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Abstract
In the task of image dehazing, it has been proven that high-quality
codebook priors can be used to compensate for the distribution
differences between real-world hazy images and synthetic hazy im-
ages, thereby helping the model improve its performance. However,
because the concentration and distribution of haze in the image
are irregular, the manners those simply replacing or blending the
prior information in the codebook with the original image features
are inconsistent with this irregularity, which leads to a non-ideal
dehazing performance. To this end, we propose a haze concentra-
tion aware network (HcaNet), its haze-concentration-aware module
(HcaM) can reduce the information loss in the vector quantization
stage and achieve an adaptive domain transfer for regions with
different degrees of degradation. To further capture the detailed tex-
ture information, we develop a frequency selective fusion module
(FSFM) to facilitate the transmission of shallow information re-
tained in haze areas to deeper layers, thereby enhancing the fusion
with high-quality feature priors. Extensive evaluations demonstrate
that the proposed model can be merely trained on synthetic hazy-
clean pairs and effectively generalize to real-world data. Several
experimental results confirm that the proposed dehazing model
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outperforms state-of-the-art methods significantly on real-world
images.
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• Computing methodologies → Artificial intelligence; Com-
puter vision problems; Reconstruction.
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1 Introduction
Single image dehazing aims to enhance visual quality by recovering
a clear image from a hazy input. The task of image dehazing has
diverse practical applications, particularly in areas such as traffic
monitoring, autonomous driving, and terrain surveying. Dehazed
images can serve as high-quality inputs for downstream tasks such
as object detection and tracking in haze-affected environments.

In recent years, deep learning-based dehazing methods have
demonstrated exceptional performance and emerged as the pre-
dominant approaches. Early DNN-based approaches [5, 23, 30] pri-
marily employ deep networks for estimating physical parameters
and then use scattering model [6] to derive haze-free images. Sub-
sequently, researchers are increasingly inclined to employ DNNs to
directly restore the haze-free image in order to mitigate cumulative
errors arising from parameter estimation [10, 29, 33]. While these
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methods demonstrate excellent performance on synthetic datasets,
there is a serious performance degradation when these methods
are transferred directly to real-world datasets. Other methods, such
as PSD [9] and RIDCP [38], are specifically designed for real scenes.
For instance, PSD [9] incorporates physical priors manually and
fine-tunes the model by utilizing the real-world data in an unsuper-
vised manner, RIDCP [38] further utilizes high-quality codebook
priors to address unique ill-posed problems those are unique to
real-world datasets.

According to the aforementioned works, the codebook is capable
of serving as supplementary high-quality prior information, thus
helping exhibit excellent performance in restoring degraded images
in real-world scenarios. However, simply replacing or blending the
prior information in the codebook with the original image features
may lead to distortion and loss of details in the dehazed images. This
is because the concentration and distribution of haze in the image
are irregular, while the above simple manner of prior information
introduction is inconsistent with this irregularity.

To address the aforementioned issues, we propose a dehazing
network that is aware of haze-concentration, referred as HcaNet
(Haze-concentration-aware Network for Real-scene Dehazing with
Codebook priors). The goal of this network is to effectively integrate
high-quality feature priors, while simultaneously fusing the re-
tained degradation feature in the corresponding areas according to
their haze concentration, to handle diverse real-world haze scenar-
ios. Specifically, we construct a reconstruction-oriented dictionary
called high-quality codebook by training an image restoration net-
work on numerous high-quality images. This high-quality codebook
serves as a valuable resource containing abundant high-quality fea-
ture priors that facilitate the transformation of features from hazy
regions into clean domains. Moreover, unlike previous approaches
that arbitrarily employ vector quantization (VQ) [16, 37, 38, 42]
for feature replacement or blending, we specifically design a haze-
concentration-aware module (HcaM) for fusing features derived
from both high-quality priors and hazy areas. This module not
only minimizes information loss but also enables adaptive domain
transfer for regions with varying degrees of degradation.

