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Abstract

Despite growing interest in multimodal deep learning for medical imaging, researchers
and clinicians still lack a systematic understanding of when medical-domain vision-language
models outperform their general-domain counterparts. While several medical CLIP variants
have been proposed, they are typically evaluated in isolation and on narrow tasks, leaving
open questions about how pre-training data, downstream task, and fine-tuning strategy
jointly affect performance. We systematically compare four vision—language CLIP-based
models on three representative tasks: image classification, image-to-text retrieval, and vi-
sual question answering. Across tasks, zero-shot performance is generally insufficient for
clinical use, even for medically pre-trained models, confirming the need for task-specific
fine-tuning. Medical-domain pre-training offers clear benefits in low-data regimes and for
in-distribution modalities, but can underperform CLIP when downstream data deviates
from the pre-training distribution. When sufficient labeled data is available, and especially
under LoRA-based tuning, general-domain CLIP systematically matches or surpasses spe-
cialized medical models. VQA remains notably challenging, with none of the evaluated
models achieving competitive results even after fine-tuning, suggesting that more advanced
multimodal reasoning approaches are needed. Based on these findings, we provide recom-
mendations for selecting and adapting vision-language models in clinical settings.
Keywords: Foundation Model, Classification, Visual-question answering, Image-to-text
retrieval, medical applications

1. Introduction

Patient care generates diverse multimodal data, including medical images and clinical notes.
Models capable of synthesizing information from these modalities could provide valuable
support for clinicians in documentation (e.g., radiology report generation (Chen et al.,
2024b)), education (Li et al., 2023), or clinical decision-making. However, privacy concerns
limit the development of large-scale multimodal datasets for the development of specialized
task-specific models. The recent advent of multimodal foundation models has enabled
joint analysis of visual and textual data for a range of tasks and domains. Among them,
contrastive language—image pretraining (CLIP) (Radford et al., 2021) has become a de
facto standard backbone for vision—language representation learning because of its scalable
training, zero-shot performance, and flexibility as a general-purpose multimodal encoder.
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However, the unique characteristics of medical images (e.g., modality-specific appearance,
subtle and localized abnormalities, protocol, and device variability) and clinical text (e.g.,
domain-specific terminology, abbreviations, and report-style phrasing) pose challenges for
directly adapting CLIP-based models to healthcare data. This has led to the development
of medical-specific foundation models, including Biomed-CLIP (Zhang et al., 2023), PMC-
CLIP (Lin et al., 2023), and CXR-CLIP (You et al., 2023). These models have shown
promise on specific tasks, but they have usually been evaluated in narrow contexts that do
not account for the diversity of medical data and the variety of transfer learning scenarios
encountered in real-world clinical settings (Marzullo and Ranzini, 2024).

In this study, we systematically evaluate vision—language models for medical applications
to determine how the model domain (general vs. medical), pre-training data, and fine-
tuning strategy jointly affect downstream performance and to identify the most effective
configurations for different scenarios. We release the full implementation of our evaluation
to support further research.! Our contributions are as follows:

e We quantify how the pre-training data distribution affects performance on medical
tasks and demonstrate that task-specific fine-tuning is essential for achieving strong
performance, regardless of pre-training domain. While medical-domain pre-training
often leads to superior performance, it can be outperformed by CLIP when the down-
stream data diverges significantly from the pre-training distribution. With sufficient
fine-tuning data, CLIP can match or surpass specialized medical models.

e We compare model performance across three downstream tasks: image classification,
Visual Question Answering (VQA), and Image-Text Retrieval (ITR). Fine-tuned mod-
els consistently and significantly outperform their zero-shot counterparts, which are
generally unreliable on medical applications. Our findings show that, even after fine-
tuning, VQA performance remains substantially below state-of-the-art, highlighting
critical limitations in the multimodal reasoning capabilities of CLIP-based models.

e Based on our analysis, we establish a list of recommendations for the application of
CLIP-based models in the medical domain.

2. Related Work

Multimodal machine learning has become a prominent research direction, with the devel-
opment of foundation models showing strong cross-modal understanding capabilities (Xu
et al., 2024). One notable example is the CLIP architecture (Radford et al., 2021), which
employs two separate encoders that process texts and images respectively. A contrastive loss
function is used to align semantically similar text-image pairs within a shared embedding
space. This approach has shown strong generalizability and has achieved state-of-the-art
performance in diverse applications (Tankala et al., 2024; Radford et al., 2021).

