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H I G H L I G H T S

• A nationwide Power System Vulnerability Index (PSVI) has been developed for 3022 U.S. counties over the past decade.
• The PSVI reveals a steady rise in power system vulnerability across the U.S. from 2014 to 2023.
• Regions including the West Coast, East Coast, Gulf of Mexico, and the Great Lakes megalopolis demonstrate notably high levels of vulnerability.
• The influence of urban form and strcuture on power system vulnerability has been recognized as a key factor.

A R T I C L E  I N F O

Keywords:
Power outages
Infrastructure vulnerability
Disaster resilience
Energy justice
Machine learning

A B S T R A C T

Power outages have become increasingly frequent, intense, and prolonged in the US due to climate change, aging 
electrical grids, and rising energy demand. However, largely due to the absence of granular spatiotemporal 
outage data, we lack data-driven evidence and analytics-based metrics to quantify power system vulnerability. 
This limitation has hindered the ability to effectively evaluate and address vulnerability to power outages in US 
communities. Here, we collected ~179 million power outage records at 15-min intervals across 3022 US 
contiguous counties (96.15 % of the area) from 2014 to 2023. We developed a power system vulnerability 
assessment framework based on three dimensions (intensity, frequency, and duration) and applied interpretable 
machine learning models (XGBoost and SHAP) to compute Power System Vulnerability Index (PSVI) at the 
county level. Our analysis reveals a consistent increase in power system vulnerability across the US counties over 
the past decade. We identified 318 counties across 45 states as hotspots for high power system vulnerability, 
particularly in the West Coast (California and Washington), the East Coast (Florida and the Northeast area), the 
Great Lakes megalopolis (Chicago-Detroit metropolitan areas), and the Gulf of Mexico (Texas). Our heterogeneity 
analysis indicates that urban counties and those located along regional transmission boundaries tend to exhibit 
significantly higher vulnerability. Our results highlight the significance of the proposed PSVI for evaluating the 
vulnerability of communities to power outages. The findings underscore the widespread and pervasive impact of 
power outages across the country and offer crucial insights to support infrastructure operators, policymakers, 
and emergency managers in formulating policies and programs aimed at enhancing the resilience of the US 
power infrastructure.

1. Introduction

Electric power systems serve as critical lifelines that underpin 
modern societies and enable the functioning of nearly every aspect of 
contemporary existence [1]. However, with the increasing global 
climate change, various extreme natural disasters, such as hurricanes 
and heat waves, are threatening the resilience of power systems [2–4]. 

In the US, between 2018 and 2020, Hurricane Florence, Michael, Laura, 
Sally, and Delta collectively caused severe outages that affected 0.6 to 
4.3 million customers at their peak [1]. Similarly, the 2021 Winter 
Storm Uri caused widespread power outages that impacted 25 states and 
over 150 million Americans [5]. In addition to natural disasters, power 
outages also result from various incidents, such as electrical component 
failures, supply shortages, physical attacks, vandalism, cyberattacks, 
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and wildlife interference [6]. The increasingly frequent, intense, and 
prolonged power outages are disrupting transportation, communica
tions, water supply, and healthcare systems, thus seriously undermining 
public well-being [7–9]. As a result, effectively evaluating and 
addressing vulnerability of power systems in communities has become 
an urgent priority.

Power system vulnerability refers to the susceptibility of a power 
system to potential harm, affecting the extent to which community 
members and their assets are exposed to power outages. Recent studies 
have increasingly emphasized the significance of assessing power sys
tem vulnerability to mitigate social suffering and formulate policies for 
promoting power infrastructure resilience, particularly by examining 
the extent of power outages. For example, Flores, McBrien et al. (2023) 
analyzed the social vulnerability during the 2021 Winter Storm Uri by 
examining power outage distribution, duration, and sociodemographic 
disparities related to these outages [5]. Feng, Ouyang et al. (2022) 
explored the compound risk of tropical cyclone- and heatwave-induced 
power outages in Harris County, Texas, to examine how the risk evolves 
with changing climate and propose strategies to enhance the resilience 
of coastal power systems [3]. Sayarshad and Ghorbanloo (2023) eval
uated the resilience of power line outages caused by wildfires in Sonoma 
County, US, aiming to help utilities design more resilient power lines in 
wildfire-prone areas [10]. However, these case-based analyses focus on 
the short-term impacts of isolated extreme weather-induced events on 
power systems. With the rising frequency and intensity of such disrup
tions caused by global climate change [11], it has become crucial to 
assess long-term and large-scale patterns and consequences. In addition 
to extreme weather events, various daily power outages stem from 
electrical component failures, supply shortages, physical attacks, 
vandalism, cyberattacks, and wildlife interference [6]. These frequent 
but localized outages also significantly affect human life but are often 
overlooked in research.

Moreover, prior studies limited the geographic scope to specific re
gions in the US. For example, Dugan, Byles et al. (2023) developed an 
index to quantify social vulnerability to prolonged power outages using 
census tracts in Colorado as a case study [12]; Ganz, Duan et al. (2023) 
analyzed power outage data from eight major Atlantic hurricanes be
tween 2017 and 2020 to assess the impact of hurricanes on nine 
southeastern US states [13]. Flores, Northrop et al. (2024) collected 
outage data from non-New York City urban and rural areas to evaluate 
the lagged effect of severe weather on power outages [14]. Given the 
economic and social disparities across US communities, a nationwide 
assessment of power outages is essential to investigate the heterogeneity 
of power system vulnerability across various geospatial contexts (e.g., 
urban vs. rural, power system operators, and regions with varying en
ergy structures).