For the recovery of fine-grained details, we further propose a
frequency selective fusionmodule (FSFM) to refine the texture of the
reconstruction stage features, which can facilitate the transmission
of shallow information retained in haze areas to deeper layers,
thereby enhancing the utilization of low-quality features similar
to the widely employed U-Net [31] for low-level visual tasks [29,
33, 34]. However, in contrast to the direct jump link employed by
U-Net, our approach selectively preserves solely high-frequency
information of the shallow features, which is in consideration of
the fact that the interference of haze as a kind of low-frequency
information will directly affect the recovery of texture information.
Subsequently, we fuse the high-frequency information with high-
quality feature priors to enhance the output image quality.

In summary, our main contributions include:
• To cope with the inconsistency caused by the haze concentra-
tion and effectively utilize the high-quality prior information,
we propose a novel haze-concentration-aware module ca-
pable of effectively integrating low-quality features with
high-quality codebook features for regions exhibiting vary-
ing degrees of degradation.

• To enhance the utilization of information on degraded areas,
we propose a frequency selective fusion module that facili-
tates the transmission of shallow information to deeper lay-
ers. Subsequently, this information is selectively integrated
with high-quality feature priors to augment the model’s abil-
ity in recovering fine textures.

• We expand the dehazing task to real-world scenarios, specif-
ically blind dehazing, by training on synthetic data and di-
rectly transferring to real haze situations. Our model exhibits
exceptional generalization performance when applied to real
data.

This paper is organized as follows: the relatedworks are reviewed
in the next section, and Section 3 explains the model details of the
HcaNet. The experimental setup, experimental results, and ablation
experiments are introduced in Section 4. In the last section, we give
the conclusion of this work.

2 Related Work
Image Dehazing. Early dehazing methods depend on the phys-

ical scattering model [6] and usually remove the haze using hand-
craft priors from empirical observation. He et al. [18] use the dark
channel prior (DCP) to estimate the transmission map, assuming
that the lowest pixel value should be close to zero in at least one
channel except for the sky region. Zhu et al. [43] propose a simple
but powerful color attenuation prior (CAP) that creates a linear
model for modeling the depth of field of hazy images, thus effec-
tively dehazing from a single image. However, these hand-crafted
priors are not always reliably estimated in real scenarios, and there-
fore cause unsatisfactory results.

With the general success of deep learning in image processing
tasks, data-driven dehazing methods have made great progress.
Some early approaches use convolutional neural networks (CNNs)
to estimate the transmission map and atmospheric light in the
physical scattering model [5, 30, 41]. To avoid cumulative errors
in parameter estimation, many works use end-to-end approach
to directly estimate haze-free images [8, 12, 17]. These learning-
based methods have achieved significant performance on synthetic
datasets, nevertheless, their performance degrades significantly
once they are transferred directly to real-world datasets.

Real Scene Image Dehazing. Some recent works also focus on
real scenes of dehazing. Li et al. [25] propose a semi-supervised
approach to training neural networks on real datasets, utilizing a
loss function informed by prior knowledge. PSD [9] uses a dehazing
model pre-trained on synthetic paired data, and then fine-tunes
the model in an unsupervised manner on real-world data via the
proposed prior loss committee. However, the direct use of these
hand-crafted priors for transferring synthetic to real domains does
not address the shortcomings of these priors themselves. There are
also approaches that utilize generative models like GANs [14] to
enhance the generalization ability of models in real-world scenar-
ios. These works use GANs to generate hazy images that are closer
to the real domain to achieve domain translation. Yang et al. [39]
propose a self-augmented image dehazing framework, termed D4.
It is capable of re-rendering hazy images with different thicknesses
which further benefits the training of the dehazing network. Nev-
ertheless, GANs are easy to generate artifacts within their outputs,
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Figure 1: Overview of HcaNet. The encoder 𝐸 maps the degraded image to the latent space and then uses nearest neighbour
lookup in codebook to get the high-quality priors. HcaM fuse the degraded features with high-quality priors adaptively. The
pre-trained generator𝐺 is responsible for improving the high-quality codebook priors, while the decoder 𝐷 recovers a clean
image by flexibly utilising the priors and shallow information through the FSFM.

which can detrimentally affect the training of models. RIDCP [38]
presents a paradigm for real image dehazing from the perspectives
of synthesizing more realistic hazy data and introducing more ro-
bust codebook priors into the network. However, codebook priors
are themselves a form of noise, and their direct introduction can
also lead to some loss of structural and detailed information.

