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ABSTRACT

Sparse-view 3D Gaussian Splatting (3DGS) often overfits to the training views,
leading to artifacts like blurring in novel view rendering. Prior work addresses
it either by enhancing the initialization (i.e., the point cloud from Structure-from-
Motion (SfM)) or by adding training-time constraints (regularization) to the 3DGS
optimization. Yet our controlled ablations reveal that initialization is the decisive
factor: it determines the attainable performance band in sparse-view 3DGS, while
training-time constraints yield only modest within-band improvements at extra
cost. Given initialization’s primacy, we focus our design there. Although SfM
performs poorly under sparse views due to its reliance on feature matching, it still
provides reliable seed points. Thus, building on SfM, our effort aims to supple-
ment the regions it fails to cover as comprehensively as possible. Specifically,
we design: (i) frequency-aware SfM that improves low-texture coverage via low-
frequency view augmentation and relaxed multi-view correspondences; (ii) 3DGS
self-initialization that lifts photometric supervision into additional points, com-
pensating SfM-sparse regions with learned Gaussian centers; and (iii) point-cloud
regularization that enforces multi-view consistency and uniform spatial cover-
age through simple geometric/visibility priors, yielding a clean and reliable point
cloud. Our experiments on LLFF and Mip-NeRF360 demonstrate consistent gains
in sparse-view settings, establishing our approach as a stronger initialization strat-

egy.

1 INTRODUCTION

Novel view synthesis (Mildenhall et al., 2021; Chan et al., 2023; Liu et al., 2023) plays a cen-
tral role in applications such as virtual and augmented reality (Anthes et al., 2016), free-viewpoint
video (Zhou et al., 2025), and digital content creation (Cao et al., 2024), where the goal is to gener-
ate realistic novel views from captured imagery. To enable such capabilities, recent advances in 3D
neural scene representations (Mildenhall et al., 2021; Deng et al., 2022) have demonstrated remark-
able performance, with 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) emerging as a highly
efficient alternative to neural radiance fields (Mildenhall et al., 2021). In practice, however, data
acquisition is often limited to a small number of viewpoints due to constraints in hardware, cost, or
capture conditions. Under such sparse-view inputs, vanilla 3DGS is prone to severe overfitting to the
training views (Zhu et al., 2024; Dai & Xing, 2025), resulting in noticeable artifacts and persistent
floaters when rendering unseen views.

To address this challenge, existing solutions broadly fall into two categories. The first focuses on
enhancing the initial point cloud of 3DGS, which is typically obtained from Structure-from-Motion
(SfM) (Ullman, 1979). For instance, CoMapGS (Jang & Pérez-Pellitero, 2025) leverages a depth es-
timator together with a robust visual encoder to produce a stronger initialization. The second line of
work constrains the growth or optimization of Gaussian primitives, often by introducing regulariza-
tion losses during training. A representative example is CoR-GS (Zhang et al., 2024b), which prunes
outlier primitives by enforcing consistency between two parallel Gaussian fields. While such meth-
ods have shown effectiveness in practice, our evidence suggests that training-time regularization
mainly serves as a patch for poor initialization rather than addressing the fundamental bottleneck in
sparse-view 3DGS.

We begin with ablation studies comparing the effectiveness of two strategies for mitigating overfit-
ting. In Section 3, we evaluate several state-of-the-art training-time constraints across a range of
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initialization strengths. These initialization strengths are explicitly controlled ideally (rather than
being determined solely by the input images). The results show that initialization quality sets the
attainable performance band, whereas these constraints provide only modest within-band gains. The
findings indicate that initialization is the more influential lever, which motivates focusing on devel-
oping a stronger initialization pipeline.

