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ABSTRACT

Driven by the sharpness of the loss surface effectively indicate the generaliza-
tion gap, sharpness-awareness minimization (SAM) aims at flat minima within
the loss landscape. However, to protect sensitive information and enhance privacy
security, noise will be added to the model, which inevitably degrades the model’s
generalization performance. In this paper, we introduce the time-base generator
(TBG) based on discrete systems and provide a boundedness theorem for discrete
systems. On this basis, we propose a noise-resistant adaptive sharpness-awareness
minimization method (NRASAM) , which suppresses noise through gradient de-
cay and historical gradient integration. Furthermore, we utilized the TBG theory
to adjust the algorithm parameters, resulting in the TBG-NRASAM algorithm. We
provide a rigorous theoretical analysis that confirms the convergence and noise re-
sistance of the proposed method under noisy conditions. Extensive experiments
across multiple architectures and benchmarks demonstrate that our approach con-
sistently improves generalization and stability compared to existing SAM-based
methods.

1 INTRODUCTION

In recent years, deep learning technologies have achieved breakthrough prog-ress in various fields,
demonstrating powerful representational and reasoning capabilities, particularly in complex tasks
such as computer vision (Wang et al. (2025); Malik et al. (2025)) and natural language process-
ing (Spangher et al. (2025); Sun et al. (2024)). However, as model scales continue to expand and
training data becomes increasingly abundant (Maini et al. (2024)), privacy leakage and data security
issues (Fang et al. (2024)) have gradually become critical factors limiting the practical deployment
of these technologies. To protect users’ sensitive information, a common approach is to introduce
random noise during the training process to achieve differential privacy protection, such as adding
perturbations during gradient updates or data input stages (Wang et al. (2024); Xu et al. (2019)). Al-
though such methods effectively reduce privacy risks, the introduction of noise often interferes with
the model optimization trajectory (Jayaraman & Evans (2019)), leading to degraded generalization
performance and weakened robustness.

Even in ideal training environments, improving the generalization performance of deep neural net-
works is challenging (Zhang et al. (2021)). Their loss function surfaces often contain numerous
sharp minima (Hochreiter & Schmidhuber (1994); Dinh et al. (2017); Wei & Ma (2020)), making
the models highly sensitive to input perturbations. Sharpness-Aware Minimization (SAM) explicitly
optimizes the flatness of the loss landscape and demonstrates excellent generalization capabilities
on clean data (Foret et al. (2020)). Nowadays, there are already many relevant studies based on
SAM (Liu et al. (2022); Wang et al. (2023)). In particular, Adaptive Sharpness-Aware Minimiza-
tion (ASAM) effectively addresses the sensitivity issue of traditional sharpness under parameter
rescaling by introducing adaptive sharpness, a scale-invariant generalization measure (Kwon et al.
(2021)). Curvature Regularized Sharpness-Aware Minimization (CR-SAM) addresses the issue of
high non-linearity in the loss landscape by introducing a normalized Hessian trace to accurately
measure the curvature of the loss landscape and integrating it as a regularizer into SAM training
(Wu et al. (2024)).

However, when noise is present during training, the model’s generalization ability will be inevitably
reduced (Phan et al. (2016)). Accordingly, noise robustness has now become a vibrant research

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

area (Ren et al. (2021); Mansour & Heckel (2023)). In fact, gradient descent methods that are
influenced by historical gradients often yield better performance. For example, momentum methods
(Qian (1999)) accelerate convergence, and the classic PID method (Borase et al. (2021)) is another
notable example. Additionally, motivated by a denoising neural algorithm used for solving time-
varying linear equations (Jin et al. (2018)), we introduce a gradient history integral term with decay
characteristics and an adaptive adjustment mechanism to suppresses the interference of noise on
parameter updates.

This paper draws on stability theory from dynamic systems and proposes a TBG based on discrete-
time systems, establishing a novel boundedness theoretical framework. Based on the above discus-
sion, we design the noise-resistant adaptive SAM algorithem (NRASAM). And we further propose
a TBG-driven noise-resistant adaptive SAM method (TBG-NRASAM) to enhance the model’s gen-
eralization capability under noisy conditions. The main contributions of this paper are as follows:

• A TBG based on discrete systems and its boundedness theory are proposed, providing a
new tool for stability analysis of non-exponentially decaying systems.