Codebook Learning. VQVAE [36] first introduces a generative
autoencoder model that learns discrete latent representations, also
known as “codebook”. The following VQGAN [13] employs per-
ceptual and adversarial loss to train the visual codebook, resulting
in better image generation quality with a relatively small code-
book size. The representation dictionary-based generative models
inspire various impressive image generation works [7, 15, 40]. In
recent studies, codebook-based methods explore the use of learned
high-quality dictionary or codebook that contain more generic and
detailed information for image restoration. CodeFormer [42] em-
ploys a transformer to establish the appropriate mapping between

low-quality features and code indices. Subsequently, it uses the
code index to retrieve the corresponding feature in the codebook
for image restoration. RestoreFormer [37] and VQFR [16] attempt
to directly incorporate low-quality information with the codebook
information based on the codebook priors. However, these methods
may encounter severe degradation limitations, as the low-quality
information can negatively impact the high-quality information
derived from the codebook.

3 Methodology
The primary objective of real-scene image dehazing is to alleviate
the domain gap and mitigate information loss that arises during
the restoration process from hazy images to clean images. The
challenge lies in achieving varying levels of restoration for areas
with different degrees of degradation, which significantly impacts
the accuracy and effectiveness of the restoration process.

To cope with the above uncertainty of real scene dehazing, we
propose leveraging codebook priors and designing the HcaM for the
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different distribution of haze in different regions to achieve adaptive
domain transformation. Additionally, in order to further exploit the
feature information of the degraded region, we propose the FSFM to
facilitate the transmission of shallow high-frequency information to
deeper layers, thereby enhancing the decoder’s ability to generate
higher-quality images.

The whole pipeline is shown in Figure 1. An encoder 𝐸 is first
deployed to extract representation 𝑧 of the degraded low-quality
image and its nearest high-quality priors 𝑧𝑞 are fetched from the
high-quality codebook. Then, the proposed HcaM performs adap-
tive fusion of 𝑧 and 𝑧𝑞 for dynamic domain transfer (Sec 3.2). Finally
a decoder 𝐷 is applied on the fused representation 𝐹ℎ to restore a
clean image. Furthermore, in order to utilize the information re-
tained in haze areas and further recover more detailed information,
at each stage of the reconstruction we complementarily employ the
FSFM to fuse the high-frequency information from the encoder as
well as the high-quality priors from the pre-trained generator 𝐺
(Sec 3.3).

3.1 High-quality Codebook Priors Construction
In order to handle complex real-world scenarios, we propose the
deployment of codebook priors, which encompass a diverse range
of high-quality features that are instrumental in facilitating the
transfer of input images from the hazy domain to the clear domain.
In this subsection, we initially present an introduction to the gen-
eration process of the high-quality codebook. Given a clean image
patch 𝑥 ∈ R𝐻×𝑊 ×3 is first passed through the encoder 𝐸 to produce
its output feature 𝑧 = 𝐸 (𝑥) ∈ Rℎ×𝑤×𝑛𝑧 , where 𝑛𝑧 is the dimension
of latent vectors. Then the vector quantized representation of 𝑧𝑞
is calculated by finding the nearest neighbours of each element
𝑧𝑖 ∈ R𝑛𝑧 , in the high-quality codebook C = {𝒛𝑖 }𝐾𝑖=0 with 𝐾 discrete
codes as follows:

𝑧𝑞 = q(𝑧) :=
(
arg min

𝑧𝑖 ∈C
∥𝑧 − 𝑧𝑖 ∥

)
∈ Rℎ×𝑤×𝑛𝑧 . (1)

where q(·) denotes the element-wise quantization. The Generator
𝐺 maps the quantized representation 𝑧𝑞 back to the RGB space. The
overall reconstruction mechanism can be formulated as:

𝑥 = 𝐺 (𝑧q) = 𝐺 (q(𝐸 (𝑥)) ≈ 𝑥 (2)

𝑥 is the reconstructed result, which should be as close as possible
to the input clean image 𝑥 .

