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Abstract

The increasing prevalence of AI-generated content on the internet raises a critical1

and timely question: What happens when generative machine learning models2

are pretrained on web-scale datasets containing data created by earlier generative3

models? Recent studies have highlighted a phenomenon termed “model collapse,"4

whereby model performance degrades over iterations, rendering newer generative5

models unusable. However, other recent research questioned the practical relevance6

of model collapse by providing evidence that (1) model collapse was caused by7

deleting past data en masse and then training largely (or entirely) on purely synthetic8

data from the latest generative model, and (2) model collapse is avoided if new9

synthetic data are instead added to existing real and synthetic data. These two10

claims are particularly important in forecasting likely futures of deep generative11

models pretrained on web-scale data because, in practice, web-scale data is not12

deleted en masse and new synthetic data accumulates alongside existing real and13

synthetic data. In this work, we test whether these two claims hold on three new14

prominent settings for studying model collapse: multivariate Gaussian modeling,15

supervised finetuning of language models and kernel density estimation. In all16

three of the new settings, we find that the two claims hold: model collapse is17

indeed caused by deleting past data en masse, and model collapse is avoided by18

accumulating new synthetic data alongside past data.19

1 Introduction20

With each day, the internet contains increasingly more AI-generated content1. What does this21

observation imply for the future of deep generative models pretrained on web-scale datasets containing22

data generated by their predecessors? Previous work forewarned that such model-data feedback loops23

exhibit model collapse, a phenomenon whereby model performance degrades with each model-fitting24

iteration such that newer models trend towards useless [12, 15, 19, 2, 16, 4, 3, 5, 8, 9, 14, 11].25

However, more recent work has challenged this narrative [10, 18, 14]. Of particular interest to us is26

Gerstgrasser et al. [10], which made two claims:27

1. Many previous model collapse papers induced model collapse by deleting past data en masse28

and training largely (or solely) on synthetic data from the latest generative model, and29

2. If new synthetic data are instead added to real data, i.e., data accumulate over time, then30

model collapse is avoided.31

These two claims are relevant to forecasting the future of deep generative models because, if correct,32

model collapse is significantly less likely to pose a realistic threat since accumulating data over time33

is a more faithful model of reality; as a partner at Andreessen Horowitz elegantly explained, deleting34

data en masse is “not what is happening on the internet. We won’t replace the Mona Lisa or Lord of35

1Tweet by Sam Altman on Feb 9th, 2024
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the Rings with AI generated data, but the classics will continue to be part of the training data set and36

exist along with it."2. We emphasize that when discussing deleting past data en masse, we mean that37

(almost) all previous data are deleted. In the context of pretraining on web-scale data, the correct38

mental picture is that the entirety of the internet is deleted, not that a single minor website disappears.39

However, a recent prominent paper [20] introduced three new settings for studying model collapse40

that were not studied by Gerstgrasser et al. [10]. The three new settings are:41

1. Multivariate Gaussian Modeling: Multivariate Gaussians are repeatedly fit to data and42

then used to sample new synthetic data for future Gaussian fitting.43

2. Supervised Finetuning of Language Models: Language models are finetuned in a super-44

vised manner and then used to sample new synthetic text for future finetuning.45

3. Kernel Density Estimation: Kernel density estimators are repeatedly fit to data and then46

used to sample new synthetic data for future kernel density estimators.47

In this work, we ask whether the two model collapse claims hold in these three new settings. We48

find both claims do. In multivariate Gaussian modeling, we find that model collapse is caused by49

deleting past data en masse, and mitigated by instead accumulating synthetic data with previous50

real and synthetic data. In supervised finetuning of language models and kernel density estimation,51

we again find consistent results. The consistency of these results across different model types and52

datasets suggests that this distinction is a general phenomenon, and is not specific to any particular53

model or dataset or learning algorithm.54

Interestingly, we discover in kernel density estimation that training on real and accumulating synthetic55

data can yield lower loss on real test data than training on real data alone. This result matches the56

language model pretraining results of Gerstgrasser et al. [10], but is significantly faster to experiment57

with and significantly easier to study mathematically. We leave answering the questions of under58

what conditions, and why, synthetic data can lead to lower loss on real test data to future work.59

2 Model Collapse in Multivariate Gaussian Modeling60

Recent prominent work [20] introduced a simplified setting for studying model collapse: repeatedly61

fitting multivariate Gaussians to data and sampling from the fit Gaussians. In this setting, one begins62

with n real data drawn from a multivariate Gaussian with mean µ(0) and covariance Σ(0):63

X
(0)
1 , ..., X(0)

n ∼i.i.d. N (µ(0),Σ(0)).