We start from the vanilla SfM algorithm since it provides reliable initial seed points, though it pro-
duces only a few in sparse-view scenarios due to its feature-matching nature. Our work is dedicated
to accurately supplementing those undercovered regions by fully exploiting the visual information
contained in the available images, step by step. First, inspired by EAP-GS (Dai & Xing, 2025),
we modify the standard SfM pipeline by relaxing the minimum track matching numbers from three
to two, yielding a denser initial point set. Moreover, distinct from prior work, we pre-mask high-
frequency regions and perform SfM on the resulting augmented, doubled image set, which encour-
ages a more balanced and richer point distribution. Secondly, to further enrich the point set, we pro-
pose 3DGS Self-Initialization, which lifts per-pixel photometric constraints into additional points
by leveraging the learning signal of 3DGS. Specifically, after training a first-pass lightweight 3DGS
on the input views and reusing all primitive centers as a point cloud, we are able to compensate for
regions with insufficient image features. Finally, we introduce further regularization techniques to
refine the final point cloud by removing noise and unreliable points: (1) discarding points observed
from only a single view due to depth ambiguity, (2) applying clustering-based noise reduction, and
(3) enforcing normal-based consistency filtering.

To summarize, our contributions are as follows:

1. Our controlled ablations with explicitly set initialization strengths show that sparse-view perfor-
mance in 3DGS is initialization-limited, and training-time constraints provide only modest improve-
ment.

2. We design a rich and reliable three-stage initialization: (i) a low-frequency-aware SfM variant
that relaxes the minimum track length from three to two and pre-masks high-frequency content to
improve low-texture coverage; (ii) 3DGS Self-Initialization that trains a first-pass 3DGS and reuses
all primitive centers as the initial point cloud, turning photometric cues into additional points; and
(iii) point-cloud regularization for removing noise or unreliable points, including removal of single-
view points, clustering-based denoising, and a simple geometric prior for consistency and coverage.

3. Experiments demonstrate that our proposed method achieves state-of-the-art performance on
LLFF and Mip-NeRF360 datasets and offers a superior initialization choice for sparse-view 3DGS.

2 RELATED WORK

2.1 NOVEL VIEW SYNTHESIS

Novel view synthesis (NVS) aims to generate photorealistic images from novel viewpoints given
only a finite set of calibrated observations of a typically static scene (Goesele et al., 2007). Among
the different strategies, optimization-based methods reconstruct a full 3D scene representation, from
which novel views can be rendered at arbitrary camera poses. Neural scene representations (Tewari
et al., 2022) have recently emerged as the dominant paradigm: NeRF, for example, encodes view-
dependent color and density and renders images through volumetric integration (Mildenhall et al.,
2021). Beyond such implicit fields, explicit formulations like 3D Gaussian Splatting (3DGS) repre-
sent scenes as anisotropic Gaussians and achieve real-time rendering with competitive quality (Kerbl
etal.,2023; Lin et al.; Zhang et al., 2024a). In parallel, generative approaches that exploit large-scale
priors have also been developed (Liu et al., 2023; Wang et al., 2025; Tang et al., 2024; Szymanow-
icz et al., 2024; Voleti et al., 2024). These methods provide extremely fast inference and reduced
reliance on precise camera pose annotations, but they remain limited in maintaining multi-view
consistency and geometric fidelity.

3D Reconstruction with Sparse Views. Reconstructing 3D scenes from sparse views is inherently
under-constrained: limited viewpoints lead to incomplete surface coverage, ambiguous depth esti-
mation, and frequent artifacts such as floaters and texture misalignment. To address these challenges,
some works incorporate additional geometric and photometric priors, introducing supervision such
as depth (Chung et al., 2024; Zheng et al., 2025) to guide the optimization process. Another line
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Figure 1: Ablation study on Mip-NeRF360 under the 12-view sparse-view protocol PSNR on aver-
age, comparing three training-time constraints (DropGaussian, CoR-GS, and FSGS) against vanilla
3DGS across different initialization strengths (Init_v6, Init_v12, Init_vall). Results show
that while regularization methods modestly delay overfitting and improve performance within each
initialization band, the final reconstruction quality is primarily governed by initialization strength.

leverages controllable 2D generative models to synthesize novel training views, effectively densify-
ing the supervision and mitigating the scarcity of input observations (Mithun et al., 2025; Wan et al.,
2025; Xiong et al., 2023; Chen et al., 2024b;a; Liu et al., 2024).