The elements 𝑧𝑖 in C are randomly initialized by a uniform dis-
tribution. For updating them to capture high-quality information,
we follow the previous works on vector quantization [13, 36, 42]
by simply copying the gradients from 𝐺 to 𝐸 for backpropagation.
The code-level loss is formulated as:

L𝑐𝑜𝑑𝑒 = ∥sg(𝑧) − 𝑧𝑞 ∥22 + 𝛽 ∥𝑧 − sg(𝑧𝑞)∥22, (3)

where sg[·] denotes the stop-gradient operation and and 𝛽 = 0.25 is
a hyper-parameter to control the update frequency of the codebook.
The loss can make 𝑧 close to 𝑧𝑞 which is extracted from high-
quality undegraded images, 𝑧𝑞 contains high-quality information
which can benefit image restoration. Besides the code-level loss, we
also adopt four image-level reconstruction losses to improve the
quality of the final reconstructed result: L1 loss L𝑙1 for basic pixel
reconstruction, perceptual loss L𝑝𝑒𝑟 [20] for perceptual quality,

(a) hazy image (b) haze-aware weight
from HcaM 

(c) feature map from 
Encoder

Figure 2: visualization of weight map from the HcaM.

adversarial loss L𝑎𝑑𝑣 for texture generation, and semantic loss
L𝑠𝑒𝑚 to encourage the texture to be conditioned on semantics.
These losses are denoted as:

L𝑙1 = ∥𝑥 − 𝑥 ∥1;L𝑠𝑒𝑚 = ∥𝐶𝑜𝑛𝑣 (𝑧𝑞) − 𝜙 (𝑥)∥22;
L𝑎𝑑𝑣 = [log𝐷 (𝑥) + log(1 − 𝐷 (𝑥))] .

(4)

where 𝜙 denotes the commonly used feature extractor, such as the
VGG19 [32] and ResNet [19], 𝐶𝑜𝑛𝑣 (·) represents the convolutional
layer. Finally, The complete objective of high-quality codebook
learning L𝐷𝑖𝑐𝑡 is:

L𝐷𝑖𝑐𝑡 = L𝑐𝑜𝑑𝑒 + L𝑙1 + L𝑝𝑒𝑟 + 𝜆L𝑠𝑒𝑚 + 𝜆L𝑎𝑑𝑣, (5)

where 𝜆 is trade-off weight that is set to 0.1.

3.2 Haze-concentration-aware Module (HcaM)
Previously, we introduced the generation of codebook priors, the
encoder 𝐸 is able to map the input image to latent space and the
generator𝐺 is capable of mapping the priors from the codebook to
RGB space. In the dehazing phase, we continue to use the encoder 𝐸
trained in the previous phase and use a parallel decoder architecture,
where the generator 𝐺 is responsible for generating high-quality
prior features and the decoder 𝐷 in the main branch is used for
decoding the features after adaptive fusion and reconstructing clear
images. This is designed to allow the model to extract cleaner
features and make better use of the codebook priors.

HcaM Construction. Similar to other methods using vector
quantization, for the features extracted by the encoder 𝐸, we use
nearest neighbor matching directly in the high-quality codebook
to obtain the high-quality feature representation 𝑧𝑞 . Such direct
substitution, although it can help degraded feature 𝑧 to jump to the
clear domain, also suffers from information loss. For a hazy image,
not every region in the image is hazy. From the code point of view,
not every code of feature 𝑧 needs to jump to the clear domain. To
solve this problem and combine it with practical scenarios, we pro-
pose the Haze-concentration-aware Module to reduce information
loss, achieving adaptive domain transfer for areas with varying
levels of degradation. Specifically, we first connect 𝑧 and 𝑧𝑞 in the
channel dimension and then feed them into a series of Residual
Swin Transformer Blocks (RSTBs), which are better able to capture
long-range dependencies. We then apply a 1×1 convolutional layer



HcaNet: Haze-concentration-aware Network for Real-scene Dehazing with Codebook Priors MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

(a) Hazy (b) GT (c) FFA-Net (d) MSBDN (e) PSDMSBDN (f) DeHamer (g) D4 (h) DehazeFomer-m (i) SFNet (j) RIDCP (k) Ours