To study model-data feedback loops, we alternate two stages: model-fitting and sampling. For model64

fitting, one computes the unbiased mean and covariance of the most recent data:65
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For model sampling, one samples m new synthetic data using the fit Gaussian parameters:66

X
(t)
1 , ..., X(t)

n

∣∣∣ µ̂(t)
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(t)
Replace ∼i.i.d. N (µ̂
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Under the above data-model feedback loop, Shumailov et al. [20] prove that67

Σ̂
(t+1)
Replace

a.s.→ 0 ; E[W2
2(N (µ̂

(t+1)
Replace, Σ̂

(t+1)
Replace),N (µ(0),Σ(0)))] → ∞ as t → ∞,

where W2 denotes the Wasserstein-2 distance. This result states that the fit covariance will collapse68

to 0 and that the Wasserstein-2 distance will diverge as this model-data feedback loop unfolds3.69

2LinkedIn Post by Guido Appenzeller on July 28th, 2024.
3Note: the Wasserstein-2 distance diverges not because the covariance collapses to 0 but because the distance

between the t-th fit mean µ̂
(t)
Replace and the true mean µ(0) diverges.
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Figure 1: Model Collapse in Multivariate Gaussian Modeling. Top: Previous work [20] proves
model collapse occurs if one iteratively fits means and covariances to data and then samples new data
from a Gaussian with the fitted parameters (left). We demonstrate that if one doesn’t delete all data
after each model-fitting iteration - i.e., if data accumulate - then model collapse does not occur
(right). Number of Samples Per Iteration: 316. Note: We visualize the fit Gaussians as zero-mean for
easy comparison of the fit covariances across model-fitting iterations. Middle: If data are replaced,
then the empirically fit means drift away from the original data’s mean with increasing model-fitting
iterations, but if data instead accumulate, then the empirically fit means stabilize. Bottom: If data are
replaced, then the empirically fit covariances collapse compared to the original data’s covariance, but
if past data are not discarded, then the fit covariances solidify quickly and collapse is avoided.

However, this result assumes that all data are deleted after each model-fitting iteration. As discussed70

in Sec. 1, we consider this assumption unrealistic. Following Gerstgrasser et al. [10], we instead ask:71

what happens if data instead accumulate across model-fitting iterations? To study this, we instead72

consider Gaussian parameters fit using data across all t+ 1 iterations with n samples per iteration:73
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1
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j (3)
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Data are then sampled using these fit accumulation parameters µ̂(t)
Accumulate, Σ̂

(t)
Accumulate rather then the74

fit replacement parameters µ̂(t)
Replace, Σ̂

(t)
Replace.75

Empirically, we find that deleting all data after each model-fitting iteration causes model collapse76

(Fig. 1, left), whereas accumulating data across model-fitting iterations prevents model collapse (Fig.77
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Figure 2: Model Collapse in Supervised Finetuning of Language Models. Finetuning Google’s
Gemma 2 2b [21] on Nvidia’s HelpSteer 2 dataset [22] demonstrates that model collapse occurs if
previous data are replaced after each model-fitting iteration (left), whereas model collapse is avoided
if new synthetic data are instead accumulated with previous data (right).

1, right). More specifically, we find that if data are deleted the squared error between the fit mean78

µ̂
(n)
Replace and the initial mean µ(0) diverges (Fig. 1, middle left) and the fit covariance Σ̂

(n)
Replace relative79

to the initial covariance Σ(0) collapses to 0 (Fig. 1, bottom left), whereas if data accumulate, the80

squared error between the fit mean and the initial mean plateaus quickly (Fig. 1, middle right), as81

does the fit covariance relative to the initial covariance (Fig. 1, bottom right). Thus, deleting data82

causes model collapse, and accumulating data avoids model collapse.83

Mathematically, in the univariate case, we are additionally able to characterize the limit distribution84

learned by the process described above:85

Theorem 1. For notational efficiency, for a univariate Gaussian, let µ̂(t) and σ̂(t) denote µ̂
(t)
Accumulate86

and Σ̂
(t)
Accumulate. Suppose that the mean and covariance are updated as in Eqns. 3 and 4. Then87

E
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))
t→∞−−−→ σ2

0

(
1− sin(π/

√
n)

π/
√
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)
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See App. Sec. A for the proof. This reveals two key differences when data accumulate: the covariance88

no longer collapses, and the mean no longer diverges, meaning model collapse is mitigated.89

3 Model Collapse in Supervised Finetuning of Language Models90

We next turn to the second setting for studying model collapse introduced by [20]: supervised91

finetuning of language models. We begin with an instruction following dataset – Nvidia’s HelpSteer292

[22] – and repeatedly finetune a language model then sample new text data from it. For the language93

model, we use Google’s Gemma 2 [21] because it is both high performing and relatively small. We94

again compare the two settings of interest: Replace and Accumulate. For Replace, we fine-tune the95

n-th language model only on data generated by the (n− 1)-st language model. In Accumulate, we96

fine-tune the n-th language model on the original real data plus all the synthetic data sampled by all97

previously finetuned language models; thus, the amount of data that the nth model is finetuned on for98