2.2  OVERFITTING IN SPARSE-VIEW 3DGS

Under sparse views, vanilla 3DGS optimized from photometric supervision tends to overfit the lim-
ited inputs, degrading markedly on unseen view rendering. Efforts to mitigate overfitting generally
take two forms, the first being to enhance the initialization of the 3DGS point cloud (Bao et al.,
2025; Jang & Pérez-Pellitero, 2025; Xu et al., 2025). Intuitively, initialization provides the spatial
and geometric bias for subsequent optimization; with a better-distributed seed point cloud, the sys-
tem is guided toward plausible geometry rather than overfitting to limited photometric cues. For
instance, LoopSparseGS (Bao et al., 2025) introduces a progressive Gaussian initialization strategy
that iteratively densifies the seed point cloud using pseudo-views, significantly improving coverage
and stability under sparse inputs. EAP-GS (Dai & Xing, 2025) augments the SfM point cloud by
relaxing track constraints and adaptively densifying underrepresented regions, providing a stronger
initialization for few-shot 3DGS.

The second form constrains the optimization or growth of Gaussian primitives during training, typi-
cally by introducing regularization losses or pruning strategies to suppress overfitting artifacts (Park
et al., 2025; Paliwal et al., 2024; Li et al., 2024; Xu et al., 2025). For instance, CoR-GS (Zhang
et al., 2024b) introduces a co-regularization framework that enforces consistency between two
parallel Gaussian fields, effectively pruning outliers and improving generalization under sparse
views. FSGS (Zhu et al., 2024) imposes frequency-based structural regularization, suppressing
high-frequency artifacts and stabilizing training when input views are highly limited. DropGaus-
sian (Park et al., 2025) proposes a dropout-style scheme that randomly removes Gaussians during
training, enhancing gradient flow to the remaining primitives and mitigating overfitting without extra
priors.

3 INITIALIZATION VS. REGULARIZATION: AN EMPIRICAL STUDY
3.1 PRELIMINARY AND DEFINITION

Structure-from-Motion (SfM) (Ullman, 1979). Given images {I;}}¥, with intrinsics {K;}, StM
estimates camera poses P; = (R;,t;) and a sparse 3D point set ¥ = {X,, € R3} from multi-
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view feature tracks. Tracks link projections of the same 3D point across views. In standard SfTM
system (i.e., COLMAP (Schonberger & Frahm, 2016)), tracks observed in at least three images are
retained for triangulation and bundle adjustment, yielding a conservative but reliable reconstruction.
Candidate points are obtained via two-view triangulation 7:

Xm = T(‘%i,ma t%j,mv Pia-Pj)v Z#Ja (D
Formally,

(P}, (X} = argmin Y Zp(Hﬁ(Ki,Pi,Xm)—:EM,LH;), ©)

{Pi}y {Xm} m: |Vm‘23 ievm

where V,,, = {i : point m observed in image i }, &; ,,, € R? is the observed pixel, 7(-) denotes the
standard perspective projection with intrinsics K; and pose (R;, t;), and p(-) is a robust loss.

3D Gaussian Splatting (3DGS) (Kerbl et al., 2023). 3DGS represents a scene with anisotropic 3D
Gaussian primitives G = {g,, ,Ifle each g, = (tn, Xn, @n, C,,) (mean, covariance, opacity, color).
In standard practice, primitives are initialized from the SfM point cloud {X,,}, with both their
positions and colors initialized from the reconstructed points, and then optimized end-to-end with

fixed camera poses. During training, the primitive set is adaptively densified by splitting or cloning
Gaussians to grow G in regions indicated by image evidence. Rendering produces predictions I; via
differentiable alpha compositing of depth-sorted 2D projections of the Gaussians, and the parameters
are learned via a compact photometric objective with a structural-similarity term and regularization:

N
mgin ; {(1 - )\)ZHji(p) — Lp)||, + /\D'SSIM(IAML')} + B Reeg(G), (3)

PEQY;

where ; is the pixel domain, A € [0, 1] balances the terms, I; and fi are the i-th ground-truth and
rendered images, D-SSIM(/;, I;) = 1—SSIM(/;, I;), and R, collects mild priors on scale/opacity.

