthesis, image translation (Bhat et al., 2023; Xu et al., 2023; Lee et al., 2023a), or meticulous training pipelines over disparate data resources (Han et al., 2024) to mitigate this. However, these methods often involve laborious data preparation and empirical tuning of training dynamics, limiting their generalizability.

A second critical challenge is the substantial computational cost associated with training and deploying MLLMs. Incorporating each new modality requires significant updates to the LLM to align textual representations with the new modal input. While research into efficient MLLMs proposes using

separate projections or adapters to reduce trainable parameters (Li et al., 2023; Han et al., 2024; Yu et al., 2025), the inherent MLLM architecture that projects each modality into hundreds of tokens still leads to high training and inference costs. This is especially problematic with a growing number of modalities or computationally intensive modalities like video. Moreover, many efficient MLLMs lack flexibility, mandating the presence of all designated modalities, which restricts their use with a mixture of incomplete data.

In light of the above challenges, we posit that one critical next step for MLLMs reflecting real-world data scenarios is “**flexible multimodal learning**”, which is *enabling MLLMs to adeptly process diverse input samples, where each sample can present a different and potentially incomplete combination of available modalities*.

To realize flexible multimodal learning, we introduce Flex-M³ with a generation module synthesizing representations for any missing modalities by dynamically conditioning on the ones that are present. Then, we observed that the number of tokens, particularly those generated for missing inputs, significantly impacts training efficiency and final performance. As more modalities are introduced, this can lead to a linear scaling of tokens, and generating lengthy sequences for absent modalities can constrain performance. To mitigate this, Flex-M³ incorporates a two-stage compression process. Initially, we compress the token representations from each modal encoder. Following that, all available modal representations, both those originally present and those newly generated, are further consolidated into a single, highly compact token sequence. This ensures that only the most salient and efficiently encoded cross-modal information is passed to the LLM. We validate the efficacy of Flex-M³ across various MLLM backbones and diverse multimodal tasks. As illustrated in Figure 1, our approach not only robustly handles incomplete data but also achieves an average performance gain of nearly 3% compared to counterparts trained exclusively using full modality samples. This advantage becomes even more distinct in groups involving more modalities. In sum, the contributions of this study are four-fold:

- We formulate and advance flexible multimodal learning as a significant capability for MLLMs, empowering them to learn on data samples with diverse modality combinations, akin to real-world incomplete data scenarios.
- We develop Flex-M³, a MLLM architecture to manage arbitrary combinations of input modalities. This is realized through a lightweight generation module that utilizes prompt-tuning to dynamically synthesize latent representations for absent modalities during both training and inference, effectively addressing the challenge of data scarcity.
- We introduce a two-stage token compression strategy integrated within Flex-M³. It first condenses outputs from individual modality encoders, and then consolidates all present and generated modal information into a highly compact representation for the LLM, thereby enhancing computational efficiency and synthesis robustness.
- We conduct comprehensive empirical evaluations across several challenging multimodal VQA benchmarks. Employing different MLLM architectures (BLIP-2, LLaVA), Flex-M³ consistently demonstrates superior performance and notable computational savings compared to baseline models restricted to full-modality training, achieving significant improvements in complex reasoning tasks (e.g., an uplift of up to 11% on SQA3D).

2 RELATED WORK

Multimodal Large Language Models Recent advancements in Multimodal Large Language Models (MLLMs) have streamlined the integration of diverse modalities, leading to improved performance in multimodal reasoning. BLIP-2 (Li et al., 2023) employs Querying Transformer (Q-Former) to bridge frozen image encoders and large language models. This design achieves competitive performance on vision-language tasks while maintaining a low number of trainable parameters. LLaVA (Liu et al., 2024) enables multimodal understanding by aligning image features

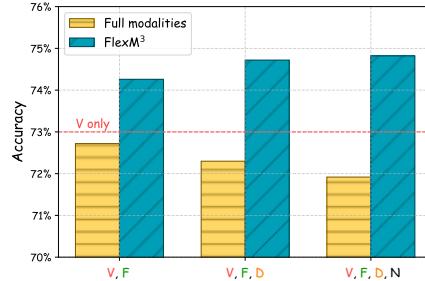


Figure 1: Comparison of accuracy (%) on a multimodal video question answering task NeXT-QA using different modality combinations for Flex-M³ against a baseline trained on full modalities data only. The x-axis represents the available non-text modalities during fine-tuning: **V**ideo, optical **F**low, **D**epth, and surface **N**ormalization. The dashed red line indicates the performance when using only **V**.

are further consolidated into a single, highly compact token sequence. This ensures that only the most salient and efficiently encoded cross-modal information is passed to the LLM. We validate the efficacy of Flex-M³ across various MLLM backbones and diverse multimodal tasks. As illustrated in Figure 1, our approach not only robustly handles incomplete data but also achieves an average performance gain of nearly 3% compared to counterparts trained exclusively using full modality samples. This advantage becomes even more distinct in groups involving more modalities. In sum, the contributions of this study are four-fold:

- We formulate and advance flexible multimodal learning as a significant capability for MLLMs, empowering them to learn on data samples with diverse modality combinations, akin to real-world incomplete data scenarios.
- We develop Flex-M³, a MLLM architecture to manage arbitrary combinations of input modalities. This is realized through a lightweight generation module that utilizes prompt-tuning to dynamically synthesize latent representations for absent modalities during both training and inference, effectively addressing the challenge of data scarcity.

• We introduce a two-stage token compression strategy integrated within Flex-M³. It first condenses outputs from individual modality encoders, and then consolidates all present and generated modal information into a highly compact representation for the LLM, thereby enhancing computational efficiency and synthesis robustness.

• We conduct comprehensive empirical evaluations across several challenging multimodal VQA benchmarks. Employing different MLLM architectures (BLIP-2, LLaVA), Flex-M³ consistently demonstrates superior performance and notable computational savings compared to baseline models restricted to full-modality training, achieving significant improvements in complex reasoning tasks (e.g., an uplift of up to 11% on SQA3D).

108 with language representations through a learned projection layer. This simple approach allows
 109 pre-trained language models to process image-text pairs effectively for VQA tasks. To process
 110 more modalities than vision and text, CREMA (Yu et al., 2025) proposes a modular and efficient
 111 framework. By employing modality-specific adapters on Q-Former and a multimodal fusion layer,
 112 CREMA can flexibly incorporate additional modalities—depth, flow, surface normal, audio, and 3D
 113 point clouds—without necessitating extensive parameter updates. However, all these models require
 114 the presence of all modalities during training and inference.

115 **Multimodal Learning with Missing Modalities** Real-world multimodal systems frequently face
 116 missing modalities due to factors such as environmental interference, sensor failures, or privacy
 117 constraints, all of which can significantly degrade model performance. Consequently, developing
 118 robust MLLMs capable of handling incomplete modality inputs has become a key research focus (Ma
 119 et al., 2022; Wei et al., 2023; Lee et al., 2023b; Qiu et al., 2023; Zhang et al., 2023c; Wu et al.,
 120 2024). Common recovery strategies include zero-based (Parthasarathy & Sundaram, 2020), average-
 121 based (Zhang et al., 2020), and learning-based methods (Pham et al., 2019). Among these, learning-
 122 based approaches are more effective, as they leverage representation learning and generative models to
 123 capture complex cross-modal dependencies. These methods can be broadly categorized into data-level
 124 and representation-level generation. Data-level methods aim to reconstruct the missing raw modalities
 125 from the available ones (Tran et al., 2017; Pham et al., 2019; Wang et al., 2023b), while representation-
 126 level methods synthesize the latent representations of missing modalities either directly from observed
 127 data (Hoffman et al., 2016; Zheng et al., 2021) or by fusing available modality representations (Zhou
 128 et al., 2021; Zhi et al., 2024). Recent works have explored architectural flexibility. Flex-MoE (Yun
 129 et al., 2024) utilizes a Mixture-of-Experts framework for medical classification with flexible modality
 130 inputs. PathWeave (Yu et al., 2024) enables models to continually evolve to incorporate new
 131 modalities. Our work targets complex MLLM reasoning tasks like video question answering and
 investigate robustly handling arbitrary combination of modalities.