CLIP has demonstrated its capability in medical image recognition across various imag-
ing modalities, especially for x-ray data (Zhao et al., 2023). For example, CLIP achieves an
accuracy of 87.4% on a multi-label classification task on the VinDr-CXR dataset (Nguyen
et al., 2022; Mishra et al., 2023). However, it can also struggle to generalize effectively to
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other domain-specific applications (Chen et al., 2024a). For instance, while CLIP achieves a
zero-shot accuracy of 70.1% on object recognition tasks for natural-domain images (Radford
et al., 2021), its performance significantly degrades on tasks involving medical images (Zhang
et al., 2023; Lin et al., 2023; You et al., 2023).

Yet, the general-domain pre-training of CLIP could limit its performance in the health-
care domain. Empirical evidence suggests that pre-training from scratch on domain-specific
data outperforms transferring a pre-trained model to a specific domain using large-scale
datasets (Gu et al., 2021). Thus, researchers have developed medical vision-language mod-
els for generic applications (Lin et al., 2023; Eslami et al., 2023; Zhang et al., 2023) and
specific imaging modalities (You et al., 2023; Hamamci et al., 2024; Salentin et al., 2015).

However, studies comparing the performance of general and medical-domain vision-
language models remain limited. PubMedClip (Eslami et al., 2023) shows an improvement
of 1% compared to CLIP on medical VQA tasks under similar conditions (Eslami et al.,
2023). Biomed-CLIP (Zhang et al., 2023) reports a significant performance increase com-
pared to a fine-tuned CLIP model on several medical applications, including histopatholog-
ical (Veeling et al., 2018; Borkowski et al., 2019; Saltz et al., 2018) and radiological image
classification (Shih et al., 2019), and cross-modal retrieval (Zhang et al., 2023).

Recent works have also validated Biomed-CLIP for other medical applications, in-
cluding scoliosis detection (Polis et al., 2025) and hematological recognition (Patel et al.,
2024). PMC-CLIP also shows competitive performance across various medical downstream
tasks (Lin et al., 2023), including image classification, VQA, and ITR. However, it has
also shown notable limitations with respect to its generalization capability, in particular for
zero-shot classification or domain identification tasks (Zhao et al., 2023).

3. Experimental Setup

In this work, we evaluate the performance of four vision-language models: CLIP (Radford
et al., 2021), pre-trained on general-domain data; Biomed-CLIP (Zhang et al., 2023) and
PMC-CLIP (Lin et al., 2023), both pre-trained in the universal biomedical domain; and
CXR-CLIP (You et al., 2023), a model specialized for chest X-ray images. We assess their
performance and generalization abilities for image classification, VQA and ITR tasks in
the medical domain. Each model is first evaluated in a zero-shot setup for the image
classification and ITR datasets. Then, models are fine-tuned with task-specific datasets for
all downstream tasks. In this paper, we compare the transferability of three fine-tuning
methods, including full, partial (Kumar et al., 2022), and LoRA (Hu et al., 2022). The
experimental pipeline is detailed in Figure 1.

3.1. Datasets

We select biomedical datasets across various medical domains for medical image classifica-
tion, ITR and VQA downstream tasks. Additional details are summarized in Appendix A.

Image classification: We select four subsets of MedMNIST (Yang et al., 2023). We
include PneumoniaMNIST (i.e., chest X-rays), BreastMNIST (Al-Dhabyani et al., 2020)
(i.e., breast ultrasound), OrganAMNIST (Bilic et al., 2019), and OrganCMNIST (Xu et al.,
2019) (i.e., abdominal CT scans) in this evaluation. These datasets represent both in-
domain and out-of-domain tasks for the specialized CXR-CLIP model.
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Figure 1: Experiment pipeline. In this work, we evaluated four selected vision-language
models (CLIP (Radford et al., 2021), Biomed-CLIP (Zhang et al., 2023), PMC-
CLIP (Lin et al., 2023), CXR-CLIP (Johnson et al., 2019; Irvin et al., 2019; Wang
et al., 2017)) on classification (Yang et al., 2023), VQA (Lau et al., 2018), and
ITR (Pelka et al., 2018) tasks with full, partial, and LoRA fine-tuning methods.

