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ABSTRACT

Multimodal Large Language Models (MLLMs) show strong potential for cross-
modal understanding by integrating powerful language models with multimodal
encoders. However, extending MLLMs to handle a diverse range of modalities
introduces two critical and intertwined challenges: (1) the reliance on fully paired
multimodal data, often scarce or costly to acquire across all modalities, and (2) the
computational inefficiency from processing numerous modality tokens and requir-
ing substantial model updates for each new modality. To address these challenges,
we enable MLLMs to handle missing modalities by generating representations for
absent inputs. Furthermore, recognizing that an increasing number of modalities
leads to linearly scaling token counts and that lengthy generated sequences can hin-
der performance, we employ a dual-stage compression mechanism. It first reduces
the number of tokens per modality and then condenses information from multiple
modalities into a single, compact token sequence. This culminates in Flex-M?3, a
novel MLLM framework designed for flexible and efficient learning across arbitrary
combinations of modalities. Experiments across diverse multimodal benchmarks
and backbones demonstrate that Flex-M? robustly handles varied modality inputs
and scales efficiently. Notably, Flex-M? outperforms its counterpart trained on
only full-modality data, with consistent improvements of {2.29%, 3.15%, 11.01%}
on multimodal reasoning tasks {NExT—-QA, MUSIC-AVQA, SQA3D}. Moreover,
Flex-M? model demonstrates superior robustness during inference, even when
a high proportion of modalities are missing from the input samples. Codes are
provided in the supplement material.

1 INTRODUCTION

In recent years, Multimodal Large Language Models (MLLM) have become a popular paradigm in
multimodal learning. MLLMs leverage the understanding and generative capabilities of pre-trained
Large Language Models (Dubey et al.| 2024} |Achiam et al., [2023; |/Anil et al., 2023), enhancing them
by integrating information from diverse perceptual inputs (e.g., vision (Liu et al.,[2024; Wang et al.,
2024])), speech (Zhang et al.| [2023a; |Chu et al.| 2023)), 3D (Xu et al.| 2024)), biomarker (Zhuo et al.,
2024), and tabular information (Zheng et al., [2024)). Recent advancements are pushing towards
omnipotent MLLMs which manage numerous modalities to tackle complex scenarios, i.e. automated
planning (Wei et al., 2024; Wang et al., [2023a)) and world simulation (Ge et al., [2024).

However, realizing the full potential of MLLMs is challenged by data acquisition and training
efficiency. Firstly, acquiring fully paired multimodal datasets is arduous. This could be attributed
to real-world constraints, such as in biomedical settings where measurement devices might destroy
paired samples (Xi et al., [2024)). Furthermore, collection costs vary drastically across modalities.
For example, readily available image-text pairs are far more abundant than data for depth or thermal
imaging (Zhu et al.| [2024; \Girdhar et al.| |2023). Prior work has explored data synthesis, image
translation (Bhat et al., 2023} | Xu et al., |2023;; [Lee et al.,[2023a), or meticulous training pipelines over
disparate data resources (Han et al., 2024) to mitigate this. However, these methods often involve
laborious data preparation and empirical tuning of training dynamics, limiting their generalizability.

A second critical challenge is the substantial computational cost associated with training and deploying
MLLMs. Incorporating each new modality requires significant updates to the LLM to align textual
representations with the new modal input. While research into efficient MLLMs proposes using
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separate projections or adapters to reduce trainable parameters (Li et al., 2023 [Han et al.} 2024} |Yu
et al.| 20235)), the inherent MLLM architecture that projects each modality into hundreds of tokens
still leads to high training and inference costs. This is especially problematic with a growing number
of modalities or computationally intensive modalities like video. Moreover, many efficient MLLMs
lack flexibility, mandating the presence of all designated modalities, which restricts their use with a
mixture of incomplete data.

In light of the above challenges, we posit that one crit- 76%
ical next step for MLLMs reflecting real-world data
scenarios is “flexible multimodal learning”, which is
enabling MLLMs to adeptly process diverse input sam-
ples, where each sample can present a different and po-
tentially incomplete combination of available modalities.
To realize flexible multimodal learning, we introduce
Flex-M? with a generation module synthesizing repre-
sentations for any missing modalities by dynamically
conditioning on the ones that are present. Then, we ob- - v.F VF, V.F.ON
served that the number of tokens, particularly those gen-
erated for missing inputs, significantly impacts training
efficiency and final performance. As more modalities
are introduc§d, this can lead to a linear scaling of tokeps, tions for Flex-M? against a baseline trained on
and generat%ng lengthy sequences fqr absen.t modalities ] modalities data only. The x-axis represents
can constrain performance. To mitigate this, Flex-M? 1,0 available non-text modalities during fine-
incorporates a two-stage compression process. Initially, tuning: Video, optical Flow, Depth, and surface
we compress the token representations from each modal Normalization. The dashed red line indicates
encoder. Following that, all available modal representa- the performance when using only V.