132 **Efficient Multimodal Large Language Models** To support computation-heavy applications such
 133 as video understanding, recent work on MLLMs has focused on improving efficiency by reducing
 134 memory usage during training and inference. For image-based models, various techniques aim
 135 to reduce the number of vision tokens without sacrificing performance. Token pruning methods
 136 like FastV (Chen et al., 2024) discard less informative vision tokens in later attention layers, while
 137 token merging methods such as PruMerge (Shang et al., 2024) adaptively combine redundant tokens.
 138 TokenPacker (Li et al., 2024b) further compresses tokens through a coarse-to-fine approach. Other
 139 models, including Qwen-VL (Bai et al., 2023) and MQT-LLaVA (Hu et al., 2024), use Q-Former (Li
 140 et al., 2023) to project vision tokens into a fixed-length embedding. For video-based MLLMs, the
 141 challenge of processing long sequences of frames is addressed by selecting a fixed number of frames,
 142 as done in Video-ChatGPT (Maaz et al., 2024), VideoChat (Li et al., 2024a), Video-LLaVA (Lin et al.,
 143 2023), and Video-LLaMA (Zhang et al., 2023b), or by compressing the entire video into a compact
 144 representation, as in MovieChat (Song et al., 2024). LLaVA-Mini (Zhang et al., 2025) introduces a
 145 distinct strategy fusing visual information into text tokens and applying a query-based compression,
 146 reducing vision inputs to one token. This design enables highly compact multimodal representations
 and can potentially reduce the complexity of missing modality generation.

3 METHODOLOGY

150 We first provide a preliminary of the MLLM framework for connecting multimodal inputs with the
 151 LLM in Section 3.1. Then, we introduce Flex-M³, starting with how to learn on arbitrary modality
 152 combination by generating missing modal embeddings in Section 3.2, followed by how to further
 153 enhance generation robustness using two stages compression in Section 3.3.

3.1 PRELIMINARY: MULTIMODAL LARGE LANGUAGE MODEL

154 Multimodal Large Language Models (MLLMs) extend LLMs to process and reason over multiple
 155 modalities such as vision, speech, and 3D data. Their architecture typically consists of modality-
 156 specific encoders, an interfacing module, and the LLM. Each encoder \mathcal{E}_m maps raw inputs \mathbf{X}_m into
 157 high-level features $\mathbf{F}_m = \mathcal{E}_m(\mathbf{X}_m)$. Pretrained on large unimodal or text-paired datasets, these
 158 encoders learn robust and meaningful feature representations for their respective modalities. The
 159 interfacing module \mathcal{A} aligns these multimodal features with the LLM’s input space by projecting them
 160 into token sequences or embeddings. This step may involve simple MLP projection layers or more
 161 sophisticated adaptors using modality-specific learnable queries \mathbf{Q}_m that distill salient information

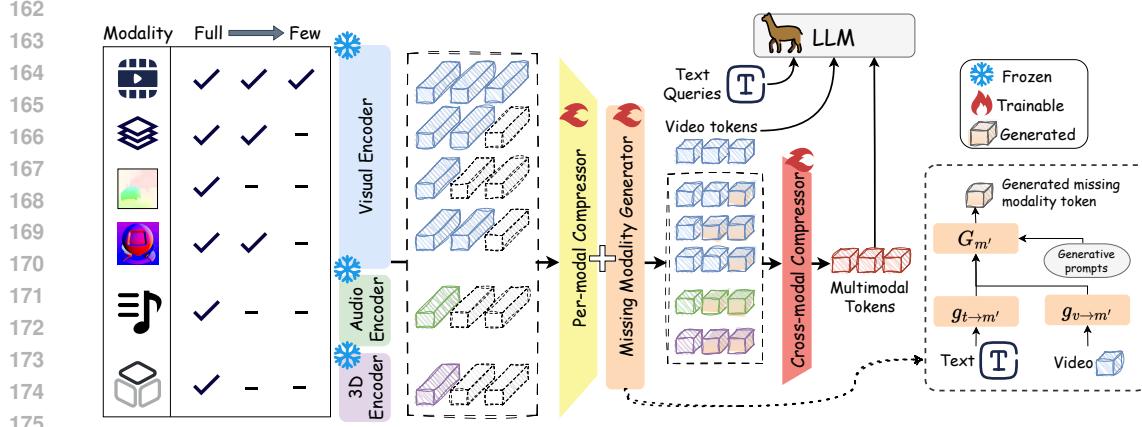


Figure 2: Overview of Flex-M³ multimodal learning framework. The model processes arbitrary modality combinations by first generating missing modality embeddings using text and video-conditioned generative soft prompts (left subfigure). These, along with present modality tokens, undergo per-modal and then cross-modal compression to create a compact, robust representation. Finally, these compressed tokens, along with text and video, are input to an LLM.

into fixed-length embeddings. The resulting tokens, $\mathbf{H}_m = \mathcal{A}(\mathbf{F}_m, \mathbf{Q}_m)$, act as soft prompts (Li et al., 2023) that condition the LLM on multimodal context.

These tokens \mathbf{H}_m are then combined—typically concatenated or interleaved—with text embeddings \mathbf{H}_t and fed into the LLM, which generates responses \mathbf{Y} . MLLMs are trained end-to-end using a language modeling objective: $\mathcal{L}_{LM} = -\sum_{t=1}^T \log P(y_t | y_{<t}, \mathbf{H}_m, \mathbf{H}_t; \theta)$, enabling joint reasoning over text and other multimodal inputs.

3.2 LEARNING ON RANDOM MODALITY COMBINATION WITH MISSING MODALITY GENERATION

To address the challenge of incomplete data modalities, where one or more modalities may be absent, we introduce a generation module to recover representations for missing modalities from presenting ones. This approach allows the MLLM to effectively learn and operate across arbitrary combinations of available input data, significantly enhancing its flexibility.

The core of this generation process utilizing a set of consistently available modalities, *i.e.* text and video inputs as conditional information to recover other modalities as “supportive” modalities. For each target “extra” modality m' (*e.g.*, depth, thermal, or other sensory data) that might be missing, we generate its feature representation. This generation is implemented by three components:

- **A learnable generative prompt \mathbf{P}** , which is a sequence of PROMPT vectors that provides an initial template or inductive bias for the generation process.
- **Modality transformation networks**: For each potential target missing modality m' , a dedicated mapping functions, $g_{t \rightarrow m'}(\cdot)$ and $g_{v \rightarrow m'}(\cdot)$, transform the text embedding \mathbf{H}_t and projected visual embedding \mathbf{H}_v into representations suitable for conditioning the generation of $\hat{\mathbf{H}}_{m'}$. These mapping functions are implemented as Multi-Layer Perceptrons (MLP).
- **Final generation network**: The representations from the modality transformation networks are concatenated with the generative prompt \mathbf{P} and then processed by another MLP $G_{m'}(\cdot)$ to produce the final synthesized feature embedding $\hat{\mathbf{H}}_{m'}$.