• A noise-resistant optimization framework with rigorous theoretical guarantees is con-
structed, which effectively suppress noise interference.

• The superiority and robustness of the proposed method are validated through multiple prac-
tical tasks.

The structure of this paper is arranged as follows. In Section 2, we briefly introduce the relevant
preliminary knowledge, including the SAM, ASAM algorithms and related noise resistance meth-
ods. In Section 3, the related TBG definitions and theories are proposed. In Section 4, we present
the noise-resistant adaptive SAM algorithm and provide the corresponding theoretical convergence
argument. In Section 5, we demonstrate the performance of NRASAM and TBG-NRASAM on
some models and datasets. Section 6 will provide a summary discussion.

2 SHARPNESS-AWARE MINIMIZATION

The model’s performance on the training set and test set will have a generalization gap, as shown
in Figure 1. A small generalization gap indicates that the model’s performance on the training
set and test set is not significantly different, which means that the model has strong generalization
performance. The loss curve on the right side of Figure 1 is flatter than that on the left side, and its
generalization gap is also smaller. The SAM algorithm is an algorithm that adds a sharpness penalty
term to the optimization objective to simultaneously minimize the loss value and loss sharpness in
order to find the minimum value in the flat landscape.

Figure 1: Generalization gaps of train dataset and test dataset.

SAM aims to optimize the following Min-Max problem:
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min
w

[
max

∥ϵ∥p≤ρ
LDtrain(w + ϵ) +

λ

2
∥w∥22

]
,

where ρ > 0 is the perturbation radius, λ is the weight decay coefficient, and p ≥ 1 specifies the
norm type. This objective is solved through an iterative two-step process (Foret et al. (2020)):{

ϵt = ρ · ∇wLDtrain (wt)

∥∇wLDtrain (wt)∥2

wt+1 = wt − αt (∇wLDtrain (wt + ϵt) + λwt) .

The first step employs the gradient direction as the perturbation direction because the gradient di-
rection is the direction in which the loss increases most rapidly. The magnitude of the perturbation
is controlled by ρ, which indicates searching for the worst-case perturbation within an Euclidean
ball. Namely, the objective of the first step is to seek the perturbation point wt + ϵt that maximizes
the loss within a fixed radius ρ neighborhood. The second step is to compute the gradient at the
perturbed point wt + ϵt, rather than at the original parameter point. This kind of update enable the
parameters to escape from sharp regions and move towards flatter regions.

3 TIME-BASE GENERATOR

3.1 SOME DEFINITIONS

This section first defines the TBG based on discrete systems.
Definition 1. Note that positive function µ(t, t0) satisfy:
A1) limt→+∞ µ(t, t0) = 0, µ(t, t0) is decreasing with respect to t;
A2) Select proper positive constant α and K such that limt→tp Kµα(t, 0) ≤ ϵ, where ϵ is a small
positive constant that can be arbitrarily chosen;
A3) µ(t, c)µ(c, t0) = µ(t, t0) (c is a positive constant), and µ(t, t− 1) ≤ b < 1.

The TBG is defined by a positive, decreasing function µ(t, t0) that decays over time, where t0
represents the initial moment.
Remark 1. In addition to exponential-type TBGs, there are many other types of TBGs available for
selection. For instance, µ(t, t0) = 1

(1+t−t0)p
, where p > 0 is a constant; µ(t, t0) =

ln(e+t0)
ln(e+t) , where

t ≥ t0 ≥ 0; µ(t, t0) =
cosh(at0)
cosh(at) , where a > 0, t ≥ t0 ≥ 0, and so on.

We first consider the linear system xm = Am−1xm−1, where xm belongs to the m-dimensional real
space, and A is an m×m matrix. In the discrete system formulation, xm is the state vector at step
m, Am is the state transition matrix. And the compound state transition matrix from step n to m can
be defined as:

A(m,n) =

{
Am−1 · · ·An, m > n,

I, m = n.