tions, both those originally present and those newly generated, are further consolidated into a single,
highly compact token sequence. This ensures that only the most salient and efficiently encoded cross-
modal information is passed to the LLM. We validate the efficacy of Flex-M? across various MLLM
backbones and diverse multimodal tasks. As illustrated in Figure|[I] our approach not only robustly
handles incomplete data but also achieves an average performance gain of nearly 3% compared to
counterparts trained exclusively using full modality samples. This advantage becomes even more
distinct in groups involving more modalities. In sum, the contributions of this study are four-fold:

E=3 Full modalities
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Figure 1: Comparison of accuracy (%) on
a multimodal video question answering task
NeXT-QA using different modality combina-

e We formulate and advance flexible multimodal learning as a significant capability for MLLMs,
empowering them to learn on data samples with diverse modality combinations, akin to real-world
incomplete data scenarios.

e We develop Flex-M?, a MLLM architecture to manage arbitrary combinations of input modalities.
This is realized through a lightweight generation module that utilizes prompt-tuning to dynamically
synthesize latent representations for absent modalities during both training and inference, effectively
addressing the challenge of data scarcity.

e We introduce a two-stage token compression strategy integrated within Flex-M3. It first condenses
outputs from individual modality encoders, and then consolidates all present and generated modal
information into a highly compact representation for the LLM, thereby enhancing computational
efficiency and synthesis robustness.

e We conduct comprehensive empirical evaluations across several challenging multimodal VQA
benchmarks. Employing different MLLM architectures (BLIP-2, LLaVA), Flex-M? consistently
demonstrates superior performance and notable computational savings compared to baseline models
restricted to full-modality training, achieving significant improvements in complex reasoning tasks
(e.g., an uplift of up to 11% on SQA3D).

2 RELATED WORK

Multimodal Large Language Models Recent advancements in Multimodal Large Language
Models (MLLMs) have streamlined the integration of diverse modalities, leading to improved
performance in multimodal reasoning. BLIP-2 (L1 et al.l |2023) employs Querying Transformer
(Q-Former) to bridge frozen image encoders and large language models. This design achieves
competitive performance on vision-language tasks while maintaining a low number of trainable
parameters. LLaVA (Liu et al.,|2024) enables multimodal understanding by aligning image features
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with language representations through a learned projection layer. This simple approach allows
pre-trained language models to process image-text pairs effectively for VQA tasks. To process
more modalities than vision and text, CREMA (Yu et al., 2025)) proposes a modular and efficient
framework. By employing modality-specific adapters on Q-Former and a multimodal fusion layer,
CREMA can flexibly incorporate additional modalities—depth, flow, surface normal, audio, and 3D
point clouds—without necessitating extensive parameter updates. However, all these models require
the presence of all modalities during training and inference.

Multimodal Learning with Missing Modalities Real-world multimodal systems frequently face
missing modalities due to factors such as environmental interference, sensor failures, or privacy
constraints, all of which can significantly degrade model performance. Consequently, developing
robust MLLMs capable of handling incomplete modality inputs has become a key research focus (Ma
et al., 2022; |Wei et al., 2023} [Lee et al., [2023b; |Q1u et al., 2023} Zhang et al.| [2023c; Wu et al.,
2024). Common recovery strategies include zero-based (Parthasarathy & Sundaram| [2020), average-
based (Zhang et al.| [2020), and learning-based methods (Pham et al.,|2019). Among these, learning-
based approaches are more effective, as they leverage representation learning and generative models to
capture complex cross-modal dependencies. These methods can be broadly categorized into data-level
and representation-level generation. Data-level methods aim to reconstruct the missing raw modalities
from the available ones (Tran et al., 2017;|Pham et al.|[2019; Wang et al.,2023b)), while representation-
level methods synthesize the latent representations of missing modalities either directly from observed
data (Hoffman et al., |2016; Zheng et al., |2021) or by fusing available modality representations (Zhou
et al.| 2021} [Zhi et al|2024). Recent works have explored architectural flexibility. Flex-MoE (Yun
et al.,[2024)) utilizes a Mixture-of-Experts framework for medical classification with flexible modality
inputs. PathWeave (Yu et al., 2024)) enables models to continually evolve to incorporate new
modalities. Our work targets complex MLLM reasoning tasks like video question answering and
investigate robustly handling arbitrary combination of modalities.