A substantial body of prior work has examined various statistical 
models to outage data for resilience and vulnerability analysis. For 
example, Dikshit, Saransh et al. (2024) and Dai, Yitian et al. (2023) 
systematically studied cascading failure risks across key components of 
the power grid (e.g., towers, transmission lines) through mathematical 
modeling and system simulations [15,16]. Their work emphasizes 
probabilistic characterizations of cascading failures and the identifica
tion of critical thresholds that signal systemic vulnerability. Ahmad, 
Arslan et al. (2025) leveraged statistical tools (e.g., logistic regression) 
to model the reliability and recoverability of regional power systems 
under extreme event scenarios, using the outage data from North 
American Electric Reliability Corporation (NERC) [17]. These studies 
have laid important groundwork but primarily focus on single system 
layers or specific failure modes, limiting their scope in scale and 
spatiotemporal coverage. Advances in AI now offer the opportunity to 
move beyond these constraints, enabling the systematic identification of 
broader and more complex vulnerability patterns across both trans
mission and distribution systems over long time spans with high 
spatiotemporal resolution. A data-driven characterization of power 
system vulnerability hinges on examining historical power outage 

patterns at scale. However, a major obstacle in conducting such analysis 
has been the lack of publicly available power outage data at a large scale 
with proper spatiotemporal resolution. Hanna and Marqusee (2022) 
highlight that the absence of extensive datasets impedes the examina
tion of complex interactions between long-duration outages and system 
vulnerability [18]. In an era of increasingly severe outages, despite the 
lack of such outage data, there is an urgent need for a large-scale, high- 
resolution, and nationwide assessment of power system vulnerability to 
inform mitigation plans and policies.

Another gap associated with data availability and granularity issues 
is the lack of reliable and generalizable metrics for assessing power 
system vulnerability. Previous studies have proposed various metrics to 
measure outage characteristics. For example, some researchers quanti
fied outage extent by considering the period during which customers 
without power exceed a specific threshold [2,14]. Flores, McBrien et al. 
(2023) introduced the concept of “power-out person-time”, an interac
tion between outage duration and the number of affected customers [5]. 
Some studies rely on metrics from the electricity engineering field to 
measure outage impacts, such as SAIDI (System Average Interruption 
Duration Index) and SAIFI (System Average Interruption Frequency 
Index) [19–21]. However, the extent of power outages cannot be solely 
captured by a single metric. The integration of a combined set of metrics 
and their interaction are essential to properly quantify and evaluate the 
extent of vulnerability in the power systems of a region. The charac
terization and quantification of vulnerability has been done in the 
context of different socio-technical systems (such as the CDC/ATSDR 
social vulnerability index [22] and socio-economic-infrastructure 
vulnerability index [23]) and has shown to be very effective in 
informing plans and policies. Yet, such data-driven integrated index is 
direly missing for power system vulnerability.

Recognizing these gaps, this study aims to construct a comprehensive 
system of metrics based on granular historical power outage data and 
use it in creating a machine learning-based index that captures the full 
extent of vulnerability to power outages. To achieve this, we first 
retrieved ~179 million power outage records at 15-min intervals from 
the Environment for Analysis of Geo-Located Energy Information 
(EAGLE-I™) platform operated by Oak Ridge National Laboratory 
(ORNL) [24]. This large-scale and high-resolution power outage data 
covers 3022 counties (96.15 % of the US continental areas) between 
November 2014 and December 2023. By applying a 0.1 % threshold to 
screen out the non-valid outage records, we identified a total of 
3022,915 power outage events. Drawing inspiration from environ
mental hazards exposure models [25–27], we developed a systematic 
framework to assess power system vulnerability based on three di
mensions: frequency, duration, and intensity. For each dimension, 
multiple features were created to enable spatial and temporal analysis of 
outage trends across the US. Using these features, we trained and vali
dated interpretable machine learning models, specifically eXtreme 
Gradient Boosting (XGBoost) combined with SHapley Additive exPla
nations (SHAP), to examine the non-linear relationship among the fea
tures in distinguishing counties in terms of their power system 
vulnerability, and accordingly to reveal the relative importance of the 
features. Subsequently, a PSVI system with power system vulnerability 
values, scores, and ratings was computed through the multiplication of 
the features by their corresponding weights. Based on the computed 
PSVI for each county and across the decade, we further characterized the 
following spatiotemporal patterns: (1) spatial hotspots of power system 
vulnerability; (2) temporal trends and areas with growing extent of 
power system vulnerability; (3) variations across urban vs. rural areas 
and the effect of form and structure characteristics on the extent of 
power system vulnerability; (4) variations of vulnerability across 
regional transmission organizations; and (5) association between 
renewable energy sources and power system vulnerability. The results 
depict an alarming picture of how ubiquitous and widespread power 
outages have been across the US counties and offer valuable support of 
data, metrics, and methodology for infrastructure operators, 
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policymakers, and community leaders to guide the development of 
policies and programs aimed at strengthening the resilience of the US 
power infrastructure.

2. Methodology

This study follows the processing procedure shown in Fig. 1. First, we 
developed 14 power system vulnerability features from three di
mensions (frequency, intensity, and duration), capturing multifaceted 
outage characteristics. Next, we applied interpretable machine learning 
models (XGBoost and SHAP) to determine the relative importance of 
features. Based on the feature importance, we assigned corresponding 
weights to features. Then, the PSVI (value, score, and rating) was 
calculated as a weighted sum of features. Finally, we conducted 
disparity analysis of power system vulnerability regarding factors 
including urban/rural form and structure, regional electricity distribu
tion, and electricity generation by source.

2.1. Power outage data

This study utilized a large-scale and high-resolution power outage 

dataset to calculate power outage-related features across US counties. 
Power outage data was collected through EAGLE-I™ operated by ORNL 
[24]. EAGLE-I™ compiled electricity service disruption records from 
individual electrical utilities at a 15-min interval from 2014 through 
2023. On average the dataset covers ~90 % of utility customers 
nationwide, making it the most comprehensive outage information ever 
compiled in the US [24]. Considering that data for Alaska, Hawaii, 
Puerto Rico, Guam, the US Virgin Island, and American Samoa are 
incomplete in certain years, we limited the geographical range of our 
study within the contiguous United States. The data covers 3022 
counties, accounting for 96.15 % of the area.