Image-to-text retrieval (ITR): ROCO (Pelka et al., 2018) comprises non-compound
images extracted from articles in the PMC?, and is automatically detected and classified as
either radiology or non-radiology (Pelka et al., 2018), creating two distinct subsets.

Visual Question Answering (VQA): VQA-RAD (Lau et al., 2018) contains radi-
ological image-text pairs from different modalities (Lau et al., 2018). SLAKE (Liu et al.,
2021) is a bilingual (English/Chinese) dataset designed to support medical VQA. We utilize
only the English version during training and inference.

3.2. Implementation Details

We select the ViT-B/32 and ViT-B/16 backbones for CLIP and Biomed-CLIP respectively,
and ResNet for PMC-CLIP and CXR-CLIP. All models are trained and evaluated using an
input resolution of 224 x 224 regardless of their visual backbone architecture. Following
medical VQA models (Nguyen et al., 2019; Zhan et al., 2020) where a bilinear attention
network is used to enhance feature fusion, we incorporated the same module into the vision-
language models (Kim et al., 2018). For the classification and ITR tasks, no additional
layer is added. The models are fine-tuned for 200 epochs in a mixed-precision manner,
early stopped by validation loss, and optimized by Adam (Kingma and Ba, 2014). For the
classification task, we adopt a learning rate of 5.0 x 10~ for PMC-CLIP, CLIP, and CXR-
CLIP, and a learning rate of 1.0 x 107° for Biomed-CLIP with a weight decay of 1.0 x 1073
for encoders, and evaluate with AUC, accuracy and F1l-score. VQA tasks employ a learning

2. https://pubmed.ncbi.nlm.nih.gov/
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BreastMNIST  PneumoniaMNIST  OrganAMNIST OrganCMNIST
AUC Acc. F1 AUC Acec. F1 AUC Acc. F1 AUC Acc. F1

CLIP 50.0 269 0 50.0 625 769 490 69 52 480 58 4.6
Biomed-CLIP 67.0 54.5 56.4 67.0 60.1 b54.3 59.0 28.5 24.36 57.0 24.0 22.0
PMC-CLIP 52.0 69.9 81.6 50.0 37.5 0 490 78 49 500 85 4.0
CXR-CLIP 42.0 57.1 71.7 54.0 65.4 78.1 530 21.1 86 53.0 24.6 13.9

Table 1: Zero-shot performance on selected classification tasks of the MedM-
NIST dataset. The best results for each metric are highlighted in bold.

Radiology [%] Non-radiology [%] Mixed [%]
R@l R@5 R@10 R@l R@5 RQ@10 R@l R@5 RQ10
CLIP 0.7 2.5 4.01 18.4  36.1 45.6 1.4 3.5 5.4

Biomed-CLIP 33.3 66.1 79.2 74.3 94.6 975 350 674 80.1
PMC-CLIP 0.0 0.1 0.2 0.5 1.65 21 0.0 0.1 0.2
CXR-CLIP 0.0 0.1 0.2 0.3 1.6 21 0.0 0.1 0.2

Table 2: Zero-shot performance on image-to-text retrieval task on the ROCO
dataset. The best performance for each metric is highlighted in bold.

rate of 5.0 x 107° with a weight decay of 0.1, and are measured with accuracy and F1-score.
The learning rate of ITR is set at 1.0 x 107°, and the task is assessed with recall@k (k=1,
5, 10). All experiments are implemented using PyTorch on a single NVIDIA V100 GPU
within one day. We conduct all the experiments under the same single random seed to
ensure reproducibility.

4. Results and Discussion
4.1. Zero-shot capability

We evaluate the zero-shot performance of both general- and medical-domain CLIPs to de-
termine how pre-training impacts generalizability in medical applications. Table 1 presents
the results for medical imaging classification tasks. CLIP, PMC-CLIP, and CXR-CLIP
achieve an AUC of around 50% for all subsets, showing no zero-shot capability. While
Biomed-CLIP shows classification performance above the chance level, they remain far be-
low state-of-the-art performances. In clinical scenario, we argue that fine-tuning models,
either CLIP or its medical variants, is still necessary to achieve reasonable performance.
Table 2 presents zero-shot image-to-text retrieval results. Biomed-CLIP demonstrates
superior performance compared to other CLIP models, likely attributable to the high sim-
ilarity between its pre-training corpus and the downstream evaluation data, both of which
are derived from PubMed. However, this overlap raises concerns about potential data leak-
age between the pre-training corpus and the ROCO dataset. In contrast, other medical
CLIP models exhibit limited zero-shot performance. CXR-CLIP’s reliance on templated
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CLIP Biomed-CLIP PMC-CLIP CXR-CLIP
Part Full LoRA Part Full LoRA Part Full LoRA Part Full LoRA