Efficient Multimodal Large Language Models To support computation-heavy applications such
as video understanding, recent work on MLLMs has focused on improving efficiency by reducing
memory usage during training and inference. For image-based models, various techniques aim
to reduce the number of vision tokens without sacrificing performance. Token pruning methods
like FastV (Chen et al.,|2024) discard less informative vision tokens in later attention layers, while
token merging methods such as PruMerge (Shang et al.,[2024) adaptively combine redundant tokens.
TokenPacker (Li et al.,|2024b) further compresses tokens through a coarse-to-fine approach. Other
models, including Qwen-VL (Bai et al.,[2023) and MQT-LLaVA (Hu et al., 2024])), use Q-Former (Li
et al., [2023) to project vision tokens into a fixed-length embedding. For video-based MLLMs, the
challenge of processing long sequences of frames is addressed by selecting a fixed number of frames,
as done in Video-ChatGPT (Maaz et al.,[2024), VideoChat (Li et al.,2024a)), Video-LLaVA (Lin et al.,
2023)), and Video-LLaMA (Zhang et al.||2023b), or by compressing the entire video into a compact
representation, as in MovieChat (Song et al.| 2024). LLaVA-Mini (Zhang et al., |2025) introduces a
distinct strategy fusing visual information into text tokens and applying a query-based compression,
reducing vision inputs to one token. This design enables highly compact multimodal representations
and can potentially reduce the complexity of missing modality generation.

3 METHODOLOGY

We first provide a preliminary of the MLLM framework for connecting multimodal inputs with the
LLM in Section Then, we introduce Flex-M?, starting with how to learn on arbitrary modality
combination by generating missing modal embeddings in Section[3.2] followed by how to further
enhance generation robustness using two stages compression in Section [3.3]

3.1 PRELIMINARY: MULTIMODAL LARGE LANGUAGE MODEL

Multimodal Large Language Models (MLLMs) extend LLMs to process and reason over multiple
modalities such as vision, speech, and 3D data. Their architecture typically consists of modality-
specific encoders, an interfacing module, and the LLM. Each encoder &,,, maps raw inputs X, into
high-level features F,,, = &,,(X,,). Pretrained on large unimodal or text-paired datasets, these
encoders learn robust and meaningful feature representations for their respective modalities. The
interfacing module .4 aligns these multimodal features with the LLM’s input space by projecting them
into token sequences or embeddings. This step may involve simple MLP projection layers or more
sophisticated adaptors using modality-specific learnable queries Q,, that distill salient information
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Figure 2: Overview of Flex-M® multimodal learning framework. The model processes arbitrary modality
combinations by first generating missing modality embeddings using text and video-conditioned generative soft
prompts (left subfigure). These, along with present modality tokens, undergo per-modal and then cross-modal
compression to create a compact, robust representation. Finally, these compressed tokens, along with text and
video, are input to an LLM.

into fixed-length embeddings. The resulting tokens, H,, = A(F,,, Q,,), act as soft prompts (Li
et al.| [2023)) that condition the LLM on multimodal context.

These tokens H,,, are then combined—typically concatenated or interleaved—with text embeddings
H; and fed into the LLM, which generates responses Y. MLLMs are trained end-to-end using a
language modeling objective: Liy = — Zthl log P(y: | y<t, Hum, Hy; 0), enabling joint reasoning
over text and other multimodal inputs.

3.2 LEARNING ON RANDOM MODALITY COMBINATION WITH MISSING MODALITY
GENERATION

To address the challenge of incomplete data modalities, where one or more modalities may be absent,
we introduce a generation module to recover representations for missing modalities from presenting
ones. This approach allows the MLLM to effectively learn and operate across arbitrary combinations
of available input data, significantly enhancing its flexibility.

The core of this generation process utilizing a set of consistently available modalities, i.e. text and
video inputs as conditional information to recver other modalities as “supportive’” modalities. For
each target “extra” modality m’ (e.g., depth, thermal, or other sensory data) that might be missing,
we generate its feature representation. This generation is implemented by three components:

e A learnable generative prompt P, which is a sequence of PROMPT vectors that provides an
initial template or inductive bias for the generation process.

e Modality transformation networks: For each potential target missing modality m’, a dedicated
mapping functions, g;—.,/(+) and g, (+), transform the text embedding H; and projected visual
embedding H,, into representations suitable for conditioning the generation of H,, . These mapping
functions are implemented as Multi-Layer Perceptrons (MLP).

¢ Final generation network: The representations from the modality transformation networks are
concatenated with the generative prompt P and then processed by another MLP G,/ (-) to produce

the final synthesized feature embedding H,,, .

In sum, the generation process for a missing modality m’ can be formulated as Equation m where
concat denotes the concatenation operation along the sequence dimension.