After that, we present Definition 2.
Definition 2. The sequence (Am)m∈N is said to admits a µ − contraction if there exist constants
K and α such that

∥ A(m,n) ∥2≤ Kµα(m,n),

where m ≥ n

Remark 2. In addition to the TBG based on discrete systems, the application of TBG in continuous
systems is extensive and serves multiple purposes. Numerous literature (Becerra et al. (2017); Liu
et al. (2023)) indicate that it not only aids in accelerating convergence but also ensures predefined-
time convergence while guaranteeing convergence accuracy and stability.

3.2 BOUNDEDNESS THEOREM

Based on the above definitions and analysis, we present the boundedness theorem of the following
discrete linear systems. The detailed proof is provided in Appendix A.2.
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Theorem 1. If (Am)m∈N is a µ− contraction sequence, then for xm = Am−1xm−1, we have

∥ xm ∥2≤ Kµα(m,n)xn.

In particular, when there is perturbation in the linear system, that is, xm = Am−1xm−1 + fm−1, we
present the boundedness theory of discrete systems based on the above definitions, which helps to
analyze the convergence of the system under perturbation. We provide detailed proof in Appendix
A.3.
Theorem 2. If (Am)m∈N is a µ − contraction sequence and fl is bounded, i.e. there exists fmax

such that ∥ fl ∥2≤ fmax, then for xm = Am−1xm−1 + fm−1, we have

∥ xm ∥2≤ Kµα(m,n)xn +
Kfmax(1− bα(m−n))

1− bα
.

Then, we provide two examples to illustrate the effectiveness of TBG. We consider two cases, as
follow.

1. xm = e−axm−1,

2. xm = e−axm−1 + 0.1 · 1
1+e−xm−1

.

For the first case without perturbation, it can be known that e−a satisfies Definition 1. We plot the
cases where a = 0.1, 0.5, and 1.0 as shown in Figure 2(a). It is not difficult to find that under the
effect of TBG, the convergence rate of the curve is faster than that without using TBG. Moreover,
the larger the a, the faster the convergence rate. For the second case with perturbation, it can be
seen from Figure 2(b) that the curve with TBG not only has a faster convergence rate than the one
without TBG, but also has a lower convergence lower bound than the one without TBG. In addition,
the larger the a, the faster the convergence rate and the lower the convergence lower bound.

Case 1: iteration without perturbation Case 2: iterative with sigmoid perturbation

Figure 2: TBG theoretical diagram.

4 THEORETICAL ANALYSES

4.1 NRASAM ALGORITHM DESIGN

In traditional SAM, perturbations primarily arise from two sources: first, intrinsic perturbations
caused by parameter scaling, which make the sharpness of the loss landscape sensitive to parameter
scales; second, extrinsic perturbations originating from training data or optimization processes, such
as gradient noise or label noise. To address both types of perturbations simultaneously, this section
proposes the NRASAM algorithm, which integrates adaptive sharpness minimization with a noise
suppression mechanism.

First, to mitigate intrinsic perturbations, the adaptive sharpness measure in Kwon et al. (2021) is
used. By applying a normalization operator Tw to correct for parameter scaling, the perturbation re-
gion is defined as ∥T−1

w ϵ∥p ≤ ρ, ensuring scale-invariant sharpness measurement. The perturbation
direction is computed as:

ϵt = ρ
T 2
wt∇LDtrain(w

t)

∥Twt∇LDtrain(w
t)∥2

.
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Second, to suppress extrinsic noise perturbations, a noise-robust update mechanism based on gra-
dient dynamics is incorporated. Inspired by Jin et al. (2018) and Su et al. (2025), we construct a
gradient history evolution equation:

wk+1 = wk − γhk−1 + δ

k∑
j=0

hj ,

where γ = η · 1
1+τα , δ = η · τ2β

1+τα . The parameters mentioned in the above equation are derived
from:

dh(w)

dt
= −αh(w)− β

∫ t

0

h(w)dτ,

where h(w) = ∇LDtrain(w),α > 0, β > 0 are tunable coefficients, η is learning rate, and τ is the
sampling interval. Hence we derive the following update rule:{

ϵt = ρ
T 2
wt∇LDtrain (w

t)

∥Twt∇LDtrain (w
t)∥2

.

wt+1 = wt − γ∇LDtrain(wt−1 + ϵt−1) + δ
∑t

i=0 ∇LDtrain(wi + ϵi).