Replace is constant ∼ 20k, whereas the amount of data for Accumulate grows linearly ∼ 20k ∗ n.99

We again find results consistent with multivariate Gaussian modeling and with Gerstgrasser et al.100

[10]: deleting data after each iteration leads to collapse, whereas accumulating data avoids collapse.101
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Figure 3: Model Collapse in Kernel Density Estimation. Deleting data en masse causes model
collapse (left), whereas accumulating data avoid model collapse (right). Interestingly, for specific
combinations of datasets and number of samples per iteration, training on real and
accumulating synthetic data yields lower loss on real test data than training on real data alone.

4 Model Collapse in Kernel Density Estimation102

We finally turn to the third setting for studying model collapsed introduced by [20]: kernel density103

estimation. Similar to multivariate Gaussian modeling, we begin with n real data points drawn104

from an initial probability distribution p(0): X(0)
1 , ..., X

(0)
n ∼i.i.d. p

(0). We then iteratively fit kernel105

density estimators to the data and sample new synthetic data from these estimators, again comparing106

Replace and Accumulate. In the Replace setting, we fit the kernel density estimator to n data samples107

from the most recently fit model, whereas in the Accumulate setting, we fit the estimator to all data108

points from all previous iterations, with the number of points growing linearly as n(t+ 1):109
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where K is the kernel function and h is the bandwidth parameter. We consider two kernel functions:110

Gaussian and Top Hat. For sampling, at each iteration, we draw n new synthetic data points from the111

fitted kernel density estimators. We evaluate the performance using the negative log-likelihood (NLL)112

on real held-out test data; lower NLL indicates better performance. For data, we use four standard113

synthetic datasets from sklearn [7]: blobs, circles, moons, and swiss roll.114

As in our previous experiments with multivariate Gaussian modeling and supervised finetuning of115

language models, we yet again observe the same result between replacing data and accumulating116

data (Fig. 3): replacing data causes a rapid increase in NLL as the number of model-fitting iterations117

increases, indicating that the kernel density estimators are becoming increasingly poor at modeling the118

true underlying distribution. This trend is consistent across both Gaussian and Top Hat kernels, and119

for different numbers of samples per iteration. In contrast, when data accumulate across model-fitting120

iterations, we observe that the NLL remains relatively stable, suggesting that accumulating data helps121

maintain the quality of the kernel density estimators.122

Interestingly, for specific combinations of datasets and number of samples per iteration, training123

on real plus accumulating synthetic data yields lower loss than training on real data alone (Fig. 3,124

right column). Specifically, for Circles and Moons, sampling 10 synthetic data per model-fitting125

iteration and training on accumulating data yields lower test loss on real data, and for Swiss Roll,126

sampling 316 synthetic data per model-fitting iteration and training on accumulating data does so too.127

This is consistent with the language modeling results of Gerstgrasser et al. [10], but we know of no128

mechanism or theory to explain why performance can sometimes be improved with synthetic data.129

We leave that investigation to future work.130

5 Discussion131

Our findings support the claim that deleting data en masse after each iteration leads to model collapse,132

whereas accumulating data mitigates this issue. The consistency of these results across different133

model types and datasets suggests that this distinction is a general phenomenon, and is not specific to134

any particular model or dataset or learning algorithm.135

The implication of these results is that under real-world dynamics, where new synthetic data is added136

to existing real and synthetic data, model collapse is unlikely. Our experiments are pessimistic, in137

the sense that real world practitioners filter data based on various indicators of data quality, e.g.,138

[6, 23, 17, 13]; for a review, see Albalak et al. [1].139

An especially interesting future direction is how to combine synthetic data generation with filtering140

techniques to enable performant and efficient pretraining at scale using synthetic data. As we saw in141

Sec. 4, training on accumulating real and synthetic data can improve performance on real test data.142

Identifying under what conditions, and why, this is possible is a tantalizing prospect.143
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A Gaussian Model Fitting: Mathematical Results and Proofs232

A.1 Setup233

Lemma 2. Using the notation of Theorem 1, we can express µt =
∑t

r=1 σr−1
zr
r + µ0.234

Proof. Note that Xi,t = µt−1 + σt−1zi,t, where zi,t ∼ N (0, 1). Therefore,235

µt =
1

nt

t∑
r=1

n∑
i=1

Xi,r

=
t− 1

t
µt−1 +

µt−1

t
+ σt−1

zt
t

= µt−1 + σt−1
zt
t
.