N
H

-H
az

e
D

en
se

-H
az

e
O

-H
az

e

Figure 3: Qualitative comparison of dehazed images with different methods. Visualizations are displayed sequentially with the
O-Haze [4] dataset in the 1st and 2nd rows, Dense-Haze [2] dataset in the 3rd and 4th rows, and NH-Haze [3] dataset in the 5th,
6th and 7th rows. In the 7th row, we box out some areas and show them enlarged in Figure 4.

followed by a Softmax activation function to get our haze-aware
weights 𝑤ℎ ∈ Rℎ×𝑤×2. Finally, the feature 𝐹ℎ after adaptive fu-
sion is summed by multiplying 𝑧 and 𝑧𝑞 with their corresponding
haze-aware weights. The whole process can be described as

𝑤ℎ1,𝑤ℎ2 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐶𝑜𝑛𝑣1×1 (𝑅𝑆𝑇𝐵𝑠 (𝐶𝑜𝑛𝑐𝑎𝑡 (𝑧, 𝑧𝑞)))
𝐹ℎ = 𝑧 ×𝑤ℎ1 + 𝑧𝑞 ×𝑤ℎ2

(6)

where the 𝐶𝑜𝑛𝑐𝑎𝑡 (·) refers to the concatenation operation, the
𝐶𝑜𝑛𝑣1×1 (·) represents the convolutional layer and the 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (·)
means the Softmax activation layer.

To verify the sensitivity of HcaM to haze information, we vi-
sualised the haze-aware weight𝑤ℎ2 and degradation feature 𝑧 as
depicted in Figure 2. It is evident that despite the uneven distri-
bution of haze in the input image, the features extracted by the
encoder are still unable to effectively distinguish these regions. Ac-
cording to the visualization of haze-aware weights, the brighter
colors in the figure are highly consistent with the haze regions.
This indicates that our HcaM is capable of properly identifying
the haze regions and providing an effective guide for introducing
high-quality features.

3.3 Frequency Selective Fusion Module (FSFM)
To further mitigate texture defects in the results, we further propose
a frequency selective fusion module (FSFM) to refine the texture fea-
tures in the reconstruction phase through shallow high-frequency
features and high-quality priors simultaneous guidance. As shown
in Figure 1, we use a parallel decoder architecture, where the pre-
trained generator𝐺 is responsible for generating high-quality prior
features and the decoder 𝐷 in the main branch is responsible for

(a) Hazy (b) GT (c) D4 (d) RIDCP (e) Ours

Figure 4: Detailed visualization comparison of somemethods
on the NH-Haze [3] dataset. We enlarge the boxed out area
in the 7th row of Figure 3 to get a better display of the details.

decoding the features after adaptive fusion and reconstructing clear
images. The interaction of features is realized through FSFM at
each layer of decoding. Specifically, at layer 𝑖 , we use deformable
convolution [11] to align feature 𝐹 𝑖𝑔 in𝐺 with feature 𝐹 𝑖

𝑑
in𝐷 , which

can be formulated as:

𝑂𝑖 = 𝐶𝑜𝑛𝑣1×1 (𝐶𝑜𝑛𝑐𝑎𝑡 (𝐹 𝑖𝑑 , 𝐹
𝑖
𝑔))

𝐹 𝑖𝑤 = 𝐷𝑒𝐶𝑜𝑛𝑣 (𝐹 𝑖𝑔,𝑂𝑖 )
(7)
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Table 1: Quantitative comparison on three paired real-world datasets, red and blue indicate the best and the second-best,
respectively. The last row is a comparison of our results with the second best.

method venue O-Haze Dense-Haze NH-Haze

SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑
FFA-Net [29] AAAI2020 0.651 14.737 0.450 10.360 0.481 11.938
MSBDN [12] CVPR2020 0.696 16.626 0.464 11.025 0.502 12.408
𝑃𝑆𝐷𝑀𝑆𝐵𝐷𝑁 [9] CVPR2021 0.653 11.675 0.447 9.736 0.543 10.601
DeHamer [17] CVPR2022 0.692 15.980 0.459 11.088 0.493 12.221