2.2. Power outage features development

We processed the outage records following the procedure described 
in our previous study [28] to derive power outage features. The ORNL 
provided the estimated number of total customers at the county level for 
certain temporal and geographical range, and we utilized linear 
extrapolation to extend the data to cover all the 3022 counties from 
2014 through 2023. The metric of power outage rate was then calcu
lated as the proportion of customers without power compared to the 

Fig. 1. Workflow for establishing power system vulnerability index across US counties using large-scale power outage data and interpretable machine 
learning models.
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total number of customers in a county (Eq. 1). We defined power outage 
events as the continuous time period during which power outage rate 
exceeds 0.1 %. Setting the 0.1 % threshold helps to screen out the non- 
valid outage records due to incidental factors, which is a practice 
applied by research such as Do, McBrien et al. (2023) [2]. Over the 
decade, a total of 3022,915 power outage events was identified. 

Power Outage Rate =
Nout

Ntotal
(1) 

where Nout refers to the number of customers experiencing outages; Ntotal 
represents the total number of customers in a county.

Based on the identified power outage events, we proposed a sys
tematic and comprehensive power system vulnerability assessment 
framework, which quantified outages through three dimensions: fre
quency, duration and intensity. Under each dimension, multiple features 
were developed to capture the characteristics of power outage events 
(Fig. 2). To further account for the impacts of large-scale outage events, 
which affect daily life more significantly than frequent but localized 
events, we set thresholds based on average outage rates (5 %) and 
average duration (12h) to define features for large-scale outage events. 
All the features were calculated at the county level. For the decade PSVI, 
the features were aggregated and calculated over the ten years, while for 
the annual PSVI, the features were calculated on a yearly basis. 

• Frequency

This dimension includes six features: (1) number of events—counted 
as the total number of power outage events; (2) average inter-event 
time—calculated as the average time interval between consecutive 
power outage events; (3) number of events affecting >5 % customer
s—counted as the total number of large-scale power outage events 
which affected more than 5 % of the served customers; (4) average inter- 
event time affecting >5 % customers—measured as the average time 
interval between large-scale power outage events which affected more 
than 5 % of the served customers; (5) number of events exceeding 12 
h—counted as the total number of large-scale power outage events 
which lasted more than 12 h; (6) average inter-event time exceeding 12 
h—measured as the average inter-event time between large-scale power 
outage events whose duration exceeded 12 h. 

• Intensity

This dimension incorporates five features: (1) average outage rate
—calculated as the average power outage rate among all power outage 
events; (2) cumulative number of customers affected—counted as the 
total number of customers affected in all power outage events; (3) peak 
number of customers affected—counted as the maximum number of 
customers affected in a single outage event. This feature captures the 
historical peak outage intensity of the counties; (4) average increase/ 
decrease rate. To calculate this feature, we first aggregated raw outage 
records to a monthly level and computed the percentage changes be
tween consecutive months. The average increase/decrease rate was then 
calculated as the average of percentage changes, reflecting how drasti
cally the outage records were changing over time; (5) average outage 
rate exceeding 12 h—calculated as the average power outage rate 
among large-scale power outage events whose duration exceeded 12 h. 

• Duration

This dimension contains three features: (1) average dura
tion—calculated as the average time period of power outage events; (2) 
average duration per customer experienced—calculate by dividing the 
total outage duration by the total number of customers. This is a 
normalized outage duration feature regarding the scale of served cus
tomers; (3) average duration affecting >5 % customers—calculated as 
the average duration of large-scale power outage events that affected 
more than 5 % of the served customers.

2.3. Power system vulnerability index construction

To create a synthesized power system vulnerability metric, we uti
lized the interpretable XGBoost - SHAP model. XGBoost is a powerful 
decision tree-based algorithm that improves model performance by 
iteratively generating new trees from the initial weak learners [29]. 
SHAP is an interpretable machine learning model that quantifies the 
contribution of each feature to individual predictions [30]. In this study, 
we used the National Risk Index (NRI) from The Federal Emergency 
Management Agency (FEMA) [31] as a benchmark to indicate power 
outage impacts, since the indicator is a comprehensive assessment of 
overall risk for US counties by integrating multiple hazards and 
vulnerability factors into a singular metric. We framed the problem as a 
binary supervised classification task, where the 14 features served as 
explanatory variables, and the NRI obtained from FEMA served as the 

Fig. 2. Conceptual framework for assessing power system vulnerability. We proposed a power system vulnerability assessment framework that captures three 
dimensions of power outages: frequency (6 features), intensity (5 features), and duration (3 features).
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dependent variable. By training the XGBoost model to predict the NRI 
based on our features, we effectively gauged the extent to which power 
system vulnerability features explain variations in the county-level risk. 
Accordingly, we used the relative importance of the features retrieved 
from SHAP model as weights for computing the PSVI. This approach to 
determining the weights of features instead of relying upon subjective 
weights provides a more reliable estimation of the weights in calculating 
the PSVI [23,32].

Before performing the XGBoost model, we preprocessed the data 
through the following pipelines: (1) data labelling. The NRI classifies all 
counties into five risk categories: very low, relatively low, relatively 
moderate, relatively high, and very high. To address the potential class 
imbalance, where the “very low” category comprised a significantly 
larger number of counties (n = 1419) compared to the “very high” (n =
15), “relatively high” (n = 128), “relatively moderate” (n = 391), and 
“relatively low” (n = 1069) categories, we framed the classification as a 
binary problem. Counties in the “very low” category were labeled as 0, 
indicating minimal vulnerability, while counties in all other categories 
were labeled as 1, indicating higher vulnerability levels. This binary 
setup helped mitigate imbalance issues, ensuring more balanced sample 
sizes and enhancing model robustness; (2) feature normalization. We 
rescaled the power system vulnerability features to [0,1] using min-max 
normalization for consistency; (3) multicollinearity check. Features with 
high multicollinearity share similar information about the target vari
able, which could cause redundancy and complicate interpretation [33]. 
Thus, we calculated the Variance Inflation Factor (VIF) to diagnose 
multicollinearity issues. VIF greater than 10 indicates high multi
collinearity in the dataset [34]. In this study, the VIF values of the power 
system vulnerability features are all smaller than 10, indicating that 
multicollinearity is not a significant issue (Supplementary Table 1).