Therefore, µt =
∑t

r=1 σr−1 · zr
r + µ0.236

Lemma 3. Under the setup described in Theorem 1, E[σ
2
t

σ2
0
] =

∏t
k=1

(
1− 1

nk2

) t→∞−−−→ sin(π/
√
n)

π/
√
n

.237

Proof. Using the recursive expression for µt in Lemma 2, we can rewrite238

σ2
t =

1

nt

t∑
r=1

n∑
i=1

(Xi,r − µt)
2

=
1

nt

t∑
r=1

n∑
i=1

(
Xi,r −Xr +Xr − µt

)2
=

1

nt

t∑
r=1

(
n∑

i=1

(
Xi,r −Xr

)2
+ n(Xr − µt)

2

)

=
1

t

t∑
r=1

(
σ2
r−1S

2
r + (µr−1 + σr−1zr − µt)

2
)
.

In the last line, we define S2
r =

∑n
i=1(Xi,r −Xr)

2. The term239

(µr−1 + σr−1zr − µt)
2 =

(
σr−1zr −

t∑
k=r

σk−1 ·
zk
k

)2

,

so240

σ2
t =

1

t

t∑
r=1

σ2
r−1S

2
r +

(
σr−1zr −

t∑
k=r

σk−1
zk
k

)2


⇒ tσ2
t =

t∑
r=1

σ2
r−1S

2
r +

(
σr−1zr

(
1− 1

r

)
−

t∑
k=r+1

σk−1
zk
k

)2
 .

We now compute the conditional expectations of the terms in this sum. Where Fi denotes the ith241

filtration,242

E[σ2
r−1S

2
r |Ft−1] =

{
σ2
r−1S

2
r r < t

σ2
t−1 ·

(
n−1
n

)
r = t.

For r = t, we find that243

E

(σr−1zr ·
(
1− 1

r

)
−

t∑
k=r+1

σk−1 ·
zk
k

)2

|Ft−1

 = σ2
t−1

(
1− 1

t

)
· 1
n
.
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On the other hand, when r < t,244

E

(σr−1zr ·
(
1− 1

r

)
−

t−1∑
k=r+1

σk−1 ·
zk
k

− σt−1 ·
zt
t

)2

|Ft−1


= σ2

t−1 ·
1

t2
· 1
n
+

(
σr−1zr ·

(
1− 1

r

)
−

t−1∑
k=r+1

σk−1 ·
zk
k

)2

.

Therefore,245

E[tσ2
t |Ft−1] = (t− 1)σ2

t−1 + σ2
t−1 ·

(
1− 1

n

)
+ σ2

t−1 ·
(
t− 1

t

)
·
(
1

n

)
+ σ2

t−1 ·
(
1− 1

t

)2

·
(
1

n

)
= σ2

t−1

(
t− 1 + 1− 1

n
+

1

tn
− 1

t2n
+

1

n
− 2

tn
+

1

t2n

)
= σ2

t−1

(
t− 1

tn

)
.

It follows that246

E[σ2
t |Ft−1] = σ2

t−1

(
1− 1

t2n

)
< σ2

t−1

for all t. Thus, {σ2
t }t is a supermartingale, and247

σ2
t

a.s.−−→ σ2
∞

because σ2
t is bounded below by 0. Therefore, we still have convergence. Next, letting mt = E[σ2

t ],248

we have249

mt = mt−1

(
1− 1

t2n

)
= · · · = σ2

0

t∏
k=1

(
1− 1

k2n

)
,

so250

E[σ2
t ] = σ2

0

∞∏
k=1

(
1− 1

k2n

)
. (9)

By a theorem of Euler, this is equal to251

σ2
0

sin(π/
√
n)

π/
√
n

. (10)

252

Observe that by performing a variable replacement and using L’Hospital’s rule, it is clear that253

limn→∞ E[σ2
t ] = σ2

0 .254

Finally, we are able to compute E[(µt − µ0)
2].255

Corollary 4. The expected error in the mean256

E[(µt − µ0)
2] = σ2

0

(
1−

t∏
k=1

(
1− 1

k2n

))
. (11)
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Proof. Using the recursion from Lemma 2 and the expression for the variance in Lemma 4, we can257

rewrite258

E[(µt − µ0)
2] =

t∑
k=1

E[σ2
k−1]

nk2

= σ2
0

t∑
k=1

1

k2n

∏
ℓ = 1k−1

(
1− 1

ℓ2n

)

= σ2
0

t∑
k=1

(
k−1∏
ℓ=1

(
(1− 1

ℓ2n

)
−

k∏
ℓ=1

(
1− 1

ℓ2n

))

= σ2
0

(
1−

t∏
k=1

(
1− 1

k2n

))
.

259

Therefore,260

lim
t→∞

E[(µt − µ0)
2] = σ2

0

(
1− sin(π/

√
n)

π/
√
n

)
.
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