D4 [39] CVPR2022 0.701 16.670 0.440 11.328 0.508 12.783
DehazeFomer-m [33] TIP2023 0.684 16.044 0.464 10.945 0.486 12.001

SFNet [10] ICLR2023 0.660 15.130 0.463 11.010 0.490 12.140
RIDCP [38] CVPR2023 0.696 16.005 0.462 10.621 0.527 12.866

HcaNet (Ours) - 0.733 16.778 0.497 11.410 0.564 13.156

where𝑂𝑖 denotes the offsets for deformable convolution and𝐷𝑒𝐶𝑜𝑛𝑣
is the deformable convolutional layer. 𝐹 𝑖𝑤 is the features after warp-
ing. For the shallow features of jump connections, we apply fre-
quency selection to fully extract the useful frequency information
in them. More specifically, inspired by previous work related to the
use of frequency information [10], we use a set of learned high-pass
filters to generate high-frequency subbands. The learned filters are
shared across the group dimension to strike a balance between
complexity and feature diversity. The process can be formulated as:

𝐹 𝑖
ℎ𝑓

= 𝐶𝑜𝑛𝑣1×1 (𝐹𝑟𝑒𝑞𝑆𝑒𝑙 (𝐹 𝑖𝑒 )) (8)

where 𝐹 𝑖
ℎ𝑓

is the high-frequency information from the input fea-
tures and 𝐹𝑟𝑒𝑞𝑆𝑒𝑙 refers the frequency selection module. We then
connect the three features in the channel dimension and send them
to a pooling layer and a 1 × 1 convolutional layer, and finally gen-
erate their respective weights through the Softmax activation layer
in order to thoroughly fuse the information. The procedure can be
expressed as:

𝑤𝑖
𝑑
,𝑤𝑖𝑔,𝑤

𝑖
ℎ𝑓

= 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐶𝑜𝑛𝑣 (1 × 1) (𝐶𝑜𝑛𝑐𝑎𝑡 (𝐹 𝑖
𝑑
, 𝐹 𝑖𝑤 , 𝐹

𝑖
ℎ𝑓

))

𝐹 𝑖+1
𝑑

= 𝐹 𝑖
𝑑
×𝑤𝑖

𝑑
+ 𝐹 𝑖𝑤 ×𝑤𝑖𝑔 + 𝐹 𝑖ℎ𝑓 ×𝑤

𝑖
ℎ𝑓

(9)

4 Experiment
In this section, we conduct a series of experiments to evaluate the
performance of our model in real-world dehazing scenarios. Firstly,
we present a comprehensive experimental setup and subsequently
compare our model with several state-of-the-art dehazing methods
across multiple datasets. Furthermore, an ablation study is con-
ducted to investigate the impact of the designed components on
the behavior of our dehazing model.

4.1 Experimental Settings
Pre-training. In order to obtain high-quality priors, we first

train the codebook on DIV2K [1] and Flickr2K [27] datasets, those
contain high-resolution and texture-sharp images and widely used
for high-quality reconstruction tasks [7, 26, 28].

Training. Following convention, we train our model on Out-
door Training Set (OTS) of REalistic Single Image DEhazing (RE-
SIDE) [24]. Specifically, we employ data augmentation techniques

Table 2: Quantitative comparison on RTTS [24] datasets, red
and blue indicate the best and the second-best, respectively.

Method BRISQUE↓ NIMA↑ MUSIQ↑
Hazy image 37.011 4.325 53.766
DCP [18] 32.448 4.523 52.164
CAP [43] 35.072 4.502 50.179

MSBDN [12] 28.743 4.140 53.727
DeHamer [17] 33.866 3.866 52.334

D4 [39] 33.206 3.723 53.039
DehazeFomer-m [33] 34.039 4.582 54.013

SFNet [10] 36.032 4.583 54.146
RIDCP [38] 18.782 4.427 55.627

HcaNet (Ours) 17.276 4.888 58.263

during the training phase to incorporate additional factors such
as low light and blurring into the degraded images, with the aim
of enhancing the model’s capacity to adapt more effectively to
real-world environments.