AUC 78.0 50.0 81.0 80.0 84.0 84.0 78.0 85.0 78.0 31.0 20.0 250
Acc. 789 269 84.0 833 87.8 872 81.4 89.7 80.1 29.5 23.7 256
F1. 731 0.0 889 884 91.v 91.2 87.0 93.2 95.8 36.1 350 34.1

AUC 85.0 50.0 85.0 94.0 89.0 93.0 95.0 83.0 95.0 95.0 90.0 94.0

Breast

Pneu. Acc. 88.3 62.5 88.6 944 914 950 955 91.0 96.0 96.2 92.8 94.7

F1. 912 72.0 91.6 95.6 93.5 96.2 964 933 96.9 97.0 945 959

OreanA AUC 96.0 98.0 98.0 96.0 98.0 98.0 96.0 98.0 95.0 92.0 79.0 96.0

& Acc. 93.0 96.6 96.8 93.4 96.5 96.7 92.2 958 91.9 87.8 57.7 93.0

F1. 93.0 96.6 96.8 93.3 96.5 96.6 92.0 958 91.9 872 54.3 929

AUC 92.0 94.0 95.0 94.0 97.0 96.0 93.0 96.0 91.0 90.0 73.0 94.0
OrganC

Acc. 86.8 90.8 925 91.2 94.4 94.4 888 94.2 86.4 82.8 53.4 90.1
F1. 86.9 80.7 92.5 91.1 94.3 94.3 88.7 94.1 86.3 82.8 50.0 90.2

Table 3: Classification performance on selected MedMNIST datasets for full,
partial, and LoRa fine-tuning methods. ”Pneu.” denotes PneumoniaMNIST.
Bold values and underlined scores are the best and the second best performance.

pre-training prompts with limited vocabulary may restrict its expressiveness in retrieval
tasks. The performance of general-domain CLIP on the non-radiology subset, with a re-
call@10 score of 45.6%, suggests potential for zero-shot generalization capabilities in the
medical domain beyond radiology images. These findings align with previous observations
that PMC-CLIP often underperforms relative to the original CLIP in zero-shot tasks (Zhao
et al., 2023).

4.2. Fine-tuning performance

We present the performance of each CLIP model after task-specific fine-tuning in Tables 3,
4, and 5, for classification, ITR, and VQA, respectively.

Classification: There is a significant increase in performance after fine-tuning across
most models and fine-tuning methods, except for CXR-CLIP on ultrasound images. While
no single model outperforms all others, Biomed-CLIP and PMC-CLIP consistently exhibit
strong classification capabilities across all subsets. CLIP exhibits lower performance on
the BreastMNIST and PneumoniaMNIST subsets, potentially attributable to their smaller
dataset sizes (see Table 7 in Appendix A). However, while fine-tuned CLIP-based models
achieve competitive performance on the MedMNIST benchmark, they still fall short of
surpassing current state-of-the-art results (see Appendix B.1).

Image-to-Text Retrieval: While Biomed-CLIP still outperforms the other models,
its results show very limited improvement over the zero-shot baseline, which supports the
hypothesis that data leakage may compromise the fairness of the comparison. PMC-CLIP
reaches the second-best performance on radiology data with a recall@1 of 13.9% with LoRA
fine-tuning, but reaches lower performances than the general CLIP on non-radiology data,
which shows strong performance on this subset. However, its recall@10 of 18.8% in the
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CLIP Biomed-CLIP PMC-CLIP CXR-CLIP
Part Full LoRA Part Full LoRA Part Full LoRA Part Full LoRA

R@1 2.0 41 10 33.7 243 333 129 134 139 0.1 04 0.2
Radiology R@5 6.4 12,5 4.7 66.6 52.1 65.6 32.0 33.8 334 03 07 0.3
R@10 10.7 18.8 84 79.5 66.1 79.2 43.3 46.0 448 04 08 04