Let wadv
i = wi + ϵi, the update rule can be reformulated as :

{
ϵt = ρ

T 2
wt∇LDtrain (w

t)

∥Twt∇LDtrain (w
t)∥2

.

wt+1 = wt − γ∇LDtrain(w
adv
t−1) + δ

∑t
i=0 ∇LDtrain(w

adv
i ).

(1)

Algorithm 1 illustrates the update process of NRASAM, where Tw mentioned in steps 4 and 5 refers
to the adaptive coefficient in ASAM, i.e., the normalization operator, and ∇LB(w) represents the
loss function gradient with respect to the data set B. In particular, the TBG-NRASAM algorithm
achieve better convergence by adjusting the values of the parameters γ and δ.

Algorithm 1 NRASAM algorithm
Require: Loss function l, training dataset D :=

⋃n
i=1{(xi, yi)}, mini-batch size b, radius of maxi-

mization region ρ, learning rate γ, accumulation coefficient δ, initial weight w0.
Ensure: Trained weight w

1: Initialize weight w := w0

2: while not converged do
3: Sample a mini-batch B of size b from D

4: ϵt = ρ
T 2
w∇LB(w)

∥Twt∇LB(w)∥2

5: wt+1 = wt − γ∇LB(w
adv
t−1) + δ

∑t
i=0 ∇LB(w

adv
i )

6: end while
7: return w

4.2 CONVERGENCE ANALYSES

Based on the above analyses, we obtain the corresponding boundedness theorem as follows. For
the convenience in notation, we let hk = ∇LDtrain(w

adv
k ).The detailed proof is provided in Appendix

A.4.
Theorem 3. Under the condition of Lemma 2 in A.1, if ρ < µ(a, 0),where a is the positive constant

and ρ = max

{∣∣∣∣η+γ+
√

(η−γ)2−4γδ

2(δ+η)

∣∣∣∣ , ∣∣∣∣η+γ−
√

(η−γ)2−4γδ

2(δ+η)

∣∣∣∣} , then we have

lim
k→∞

∥hk∥2 ≤ CβMτ3

6
√
2(1− µ(a, 0))

.

Taking into account the influence of additive noise ek, the rule for updating (2) is restructured to:

wk+1 = wk − γhk−1 + δ

k∑
j=0

hj + o1(τ
2) + ek. (2)
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Theorem 4. Under the condition of Theorem 1, the following inequality holds:

lim
k→∞

∥hk∥2 ≤
√
2Cβ

(1− µ(a, 0))

(
Mτ3

24
+
√
2d sup

2≤i≤k
|ci|

)
.

We provide detailed proof in Appendix A.5.

5 EXPERIMENTAL RESULTS

In the experiments, we employ the CIFAR10/100 (Krizhevsky et al. (2009))) and SVHN (Netzer
et al. (2011)) datasets to evaluate the performance of TBG-NRASAM, NRASAM, NRSAM (Su
et al. (2025)), ASAM, SAM, and SGD-M (Sutskever et al. (2013)). Following common practice,
the training uses 200 epochs for CIFAR, and SVHN. The momentum and weight decay are set to
0.9 and 0.0001, respectively, with a batch size of 128. A StepLR scheduler is applied to adjust the
learning rate at specified intervals (Wei et al. (2023)). For CIFAR and SVHN, the initial learning rate
is 0.1, which is decreased by a factor of 0.1 at 20%, 50%, and 80% of the total epochs. The radius
parameter ρ in TBG-NRASAM, NRASAM, NRSAM, ASAM and SAM is fixed at 0.1. To simulate
real world noise, Gaussian noise sampled from N (0, σ2I) is incorporated into gradients (Mumuni
& Mumuni (2022)). Models including WideResNet (Zagoruyko & Komodakis (2016)), ResNet (He
et al. (2016)), Convmixer (Trockman & Kolter (2022)), MobileNet (Howard et al. (2017)), and Vit-
Tiny (Wu et al. (2022)) are evaluated on CIFAR and SVHN. All CIFAR and SVHN experiments are
conducted on the RTX 4090 GPU.