In sum, the generation process for a missing modality m' can be formulated as Equation 1, where concat denotes the concatenation operation along the sequence dimension.

$$\hat{\mathbf{H}}_{m'} = G_{m'}(\text{concat}(\mathbf{P}, g_{t \rightarrow m'}(\mathbf{H}_t), g_{v \rightarrow m'}(\mathbf{H}_v))) \quad (1)$$

This architecture allows for the generation of multiple missing modalities, using the same set of source modalities and the shared generative prompt, but with distinct and lightweight transformation procedures. The generation modules are trained end-to-end with the rest of the MLLM. To enable learning on generating high quality missing modal embeddings, we employ a reconstruction objective.

216 During training, for data samples where a modality m is physically present, we stochastically treat it
 217 as “missing”. In such cases, we obtain a generated feature $\hat{\mathbf{H}}_m$. Then, we compute a reconstruction
 218 loss, typically the Mean Squared Error (MSE), between the generated features $\hat{\mathbf{H}}_m$ and the presented
 219 real features \mathbf{H}_m . This loss is formulated as in Equation 2. The overall training objective for the
 220 MLLM is a combination of the standard language modeling loss and the weighted reconstruction
 221 losses: $\mathcal{L} = \mathcal{L}_{\text{LM}} + \lambda \mathcal{L}_{\text{Rec}}$, where λ is the weighting factor for reconstruction loss.

$$\mathcal{L}_{\text{Rec}} = \frac{1}{n} \sum_{m=1}^n \frac{1}{D} \sum_{i=1}^D \| \hat{h}_m^i - h_m^i \| \quad (2)$$

226 3.3 MODALITY TOKEN COMPRESSION FOR ROBUST GENERATION

227 While the integration of multiple modalities enriches the context, the direct concatenation of all
 228 modality tokens can lead to a prohibitively large number of input tokens for the LLM. This not
 229 only escalates computational cost but can also introduce noise or redundant information, potentially
 230 hampering the robustness of the synthesized outputs. To mitigate these issues, we employ a two-stage
 231 strategy for compressing and refining modality tokens before they are processed by the main LLM.
 232 This strategy involves per-modality token compression and cross-modal token compression.

233 **Per-Modal Compression** The initial projected feature representations for each modality m , denoted
 234 as \mathbf{H}_m , and including any generated features $\hat{\mathbf{H}}_{m'}$ are often lengthy. To reduce this length, we apply a
 235 per-modality compression module, \mathcal{C}_m . It is designed to distill the most salient information from \mathbf{H}_m
 236 into a more compact representation, $\mathbf{H}_m^{(c)}$. The compression module employs a set of N_q learnable
 237 query embeddings, *e.g.* $q_m \in \mathbb{R}^{N_q \times d}$ for modality m , where d is the dimension of query embedding
 238 and N_q is significantly smaller than the original token length of \mathbf{H}_m . These queries interact with the
 239 input modality tokens through the cross-attention mechanism. For the missing modalities, we switch
 240 to generate the per-modal compressor output $\hat{\mathbf{H}}_m^{(c)}$.
 241

242 **Cross-Modal Compression** After per-modality condensation, concatenating the resulting tokens
 243 with text embeddings still lead to a long input sequence for the LLM, especially when there are more
 244 modalities. To further condense the input and enable earlier cross-modal interactions, we introduce a
 245 cross-modal compression stage. This stage creates a more integrated and compact set of supportive
 246 multimodal tokens before interacting with the LLM. In this stage, all compressed modal tokens are
 247 concatenated and then processed by a cross-modal compression module $f(\cdot)$, generating a fused
 248 multimodal token with fixed length for any input modality numbers M as:

$$\mathbf{Z} = f(\text{concat}(\mathbf{H}_0^{(c)}, \mathbf{H}_1^{(c)}, \dots, \mathbf{H}_M^{(c)})) \quad (3)$$

250 The cross-modal compression output \mathbf{Z} , along with visual and text embeddings, are finally presented
 251 to the main LLM. This two-stage compression approach not only reduces the computational burden
 252 on the LLM but also aims to improve the robustness of generation by enabling the model to focus on
 253 the most salient cross-modal information, effectively filtering redundancies and noise.

255 4 EXPERIMENT

256 4.1 EXPERIMENT SETUP

257 **Datasets Details** We evaluate Flex-M³ on the 3 multimodal video reasoning and QA tasks. Following
 258 the setup in Yu et al. (2025), we incorporate optical flow, depth maps, and surface normals
 259 extracted from the videos as additional modalities to enhance the model’s understanding. Specifically,
 260 ZoeDepth (Bhat et al., 2023), Unimatch (Xu et al., 2023), and NLL-AngMF (Bae et al., 2021) are
 261 employed to extract depth, flow, and normal modalities.

262 • **NE^{XT}-QA** (Xiao et al., 2021) is a video question answering benchmark designed to advance video
 263 understanding beyond simple descriptions towards explaining temporal actions. It focuses on causal
 264 and temporal action reasoning as well as common scene comprehension. The dataset comprises 5440
 265 videos and approximately 52K questions. We report the results on the validation set of NE^{XT}-QA.

266 • **SQA3D** (Ma et al., 2023) is a compositional VideoQA task centered around situated question
 267 answering within 3D scenes. It is built upon 650 scenes from ScanNet, featuring approximately 33K
 268 diverse reasoning questions, spanning a range of capabilities, including spatial relation comprehension,
 269 commonsense understanding, navigation, and multi-hop reasoning. Following (Hong et al., 2023b),

270 we utilize the ego-centric videos corresponding to the 3D scenes as video inputs. We report the results
 271 on the validation set.

272 • **MUSIC-AVQA** (Li et al., 2022) is a compositional Audio-Visual Question Answering benchmark
 273 designed for comprehensive multimodal understanding and spatio-temporal reasoning over audio-
 274 visual scenes. It contains over 45K question-answer pairs derived from 9K videos. We train and
 275 evaluate baseline models and Flex-M³ on the real video portion.

276 **Model Implementation and Training setup.** For **pretrained modal encoder**, we utilize ViT-
 277 G (Sun et al., 2023) for all visual modalities including videos, depth, norm and flow. For non-visual
 278 modalities, we use BEATs (Chen et al., 2023) as the encoder for audio, and extract 3D point cloud
 279 features offline following 3D-LLM (Hong et al., 2023a). For **MLLM model backbone**, we implement
 280 Flex-M³ on BLIP-2 (Li et al., 2023) and LLaVA (Liu et al., 2024) to showcase Flex-M³ general
 281 applicability, detailed training hyperparameters are shown in Table ???. The entire model is trained
 282 end-to-end with the standard language modeling loss and an auxiliary generation reconstruction loss
 283 with weight $\lambda = 0.001$.

284 • We adapt BLIP-2’s initial Q-Former architecture as per-modal compressor, with query token
 285 number $N_q = 32$. The cross-modal compressor is implemented as a modality-specific linear layer
 286 that projects the output features from the corresponding Q-Former into the language model. For
 287 fine-tuning, we initialize Flex-M³ from BLIP-2 with encoders and LLM are frozen and only the
 288 per-modal compressors, cross-modal compressor, and generator are updated. To further enhance
 289 fine-tuning efficiency, we update per-modal compressors using LoRA (Hu et al., 2022) with rank 64.