R@1 19.7 21.3 56 76.7 751 751 9.7 98 95 02 12 02
Non-radiology R@Q5 44.3 43.0 15.1 95.4 94.8 94.6 316 26.7 315 0.7 36 15
R@10 55.3 55.7 24.8 98.4 98.4 98.2 41.3 37.1 40.7 21 53 20

ROCO

Table 4: Image-to-text retrieval performance fine-tuned on ROCO dataset for
full, partial, and LoRa fine-tuning methods. Bolded and underlined values
are the best and the second best performance.

CLIP Biomed-CLIP PMC-CLIP CXR-CLIP
Part Full LoRA Part Full LoRA Part Full LoRA Part Full LoRA

Acc. 50.8 52.0 52.7 404 43.2 420 48.0 53.7 48.0 49.6 53.9 46.8
F1 464 523 51.6 36.9 364 381 41.6 52.6 42.7 50.5 55.1 43.5

Acc. 729 66.3 734 175 53.8 19.1 76.6 75.1 75.5 70.7 684 67.3
F1 733 664 74.1 19.8 51.4 175 76.7 742 78.1 70.5 67.6 66.8

VQA-RAD

SLAKE

Table 5: Visual-question answering performance on medical VQA datasets. The
best performance are bolded, and the second best values are underlined.

radiology subset shows limited generalizability to this setting. CXR-CLIP performs poorly
across both subsets, with scores of recall metrics approaching zero. The performance of
CXR-CLIP shows that the narrow diversity of specialized medical pre-training datasets
may limit the generalizability and transferability of vision-language models. This is likely
due to its restricted pre-training text diversity, which could explain the worse performance
compared to medical image classification tasks. Indeed, CXR-~CLIP is pre-trained on image-
label data which are prompted with template sentences (You et al., 2023).

Visual Question Answering: Despite the good performance of Biomed-CLIP on
classification and ITR, it does not transfer to VQA. PMC-CLIP surpasses other models on
the Slake dataset, and CLIP also reaches overall good performance, achieving an accuracy
of 74.1%. On the VQA-RAD dataset, fine-tuned CXR-CLIP reaches performance slightly
above the others, with an accuracy of 53.9%. Overall, the poorer performance of models on
VQA could be due to the fact that CLIP-based models process image and text separately,
leading to limited modality interactions. PMC-CLIP incorporates a transformer-based fu-
sion module, which strengthens cross-modal interaction and likely contributes to its superior
performance on the VQA task. On the VQA-RAD dataset, models perform better on closed-
ended than on open-ended questions, reaching an accuracy of 65.0% and 9.5% respectively
for the fine-tuned CXR-CLIP. This could be due to the more limited answer choices, and
the reduced need for medical reasoning and understanding of object relationships.
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OrganA OrganC
Size ft. 5% 10%  25% 50% 100% 5% 10% 25% 50% 100%

full 75.1 873 948 96.5 96.6 16.1 278 80.7 858 90.8
LoRA 859 921 946 960 96.8 734 814 88.0 909 925

full 94.4 94.7 95.3 963 965 89.9 91.9 93.5 927 944
LoRA 90.6 934 953 963 96.7 742 846 919 93.5 944

CLIP

Biomed

Table 6: Fine-tuning accuracy under varying proportions of Organ AMNIST and
OrganCMNIST dataset. ”ft.” suffix indicates the fine-tuning method used.
Bolded accuracy values are the best performance for each portion.

Impact of pre-training dataset: The results show that medical-domain pre-training
usually provides advantages compared to general-domain pre-training across fine-tuning
methods, especially for smaller downstream datasets, which is a common challenge in real-
world medical applications. This is especially true for the radiological domain, as the
size of the fine-tuning dataset may be too small to adapt the visual encoder of the general
domain CLIP. On the other hand, CLIP shows good performance on non-specialized medical
downstream tasks, such as the non-radiology ROCO and the Slake dataset. In addition, the
general-domain CLIP demonstrates strong transferability on specialized downstream tasks
for larger datasets in medical image classification, such as the OrganA and OrganC subsets.