5.1 EXPERIMENTAL RESULTS UNDER THE INFLUENCE OF ADDITIVE NOISE.

5.1.1 CIFAR-10

We first conducted experiments on the CIFAR-10 dataset. In this part of the experiment, we uni-
formly set the Gaussian noise parameter σ to 0.005. The experimental results are shown in Table
1. Among the five different models, NRASAM performed the best, followed by NRSAM. The
accuracy of these two models far exceeded that of the other three optimizers. This indicates that
in an additive noise environment, the robustness and generalization performance of the models are
effectively enhanced after using noise-resistant methods.

Table 1: Performance of five models with Gaussian noise N (0, 0.005) on CIFAR-10.

Model NRASAM NRSAM ASAM SAM SGD-M
Wrn28-2 90.45 90.30 86.81 86.72 86.54
ResNet32 88.75 88.27 86.15 86.02 86.15
Convmixer 78.27 78.16 74.59 75.57 75.73
MobileNet 89.50 89.31 88.60 88.66 88.21
ViT Tiny 75.26 75.02 67.45 66.7 64.42

We intuitively demonstrated the experimental data using a scatter plot. It can be seen from Figure
3 that the convergence speed of NRASAM and NRSAM in the early stage is much faster than that
of the other three optimizers, and they reached high accuracy in a very short number of epochs. In
addition, it can also be observed that in the middle and late epochs, the accuracy of NRASAM is al-
ways higher than that of NRSAM. All of these demonstrate the prominent advantages of NRASAM
in this dataset.

5.1.2 CIFAR-100

We experimented with the performance of four different models on the CIFAR-100 dataset with
the Gaussian noise parameter σ to 0.005, and the test set accuracy of the experiments is shown in
Table 2. It can be seen that the experimental results show a similar trend to that of CIFAR-10. In
a noisy environment, among the five optimizers, SGD-M has the worst generalization performance
across all models, while NRASAM and NRSAM still outperform the other three optimizers by a
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(a) WRN28-2 (b) ResNet32 (c) Convmixer

(d) MobileNet (e) ViT-Tiny

Figure 3: Performance of five models with Gaussian noise N(0, 0.005) on CIFAR10.

significant margin. Moreover, NRASAM achieves the best performance. As also shown in Figure 4,
in the early training epochs, both NRASAM and NRSAM quickly reach high accuracy. In the later
stages of training, such as the last 20 epochs, NRASAM almost consistently takes the lead. This is
sufficient to illustrate the remarkable efficiency and generalization performance of this optimizer in
deep neural networks.

Table 2: Performance of four models with Gaussian noise N (0, 0.005) on CIFAR100.

Model NRASAM NRSAM ASAM SAM SGD-M
Wrn28-2 67.36 66.88 60.58 60.24 60.81
ResNet32 63.28 62.98 59.97 58.93 59.64
ViT Tiny 47.53 47.41 44.18 43.91 43.05
MobileNet 66.93 66.82 66.01 66.04 65.13

5.1.3 SVHN

Similarly, we compared the accuracy of five optimizers under five different models with Gaussian
noise where σ is 0.005. As shown in Table 3, except for Vit Tiny, the accuracy of the other four
optimizers is very high. In the environment where noise is added to the gradients, NRASAM out-
performs the other four optimizers in all network architectures. Figure 5 shows the convergence
process of the test accuracy of these five optimizers. It can be seen that the convergence rate of
NRASAM and NRSAM in the early stage is still very prominent, and they quickly reach a high
accuracy. Moreover, during the training process, the accuracy of NRASAM is almost always the
highest. In summary, NRASAM shows better robustness in a noisy environment.

5.1.4 EXPERIMENTAL RESULTS WITH VARIOUS NOISE SCALES

In order to more comprehensively evaluate the performance of NRASAM, in this section, we ad-
justed the magnitude of the noise. Specifically, we set σ to 0.005, 0.008, 0.010, and 0.015 respec-
tively, and tested on the CIFAR-10 dataset using the ResNet32 model. The test results are shown
in Table 4. It can be seen that as the noise intensity increases, the accuracy of ASAM, SAM, and
SGD-M drops significantly, while the accuracy of NRASAM and NRSAM remains at a high level.
Moreover, under high-intensity noise, the advantage of NRASAM becomes increasingly evident.
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(a) WRN28-2 (b) ResNet32

(c) MobileNet (d) ViT-Tiny

Figure 4: Performance of four models with Gaussian noise N(0, 0.005) on CIFAR100.