290 • For LLaVA-based Flex-M³, we similarly integrate our generation and compression mechanisms
 291 with Llama 3.1 8B language model and ViT-L visual processing pipeline, following (Liu et al.,
 292 2024). Similar to the settings in BLIP-2, we initiate LLaVA with pretrained per-modal and cross-
 293 modal compressor from LLaVA-Mini (Zhang et al., 2025), where we copy the compressors for
 294 modalities other than video. The per-modal compressor is a 2D perceiver-resampler network with
 295 8×8 learnable queries as input, while the cross-modal compression module is a 4-layer Transformer
 296 decoder. We finetune Flex-M³ for all model components on LLaVA except for the encoders, as we
 297 find the performance gain after enabling the language model to be updated is significant while the
 298 computation cost growth is moderate.

299 **Compared Baselines and Evaluation Setup** To support the effectiveness of Flex-M³, we consider
 300 three groups of comparison baselines: (1) **Essential Modalities Only**: These models utilize the full
 301 dataset but are restricted to processing only the essential text and video modalities. This baseline is
 302 also evaluated on text and video modalities only. (2) **Full Modalities with Incomplete Data**: For M
 303 available modalities, we simulate data scarcity across modality combinations. A standard Multimodal
 304 Large Language Model (MLLM), pre-trained on data with all M modalities present, is subsequently
 305 fine-tuned. For this fine-tuning, the original dataset is divided into 2^M subsets, each corresponding
 306 to one of the 2^M possible modality input combinations and containing $1/2^M$ of the original data
 307 volume. For example, with one additional modality (e.g. **V**ideo, **F**low in the first experiment group of
 308 **NE^XT-QA**) in Table 1, the data composition is 50% of the samples except texts contain **V** only while
 309 the rest of them contain all modalities. This baseline is evaluated on full modalities. (3) **Learnable**
 310 **Padding for Missing Modalities**: This baseline employs the full dataset while accommodating
 311 arbitrary modality combinations through a learnable padding technique. Specifically, [PAD] tokens
 312 from the LLM embedding space, are used to represent absent modalities. These padded inputs
 313 are then processed by the cross-modal compressor, enabling fusion of the padding with existing
 314 modalities. This improved baseline and Flex-M³ are evaluated on full modalities.

314 4.2 MAIN RESULTS

315 **Superior Performance of Flex-M³ Learned from Random Combinations of Modality Data**
 316 The fine-tuning results on **NE^XT-QA**, presented in Table 1, compellingly demonstrate that Flex-M³
 317 excels in handling various multimodal inputs, particularly in scenarios characterized by missing
 318 modalities. Taking Flex-M³ with BLIP-2 as example, ① when utilizing the full dataset with arbitrary
 319 modality combinations (indicated by “Missing: ✓”), Flex-M³ consistently outperforms alternative
 320 approaches. For instance, in the **V**, **F**, **D**, **N** setting, Flex-M³ achieves an average score of 74.82,
 321 surpassing both the “Padding” baseline (74.22) and the “Essential Modalities Only” baseline (**V**: Avg.
 322 73.00). This highlights Flex-M³’s proficiency in leveraging supportive information from additional
 323 modalities, even when their presence is not guaranteed. ② This contrasts sharply with the “Full
 Modalities with Incomplete Data” baseline (rows with “Missing: ✗” and “Method: -”), which exhibits

324
 325 Table 1: Performance on Video Question Answering (NE_xT-QA). Notations for each modality and question
 326 type are: **V**: Video RGB frames, **F**: optical Flow, **D**: Depth, and **N**: surface Normalization. **P.&N.**: Prev &
 327 Next, **Pre.**: Present, **Cnt.**: Count, **Loc.**: Location, and **Otr.**: Other. Within each experimental group, the best
 328 performance is indicated in **bold**, and the second-best result is underlined. All results are reported as percentages.

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350	329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350	329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350	329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350	329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350		329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350		329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350		329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350			
				How	Why	Avg.	P.&N.	Pre.	Avg.	Cnt.	Loc.	Otr.	Avg.
BLIP-2													
V	X	-	69.69	74.64	73.34	65.14	72.55	74.84	64.41	92.20	81.31	81.60	73.00
	X	-	69.55	74.43	73.15	64.58	72.85	74.20	66.10	91.53	79.67	81.08	72.72
V, F	✓	Padding	71.16	74.58	73.69	<u>65.25</u>	73.00	74.97	64.97	92.54	81.64	81.98	73.26
	✓	Flex-M ³	70.42	75.99	74.53	66.93	73.60	76.89	65.54	92.20	83.28	82.63	74.26
V, F, D	✓	Padding	70.28	76.20	<u>74.65</u>	<u>66.03</u>	73.45	<u>75.87</u>	64.41	93.90	<u>81.64</u>	82.37	74.02
	✓	Flex-M ³	73.06	<u>75.68</u>	74.99	67.15	<u>74.36</u>	77.15	63.84	<u>91.53</u>	83.61	<u>82.11</u>	74.72
V, F, D, N	✓	Padding	72.62	<u>75.31</u>	<u>74.61</u>	66.59	<u>74.51</u>	<u>76.51</u>	63.28	<u>93.22</u>	<u>81.97</u>	81.98	74.22
	✓	Flex-M ³	70.66	76.62	75.06	66.85	<u>74.81</u>	76.84	<u>64.41</u>	93.90	84.92	83.66	74.82
LLaVA													
V	X	-	74.38	77.23	76.49	68.60	75.17	71.53	59.32	93.22	84.92	82.24	75.78
	X	-	71.89	76.30	75.14	68.16	74.34	70.91	58.76	92.88	85.57	82.24	74.88
V, F	✓	Padding	<u>76.28</u>	77.39	77.10	69.39	<u>75.45</u>	72.08	61.58	92.54	86.23	83.01	76.40
	✓	Flex-M ³	77.01	77.96	77.71	68.04	75.87	<u>71.53</u>	62.15	93.22	86.23	83.40	76.60
V, F, D	✓	Padding	<u>75.7</u>	<u>77.34</u>	<u>76.91</u>	<u>70.39</u>	77.55	73.57	61.58	<u>92.54</u>	86.23	83.01	<u>76.78</u>
	✓	Flex-M ³	77.89	78.33	78.21	71.28	<u>75.17</u>	<u>73.01</u>	<u>60.45</u>	92.88	86.23	<u>82.88</u>	77.26
V, F, D, N	✓	Padding	<u>74.38</u>	78.22	<u>77.22</u>	68.27	<u>76.15</u>	<u>71.77</u>	<u>62.71</u>	<u>92.2</u>	88.85	84.17	<u>76.56</u>
	✓	Flex-M ³	77.89	77.91	77.91	70.84	76.43	73.33	63.84	92.54	<u>86.56</u>	<u>83.66</u>	77.32

351 a performance decline as more modalities are introduced (from 73.00 for **V** only, down to 72.04
 352 for **V, F, D, N**). This performance drop could be attributable to the MLLM being fine-tuned on
 353 progressively smaller, specific data subsets for each modality combination ($1/2^M$ of the original
 354 data volume), which hampers generalization. ③ Flex-M³ not only overcomes this limitation but also
 355 consistently betteres the “Padding” method across all tested auxiliary modality counts: achieving a
 356 +1.00 point gain with one auxiliary modality (**V, F**: Flex-M³ 74.26 vs. Padding 73.26) and a +0.60
 357 point gain with three (**V, F, D, N**: Flex-M³ 74.82 vs. Padding 74.22). This sustained advantage is
 358 attributed to Flex-M³’s modal specific generation and compression design, which effectively distills
 359 key information and manages modality absence more adeptly than simple learnable padding. ④
 360 Furthermore, this robust performance extends across diverse question categories (Causal, Temporal,
 361 Descriptive Average Performance), where Flex-M³ generally secures the highest scores in settings
 362 with multiple potential modalities. In essence, Flex-M³ showcases a significant capability in flexibly
 363 and efficiently integrating information from an arbitrary set of available modalities, underscoring the
 364 efficacy of its advanced modality compression techniques for robust multimodal understanding in the
 365 face of incomplete data.