To confirm this hypothesis, we evaluate how the size of the fine-tuning dataset impacts
the performance of general-domain and medical-domain CLIP. To that end, we specifically
consider the OrganCMNIST and OrganAMNIST datasets. We evaluate CLIP and Biomed-
CLIP on portions of these datasets, ranging from 5% to 100%, and present the results in
Table 6. In both cases, the models perform increasingly better with a larger amount of
data. In the case of the OrganC dataset, smaller than OrganA, Biomed-CLIP consistently
outperforms the CLIP model, though the gap between the models continues to shrink
as the fine-tuning dataset size increases. In the case of OrganA, while the Biomed-CLIP
outperforms the general-domain CLIP for smaller proportions of data, it reaches comparable
or better results than Biomed-CLIP when at least 50% of the data is used. This amounts
to a fine-tuning dataset size of more than 15,000 instances. These results underscore that
the general-domain CLIP requires substantially larger downstream datasets to match the
performance of BiomedCLIP on medical images. This shows the limits of the visual encoder
of the general-domain CLIP for fine-grained medical image analysis.

Fine-tuning methods: Fine-tuning strategies can have a significant impact on model
performance. For example, Table 3 shows that full fine-tuning can be efficient in the case
of medical vision-language models for classification tasks, but can lead to catastrophic for-
getting for the general-domain CLIP fine-tuned on smaller datasets (e.g., Breast MNIST,
PneumoniaMNIST). Parameter-efficient approaches such as LoRA offer a promising alter-
native by significantly reducing the number of trainable parameters while enabling the
adaptation of the image encoder to other medical modalities. By applying LoRA to the
vision encoder of the vision-language models, the models are able to integrate task-specific
features into the pre-trained representations. In addition, these methods tend to produce
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more stable outcomes across different runs. Indeed, full fine-tuning of the models is of-
ten less stable, requiring careful calibration of the hyperparameters. This is especially the
case for the ITR and VQA tasks. Figure 2 in the Appendix shows how slight variation
in hyperparameters impacts the results of each fine-tuning approach, with full fine-tuning
consistently resulting in the highest variance. LoRA and partial fine-tuning achieve more
consistent performance. We also show that standard deviation is high for VQA fine-tuning,
which could be due to the necessity of training the bilinear attention network. However,
no single fine-tuning method consistently outperforms the others, underscoring the need to
tailor the fine-tuning approach to the task and selected model.

Qualitative evaluation of VQA: To understand the capabilities of vision-language
models, we classify their errors on VQA tasks into three distinct categories: language errors,
multimodal errors, and reasoning errors. Appendix B.3 provides illustrative examples.

Language errors include three sub-categories. First, models may produce answers that
are inappropriate for the question type, such as responding with a ‘yes/no’ answer to a
non-binary question. Our observations suggest that this can stem from the distribution of
the training dataset, leading to an over-reliance on the question’s phrasing (e.g., answering
yes/no to a question starting with ‘Is’). Additionally, the model’s answer may exhibit the
wrong granularity compared to the reference ground truth. This mismatch can stem from
question ambiguity (e.g., a question refers to a singular object, but the expected answer
references several). Finally, some errors are paraphrases, where the answer is semantically
correct but phrased differently from the reference response.

Beyond language-related errors, we categorize cross-modal errors as predictions that are
linguistically valid but visually irrelevant. These errors highlight the model’s inability to
connect textual and visual information effectively, even when no in-depth medical knowledge
is required. An example is when an answer refers to an object that is not present in the
image. Spatial reasoning errors are another example, where the model fails to locate an
object or attribute correctly within the image.

Finally, we define medical reasoning errors as predictions that are linguistically and
visually relevant but incorrect, due to a lack of precise medical knowledge. Figure 10 shows
how CXR-CLIP correctly identifies an organ visible in the image but does not understand
which one is abnormal. While such reasoning errors would provide valuable insights, they
are relatively underrepresented compared to the other error types, especially in the VQA-
Rad dataset. Indeed, each error type reveals distinct insights into the performance of
vision-language models, which aggregated metrics might obscure. Future research should
prioritize the development of targeted datasets or metrics for each of these error types.
This would enable a more transparent understanding of foundation models’ capabilities in
clinical applications.

4.3. Recommendation on the use of CLIP models for medical applications

Based on our results, we recommend the following practical guidelines for selecting and
adapting foundation models in clinical applications.