For XGBoost model training and validation, we split the data into 80/ 
20 ratio, with 80 % of data used for training and the remaining 20 % for 
testing. To improve the model performance, we applied Synthetic Mi
nority Oversampling Technique (SMOTE) to mitigate the impact of 
category imbalance by over-sampling the minority category and under- 
sampling the majority category [35]. Also, we applied random search 
and performed a 10-fold cross-validation to tune the hyperparameters. 
The tuned best hyperparameters for the XGBoost model is listed in 
Supplementary Table 2. We also compared the nine widely used clas
sification models, such as random forest, support vector machine, and 
AdaBoost, and found that XGBoost achieved the best F1-score (Supple
mentary Table 3). Hence, we selected XGBoost as our primary model for 
binary classification.

To interpret how the power system vulnerability features contribute 
to the impacts of power outages, we adopted SHAP model. SHAP value 
of each feature denotes both the magnitude and direction of contribu
tions towards the machine learning output [30]. In this study, SHAP 
values were calculated as a measure of feature importance and rescaled 
to [0, 1]. We used Eq. 2 to convert SHAP values into feature weights to 
make sure the sum of the weights equals 1. 

wi =
SHAPi

∑14

i=1
SHAPi

(2) 

where SHAPi is the SHAP value of the feature xi, and wi is the weight of 
the feature xi.

Finally, we calculated the power system vulnerability values at the 
county level using Eq. 3. 

PSVI =
∑14

i=1
wixi (3) 

where xi represents the power system vulnerability feature; wi denotes 
the weight of feature xi.

The PSVI value provides an absolute measure of power system 

vulnerability for each county. To enable comparison across counties, we 
converted these values into percentiles, referred to as the power system 
vulnerability scores. In addition, we established a five-category quali
tative rating system (minor, moderate, major, severe, and extreme) 
using the K-means clustering algorithm [36]. The rating system allows 
for a more intuitive understanding of vulnerability levels, making it 
easier for stakeholders to interpret the severity of power system 
vulnerability in different counties.

2.4. Auxiliary data for disparity analysis

• Urban/rural form and structure

We categorized the 3022 counties as either urban or rural according 
to the 2013 National Center for Health Statistics (NCHS) Urban-Rural 
classification scheme [37]. A six-level urban-rural classification 
scheme for US counties and county-equivalent entities is developed by 
NCHS. We labeled 1776 counties as urban since they fall into the three 
most urban categories: large central metropolitan, large fringe metro
politan, and medium metropolitan. A total of 1246 counties were 
labeled as rural since they are in the three least urban categories: small 
metropolitan, micropolitan, and noncore (Supplementary Fig. 6). 
Urban/rural form and structure refer to the spatial configuration and 
organization of regions. We examined eight form and structure features 
based on our previous study [38], including population density, point of 
interest (POI) density, road density, minority segregation, income 
segregation, urban centrality index, GDP, and human mobility index. To 
reduce complexity while preserving the essential information of the 
features, principal component analysis (PCA) was performed, and three 
principal components were extracted. The first principal component is 
named as development density (DD, including population density, POI 
density, and road density), representing the level of urbanization and 
built environment density in certain area. The second one is centrality & 
segregation (CS, including urban centrality index, minority segregation, 
and income segregation), representing the social and economic segre
gation as well as the urban centralization level. The third component is 
economic activity (EA, including GDP and human mobility index), 
representing the level of economic activity and mobility. The detailed 
description of the features and PCA is available in Supplementary Note. 

• Regional electricity distribution

We categorized counties based on the spatial distribution of regional 
electricity provision to assess the impact of different transmission 
network coverage scenarios on power system vulnerability. The US has 
seven Regional Transmission Organizations (RTOs) that consolidate 
high-voltage transmission assets to enhance efficiency across a large 
network [39]. These RTOs includes California ISO (CAISO), Southwest 
Power Pool (SPP), Electric Reliability Council of Texas (ERCOT), Mid
continent ISO (MISO), New York ISO (NYISO), New England ISO (ISO- 
NE) and PJM. As cases are possible that counties belong to multiple 
RTOs, we labeled these as boundary counties. The spatial coverage of 
RTOs is shown in Supplementary Fig. 7. 

• Electricity generation by source

The US Energy Information Administration (EIA) provides yearly 
state-level energy generation data and the share of total for each energy 
source [40]. Among the energy sources, we cast special attention on the 
wind and solar energy, as they are the most widely applied renewable 
electricity sources and have been reported to have impacts on the sta
bility of power systems [41,42]. We collected relative shares of state- 
level electricity generation by solar and wind from 2014 through 2023 
and calculated the ten-year average as the percentage of solar and wind 
among all kinds of energy sources.
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3. Results

3.1. Power system vulnerability modeling by XGBoost and SHAP

From November 2014 to December 2023, we collected a total of 
179,053,397 power outage records at 15-min intervals across 3022 US 
counties. During this period, the accumulative user outage time reached 
7.86 billion user-hours, affecting approximately 31.47 billion customers 
(Supplementary Fig. 1–3). These figures underscore the widespread 
disruption to customer service and the vulnerability of US power 
infrastructure. Notably, the coastal areas and Great Lakes megalopolis 
experienced more severe outages. Such significant geographic variation 
in power outage exposure highlights the dire need for integrated 
nationwide metrics and quantitative examinations of spatial disparities 
for power system vulnerability.

To systematically capture the characteristics of power outage extent, 
we developed a power system vulnerability assessment framework. This 
framework involves 14 key features across three dimensions: frequency, 
intensity, and duration. During the study period, US counties experi
enced an average of 1002.3 power outage events, with an average 
outage rate of 1.5 % to total customers. The average annual outage 
duration was 7.3 days, meaning that each county experienced outages 
for approximately 2.0 % of the year. The average interval between 
power outage events is 7.1 days, indicating that the counties experi
enced a power outage event approximately every week. Over the past 
decade, power outage events cumulatively affected 540,915 customers 
in each county on average. The average peak ratio of affected customers 
to total customers was 52.8 %, and the monthly fluctuation in the 
number of power outage events reached 501.5 %. These features high
light the widespread and substantial power outages in the US, which 
cause a significant impact on daily life and economic activities. The 
statistical summary of these features is available in Table 1, and the 
spatial distribution maps over the ten years are provided in Supple
mentary Fig. 4.

We then constructed the PSVI as the weighted sum of the power 
system vulnerability features. We weighted the features according to 
their relative importance in contributing to the impact of power outages. 