Evaluating. 4 real-world datasets O-Haze [4], Dense-Haze [2],
NH-Haze [3] and RTTS [24] are used to evaluate the models. The
first 3 datasets have hazy-clean pairs while RTTS only has hazy
images. In order to evaluate the generalization capacity of our
dehazing model to realistic scenarios with more challenges, we
train it merely on synthetic data, and directly evaluate it on the
aforementioned 4 test sets without any fine-tuning or re-training.

Evaluation Metrics. We use both reference and non-reference
metrics to comprehensively evaluate the performance of the de-
hazing model. For reference metrics, PSNR and SSIM are used to
measure the distortion between the dehazed image and the real im-
age in terms of pixels and structures, respectively. For non-reference
metrics, NIMA [35] and MUSIQ [21] are used to measure howmuch
the dehazed images are similar to natural images in terms of statis-
tical regularities and granularities.

4.2 Implementation Details
During training, we randomly resize and crop the input to the size
256 × 256 and flip it with half probability. For all stages of training,
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Figure 5: Visual comparison on RTTS [24] dataset.

Table 3: Ablation studies of HcaM and FSFM, red and blue indicate the best and the second-best, respectively.

setting Model O-Haze Dense-Haze NH-Haze

HcaM FSFM SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑
i 0.696 16.005 0.462 10.621 0.527 12.866
ii ✓ 0.703 15.611 0.491 10.958 0.532 12.471
iii ✓ ✓ 0.733 16.778 0.497 11.410 0.564 13.156

we use Adam [22] optimizer with batch size as 2, the learning rate
is fixed to 0.0001. In pre-training stage, the encoder 𝐸 and generator
𝐺 are trained for 500k iterations on DIV2K [1] and Flickr2K [27].
In the training stage, the model is trained on synthetic data for 50k
iterations. Our model is implemented with the PyTorch framework
and trained by one NVIDIA RTX 3090 GPU.

4.3 Performance Comparisons
Quantitative Comparison. We conducted a comprehensive

performance evaluation of our proposed method against several
state-of-the-art dehazing approaches trained based on synthetic
data, 1) including FFA-Net [29], MSBDN [12], SFNet [10], and Trans-
formers such as DehazeFormer-m [33]. 2) Additionally, we compare
our method to several leading real scene dehazing methods such as
PSD [9], D4 [39], and RIDCP [38]. 3) We also compare our model
with some traditional methods based on priors, such as DCP [18]
and CAP [43].

As presented in Table 1, our method significantly outperforms
other baselines across all the paired real-world datasets. Some meth-
ods that have been proved to perform well on synthetic datasets,
such as SFNet [10] and DehazeFormer-m [33], have significantly
degraded performance when transferred to real-world datasets,

mainly because of the large domain gap between synthetic and real
data. Our method performs better than some real-scene dehzing
methods in terms of detail and structure mainly due to the two
modules we propose. The HcaM can achieve domain transforma-
tion while reducing information loss, while FSFM introduces more
high-frequency information. As a result, our method achieves better
results in terms of reference metrics.

Table 2 shows the evaluation results on real-world hazy images
in RTTS dataset which lacks of corresponding clean images. Non-
reference metrics are used to evaluate the various methods. Results
demonstrate that our method is capable of outputting higher per-
ceptual quality dehazing results, which proves the effectiveness
of our method in real-world scene dehazing. It is worth noting
that while traditional methods based on priors outperform some
deep learning based methods on a few metrics, their performance
remains relatively average and there is still a notable gap compared
to our approach.

Qualitative Comparison. We perform the qualitative compari-
son on various datasets. As depicted in Figure 3, it is evident that
the D4 [39] and Dehamer [17] are significantly impacted by haze
and the background color of the images, resulting in a relatively
large color deviation. Methods such as SFNet [10], Dehazeformer-m
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Table 4: Ablation studies of FSFM design, red and blue indicate the best and the second-best, respectively.

setting Model O-Haze Dense-Haze NH-Haze

SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑
i w/o skip 0.695 13.368 0.454 9.432 0.569 11.536
ii w/o 𝐹𝑟𝑒𝑞𝑆𝑒𝑙 0.676 15.251 0.474 10.960 0.501 12.399
iii MHCA 0.682 15.826 0.464 11.037 0.520 12.703
iv Ours 0.733 16.778 0.497 11.410 0.564 13.156

[33], and FFA-Net [29] are not effective in removing dense haze sce-
narios and often leave behind a significant amount of haze residue,
resulting in blurred scenes. In comparison to the above methods,
the RIDCP [38] method significantly enhances overall dehazing
effects and color restoration after dehazing. However, in some local
areas with high haze concentration, there still remains an issue
of imperfect detail restoration. Compared to these methods, our
method exhibits minimal haze residue in challenging dense haze
scenes. Although our model is not yet capable of completely elimi-
nating the haze, it still allows for a relatively clear reconstruction
of the entire scene.