Zero-shot applicability: Both general-domain and specialized CLIP models struggle
with downstream tasks. While Biomed-CLIP shows strong results, data leakage concerns
warrant further evaluation of its reliability. However, general-domain CLIP’s zero-shot
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performance in image-to-text retrieval for non-radiology images could support its use for
human-in-the-loop applications. For example, it could assist in selecting medical images for
dataset creation by leveraging information such as image type, anatomical location, or the
absence of identifiable information (e.g., text, faces).

Model fine-tuning: Task-specific fine-tuning on representative data is typically re-
quired. If large downstream task datasets are available (e.g., more than 10,000 instances),
general-domain CLIP is suitable, as fine-tuning can inject sufficient in-domain knowledge
to fine-tune the visual encoder. With limited data, either universal medical-domain models
or domain-aligned medical models are preferable for fine-grained analysis of medical im-
ages. However, fine-tuning a specialized medical CLIP on off-domain medical images is not
recommended.

Modality considerations: For predominantly image-based tasks on medical images
(e.g., classification, detection, segmentation), universal medical foundation models typi-
cally achieve good performance with fewer resources. For tasks with substantial textual
components or leveraging diverse natural language (e.g., image-to-text retrieval, reporting),
general-domain models are often more effective due to the higher pre-training text variety.

Multimodal reasoning: In our experimental setting, fine-tuning CLIP for fine-grained
medical reasoning proved challenging with tested models. For these tasks, architectures
with explicit image—text feature fusion tend to perform better, and are suggested by the
stronger results of PMC-CLIP on VQA. Incorporating question-based pre-training or cross-
attention modules could improve the results. Beyond model design, there is also a need to
create tasks and metrics that can accurately assess reasoning capabilities, as existing ones
can blur distinctions between linguistic, multimodal, and medical reasoning errors.

Training a medical CLIP model: Some studies have explored pre-training custom
CLIP models for medical applications (Yan et al., 2025). In such cases, leveraging a general-
purpose language model would be advantageous, given that medical vision-language models
often suffer from limited textual diversity, as evidenced by CXR-CLIP results.

5. Conclusion

This study aims to provide a thorough overview toward the choice of vision-language foun-
dation models in the healthcare domain. Our experiments reveal several important findings
regarding the behavior and adaptability of vision-language models depending on datasets
and tasks. The chance-level zero-shot performance of models on most tasks demonstrate
the necessity of task-specific fine-tuning even with medical pre-training. However, the pre-
training dataset significantly influences downstream performance, particularly in how well
models generalize to new data distributions, the efficiency of fine-tuning with limited data,
and the adaptability to different task types. Medical-domain models typically show bet-
ter performance on fine-grained medical imaging, especially when the fine-tuning data is
limited. When the downstream image modality differs from the pre-training distribution,
the models exhibit worse performance than the general-domain model. Additionally, large
fine-tuning data or non-medical imaging tasks enable general-domain CLIP to match or
outperform medical-domain models. Therefore, universal medical models should generally
be preferred, and a general model can be considered when downstream data is sufficient.
Domain-specific medical model do not transfer beyond the specific modality domain.
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Appendix A. Dataset Details

Table 7 lists the size of each dataset used for our evaluation.

The radiological subset of ROCO covers modalities such as CT, ultrasound, X-ray,
and PET (Pelka et al., 2018), whereas non-radiology includes annotated diagrams, digital
illustrations, and portraits of medical professionals (Pelka et al., 2018).

For the VQA-RAD dataset, we implement an image-based split to prevent data leakage.
The resulting splits contain 1473 items with 201 images for training, 354 question-answer
pairs with 51 images for validation. The resulting test set includes 421 question-answer
pairs (337 closed-ended and 84 open-ended) associated with 62 samples. Notably, 3.09%
of answers in the testset are not presented in the training or validation sets, labeled as
‘unknown’.

The Slake dataset includes 140 head CTs or MRIs, 41 nect CTs, 219 chest X-rays or
CTs, 201 abdomen CTs or MRIs and 41 pelvic cavity CTs (Liu et al., 2021). The ratio of
”unknown” answers in the test set is 0.18%.