In other words, the more a feature contributes to the impacts, the greater 
weight should be assigned to it, as it significantly shapes the power 
systems’ vulnerability. By training the XGBoost model to predict the NRI 
using our power system vulnerability features, we effectively assessed 
how well these features explain variations in county-level risk. The 
XGBoost model exhibited strong out-of-sample performance, with the F1 
score of 0.7937, accuracy of 0.7835, precision of 0.8051, recall of 
0.7826, and AUC-ROC of 0.8955 (Fig. 3f). We also evaluated eight 
additional machine learning models, and the XGBoost outperformed all 
of them (Supplementary Table 3).

To obtain the relative importance of each feature, we used SHAP 
model. A SHAP value greater than 0 indicates a positive contribution of a 
feature to the mean prediction of the dependent variable and vice versa 
[30]. Fig. 3g illustrates the relationship and relative importance of the 
14 features driving power system vulnerability. Notably, three inter- 
event time features contribute negatively to power system vulnera
bility: average inter-event time (− 0.048), average inter-event time 
affecting >5 % customers (− 0.021), and average inter-event time 
exceeding 12 h (− 0.001). It suggests that longer intervals between 
power outage events reduce both their frequency and overall vulnera
bility. The other features show positive contributions, with the cumu
lative number of customers affected having the highest importance 
(+0.516), followed by the average duration per customer experienced 
(+0.289) and average outage rate (+0.062). In addition, we grouped the 
14 features into the three dimensions and calculated their cumulative 
importance (Fig. 3g, pie chart). The intensity dimension contributed the 
most (52.7 %), followed by duration (30.1 %) and frequency (17.2 %). 
The intensity-related features, such as average outage rate, cumulative 
number of customers affected, peak number of customers affected, 
average increase/decrease rate, and average outage rate exceeding 12 h, 
played a most significant role in determining power system vulnera
bility. The frequency dimension ranked lowest, largely due to the in
clusion of the three negatively contributing features. Overall, these 14 
features, distributed across the three dimensions, provide a compre
hensive characteristics of power outage events and form the basis of our 
PSVI.

3.2. Decadal distribution of power system vulnerability

Using the feature importance results derived from the XGBoost and 
SHAP model, we developed the PSVI system which comprises three 
components: value, score, and rating. The value represents the actual 
power system vulnerability. The score ranks each county on a scale from 
0 to 100 based on its percentile relative to all other counties. The rating 
is a qualitative classification, using K-means clustering algorithm to 
categorize counties into five vulnerability levels: minor, moderate, 
major, severe, and extreme.

For the power system vulnerability values, the probability density 
curve exhibits a prominent peak near the lower values, with a long tail 
extending to the right (Fig. 3c). This pattern reveals that most values are 
clustered around the lower end, while a few higher values stretch the 
distribution. The peak indicates that the majority of the power system 
vulnerability values fall within the range of [5,10] (Min: 1, Max: 100), 
suggesting that most counties experienced relatively low power system 
vulnerability. For values greater than 30, the distribution tail thins 
significantly but extends to 100, indicating the presence of some 
counties with extremely high power system vulnerability values.

The second index is the power system vulnerability scores. The 
distinct spatial patterns of the scores emerge in its spatial map (Fig. 3a). 
The US West Coast (particularly California), the East Coast (including 
the Northeast megalopolis and Florida), the Gulf of Mexico (mainly 
Texas), and the Great Lakes megalopolis exhibit the highest vulnera
bility scores, indicating severe power outage impacts in these areas. In 
addition, high scores are present in many central regions, such as Col
orado, Minnesota, and Wyoming, suggesting that power system 
vulnerability is widespread across the US counties.

Table 1 
Statistical summary of the power system vulnerability features. The sum
mary represents the county-level averages over the study period (2014–2023).

Features Unit Mean Max Min Median

Number of events / 1002.3 5772.0 1.0 891.0
Average outage rate % 1.5 100.0 0.1 1.0

Average duration day 7.3 81.6 0.6 6.6
Average inter-event time day 7.1 273.5 0.0 3.4
Cumulative number of 

customers affected / 540,915 32,050,993 2 191,557

Peak number of 
customers affected

% 52.8 100.0 0.1 49.6

Average increase/ 
decrease rate

% 501.5 10,121.5 − 17.0 254.7

Average duration per 
customer experienced hour 0.4 52.6 0.0 0.1

Number of events 
affecting >5 % 

customers
/ 42.0 1591.0 0.0 28.0

Average duration 
affecting >5 % 

customers
day 0.4 15.9 0.0 0.23

Average inter-event time 
affecting >5 % 

customers
day 228.3 10,075.7 0.0 119.9

Number of events 
exceeding 12 h

/ 29.2 394.0 0.0 19.0

Average outage rate 
exceeding 12 h

% 2.2 18.3 0.0 1.7

Average inter-event time 
exceeding 12 h

day 136.8 3062.1 0.0 88.7
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The third index involves clustering the 3022 counties into five power 
system vulnerability ratings. The K-means clustering algorithm effec
tively distinguished these five categories, where the silhouette score 
reached 0.55 (Fig. 3e). A total of 2704 counties (89.48 % of all counties 
in this study) was classified as having minor or moderate levels, indi
cating that the majority of counties exhibit relatively low power system 
vulnerability (Fig. 3d). Counties classified as having major, severe, and 
extreme vulnerability levels totaled 253 (8.37 %), 54 (1.79 %), and 11 
(0.36 %), respectively. These counties are primarily located in Califor
nia, the Northeast megalopolis, Florida, the Great Lakes megalopolis, 
and Texas (Fig. 3b). The 11 extreme-level counties are Los Angeles 
County, CA (100.00); Miami-Dade County, FL (99.97); Waynesboro 
City, VA (99.93); Niobrara County, WY (99.9); Buena Vista City, VA 
(99.87); Wayne County, MI (99.83); Harris County, TX (99.80); Broward 
County, FL (99.77); San Bernardino County, CA (99.74); Orange County, 
CA (99.70); and Riverside County, CA (99.67). Most of these counties 
are located in metropolitan areas and are typically susceptible to 
extreme weather-induced events. Beyond the well-documented stresses 

of natural hazards, social vulnerability, and segregation [38,43,44], this 
study demonstrates that the population in these counties also endure a 
significant risk of power outages.