H,, = G, (concat (P, gt—m' (Ht), go—m’ (Hy))) (1)

This architecture allows for the generation of multiple missing modalities, using the same set of
source modalities and the shared generative prompt, but with distinct and lightweight transformation
procedures. The generation modules are trained end-to-end with the rest of the MLLM. To enable
learning on generating high quality missing modal embeddings, we employ a reconstruction objective.
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During training, for data samples where a modality m is physically present, we stochastically treat it
as “missing”. In such cases, we obtain a generated feature H,,,. Then, we compute a reconstruction
loss, typically the Mean Squared Error (MSE), between the generated features H,,, and the presented
real features H,,,. This loss is formulated as in Equation |2} The overall training objective for the

MLLM is a combination of the standard language modeling loss and the weighted reconstruction
losses: £ = L1m + ALRec, Where A is the weighting factor for reconstruction loss.

L= L0 LS i o)
Rec*n D m m

m=1 =1
3.3 MODALITY TOKEN COMPRESSION FOR ROBUST GENERATION

While the integration of multiple modalities enriches the context, the direct concatenation of all
modality tokens can lead to a prohibitively large number of input tokens for the LLM. This not
only escalates computational cost but can also introduce noise or redundant information, potentially
hampering the robustness of the synthesized outputs. To mitigate these issues, we employ a two-stage
strategy for compressing and refining modality tokens before they are processed by the main LLM.
This strategy involves per-modality token compression and cross-modal token compression.

Per-Modal Compression The initial projected feature representations for each modality m, denoted

as H,,, and including any generated features H,, are often lengthy. To reduce this length, we apply a
per-modality compression module, C,,,. It is designed to distill the most salient information from H,,
into a more compact representation, Hgﬁ). The compression module employs a set of N, learnable
query embeddings, e.g. g,, € RNe*4 for modality m, where d is the dimension of query embedding
and N, is significantly smaller than the original token length of H,,,. These queries interact with the
input modality tokens through the cross-attention mechanism. For the missing modalities, we switch

to generate the per-modal compressor output I:I£22

Cross-Modal Compression After per-modality condensation, concatenating the resulting tokens
with text embeddings still lead to a long input sequence for the LLM, especially when there are more
modalities. To further condense the input and enable earlier cross-modal interactions, we introduce a
cross-modal compression stage. This stage creates a more integrated and compact set of supportive
multimodal tokens before interacting with the LLM. In this stage, all compressed modal tokens are
concatenated and then processed by a cross-modal compression module f(-), generating a fused
multimodal token with fixed length for any input modality numbers M as:

Z = f(concat(HY,H\”,... HY)) 3)

The cross-modal compression output Z, along with visual and text embeddings, are finally presented
to the main LLM. This two-stage compression approach not only reduces the computational burden
on the LLM but also aims to improve the robustness of generation by enabling the model to focus on
the most salient cross-modal information, effectively filtering redundancies and noise.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Datasets Details We evaluate Flex-M? on the 3 multimodal video reasoning and QA tasks. Fol-
lowing the setup in|Yu et al.|(2025)), we incorporate optical flow, depth maps, and surface normals
extracted from the videos as additional modalities to enhance the model’s understanding. Specifically,
ZoeDepth (Bhat et al., |[2023)), Unimatch (Xu et al.,|2023), and NLL-AngMF (Bae et al.,[2021) are
employed to extract depth, flow, and normal modalities.

e NExT-QA (Xiao et al.| [2021)) is a video question answering benchmark designed to advance video
understanding beyond simple descriptions towards explaining temporal actions. It focuses on causal
and temporal action reasoning as well as common scene comprehension. The dataset comprises 5440
videos and approximately 52K questions. We report the results on the validation set of NExT—QA.

e SQOA3D (Ma et al., [2023)) is a compositional VideoQA task centered around situated question
answering within 3D scenes. It is built upon 650 scenes from ScanNet, featuring approximately 33K
diverse reasoning questions, spanning a range of capabilities, including spatial relation comprehension,
commonsense understanding, navigation, and multi-hop reasoning. Following (Hong et al.| [2023b)),
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we utilize the ego-centric videos corresponding to the 3D scenes as video inputs. We report the results
on the validation set.

e MUSIC-AVOQA (li et al., 2022) is a compositional Audio-Visual Question Answering benchmark
designed for comprehensive multimodal understanding and spatio-temporal reasoning over audio-
visual scenes. It contains over 45K question-answer pairs derived from 9K videos. We train and
evaluate baseline models and Flex-M? on the real video portion.