366 **Generalization of Flex-M³ across Different MLLM Backbones** To further substantiate the
 367 generalizability of Flex-M³, we evaluated its efficacy when integrated with LLaVA architecture (Liu
 368 et al., 2024). The results presented in Table 1 (bottom), again validate the effectiveness of Flex-
 369 M³ against strong video-LLMs fine-tuned with extra supportive modalities. Flex-M³ with LLaVA
 370 demonstrate a substantial average performance increase of approximately 10.83% points compare
 371 to training with full modality samples only. This consistent improvement demonstrates that the
 372 architectural benefits of Flex-M³ can be effectively transferred across foundational models.

373 **Generalization of Flex-M³ across Non-visual modalities** To further evaluate whether Flex-M³
 374 could extend to non-visual modalities that the model backbone has not been pre-trained on fine-tuned
 375 on, we perform fine-tuning and evaluation the MUSIC-AVQA and SQA3D benchmarks. Experiment
 376 results have been listed in Table 2 and Table 3. ① On the MUSIC-AVQA benchmark, Flex-M³
 377 demonstrates its surprising capacity for audio-video reasoning. When leveraging auxiliary modality
 378 information where samples contain missing modalities, Flex-M³ achieve over 11% the baseline
 379 learned on full-modality data only. Also, compared to the baseline finetuned on text-video modality,

378

379 Table 2: Performance on Audio-Video Question Answering (MUSIC-AVQA) with BLIP-2-based Flex-M³ and
 380 baseline models. Notations for each modality and question type are: **V**: Video RGB frames, **A**: Audio, **F**: optical
 381 Flow, **D**: Depth, and **N**: surface Normalization. **Cnt.**: Counting, **Com.**: Comparative, **Loc.**: Location, **Ext.**:
 382 Existential, and **Tem.**: Temporal. Within each experimental group, the best performance is indicated in **bold**,
 383 and the second-best result is underlined. All results are reported as percentages (%).

Modality	Missing Method	Audio			Visual			Audio-Visual				Avg.			
		Cnt.	Com.	Avg.	Cnt.	Loc.	Avg.	Cnt.	Ext.	Loc.	Com.	Tem.			
V	✗	-	88.14	60.73	82.21	85.73	87.11	86.40	82.93	84.34	69.66	62.35	73.04	74.65	76.28
V, A, F, D, N	✗	-	79.75	57.09	74.85	75.75	77.05	76.38	69.65	80.54	58.71	56.38	68.18	66.79	70.93
V, A, F, D, N	✓	Padding	89.49	65.18	84.22	87.03	90.43	88.69	85.67	83.11	71.49	67.59	73.04	76.54	81.17
V, A, F, D, N	✓	Flex-M ³	89.71	<u>62.75</u>	<u>83.87</u>	<u>87.03</u>	92.48	89.69	84.93	85.12	73.74	66.87	74.14	77.19	81.94

390 Table 3: Performance on Situated Question Answering (SQA3D) with BLIP-2-based Flex-M³ and baseline
 391 models. Notations for each modality and question type are: *Video RGB frames*, **V**: *Bird-Eye View image*, **P**: *3D*
 392 *Point cloud*, **D**: *Depth*, and **N**: *surface Normalization*. Within each experimental group, the best performance is
 393 indicated in **bold**, and the second-best result is underlined. All results are reported as percentages (%).

Modality	Missing	Method	What	Is	How	Can	Which	Others	Avg.
V	✗	-	44.99	47.74	63.02	64.88	47.59	49.11	51.69
V, P, D, N	✗	-	43.59	45.38	63.02	59.97	50.42	49.29	50.33
V, P, D, N	✓	Padding	45.86	<u>45.81</u>	65.98	65.95	49.86	54.26	<u>53.25</u>
V, P, D, N	✓	Flex-M ³	46.82	47.74	<u>66.57</u>	<u>65.95</u>	47.03	<u>53.55</u>	53.48

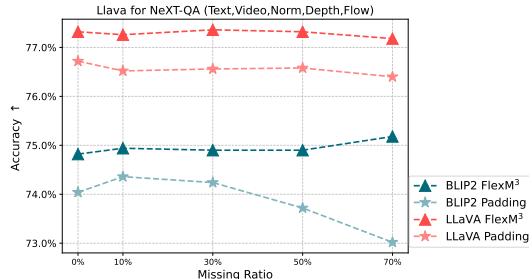
400 Flex-M³ obtain performance gain comprehensively in all question subclasses (audio, visual, audio-
 401 visual). This again validates the benefit of utilizing mixture of modality combination data, and the
 402 potential of flexible multimodal learning. ② The results in SQA3D again validate the versatility and
 403 effectiveness of Flex-M³, where it achieves the leading average accuracy of 53.48% (+3.15% to
 404 full-modal data baseline). 3D-associated video reasoning tasks require a model to interpret dynamic
 405 visual narratives from video with static and rich spatial, geometric information from 3D modalities.
 406 The ability of Flex-M³ to leverage these combined inputs allows it to construct a more holistic and
 407 nuanced understanding of the scene. Computation analysis of Flex-M³ is provided in Appendix A.1.

Flex-M³ Demonstrates Superior Robustness to Missing Modalities During Inference

409 While from the evaluation with full modalities in Table 1-3, both padding and Flex-M³ outperform other baselines, the distinction emerges
 410 when assessing their performance under random modality absence during inference. We take
 411 NE^XT-QA with **V**, **F**, **D**, **N** modalities as example. We randomize missing conditions for
 412 each sample, where 1 to 3 supportive modalities (from **F**, **D**, **N**) could be absent. We use the
 413 Missing Ratio (MR) to denote the overall proportion of missing modalities across the entire test
 414 set. As depicted in Figure 3, the performance of naive padding approaches degrades as the MR
 415 increases, a trend observed across both LLaVA and BLIP-2 based models. In contrast, Flex-M³,
 416 leveraging modal-specific generation, exhibits robust performance in both settings. The accuracy
 417 of Flex-M³ models remains stable or even slightly increases under high MR situations (70%), con-
 418 sistently outperforming the padding counterparts. This underscores a key advantage of Flex-M³.
 419 While naive padding falters with substantial data incompleteness at inference, Flex-M³ can manage
 420 modality variations through generation, providing a more resilient framework for MML.

4.3 EXTRA ANALYSIS AND ABLATION STUDIES

421 To identify the optimal design of Flex-M³, we analyze its module contributions, hyperparameter
 422 sensitivity, and training efficiency. All experiments are conducted with the BLIP-2 backbone on the
 423 10% NE^XT-QA subset, trained for 5 epochs using all supportive modalities.



424 Figure 3: Comparison between BLIP-2 and LLaVA-based Flex-M³ and Padding baseline on random modal-
 425 ity missing evaluation.