To provide deeper insights, we aggregated the county-level ratings to 
the state level (Fig. 4). Six states were identified as having counites of 
extreme power system vulnerability level: California (number of 
counties = 4), Florida (n = 2), Virginia (n = 2), Texas (n = 1), Michigan 
(n = 1), and Wyoming (n = 1). Notably, 45 states (91.84 % of 49 states 
included in this study) contain counties classified as having major, se
vere, or extreme level of power system vulnerability, and 22 states (44.9 
%) include counties with severe or extreme level, indicating widespread 
electricity disruption risk across the US. We also calculated the pro
portion of counties in the severe and extreme levels relative to the total 
number of counties at the state level. The top three states are California 
(24.56 %), New Jersey (23.81 %), and Florida (14.93 %), suggesting that 
these states not only face extensive but also a greater extent of power 
system vulnerability compared to others.

Fig. 3. Descriptive statistics of the decadal power system vulnerability index. a. Spatial distribution of the power system vulnerability scores at the county 
level; b. Spatial distribution of the power system vulnerability ratings at the county level; c. Probability density curve of the power system vulnerability values; d. Bar 
plot of the number of counties across the five categories of the power system vulnerability ratings; e. Boxplot of the five categories of the power system vulnerability 
ratings. The Kruskal-Wallis H test confirmed the significant differences among the categories (p < 0.001); f. AUC-ROC curve and performance indicators of the 
XGBoost model. g. SHAP importance distribution for the 14 features and 3 dimensions. Maps cover 3022 counties, with gray areas representing counties 
without data.
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3.3. Annual spatiotemporal patterns in power system vulnerability

Our power outage dataset covers the period from 2014 to 2023, 
which not only enabled the establishment of the PSVI spanning the 
entire decade but also allowed for the calculation of annual power sys
tem vulnerability values, scores, and ratings, facilitating year-over-year 
spatiotemporal comparisons and trend analysis.

Spatially, we examined counties that repetitively experienced high 
power system vulnerability over the years. We set thresholds for the 
number of years a county faced major, severe, or extreme vulnerability 
levels (≥2, ≥4, ≥6, ≥8, and = 10). Hotspots were then defined as 
counties where the cumulative number of years exceeded these thresh
olds throughout the study period (Fig. 5a). From 2014 to 2023, a total of 
333 counties (11.02 % of all counties in this study) were identified as 
hotspots that consistently experience high levels of power system 
vulnerability. These counties are primarily located in regions such as the 
Northeast area, Florida, Texas, California, and Washington. Notably, 22 
counties (0.73 %) experienced persistent high vulnerability for 10 years, 
while 58 counties (1.92 %) experienced this for 8+ years, 109 counties 
(3.61 %) for 6+ years, and 182 counties (6.02 %) for 4+ years. In Cal
ifornia, 38 counties (66.67 %, 57 counties included in this study) faced 
high power system vulnerability levels for 2+ years, with 6 counties (Los 
Angeles County, Riverside County, Sacramento County, San Bernardino 
County, San Diego County, and Ventura County) classified as major, 
severe, or extreme for 10 years. Similarly, Florida had 31 counties 
(46.27 %, 67 counties included in this study) with high vulnerability for 
2+ years, and 6 counties (Broward County, Duval County, Hillsborough 
County, Miami-Dade County, Palm Beach County, and Pinellas County) 
consistently rated as major, severe, or extreme throughout the decade.

To analyze temporal trends, we first plotted the boxplot distributions 
of annual power system vulnerability values (Fig. 5b). Over the years, 
the interquartile ranges (Q1-Q3) of the boxplots consistently shift to the 

right, indicating a steady increase in power system vulnerability. 
Notably, the average annual increase rate has been significantly higher 
since 2019 compared to the previous years (2014–2019: 9.86 % vs. 
2019–2023: 18.84 %), with the most pronounced increase occurring 
between 2022 and 2023 (2022–2023: 37.80 %).

We also aggregated the county-level power system vulnerability 
values to the state level, calculating the annual average for each state 
(Fig. 5c). The overall trend of the state-level averages also exhibits a 
consistent increase. However, certain states deviate from this pattern, 
which show spikes in some specific years. For example, California 
experienced persistently high vulnerability between 2017 and 2019. 
Similarly, Connecticut saw a sharp increase in 2018, while New Jersey 
recorded high values in 2021 and 2022, and Delaware, Maine, and New 
Hampshire displayed spikes in 2023. These spikes may correspond to 
extreme weather-induced events: California experienced record- 
breaking wildfires from 2017 to 2019 [45], while Connecticut, New 
Jersey, Delaware, Maine, and New Hampshire were affected by winter 
storms, tropical cyclones, or extreme rainfall during the years [46–48]. 
The impact of extreme weather-induced events on power system 
vulnerability is profound. Florida experienced high vulnerability values 
in 2016, 2020, and 2022, which align with Hurricane Matthew in 2016, 
Hurricane Sally in 2020, and Hurricane Ian in 2022 [49]. Similarly, 
Texas saw vulnerability spikes in 2021 and 2023, corresponding to the 
deadly winter storm in 2021 and the record-breaking heatwave in 2023 
[5,50]. The annual spatial distribution of the power system vulnerability 
scores is available in Supplementary Fig. 5.

3.4. Analysis of disparities in power system vulnerability

To investigate the spatial heterogeneity of power system vulnera
bility, we first applied the cumulative probability density function to 
analyze the relationship between power system vulnerability and 

Fig. 4. Spatial distribution of the power outage vulnerability ratings at the state level. We clustered the county-level power system vulnerability values into 5 
categories (minor, moderate, major, severe, and extreme) using K-means. The bar plots show the number of counties in each category for every state, with state 
abbreviations displayed at the top of each subplot. A total of 48 states and Washington, D.C. were mapped according to their approximate geographic locations.
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urbanicity. Counties were classified as either urban or rural based on the 
2013 NCHS Urban-Rural Classification Scheme [37]. In Fig. 6a, the 
distributions between urban counties (n = 1776) and rural counties (n =
1246) are basically consistent, with the majority of the counties (>90 %) 
exhibiting low power system vulnerability values (<20). Subsequently, 
the slopes of the distributions start to increase exponentially, indicating 
drastically greater power system vulnerability values (>20) for a smaller 
proportion of counties (<10 %). The long-tail distributions show the 
heterogeneity of power system vulnerability within each group. When 
comparing the two distributions, the curve of the urban counties 
consistently sits above that of the rural counties. This result reveals not 
only a disproportional distribution of power system vulnerability among 
all the counties but also that the urban counties have greater power 
system vulnerability compared with the rural counties.