Model Implementation and Training setup. For pretrained modal encoder, we utilize ViT-
G (Sun et al.;,|2023)) for all visual modalities including videos, depth, norm and flow. For non-visual
modalities, we use BEATs (Chen et al.| 2023) as the encoder for audio, and extract 3D point cloud
features offline following 3D-LLM (Hong et al.,2023a). For MLLM model backbone, we implement
Flex-M? on BLIP-2 (Li et al., 2023) and LLaVA (Liu et al., [2024) to showcase Flex-M? general
applicability, detailed training hyperparameters are shown in Table ??. The entire model is trained
end-to-end with the standard language modeling loss and an auxiliary generation reconstruction loss
with weight A = 0.001.

e We adapt BLIP-2’s initial Q-Former architecture as per-modal compressor, with query token
number N, = 32. The cross-modal compressor is implemented as a modality-specific linear layer
that projects the output features from the corresponding Q-Former into the language model. For
fine-tuning, we initialize Flex-M3 from BLIP-2 with encoders and LLM are frozen and only the
per-modal compressors, cross-modal compressor, and generator are updated. To further enhance
fine-tuning efficiency, we update per-modal compressors using LoRA (Hu et al., [2022)) with rank 64.

o For LLaVA-based Flex-M3, we similarly integrate our generation and compression mechanisms
with Llama 3.1 8B language model and ViT-L visual processing pipeline, following (Liu et al.,
2024). Similar to the settings in BLIP-2, we initiate LLaVA with pretrained per-modal and cross-
modal compressor from LLaVA-Mini (Zhang et al., [2025)), where we copy the compressors for
modalities other than video. The per-modal compressor is a 2D perceiver-resampler network with
8 x 8 learnable queries as input, while the cross-modal compression module is a 4-layer Transformer
decoder. We finetune Flex-M? for all model components on LLaVA except for the encoders, as we
find the performance gain after enabling the language model to be updated is significant while the
computation cost growth is moderate.

Compared Baselines and Evaluation Setup To support the effectiveness of Flex-M?, we consider
three groups of comparison baselines: (1) Essential Modalities Only: These models utilize the full
dataset but are restricted to processing only the essential text and video modalities. This baseline is
also evaluated on text and video modalities only. (2) Full Modalities with Incomplete Data: For M
available modalities, we simulate data scarcity across modality combinations. A standard Multimodal
Large Language Model (MLLM), pre-trained on data with all M modalities present, is subsequently
fine-tuned. For this fine-tuning, the original dataset is divided into 2 subsets, each corresponding
to one of the 2 possible modality input combinations and containing 1/2% of the original data
volume. For example, with one additional modality (e.g. Video, Flow in the first experiment group of
NExT-QA) in Table[T] the data composition is 50% of the samples except texts contain V only while
the rest of them contain all modalities. This baseline is evaluated on full modalities. (3) Learnable
Padding for Missing Modalities: This baseline employs the full dataset while accommodating
arbitrary modality combinations through a learnable padding technique. Specifically, [PAD] tokens
from the LLM embedding space, are used to represent absent modalities. These padded inputs
are then processed by the cross-modal compressor, enabling fusion of the padding with existing
modalities. This improved baseline and Flex-M? are evaluated on full modalities.

4.2 MAIN RESULTS

Superior Performance of Flex-M?> Learned from Random Combinations of Modality Data
The fine-tuning results on NExT—QA, presented in Table compellingly demonstrate that Flex-M?>
excels in handling various multimodal inputs, particularly in scenarios characterized by missing
modalities. Taking Flex-M? with BLIP-2 as example, @ when utilizing the full dataset with arbitrary
modality combinations (indicated by “Missing: v*), Flex-M? consistently outperforms alternative
approaches. For instance, in the V, F, D, N setting, Flex-M? achieves an average score of 74.82,
surpassing both the “Padding” baseline (74.22) and the “Essential Modalities Only” baseline (V: Avg.
73.00). This highlights Flex-M?’s proficiency in leveraging supportive information from additional
modalities, even when their presence is not guaranteed. @ This contrasts sharply with the “Full
Modalities with Incomplete Data” baseline (rows with “Missing: X and “Method: -”), which exhibits
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Table 1: Performance on Video Question Answering (NExT—QA). Notations for each modality and question
type are: V: Video RGB frames, F: optical Flow, D: Depth, and N: surface Normalization. P.&N.: Prev &
Next, Pre.: Present, Cnt.: Count, Loc.: Location, and Otr.: Other. Within each experimental group, the best
performance is indicated in bold, and the second-best result is underlined. All results are reported as percentages.