Table 3: Performance of five models with Gaussian noise N (0, 0.005) on SVHN.

Model NRASAM NRSAM ASAM SAM SGD-M
Wrn28-2 95.82 95.73 95.06 95.00 95.06
Convmixer 91.83 91.81 90.62 90.63 91.30
ResNet32 95.86 95.81 95.08 93.27 94.95
ViT Tiny 87.51 86.54 66.13 72.53 69.27
MobileNet 95.78 95.65 95.47 95.51 95.31

This fully demonstrates that in a noisy environment, NRASAM still has high robustness and gener-
alization performance.

Table 4: Test accuracy under different noise levels.

Noise Level(σ) NRASAM NRSAM ASAM SAM SGD-M
0.005 89.18 89.03 86.15 86.02 86.15
0.008 87.49 87.39 81.76 81.18 81.88
0.01 87.54 86.21 78.18 77.71 76.50
0.015 84.22 83.65 69.17 68.11 69.48

5.2 EXPERIMENTAL RESULTS OF TBG-NRASAM AND NRASAM

In this section, we conducted experiments related to NRASAM, which were performed after hy-
perparameter tuning using both the TBG method and the original NRASAM. We ensured that the
µ(a, 0) of TBG-NRASAM is less than that of NRASAM. The relevant results are presented in the
following tables. Table 5 shows the accuracy of five different models using TBG-NRASAM and
NRASAM across three datasets under Gaussian noise with σ set to 0.005. It is evident that the accu-
racy of NRASAM guided by TBG is higher. This also indicates that in a noisy environment, TBG-
NRASAM has stronger robustness and generalization capabilities compared to traditional SAM and
its variants.
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(a) WRN28-2 (b) ResNet32 (c) Convmixer

(d) MobileNet (e) ViT-Tiny

Figure 5: Performance of five models with Gaussian noise N(0, 0.005) on SVHN.

Table 5: Comparison of test accuracy between NRASAM and TBG-NRASAM on different datasets

Dataset Optimizer Wrn28-2 ResNet32 ViT Tiny MobileNet
CIFAR-10 NRASAM 90.45 88.75 75.26 89.50
CIFAR-10 TBG-NRASAM 90.82 88.97 75.83 89.62
CIFAR-100 NRASAM 67.36 63.28 47.53 66.93
CIFAR-100 TBG-NRASAM 67.39 63.48 48.63 67.27
SVHN NRASAM 95.82 95.86 87.51 95.78
SVHN TBG-NRASAM 95.99 95.89 88.46 95.80

6 CONLUSION

This paper proposes a TBG and a boundedness theorem based on discrete time system theory, and
develops a noise resistant adaptive sharpness minimization method (TBG-NRASAM). It accelerates
convergence and effectively determines the upper bound. By establishing the µ - contraction the-
ory, it provides a unified boundedness analysis tool for non - exponentially decaying systems and
rigorously proves the algorithm’s convergence and noise-resistance. Experimental results show that
this method significantly outperforms existing SAM-based algorithms in various architectures and
benchmark tests. Especially in complex scenarios with label noise and data perturbations, its ad-
vantages in enhancing model generalization and stability are more prominent. This study provides
a new theoretical perspective and effective tool for optimization problems seeking flat minima in
noisy environments. The proposed TBG framework is expected to be extended to fields with strict
privacy requirements, such as federated learning, to further explore relevant solutions for better
generalization.
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A APPENDIX

A.1 SOME LEMMA

Lemma 1. (Jr. et al. (2023)) If f ′′ is continuous and M is any upper bound for the values of ∥f ′′∥
on [a, b], then the error EM in the approximation of the integral of f from a to b for n steps satisfies
the inequality

|EM | ≤ M(b− a)3

24n2
.