We further examined the extent to which the form and structure 
characteristics of urban and rural areas shape the heterogeneity in 
power system vulnerability. Our analysis involved three urban/rural 
form and structure dimensions: development density (DD), centrality & 
segregation (CS), and economic activity (EA) [38]. In rural counties, 
only DD exhibited a significantly positive correlation with the power 
system vulnerability values (0.20***), whereas, in urban counties, both 
DD (0.59***) and EA (0.25***) showed significantly positive correla
tions (Fig. 6b). The positive correlation of DD indicates that higher DD in 
both rural and urban areas contribute to increased power system 
vulnerability. The effect of DD was greater in urban counties compared 
to rural counties (0.20 vs. 0.59), reflecting the heightened power system 
vulnerability in cities due to denser population, facilities, and roads. For 
example, compared to rural areas, dense street trees and lights in cities 

are more easily blown down by strong winds, destroying power grids 
and causing power supply disruptions. Moreover, urban counties show a 
strong correlation between EA and PSVI. Economic activities are heavily 
dependent on electricity, which may be significantly disrupted by 
outages.

To assess the impact of different transmission network coverage 
scenarios on power system vulnerability, we categorized counties based 
on regional electricity distribution data. The US has seven RTOs that 
consolidate high-voltage transmission assets to enhance efficiency 
across a large network [39]. As cases are possible that counties belong to 
multiple RTOs, we labeled them as boundary counties. Fig. 6c presents a 
boxplot distribution of the power system vulnerability values across the 
different RTOs. CAISO (serves California) exhibits the highest power 
system vulnerability, followed by ISO-NE (serves New England regions), 
and NYISO (serves New York state). ERCOT (serves Texas), which was 
severely attacked in the 2021 Winter Storm Uri [5], shows a relatively 
low vulnerability in this analysis, probably because our data spans a 
decade and accounts for more than just isolated extreme events. Inter
estingly, boundary counties also show moderately high power system 
vulnerability, possibly due to their locations at the intersection of mul
tiple transmission regions, which may contribute to instability in power 
supply. This analysis reveals the spatial heterogeneity of power system 
vulnerability related to regional electricity distribution and highlights 
that areas situated at the edges of transmission regions are sensitive to 
cascading failures during disruptions.

With the rapid expansion of renewable energy sources like solar and 
wind, it is essential to examine how the development of these energy 
technologies impacts power system vulnerability. Due to the 

Fig. 5. Spatiotemporal distribution of the annual power system vulnerability index. a. Spatial distribution of counties with persistent high power system 
vulnerability. We set thresholds for the number of years a county faced major, severe, or extreme levels (≥2, ≥4, ≥6, ≥8, and = 10). Hotspots were defined as 
counties where the cumulative number of years exceeded these thresholds between 2014 and 2023; b. Boxplot of annual distribution of the power system 
vulnerability values. The Kruskal-Wallis H test confirmed the significant differences among the ten years (p < 0.001); c. Heatmap of the annual average for the power 
system vulnerability values at the state level. The X-axis shows the abbreviations of the 48 US states and Washington, D.C.
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unavailability of consistent annual, county-level renewable generation 
data over the study period, we used the decadal average of net gener
ation percentages for solar and wind at the state level and compared 
them with the power system vulnerability values through Ordinary Least 
Squares (OLS) regression. In Fig. 6d, solar energy exhibits a statistically 
significant but moderate positive correlation with power system 
vulnerability, indicating that states with higher solar generation may 
experience greater vulnerability of power systems. For example, Cali
fornia heavily relies on solar energy [51], and also shows higher power 
system vulnerability.

However, wind energy presents a weaker inverse relationship with 
power system vulnerability, though the low R2 indicates that a linear 
correlation is not strongly supported. Wind resources are primarily 
concentrated in the central and coastal states of the US, while some 
coastal states have seen slower development of wind generation [52]. 
For example, Florida has yet to pass legislation to permit wind genera
tion [53]. Louisiana, despite its abundant offshore wind resources, only 
began developing wind generation in 2023 [54]. California imports a 
significant portion of wind energy from other states, which does not 
count as in-state wind generation [55]. Consequently, these states with 
higher power system vulnerability tend to have a lower proportion of 
wind energy, while the central regions with abundant wind generation 
exhibit lower power system vulnerability. This contrast contributes to 
the differing impacts of wind energy compared to solar energy. In 
addition, although these correlations are statistically significant, the 
modest R2 values indicate that the OLS models explain only a limited 
portion of the variance in vulnerability. This limited explanatory power 

may be attributed to the coarse spatiotemporal resolution of the 
renewable generation, as well as the influence of broader contextual 
factors (i.e., policy environments) on the relationship between renew
able energy and power system.

4. Discussion

Despite considerable evidence regarding the vulnerability of the US 
power infrastructure [2–5], a systematic and national-level assessment 
of the spatiotemporal patterns of power system vulnerability has still 
been lacking. This study utilizes a decadal outage data at 15-min in
tervals in 3022 US counties to establish machine learning-based PSVI. To 
the best of our knowledge, PSVI is the first comprehensive, data-driven, 
and quantitative tools specifically designed to evaluate power system 
vulnerability across all US counties. This outcome addresses a critical 
gap in existing research, where numerous spatial indexes capture social 
and physical vulnerabilities, but none adequately represents the 
vulnerability of power systems themselves. Our PSVI has important 
implications for preparedness strategies by enabling emergency man
agers and utilities to leverage the index before impending extreme 
events, identifying high-risk counties with unprecedented precision, and 
allowing for targeted and proactive allocation of restoration crews and 
resources. Furthermore, the integration of the PSVI into hazard miti
gation and resilience planning would significantly enhance these 
processes.