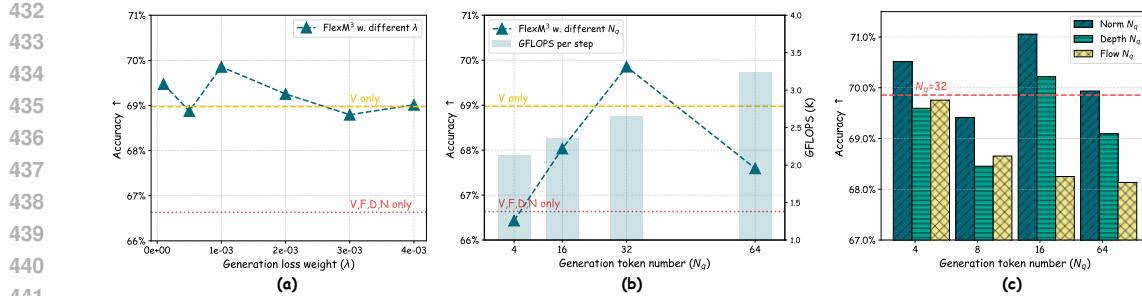


Figure 4: Extra studies on Flex-M³ hyperparameters. (a) investigates the effect of varying the generation loss weight (λ) on model performance. (b) examines the impact of different generation token numbers (N_g) on accuracy and computational cost (GFLOPS per training step). (c) compares the impact of separately changing generation tokens per modality while keeping other modalities $N_q=32$. All experiments are conducted on NeXT-QA with **V**, **F**, **D**, **N** modalities.

Ablation on Flex-M³ Components. We investigate the contributions of all modules within Flex-M³, with results in Table 4. We begin by directly generating multimodal encoder outputs and concatenating them as inputs for the Large Language Model (LLM). Subsequently, we integrate a per-modal compressor while keeping the concatenation, followed by incorporating a cross-modal compression mechanism. The experimental results demonstrate that the synergistic combination of these design elements achieves a Pareto-optimal balance between computational efficiency and model performance.

Ablation on Generation Loss Weight. An appropriate choice of the generation loss weight could benefit the performance of Flex-M³. We compare Flex-M³ under different generation loss weights (λ) in Figure 4 (a). The results indicate that a moderate weight ($1e^{-3}$) appears to yield optimal accuracy. Performance drops noticeably when λ is either significantly lower or higher. This suggests that while the reconstruction loss is crucial for learning to recover missing modalities, its contribution must be carefully balanced against the primary language modeling objective to prevent it from interfering with the core task.

Generation token numbers. In Figure 4 (b), we study the impact of the number of generation tokens (N_g) for all modalities on both accuracy and computational cost. As the token number increases to 32, accuracy generally improves. However, further increasing N_g to 64 results in a slight decrease in accuracy. This suggests that $N_g = 32$ reaches an optimal balance between representational capacity for the generated tokens and computational efficiency, with larger values potentially introducing redundancy. Moreover, we investigate altering the generation token numbers across modalities while keeping the token numbers for other modalities fixed at 32. The results in Figure 4 (c) highlight how individual modalities could benefit from different representational capacities during generation. Overall, $N_g = 32$ achieves moderately high accuracy for all modalities, and more tokens do not guarantee higher performance, aligning with previous findings in Figure 4 (b). Interestingly, some modalities could even improve with smaller N_g . For example, $N_g = 16$ yields better results for the Norm and Depth modalities. These findings suggest that we could dynamically adjust the generation token number per modality for flexible multimodal learning.

5 CONCLUSION

Existing multimodal MLLMs necessitate complete sets of modal inputs for training and inference, limiting their ability to utilize the prevalent heterogeneous and incomplete multimodal data. This paper introduced Flex-M³, a novel MLLM designed to adeptly process data featuring arbitrary combinations of modalities. Extensive experiments demonstrate that Flex-M³ achieves significant performance gains across various MLLM backbones and diverse multimodal benchmarks, all while incurring minimal additional computational overhead.

Table 4: Ablation of model modules.

Method	Avg. (%)
Baseline w/ full data	68.98
Baseline w/ full modalities	66.63
+ Generation	68.21
+ Per-modal compression	68.43
+ Cross-modal compression	69.86

486 REPRODUCIBILITY STATEMENT
487

488 We have made efforts to ensure the methods and results in this paper are reproducible. Section 4.1
489 provides extensive details about the datasets (NEXT-QA, SQA3D, MUSIC-AVQA), including the
490 specific tools used for preprocessing auxiliary modalities like optical flow and depth maps. The
491 same section also guides readers through the model implementation, training setup, and evaluation
492 procedures for the BLIP-2 and LLaVA backbones. The core architectural components of Flex-M³ are
493 detailed in Section 3. To facilitate replication, the source code to train and evaluate our models is
494 included in the supplementary materials.

495
496 REFERENCES
497

498 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
499 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
500 *arXiv preprint arXiv:2303.08774*, 2023.

501 Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk,
502 Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly capable multimodal
503 models. *arXiv preprint arXiv:2312.11805*, 2023.

504 Gwangbin Bae, Ignas Budvytis, and Roberto Cipolla. Estimating and exploiting the aleatoric
505 uncertainty in surface normal estimation. In *Proceedings of the International Conference on*
506 *Computer Vision (ICCV)*, pp. 13137–13146, October 2021.

507 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
508 and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
509 text reading, and beyond, 2023. URL <https://arxiv.org/abs/2308.12966>.

510 Shariq Farooq Bhat, Reiner Birkl, Diana Wofk, Peter Wonka, and Matthias Müller. Zoedepth:
511 Zero-shot transfer by combining relative and metric depth. *CoRR*, abs/2302.12288, 2023.

512 Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
513 An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
514 language models. In *Proceedings of the European Conference on Computer Vision (ECCV)*, pp.
515 19–35. Springer, 2024.

516 Sanyuan Chen, Yu Wu, Chengyi Wang, Shujie Liu, Daniel Tompkins, Zhuo Chen, Wanxiang Che,
517 Xiangzhan Yu, and Furu Wei. BEATs: Audio pre-training with acoustic tokenizers. In *Proceedings*
518 *of the International Conference on Machine Learning (ICML)*, 2023.

519 Yunfei Chu, Jin Xu, Xiaohuan Zhou, Qian Yang, Shiliang Zhang, Zhijie Yan, Chang Zhou, and
520 Jingren Zhou. Qwen-audio: Advancing universal audio understanding via unified large-scale
521 audio-language models. *arXiv preprint arXiv:2311.07919*, 2023.

522 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
523 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
524 *arXiv e-prints*, pp. arXiv–2407, 2024.

525 Zhiqi Ge, Hongzhe Huang, Mingze Zhou, Juncheng Li, Guoming Wang, Siliang Tang, and Yuetong
526 Zhuang. WorldGPT: Empowering LLM as multimodal world model. In *ACM Multimedia 2024*,
527 2024. URL <https://openreview.net/forum?id=G1tsqarGAw>.

528 Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand
529 Joulin, and Ishan Misra. Imagebind one embedding space to bind them all. In *IEEE/CVF*
530 *Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada,*
531 *June 17-24, 2023*, pp. 15180–15190. IEEE, 2023.

532 Jiaming Han, Kaixiong Gong, Yiyuan Zhang, Jiaqi Wang, Kaipeng Zhang, Dahua Lin, Yu Qiao,
533 Peng Gao, and Xiangyu Yue. Onellm: One framework to align all modalities with language.
534 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
535 26584–26595, 2024.