In terms of detailed comparison, we chose to compare ourmethod
with the two best-performing methods D4 [39] and RIDCP [38]. The
local zoom parts are taken from the last row in Figure 3 and we have
highlighted them with 2 red rectangular boxes in each of the hazy
images. As illustrated in Figure 4, while D4 [39] and RIDCP [38] are
capable of removing most of the haze from the overall view, their
performance in preserving local details is still unsatisfactory. The
results show more serious degradation in reconstruction, with the
lines under the cover of haze appearing to have a blurred structure.
The 2nd row shows that there is even a slight color deviation in
RIDCP. Instead, our method reconstructs better in heavily degraded
areas because it takes into account the high-frequency information
in the degraded areas.

Comparisons on RTTS [24] dataset are shown in Figure 5, our
model removes the overall haze, while being closer to reality in
color reproduction. On the whole, our approach produced the best
perceptual results in terms of brightness, colorfulness, and haze
residue compared to others.

4.4 Ablation Study
Effectiveness of HcaM and FSFM.. Ablation experiment results

of the proposed HcaM and FSFM are reported in Table 3. Specifically,
we remove HcaM and FSFM separately to assess their contributions.
Results show that both HcaM and FSFM can bring some perfor-
mance improvement, which further validates the effectiveness of
our design.

The item-(ii) verifies that high-quality feature priors can help
the model to achieve domain transformation, and our proposed
HcaM can domain translation while reducing the information loss
in feature replacement. Simultaneously, it also demonstrates that
the incorporation of high-quality prior information inevitably leads
to information loss, primarily manifested by the decline in PSNR
for some datasets.

The item-(iii), on the other hand, demonstrates that the FSFM
effectively supplements the high-frequency details when utilizing

prior features, thereby achieving an optimal balance between the
two metrics.

Effectiveness of FSFM Design. To study the effectiveness of the
proposed Frequency Selective Fusion Module, three variant settings
are presented in Table 4: (i) Without skip connection (w/o skip); (ii)
Direct skip connection without frequency selection (w/o 𝐹𝑟𝑒𝑞𝑆𝑒𝑙 );
(iii) Using multi-head cross-attention (MHCA) [37] to perform fea-
ture fusing. The results show that our FSFM is capable of extracting
effective information from shallow features, improving the overall
modeling ability of the model and the recovery of detailed texture
through extensive interaction with high-quality prior features.

5 Conclusion
In this paper, we propose a novel dehazing network towards real-
scene using codebook priors, which demonstrates superior gener-
alization ability. We employ the codebook priors to cope with the
complexity of the real scene. Moreover, to address the problem of
uneven distribution of degradation in hazy images of real scenes,
we designed HcaM to adaptively transfer from the hazy domain to
the clear domain. Meanwhile, the proposed FSFM can further help
the model to supplement more detailed information. By effectively
exploiting high-quality codebook priors, our model achieves good
generalization performance on several real datasets.

Limitation and Future Work. Although our approach has
achieved good results in real-scene dehazing, we find that there are
still some difficulties that need to be solved. First of all, the problem
of computational efficiency, real scene dehazing high application
value, while maintaining good results to make the model more
lightweight is a worthwhile research direction in the future. Fur-
thermore, comparisons with traditional methods reveal that in some
scenarios, prior-based traditional methods can even outperform
learning-based approaches. Integrating more prior knowledge to
adapt to more complex real-world environments is also a promising
direction for future research. The use of codebook priors has already
demonstrated good performance in real-world settings, and further
research can focus on training richer codebooks and developing
better matching rules.
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