We observed a consistent increase of power system vulnerability in 
US counties over the past decade. Previous studies have suggested that 

Fig. 6. Disparity in the power system vulnerability index. a. Cumulative probability density curve of the power system vulnerability values between rural and 
urban counties. The one-way ANOVA test confirmed the significant differences between the two groups (p < 0.001); b. Heatmaps of Pearson correlation between the 
urban/rural form and structure features and the power system vulnerability values. Each number represents a correlation coefficient. Due to data unavailability, the 
analysis includes 867 rural counties and 1658 urban counties; c. Boxplot of the power system vulnerability values among different RTOs. Counties belong to multiple 
RTOs were labeled as boundary. The number above each box refers to the number of counties and the white arrow represents the average of the power system 
vulnerability values. The Kruskal-Wallis H test confirmed the significant differences among the groups (p < 0.001); d. OLS regression plots between the power system 
vulnerability values and the percentage of solar/wind energy used for generation. The shaded area denotes a 95 % confidence interval. The “***” represents p <
0.001 and “**” represents p < 0.01.
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the rise in severe weather events due to climate change will likely lead to 
more frequent power outages in the US [5,11]. Our multidimensional 
analysis of power outages confirms that the PSVI at the county level has 
steadily risen from 2014 to 2023. Specifically, we found a significant 
increase in the annual PSVI in the five years following 2019 compared to 
the preceding five years. At the state level, the higher power system 
vulnerability corresponds with increasing frequency of natural hazards. 
It is important to note that although climate change-induced nature 
hazards drive recent large-scale outages, factors such as the aging grid 
and rising energy demand contribute to smaller-scale but frequent out
ages [6]. While our study identifies the existence of relationship be
tween natural hazards and outage events, examining the interaction 
between the factors (i.e., climate change, aging grids, energy demand) 
and power outages falls beyond the scope of this paper.

The distribution of the PSVI follows a long-tail pattern, where the 
majority of counties exhibits low vulnerability while a smaller propor
tion experiences extremely high vulnerability. These high-vulnerability 
areas are concentrated on the West Coast (particularly California and 
Washington), the East Coast (notably Florida, the Northeast metropol
itan area, and the New England areas), the Great Lakes megalopolis 
(mainly Chicago-Detroit area), as well as the Texas Gulf Coast area. The 
PSVI offers deeper and more nuanced characterization of spatiotemporal 
variations across counties, unveiling patterns previously less understood 
[2,13,14].

Our findings illuminate complex variations in power systems’ 
vulnerability across urban-rural gradients and pinpoint specific struc
tural and developmental features that influence vulnerability levels. 
Urban counties generally have higher power system vulnerability than 
rural counties. In urban environments, higher vulnerability to outages 
can be attributed to dense infrastructure development, large-scale 
electricity demand due to population concentration, and the proximity 
of power grids to critical facilities. Such pattern increases the likelihood 
of cascading failures from equipment malfunctions, accidents, or con
struction activities. This study identifies development density as a key 
determinant of power system vulnerability, which underscores the 
pressing need for tailored resilience measures in rapidly growing urban 
areas with dense development. This revelation highlights the impor
tance of the relationship between urban planning and infrastructure 
vulnerability and demonstrates how urban development contributes to 
power system vulnerability.

In addition, our study reveals significant variation in power system 
vulnerability across different RTOs and states with diverse energy 
structures. We found that CAISO exhibited markedly higher power 
system vulnerability compared to the other six US RTOs. The resilience 
of the grid within CAISO has been extensively studied in the prior work 
[56,57]. Our analysis also highlights the high vulnerability of counties 
located along the borders of regional transmission organizations, sug
gesting that these “gray areas” warrant particular attention. Further
more, our study analyzed the ongoing energy transition by examining 
the relationship between power system vulnerability and the proportion 
of renewable energy generation at the state level. We observed that 
states with higher solar generation may experience greater power sys
tem vulnerability. Given the essential role of energy in daily life, such 
correlations in power system vulnerability raise significant energy 
inequality concerns. By exploring these disparities, our study contrib
utes to the growing literature on environmental justice, highlighting an 
issue that has not yet been sufficiently addressed (i.e., the inequitable 
distribution of power outages and restoration efforts) [58–60].

5. Conclusions

This study analyzed ~179 million power outage records at 15-min 
intervals between 2014 and 2023 to conduct a county-level evaluation 
of power system vulnerability. We proposed a power system vulnera
bility assessment framework based on three environmental hazard 
exposure dimensions. Using interpretable machine learning models of 

XGBoost and SHAP, we generated the PSVI for 3022 counties. Our key 
findings are summarized as follows. 

• Power system vulnerability has shown a consistent increase across 
the US counties over the past decade.

• A total of 318 counties across 45 states has been identified as hot
spots for high power system vulnerability, particularly along the 
West Coast, East Coast, Great Lakes megalopolis, and Gulf of Mexico.

• Urban counties and those located along regional transmission 
boundaries tend to exhibit significantly higher vulnerability.

Our results highlight the significance of the proposed PSVI for 
evaluating the vulnerability of communities to power outages. The 
findings provide data-driven insights and practical metrics that 
empower power infrastructure owners, operators, emergency managers, 
and public officials to effectively address the escalating vulnerability of 
power infrastructure across the US.

There were also limitations in this study, which could be addressed in 
the future. First, the county-level assessment does not capture finer sub- 
county-level details such as increasing development and population 
influx over the years. While we identified spatial heterogeneity in power 
system vulnerability, the trends might differ with more granular data. If 
higher resolution data becomes available, future studies could benefit 
from examining sociodemographic characteristics and other metrics at 
finer spatial resolutions to better understand inequalities in power 
outage extent, especially for marginalized communities. Second, factors 
such as equipment reliability, system reserves, and grid strength (e.g., 
inertia, fault tolerance) were not included due to data constraints. These 
factors are important determinants of power system vulnerability, 
exploring their relationship with the proposed metrics remains a 
promising direction for future research as relevant data become 
available.
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