Causal Temporal Descriptive
How Why Avg. P.&N. Pre. Avg. Cnt. Loc. Otr. Avg.
BLIP-2
- 69.69 74.64 73.34 65.14 72.55 74.84 64.41 92.20 81.31 81.60 73.00

- 69.55 74.43 73.15 64.58 72.85 74.20 66.10 91.53 79.67 81.08 72.72
Padding 71.16 74.58 73.69 65.25 73.00 74.97 64.97 92.54 81.64 81.98 73.26
Flex-M® 70.42 75.99 74.53 66.93 73.60 76.89 65.54 92.20 83.28 82.63 74.26

- 66.91 73.86 72.04 64.25 72.85 73.81 64.97 93.56 80.66 81.98 72.30
Padding 70.28 76.20 74.65 66.03 73.45 75.87 64.41 93.90 81.64 82.37 74.02
Flex-M? 73.06 75.68 74.99 67.15 74.36 77.15 63.84 91.53 83.61 82.11 74.72

- 66.91 73.86 72.04 64.25 72.85 73.81 64.97 93.56 80.66 81.98 72.30
Padding 72.62 75.31 74.61 66.59 74.51 76.51 63.28 93.22 81.97 81.98 74.22

Flex-M? 70.66 76.62 75.06 66.85 74.81 76.84 64.41 93.90 84.92 83.66 74.82
LLaVA
- 74.38 77.23 76.49 68.60 75.17 71.53 59.32 93.22 84.92 82.24 75.78

- 71.89 76.30 75.14 68.16 74.34 70.91 58.76 92.88 85.57 82.24 74.88
Padding 76.28 77.39 77.10 69.39 75.45 72.08 61.58 92.54 86.23 83.01 76.40
Flex-M? 77.01 77.96 77.71 68.04 75.87 71.53 62.15 93.22 86.23 83.40 76.60

- 64.71 69.13 67.97 61.45 66.53 63.71 55.37 88.81 78.36 77.09 68.01
Padding 75.7 77.34 76.91 70.39 77.55 73.57 61.58 92.54 86.23 83.01 76.78
Flex-M® 77.89 78.33 78.21 71.28 75.17 73.01 60.45 92.88 86.23 82.88 77.26

- 49.63 54.05 52.90 49.83 55.23 52.23 51.98 80.68 64.26 67.70 54.98
Padding 74.38 78.22 77.22 68.27 76.15 71.77 62.71 92.2 88.85 84.17 76.56

Flex-M® 77.89 77.91 77.91 70.84 76.43 73.33 63.84 92.54 86.56 83.66 77.32

Modality Missing Method Avg.

<
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a performance decline as more modalities are introduced (from 73.00 for V only, down to 72.04
for V, F, D, N). This performance drop could be attributable to the MLLM being fine-tuned on
progressively smaller, specific data subsets for each modality combination (1/2% of the original
data volume), which hampers generalization. ® Flex-M? not only overcomes this limitation but also
consistently betters the “Padding” method across all tested auxiliary modality counts: achieving a
+1.00 point gain with one auxiliary modality (V, F: Flex-M? 74.26 vs. Padding 73.26) and a +0.60
point gain with three (V, F, D, N: Flex-M? 74.82 vs. Padding 74.22). This sustained advantage is
attributed to Flex-M?’s modal specific generation and compression design, which effectively distills
key information and manages modality absence more adeptly than simple learnable padding. @
Furthermore, this robust performance extends across diverse question categories (Causal, Temporal,
Descriptive Average Performance), where Flex-M? generally secures the highest scores in settings
with multiple potential modalities. In essence, Flex-M? showcases a significant capability in flexibly
and efficiently integrating information from an arbitrary set of available modalities, underscoring the
efficacy of its advanced modality compression techniques for robust multimodal understanding in the
face of incomplete data.

Generalization of Flex-M? across Different MLLM Backbones To further substantiate the
generalizability of Flex-M3, we evaluated its efficacy when integrated with LLaVA architecture (Liu
et al., 2024). The results presented in Table |1| (bottom), again validate the effectiveness of Flex-
M? against strong video-LLMs fine-tuned with extra supportive modalities. Flex-M? with LLaVA
demonstrate a substantial average performance increase of approximately 10.83% points compare
to training with full modality samples only. This consistent improvement demonstrates that the
architectural benefits of Flex-M? can be effectively transferred across foundational models.

Generalization of Flex-M? across Non-visual modalities To further evaluate whether Flex-M?
could extend to non-visual modalities that the model backbone has not been pre-trained on fine-tuned
on, we perform fine-tuning and evaluation the MUSTIC—-AVQA and SQA3D benchmarks. Experiment
results have been listed in Table [2| and Table 3| @ On the MUSIC-AVQA benchmark, Flex-M3
demonstrates its surprising capacity for audio-video reasoning. When leveraging auxiliary modality
information where samples contain missing modalities, Flex-M? achieve over 11% the baseline
learned on full-modality data only. Also, compared to the baseline finetuned on text-video modality,
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Table 2: Performance on Audio-Video Question Answering (MUSIC-AVQA) with BLIP-2-based Flex-M? and
baseline models. Notations for each modality and question type are: V: Video RGB frames, A: Audio, F: optical
Flow, D: Depth, and N: surface Normalization. Cnt.: Counting, Com.: Comparative, Loc.: Location, Ext.:
Existential, and Tem.: Temporal. Within each experimental group, the best performance is indicated in bold,
and the second-best result is underlined. All results are reported as percentages (%).