Dataset Training Validation  Test

BreastMNIST 546 78 156

I Classificati PneumoniaMNIST 4708 524 624
mage LAassihcation Organ AMNIST 34561 6491 17778
OrganCMNIST 12975 2392 8216

. ROCO-Rad. 65414 8171 8176

Image-to-Text Retrieval ROCO-Non. 4888 610 610

. . : VQA-RAD 1473 354 421
Visual Question Answering SLAKE 4919 1053 1061

Table 7: Size of fine-tuning datasets. The "ROCO-Rad.” indicates the radiology subset
of the ROCO, and "ROCO-Non.” presents the non-radiology subset.

Appendix B. Additional Results
B.1. Comparison to State-of-the-Art

We compare the selected vision-language models to models of the MedMNIST benchmark
3 under the same fine-tuning datasets as in Table 8. The best vision-language models
reach similar performances to the visual models after fine-tuning on these standard medical
datasets.

In addition, we referenced these models on VQA tasks using the two best-performing
VQA methods in Table 9 at the time of writing, according to the VQA-RAD and SLAKE
benchmarks*®. It is important to note that we manually split the VQA-RAD by image.

3. https://medmnist.com/
4. https://paperswithcode.com/sota/medical-visual-question-answering-on-vqga-rad
5. https://paperswithcode.com/sota/medical-visual-question-answering-on-vqga
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Breast Pneu. OrganA OrganC
Models AUC Acc AUC Acc AUC Acc AUC Acc

CLIP  81.0 84.0 85.0 88.6 98.0 96.8 95.0 92.5
Biomed 84.0 87.8 94.0 94.4 98.0 96.7 97.0 94.4
PMC 85.0 89.7 95.0 96.0 98.0 95.8 96.0 94.2
CXR 31.0 29.5 95.0 96.2 96.0 93.0 94.0 90.1

Google 91.9 86.1 99.1 94.6 99.0 88.6 98.8 87.7
ResNet 90.1 86.3 95.6 86.4 99.8 95.1 99.4 920

Table 8: Comparison to benchmarking performance of MedMNIST2D on classi-
fication task. ‘Pneu.’ stands for Pneumonia, Google for Google AutoML Vision,
and ResNet for ResNet-18. Bolded values are the best performance for each sub-
set.

Selected Models Benchmarking
Dataset CLIP Biomed PMC CXR Model Ace.

RAD 52.7 47.7 55.1  69.9 PeFoMed (Liu et al., 2024) 81.9
SLAKE 75.7 69.3 781 71.8 B-GPT (Luo et al., 2023) 86.1

Table 9: Reference to benchmarking performance VQA task. "RAD” refers to
dataset VQA-RAD, and ”"B-GPT” indicates BiomedGPT. Scores are presented

in accuracy. Best results are shown in bold.

B.2. Impact of fine-tuning method on Result Stability

Full fine-tuning of the models is often less stable, requiring careful calibration of the hyper-
parameters. This is especially the case for the ITR and VQA tasks. Figure 2 shows how
slight variation in hyperparameters impacts the results of each fine-tuning approach, for the
considered vision-language models. This shows that full fine-tuning consistently results in
the highest variance.

B.3. Qualitative Analysis of VQA errors

Table 10 shows some examples of VQA errors from VQA-RAD and SLAKE datasets. The
listed five image-question pairs come from the VQA-RAD dataset and the medical reasoning
error only exists in SLAKE dataset.
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Figure 2: Variation of model performance with different models and tasks. Stan-
dard deviations of performance are reported to assess the stability of model per-
formance on visual-question answering (metric: accuracy) over seven runs and
image-to-text retrieval tasks (metric: recall@1) over nine runs.
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Question Answer Prediction Error Type Model
Is the consistency of the heterogeneous yes Inappropriate  Biomed
abscess located in the left for question
upper quadrant homogeneous type
or heterogeneous?
What organ contains multiple kidneys left Wrong PMC
lesions in the above image? kidney granularity
Where is there evidence of a right side right lung Paraphrase PMC
pleural effusion?
What organ is enlarged? pancreas brain Cross-modal CLIP

error
What lobe of the brain is the Right frontal right Spatial PMC
lesion located in? lobe temporal  reasoning

lobe

Which organ is abnormal, heart heart lung Medical CXR
or lung? reasoning

Table 10: Example prediction errors on VQA task. The first five examples come from the
VQA-RAD dataset, and the last one comes from the SLAKE dataset.
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