Lemma 2. (Horn & Johnson (2012)) Let A ∈ Mn and ε > 0 be given. There exists a constant
C = C(A, ε) such that

|(Ak)ij | ≤ C
(
ρ(A) + ε

)k
for all k ∈ N and i, j ∈ PN .

A.2 PROOF OF THEOREM 1

Proof. It can be seen from the previous definition of the linear system that

xm = Am−1xm−1 = A(m,n)xn.

And according to Definition 2, there exist constants K and α that satisfy:

∥ A(m,n) ∥2≤ Kµα(m,n).

Then, we have
∥ xm ∥2≤ Kµα(m,n)xn.

The proof is complete.

A.3 PROOF OF THEOREM 2

Proof. It can be seen from the equation of the linear system with perturbation that

xm = Am−1xm−1 + fm−1 = A(m,n)xn +

m−1∑
l=n

A(m, l + 1)fl.

And according to Definition 2 and the triangle inequality of norms, there exist constants K and α
that satisfy:

∥ xm ∥2≤ ∥ A(m,n) ∥2 xn +

m−1∑
l=n

∥ A(m, l + 1) ∥2 · ∥ fl ∥2

≤Kµα(m,n)xn +

m−1∑
l=n

Kµα(m, l + 1) · fmax

≤Kµα(m,n)xn +Kfmax

m−1∑
l=n

µα(m, l + 1).

We focus on the summation part of the second term:

m−1∑
l=n

µα(m, l + 1) =µα(m,n+ 1) + µα(m,n+ 2) + · · ·+ µα(m,m)

=µα(m,m) + µα(m,m)µα(m,m− 1)

+ µα(m,m)µα(m,m− 1)µα(m− 1,m− 2) + · · ·

+ µα(m,m)

m∏
l=n+2

µα(l, l − 1).
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Note that µ(m,m) · µ(m,m) = µ(m,m), then µ(m,m) = 1. Furthermore, by Definition 1, we
have µ(t, t− 1) ≤ b < 1. Hence,

m−1∑
l=n

µα(m, l + 1) ≤1 + bα + b2α + · · ·+ bα(m−n−1)

=
1− bα(m−n)

1− bα
.

Then,

∥ xm ∥2≤Kµα(m,n)xn +Kfmax

m−1∑
l=n

µα(m, l + 1)

≤Kµα(m,n)xn +
Kfmax(1− bα(m−n))

1− bα
.

The proof is complete.

A.4 PROOF OF THEOREM 3

Proof. Discretizing the integral using Euler’s method will lead to error o(τ2), i.e.
∫ t

0
hτdτ ≈

τ
∑k

j=0 hj + o(τ2). Then, the noise-robust update rule can be rewritten:

wk+1 = wk − γhk−1 + δ

k∑
j=0

hj + o1(τ
2). (3)

By substituting the formula of gradient descent method wk+1 = wk − ηhk, the equation (2) can be
rewritten:

−ηhk = −γhk−1 + δ

k∑
j=0

hj + o1(τ
2). (4)

Similarly, the formula for the (k − 1)-th step is

−ηhk−1 = −γhk−2 + δ

k−1∑
j=0

hj + o2(τ
2). (5)

According to equations (3) and (4), we have

(η + δ)hk = (η + γ)hk−1 − γhk−2 + o2(τ
2)− o1(τ

2). (6)

Let o(τ2) = o2(τ
2)− o1(τ

2), then the aforementioned equation (5) can be described as

υk = Hυk−1 + o(τ2), (7)

where υk = [hT
k , h

T
k−1]

T. Matrix H is defined as

H =

[
η+γ
η+δ

−γ
η+δ

1 0

]
.

Due to Lemma 1 in A.1, we bound the term o(τ2), i.e.,

|o(τ2)| ≤ Mt1τ
2 −Mt2τ

2

24
=

Mkτ3 −M(k − 1))τ3

24
=

Mτ3

24
, (8)

where M is any upper bound for the values of ∥h′′∥ on [0, t].