Modality Missing Method Audio Visual Audio-Visual Ave.

Cnt. Com. Avg. Cnt. Loc. Avg. Cnt. Ext. Loc. Com. Tem. Avg.
- 88.14 60.73 82.21 85.73 87.11 86.40 82.93 84.34 69.66 62.35 73.04 74.65 76.28

X

X - 79.75 57.09 74.85 75.75 77.05 76.38 69.65 80.54 58.71 56.38 68.18 66.79 70.93
V,A,F,D,N v  Padding 89.49 65.18 84.22 87.03 90.43 88.69 85.67 83.11 71.49 67.59 73.04 76.54 81.17

v/ Flex-M® 89.71 62.75 83.87 87.03 92.48 89.69 84.93 85.12 73.74 66.87 74.14 77.19 81.94

\

Table 3: Performance on Situated Question Answering (SQA3D) with BLIP-2-based Flex-M> and baseline
models. Notations for each modality and question type are: Video RGB frames, V: Bird-Eye View image, P: 3D
Point cloud, D: Depth, and N: surface Normalization. Within each experimental group, the best performance is
indicated in bold, and the second-best result is underlined. All results are reported as percentages (%).

Modality Missing Method What Is How Can Which Others Avg.
\Y X - 4499 47.74 63.02 64.88 47.59 49.11 51.69

X - 43.59 45.38 63.02 59.97 5042 49.29 50.33
V,P,D,N v Padding 45.86 45.81 65.98 65.95 49.86 54.26 53.25
v Flex-M® 46.82 47.74 66.57 65.95 47.03 53.55 53.48

Flex-M? obtain performance gain comprehensively in all question subclasses (audio, visual, audio-
visual). This again validates the benefit of utilizing mixture of modality combination data, and the
potential of flexible multimodal learning. @ The results in SQA3D again validate the versatility and
effectiveness of Flex-M?3, where it achieves the leading average accuracy of 53.48% (4+3.15% to
full-modal data baseline). 3D-associated video reasoning tasks require a model to interpret dynamic
visual narratives from video with static and rich spatial, geometric information from 3D modalities.
The ability of Flex-M? to leverage these combined inputs allows it to construct a more holistic and
nuanced understanding of the scene. Computation analysis of Flex-M? is provided in Appendix

Flex-M? Demonstrates Superior Robustness

to Missing Modalities During Inference

While from the evaluation with full modalities 77.0%
in Table both padding and Flex-M? outper-
form other baselines, the distinction emerges
when assessing their performance under random
modality absence during inference. We take

NExT-QA with V, F, D, N modalities as ex-  7ox e BLF2 redting
ample. We randomize missing conditions for A Lava ELZZ“?;
each sample, where 1 to 3 supportive modali- "™l — — — -

ties (from F, D, N) could be absent. We use the Missing Ratio

Missing R.at'%o (MR) to.d.enote the overall Propor-  Figure 3: Comparison between BLIP-2 and LLaVA-
tion of missing modalities across the entire test  paged Flex-M? and Padding baseline on random modal-
set. As depicted in Figure|3} the performance of  jty missing evaluation.

naive padding approaches degrades as the MR

increases, a trend observed across both LLaVA and BLIP-2 based models. In contrast, Flex-M?3,
leveraging modal-specific generation, exhibits robust performance in both settings. The accuracy
of Flex-M? models remains stable or even slightly increases under high MR situations (70%), con-
sistently outperforming the padding counterparts. This underscores a key advantage of Flex-M?3.
While naive padding falters with substantial data incompleteness at inference, Flex-M? can manage
modality variations through generation, providing a more resilient framework for MML.

Llava for NeXT-QA (Text,Video,Norm,Depth,Flow)

76.0%

[y e S e P SR &

Accuracy T

4.3 EXTRA ANALYSIS AND ABLATION STUDIES

To identify the optimal design of Flex-M?, we analyze its module contributions, hyperparameter
sensitivity, and training efficiency. All experiments are conducted with the BLIP-2 backbone on the
10% NExT-QA subset, trained for 5 epochs using all supportive modalities.
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Figure 4: Extra studies on Flex-M® hyperparameters. (a) investigates the effect of varying the generation loss
weight (A) on model performance. (b) examines the impact of different generation token numbers (Ng) on
accuracy and computational cost (GFLOPS per training step). (¢) compares the impact of separately changing
generation tokens per modality while keeping other modalities N,=32. All experiments are conducted on
NeXT-QA with V, F, D, N modalities.