540 Judy Hoffman, Saurabh Gupta, and Trevor Darrell. Learning with side information through modality
 541 hallucination. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 542 pp. 826–834, 2016.

543

544 Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang
 545 Gan. 3d-llm: Injecting the 3d world into large language models. In *Advances in Neural Information
 546 Processing Systems (NeurIPS)*, 2023a.

547 Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang
 548 Gan. 3d-LLM: Injecting the 3d world into large language models. In *Advances in Neural Informa-
 549 tion Processing Systems (NeurIPS)*, 2023b. URL <https://openreview.net/forum?id=YQA28p7qNz>.

550

551 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 552 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *Proceedings
 553 of the International Conference on Learning Representations (ICLR)*, 2022. URL <https://openreview.net/forum?id=nZeVKeeFYf9>.

554

555 Wenbo Hu, Zi-Yi Dou, Liunian Harold Li, Amita Kamath, Nanyun Peng, and Kai-Wei Chang.
 556 Matryoshka query transformer for large vision-language models, 2024. URL <https://arxiv.org/abs/2405.19315>.

557

558 Dong-Guw Lee, Myung-Hwan Jeon, Younggun Cho, and Ayoung Kim. Edge-guided multi-domain
 559 rgb-to-tir image translation for training vision tasks with challenging labels. In *Proceedings of the
 560 International Conference on Robotics and Automation (ICRA)*, pp. 8291–8298. IEEE, 2023a.

561

562 Yi-Lun Lee, Yi-Hsuan Tsai, Wei-Chen Chiu, and Chen-Yu Lee. Multimodal prompting with missing
 563 modalities for visual recognition. In *Proceedings of the IEEE International Conference on
 564 Computer Vision and Pattern Recognition (CVPR)*, pp. 14943–14952, 2023b.

565

566 Guangyao li, Yake Wei, Yapeng Tian, Chenliang Xu, Ji-Rong Wen, and Di Hu. Learning to answer
 567 questions in dynamic audio-visual scenarios. *Proceedings of the IEEE International Conference
 568 on Computer Vision and Pattern Recognition (CVPR)*, 2022.

569

570 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 571 pre-training with frozen image encoders and large language models. In *International conference
 572 on machine learning*, pp. 19730–19742. PMLR, 2023.

573

574 KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhui Wang, Ping Luo, Yali Wang, Limin Wang, and
 575 Yu Qiao. Videochat: Chat-centric video understanding, 2024a. URL <https://arxiv.org/abs/2305.06355>.

576

577 Wentong Li, Yuqian Yuan, Jian Liu, Dongqi Tang, Song Wang, Jie Qin, Jianke Zhu, and Lei
 578 Zhang. Tokenpacker: Efficient visual projector for multimodal llm, 2024b. URL <https://arxiv.org/abs/2407.02392>.

579

580 Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning
 581 united visual representation by alignment before projection, 2023. URL <https://arxiv.org/abs/2311.10122>.

582

583 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 584 tuning, 2024. URL <https://arxiv.org/abs/2310.03744>.

585

586 Mengmeng Ma, Jian Ren, Long Zhao, Davide Testuggine, and Xi Peng. Are multimodal transformers
 587 robust to missing modality? In *Proceedings of the IEEE International Conference on Computer
 588 Vision and Pattern Recognition (CVPR)*, pp. 18177–18186, 2022.

589

590 Xiaojian Ma, Silong Yong, Zilong Zheng, Qing Li, Yitao Liang, Song-Chun Zhu, and Siyuan
 591 Huang. SQA3d: Situated question answering in 3d scenes. In *The Eleventh International
 592 Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=IDJx97BC38>.

594 Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt:
 595 Towards detailed video understanding via large vision and language models, 2024. URL <https://arxiv.org/abs/2306.05424>.

596

597 Srinivas Parthasarathy and Shiva Sundaram. Training strategies to handle missing modalities for audio-
 598 visual expression recognition. In *Companion Publication of the 2020 International Conference on*
 599 *Multimodal Interaction*, pp. 400–404, 2020.

600

601 Hai Pham, Paul Pu Liang, Thomas Manzini, Louis-Philippe Morency, and Barnabás Póczos. Found
 602 in translation: Learning robust joint representations by cyclic translations between modalities. In
 603 *Proceedings of the AAAI conference on artificial intelligence*, pp. 6892–6899, 2019.

604

605 Yansheng Qiu, Delin Chen, Hongdou Yao, Yongchao Xu, and Zheng Wang. Scratch each other’s
 606 back: Incomplete multi-modal brain tumor segmentation via category aware group self-support
 607 learning. In *Proceedings of the IEEE International Conference on Computer Vision and Pattern*
 608 *Recognition (CVPR)*, pp. 21317–21326, 2023.

609

610 Yuzhang Shang, Mu Cai, Bingxin Xu, Yong Jae Lee, and Yan Yan. Llava-prumerge: Adaptive token
 611 reduction for efficient large multimodal models, 2024. URL <https://arxiv.org/abs/2403.15388>.

612

613 Enxin Song, Wenhao Chai, Guanhong Wang, Yucheng Zhang, Haoyang Zhou, Feiyang Wu, Haozhe
 614 Chi, Xun Guo, Tian Ye, Yanting Zhang, Yan Lu, Jenq-Neng Hwang, and Gaoang Wang. Moviechat:
 615 From dense token to sparse memory for long video understanding. In *Proceedings of the IEEE*
 616 *International Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 18221–18232,
 617 June 2024.

618

619 Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue Cao. Eva-clip: Improved training
 620 techniques for clip at scale. *arXiv preprint arXiv:2303.15389*, 2023.

621

622 Luan Tran, Xiaoming Liu, Jiayu Zhou, and Rong Jin. Missing modalities imputation via cascaded
 623 residual autoencoder. In *Proceedings of the IEEE conference on computer vision and pattern*
 624 *recognition*, pp. 1405–1414, 2017.

625

626 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 627 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 628 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

629

630 Wenhui Wang, Jiangwei Xie, ChuanYang Hu, Haoming Zou, Jianan Fan, Wenwen Tong, Yang
 631 Wen, Silei Wu, Hanming Deng, Zhiqi Li, Hao Tian, Lewei Lu, Xizhou Zhu, Xiaogang Wang,
 632 Yu Qiao, and Jifeng Dai. Drivemlm: Aligning multi-modal large language models with behavioral
 633 planning states for autonomous driving. *ArXiv*, abs/2312.09245, 2023a. URL <https://api.semanticscholar.org/CorpusID:266210476>.

634

635 Yuanzhi Wang, Yong Li, and Zhen Cui. Incomplete multimodality-diffused emotion recognition. In
 636 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023b.

637

638 Julong Wei, Shanshuai Yuan, Pengfei Li, Qingda Hu, Zhongxue Gan, and Wenchao Ding.
 639 Occllama: An occupancy-language-action generative world model for autonomous driving.
 640 *ArXiv*, abs/2409.03272, 2024. URL <https://api.semanticscholar.org/CorpusID:272423788>.

641

642 Shicai Wei, Chunbo Luo, and Yang Luo. Mmanet: Margin-aware distillation and modality-aware
 643 regularization for incomplete multimodal learning. In *Proceedings of the IEEE International*
 644 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 20039–20049, 2023.