It can be generalized from (6) that

υk = Hυk−1 + o(τ2) = Hk−1υ1 +

k−1∑
l=1

Hk−l−1o(τ2). (9)
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Since the spectral radius of the H is

max

{∣∣∣∣∣η + γ +
√

(η − γ)2 − 4γδ

2(δ + η)

∣∣∣∣∣ ,
∣∣∣∣∣η + γ −

√
(η − γ)2 − 4γδ

2(δ + η)

∣∣∣∣∣
}

= ρ.

By selecting an appropriate ϵ > 0 such that the inequality ρ < β ≜ ρ+ ϵ < µ(a, 0) < 1 is satisfied.
According to Lemma 2, there exist Cβ > 0 such that

|(Hk)ij | ≤ Cββ
k,

for all k ∈ N and i, j = 1, 2.

Since the Frobenius norm of a matrix is always greater than or equal to its 2-norm, the following
inequality holds for all k ∈ N :

∥Hk∥2 ≤
√∑

i,j

|(Hk)ij |2 ≤
√

22 · [Cββk]
2
= 2Cββ

k.

Let µ̃(m,n) = βm−n, then it can be verified that µ̃(m,n) satisfies Definition 1. Therefore,
∥Hk−1∥ ≤ µ̃(k, 1) hold.

According to Theorem 2 , we have

∥υk∥2 ≤ 2Cβµ̃(k, 1)υ1 +
CβMτ3(1− µ(a, 0)(k−1))

12(1− µ(a, 0))
.

As a result, we have

lim
k→∞

∥υk∥2 ≤ lim
k→∞

2Cβµ̃(k, 1)υ1 + lim
k→∞

CβMτ3(1− µ(a, 0)(k−1))

12(1− µ(a, 0))

≤ CβMτ3

12(1− µ(a, 0))
.

Hence, it follows that

lim
k→∞

∥hk∥2 ≤ CβMτ3

6
√
2(1− µ(a, 0))

.

The proof is complete.

A.5 PROOF OF THEOREM 4

Proof. Incorporating the expression of the gradient descent update wk+1 = wk−ηhk into Equation
(9) leads to the following:

−ηhk = −γhk−1 + δ

k∑
j=0

hj + o1(τ
2) + ek. (10)

Similarly, the formula for the (k − 1)-th step is

−ηhk−1 = −γhk−2 + δ

k−1∑
j=0

hj + o2(τ
2) + ek−1. (11)

From the preceding equations (10) and (11), it follows that

(η + δ)hk = (η + γ)hk−1 − γhk−2 + o(τ2)− (ek − ek−1). (12)

Let o(τ2) = o2(τ
2)− o1(τ

2) and nk = [eTk − eTk−1, 0]
T , then equation (12) can be transformed into

υk = Hυk−1 + o(τ2)− nk, (13)

where the definition of H and υk is the same as Theorem 1.
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Hence,

υk = Hk−1υ1 +

k−1∑
l=1

Hk−l−1(o(τ2)− nk).

Let 2d be the dimension of ni and ci be the element of the maximum value among ni. Thus, we
obtain

∥ nk ∥2≤ max
2≤i≤k

∥ ni ∥2≤
√
2d sup

2≤i≤k
|ci|.

Combining equation (7), we have the following:

∥ o(τ2)− nk ∥2≤
Mτ3

24
+

√
2d sup

2≤i≤k
|ci|.

According to Lemma 1, we derive the upper bound of the 2-norm of vk:

∥υk∥2 ≤ 2Cβµ̃(k, 1)υ1 +
2Cβ(1− µ(a, 0)(k−1))

(1− µ(a, 0))
(
Mτ3

24
+

√
2d sup

2≤i≤k
|ci|).

As a result, we have

lim
k→∞

∥υk∥2 ≤ lim
k→∞

2Cβ

{
µ̃(k, 1)υ1 +

(1− µ(a, 0)(k−1))

(1− µ(a, 0))
(
Mτ3

24
+

√
2d sup

2≤i≤k
|ci|)

}
≤ 2Cβ

(1− µ(a, 0))

(
Mτ3

24
+
√
2d sup

2≤i≤k
|ci|

)
.

Consequently, we have

lim
k→∞

∥hk∥2 ≤
√
2Cβ

(1− µ(a, 0))
(
Mτ3

24
+
√
2d sup

2≤i≤k
|ci|).

The proof is complete.
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