. . Table 4: Ablation of model modules.
Ablation on Flex-M> Components. We investigate the con- Method | Avg. (%)

tributions of all modules within Flex-M?3, with results in Table Ié-_ll

. . . . Baseline w/ full dat 68.98
We begin by directly generating multimodal encoder outputs and Bascling w/ fill modalities ‘ 66.63
concatenating them as inputs for the Large Language Model + Generation 6821
(LLM). Subsequently, we integrate a per-modal compressor | per-modal compression 68.43
while keeping the concatenation, followed by incorporating a ~ + Cross-modal compression | ~ 69.86

cross-modal compression mechanism. The experimental results
demonstrate that the synergistic combination of these design elements achieves a Pareto-optimal
balance between computational efficiency and model performance.

Ablation on Generation Loss Weight. An appropriate choice of the generation loss weight could
benefit the performance of Flex-M?3. We compare Flex-M? under different generation loss weights ()
in Figure a). The results indicate that a moderate weight (1e~3) appears to yield optimal accuracy.
Performance drops noticeably when A is either significantly lower or higher. This suggests that while
the reconstruction loss is crucial for learning to recover missing modalities, its contribution must be
carefully balanced against the primary language modeling objective to prevent it from interfering
with the core task.

Generation token numbers. In Figure 4] (b), we study the impact of the number of generation
tokens (N,) for all modalities on both accuracy and computational cost. As the token number
increases to 32, accuracy generally improves. However, further increasing N, to 64 results in
a slight decrease in accuracy. This suggests that N, = 32 reaches an optimal balance between
representational capacity for the generated tokens and computational efficiency, with larger values
potentially introducing redundancy. Moreover, we investigate altering the generation token numbers
across modalities while keeping the token numbers for other modalities fixed at 32. The results
in Figure [] (c) highlight how individual modalities could benefit from different representational
capacities during generation. Overall, IV, = 32 achieves moderately high accuracy for all modalities,
and more tokens do not guarantee higher performance, aligning with previous findings in Figure ] (b).
Interestingly, some modalities could even improve with smaller N,. For example, N, = 16 yields
better results for the Norm and Depth modalities. These findings suggest that we could dynamically
adjust the generation token number per modality for flexible multimodal learning.

5 CONCLUSION

Existing multimodal MLLMs necessitate complete sets of modal inputs for training and inference,
limiting their ability to utilize the prevalent heterogeneous and incomplete multimodal data. This
paper introduced Flex-M?3, a novel MLLM designed to adeptly process data featuring arbitrary
combinations of modalities. Extensive experiments demonstrate that Flex-M? achieves significant
performance gains across various MLLM backbones and diverse multimodal benchmarks, all while
incurring minimal additional computational overhead.
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REPRODUCIBILITY STATEMENT

We have made efforts to ensure the methods and results in this paper are reproducible. Section 4.1
provides extensive details about the datasets (NEXT-QA, SQA3D, MUSIC-AVQA), including the
specific tools used for preprocessing auxiliary modalities like optical flow and depth maps. The
same section also guides readers through the model implementation, training setup, and evaluation
procedures for the BLIP-2 and LLaVA backbones. The core architectural components of Flex-M? are
detailed in Section 3. To facilitate replication, the source code to train and evaluate our models is
included in the supplementary materials.
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A APPENDIX

A.1 EFFICENCT FLEXIBLE MULTIMODAL LEARNING WITH FLEX-M?

To investigate the performance-computation trade-
off of our generation framework, we list the param-
eters and the number of floating point operations
(GFLOPs) per training forward of Flex-M? with two
backbones in Table 5] From the results, we find
out that both compression and generation methods

Table 5: Comparison between Flex-M? and base-
lines on training cost on NeXT-QA with V, F, D,
N modalities. p;orq: refers to total parameters (M)
and p¢rain. indicates all trainable parameters (M).
Modality Avg. Dtotal Dirain. GFLOPs

BLIP-2 7230 394765 1683 247K
(Padding and Flex-M?) incur minimal computation w/Padding 7422 3957.62 1684 247K
overhead compared to its original architecture. Es- w/FlecM? 7482 396606 2527 260K
pecially, for BLIP-2-based architectures, with LLM ]Q%ngmg 22% gggz-g ggg;gg Hg;’i
frozen and PEFT techniques, we could further im- W/ FlexM®  77.06 930758 900407  11.35K

prove training efficiency by updating less than 1%
parameters, while still benefiting from the multimodal learning performance gains.

A.2 THE USAGE OF LLM

To enhance the clarity and readability of this manuscript, GPT-5 was utilized exclusively as a language
polishing tool. Its role was strictly confined to proofreading, grammatical correction. GPT-5 did not
contribute to the generation of any scientific content, experimental design, or new ideas presented
in the paper. Its usage is consistent with standard practices for manuscript preparation and did not
influence the research itself.
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