645

646 Zhenbang Wu, Anant Dadu, Nicholas Tustison, Brian Avants, Mike Nalls, Jimeng Sun, and Faraz
 647 Faghri. Multimodal patient representation learning with missing modalities and labels. In *Proceed-
 648 ings of the International Conference on Learning Representations (ICLR)*, 2024.

649

650 Johnny Xi, Jana Osea, Zuheng Xu, and Jason S Hartford. Propensity score alignment of unpaired
 651 multimodal data. *Advances in Neural Information Processing Systems*, 37:141103–141128, 2024.

648 Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa: Next phase of question-
 649 answering to explaining temporal actions. In *Proceedings of the IEEE International Conference*
 650 *on Computer Vision and Pattern Recognition (CVPR)*, 2021.

651 Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Fisher Yu, Dacheng Tao, and Andreas Geiger.
 652 Unifying flow, stereo and depth estimation. *IEEE Trans. Pattern Anal. Mach. Intell.*, 45(11):
 653 13941–13958, 2023.

654 Runsen Xu, Xiaolong Wang, Tai Wang, Yilun Chen, Jiangmiao Pang, and Dahua Lin. Pointllm:
 655 Empowering large language models to understand point clouds. In *Proceedings of the European*
 656 *Conference on Computer Vision (ECCV)*, pp. 131–147. Springer, 2024.

657 Jiazu Yu, Haomiao Xiong, Lu Zhang, Haiwen Diao, Yunzhi Zhuge, Lanqing Hong, Dong Wang,
 658 Huchuan Lu, You He, and Long Chen. Llms can evolve continually on modality for x-modal
 659 reasoning. *Advances in Neural Information Processing Systems*, 37:49834–49858, 2024.

660 Shoubin Yu, Jaehong Yoon, and Mohit Bansal. CREMA: Generalizable and efficient video-language
 661 reasoning via multimodal modular fusion. In *The Thirteenth International Conference on Learning*
 662 *Representations*, 2025.

663 Sukwon Yun, Inyoung Choi, Jie Peng, Yangfan Wu, Jingxuan Bao, Qiyiwen Zhang, Jiayi Xin,
 664 Qi Long, and Tianlong Chen. Flex-moe: Modeling arbitrary modality combination via the flexible
 665 mixture-of-experts. *Advances in Neural Information Processing Systems*, 37:98782–98805, 2024.

666 Changqing Zhang, Yajie Cui, Zongbo Han, Joey Tianyi Zhou, Huazhu Fu, and Qinghua Hu. Deep
 667 partial multi-view learning. *IEEE transactions on pattern analysis and machine intelligence*, 44
 668 (5):2402–2415, 2020.

669 Dong Zhang, Shimin Li, Xin Zhang, Jun Zhan, Pengyu Wang, Yaqian Zhou, and Xipeng Qiu.
 670 Speechgpt: Empowering large language models with intrinsic cross-modal conversational abilities.
 671 *arXiv preprint arXiv:2305.11000*, 2023a.

672 Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
 673 model for video understanding, 2023b. URL <https://arxiv.org/abs/2306.02858>.

674 Shaolei Zhang, Qingkai Fang, Zhe Yang, and Yang Feng. Llava-mini: Efficient image and video large
 675 multimodal models with one vision token, 2025. URL <https://arxiv.org/abs/2501.03895>.

676 Yunhua Zhang, Hazel Doughty, and Cees Snoek. Learning unseen modality interaction. *Advances in*
 677 *Neural Information Processing Systems*, 36:54716–54726, 2023c.

678 Aihua Zheng, Zi Wang, Zihan Chen, Chenglong Li, and Jin Tang. Robust multi-modality person
 679 re-identification. In *Proceedings of the AAAI Conference on Artificial Intelligence*, pp. 3529–3537,
 680 2021.

681 Mingyu Zheng, Xinwei Feng, Qingyi Si, Qiaoqiao She, Zheng Lin, Wenbin Jiang, and Weiping
 682 Wang. Multimodal table understanding. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
 683 (eds.), *Proceedings of the Association for Computational Linguistics (ACL)*, Bangkok, Thailand,
 684 August 2024. Association for Computational Linguistics.

685 Zhuo Zhi, Ziquan Liu, Moe Elbadawi, Adam Daneshmend, Mine Orlu, Abdul Basit, Andreas
 686 Demosthenous, and Miguel Rodrigues. Borrowing treasures from neighbors: In-context learning for
 687 multimodal learning with missing modalities and data scarcity. *arXiv preprint arXiv:2403.09428*,
 688 2024.

689 Tongxue Zhou, Stéphane Canu, Pierre Vera, and Su Ruan. Latent correlation representation learning
 690 for brain tumor segmentation with missing mri modalities. *IEEE Transactions on Image Processing*,
 691 30:4263–4274, 2021.

692 Bin Zhu, Bin Lin, Munan Ning, Yang Yan, Jiaxi Cui, Hongfa Wang, Yatian Pang, Wenhao Jiang,
 693 Junwu Zhang, Zongwei Li, Caiwan Zhang, Zhifeng Li, Wei Liu, and Li Yuan. Languagebind:
 694 Extending video-language pretraining to n-modality by language-based semantic alignment. In
 695 *Proceedings of the International Conference on Learning Representations (ICLR)*. OpenReview.net,
 696 2024.

702 Le Zhuo, Zewen Chi, Minghao Xu, Heyan Huang, Jianan Zhao, Heqi Zheng, Conghui He, Xian-Ling
703 Mao, and Wentao Zhang. ProtLLM: An interleaved protein-language LLM with protein-as-word
704 pre-training. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the*
705 *Association for Computational Linguistics (ACL)*, Bangkok, Thailand, August 2024. Association
706 for Computational Linguistics.

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A APPENDIX**
757758 **A.1 EFFICENCT FLEXIBLE MULTIMODAL LEARNING WITH FLEX-M³**
759760 To investigate the performance-computation trade-
761 off of our generation framework, we list the param-
762 eters and the number of floating point operations
763 (GFLOPs) per training forward of Flex-M³ with two
764 backbones in Table 5. From the results, we find
765 out that both compression and generation methods
766 (Padding and Flex-M³) incur minimal computation
767 overhead compared to its original architecture. Es-
768 pecially, for BLIP-2-based architectures, with LLM
769 frozen and PEFT techniques, we could further im-
770 prove training efficiency by updating less than 1%
771 parameters, while still benefiting from the multimodal learning performance gains.
772773 **A.2 THE USAGE OF LLM**774 To enhance the clarity and readability of this manuscript, GPT-5 was utilized exclusively as a language
775 polishing tool. Its role was strictly confined to proofreading, grammatical correction. GPT-5 did not
776 contribute to the generation of any scientific content, experimental design, or new ideas presented
777 in the paper. Its usage is consistent with standard practices for manuscript preparation and did not
778 influence the research itself.
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809764 Table 5: Comparison between Flex-M³ and base-
765 lines on training cost on NeXT-QA with **V**, **F**, **D**,
766 **N** modalities. p_{total} refers to total parameters (M)
767 and $p_{train.}$ indicates all trainable parameters (M).

Modality	Avg.	p_{total}	$p_{train.}$	GFLOPs
BLIP-2	72.30	3947.65	16.83	2.47K
w/ Padding	74.22	3957.62	16.84	2.47K
w/ Flex-M ³	74.82	3966.06	25.27	2.60K
LLaVA	54.98	9307.47	9003.96	11.35K
w/ Padding	76.72	9307.47	9003.96	11.35K
w/ Flex-M ³	77.04	9307.58	9004.07	11.35K