Initialization Strength. Ideally, a strong initialization should approximate a point cloud in which
the point set fully covers all object visible surfaces. Such an ideal seed could, in principle, be
obtained by running SfM on a sufficiently large set of views of the scene. Since unlimited viewpoints
are not available, we approximate initialization strength per scene by varying the number of input
views for SfM.

Formally, let V,; denote all available views of a scene, and let the SfM reconstruction from V,; serve
as a best-available proxy for an ideal initialization, producing a point cloud X;. For a view budget
n, we uniformly sample a subset V,, C Vyy with |V,| = n in camera pose space, run SfM on V),
and obtain a seed point cloud &,,. Larger n therefore corresponds to higher initialization strength
in expectation. On the Mip-NeRF360 (Barron et al., 2022) dataset, we instantiate three levels of
initialization strength: Init_v6, Init_v12, and Init_vall, where the subscript denotes the
number of input views used by SfM (with Init_vall using all available views).

3.2 EMPIRICAL ANALYSIS AND FINDINGS

To investigate the causes of sparse-view overfitting, we study two common strategies: (i) improv-
ing the SfM initialization cloud and (ii) adding training-time regularization of Gaussian primitives.
These strategies are treated as two factors in a controlled ablation, enabling us to isolate their in-
dividual and combined effects. Specifically, for training-time constraints, we adopt representative
off-the-shelf methods to reflect current practice: FSGS (Zhu et al., 2024), Cor-GS (Zhang et al.,
2024b), and DropGaussian (Zhang et al., 2024b). For initialization, rather than comparing hetero-
geneous approaches, we treat our designed Initialization Strength as a controlled variable to isolate
its effect. Experiments are conducted on the Mip-NeRF360 dataset, following the standard 12-view
sparse-view reconstruction protocol and reporting average PSNR across all scenes.

The performance curves are shown in Figure 1. Across all three initialization levels, different regu-
larization methods show some effectiveness: compared with vanilla 3DGS, they mitigate overfitting
by delaying the performance peak and slightly improving reconstruction quality, albeit at the cost of
increased computation. Strikingly, the strength of initialization proves decisive for the final outcome.
The curves stratify into distinct bands according to initialization level, within which regularization
offers only limited gains. This initialization-dominated phenomenon motivates us to design a more
effective initialization strategy for sparse-view 3DGS.
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Figure 2: Our initialization pipeline for sparse-view 3DGS. Given sparse multi-view images with
camera poses, we first mask high-frequency regions and perform SfM to obtain a raw point cloud,
which better captures smooth areas. To compensate for regions lacking distinctive features, we
train a lightweight first-pass 3DGS and incorporate its primitive centroids into the initialization.
Finally, we apply clustering-based denoising, single-view filtering, and physics-based regularization
to rectify the point cloud and suppress noise.

4 METHOD

In this section, we aim to develop a rich and reliable initialization pipeline tailored for 3D Gaus-
sian Splatting (3DGS) under sparse-view settings. Building upon vanilla 3DGS, our objective is
to compensate for undercovered regions by fully leveraging the visual information available in the
input images. The overall framework is illustrated in Figure 2. It comprises three successive compo-
nents: 1) Low-Frequency-Aware SfM (Sec. 4.1), which augments vanilla SfM with high-frequency
masking to improve initialization in smooth regions; 2) 3DGS Self-Initialization (Sec. 4.2), which
exploits the pixel-level photometric supervision of 3DGS to supplement points in regions with few
distinctive features; and 3) Point-Cloud Regularization (Sec. 4.3), which applies clustering, filtering,
and geometry-inspired constraints to refine the point cloud and suppress noise.

4.1 LOW-FREQUENCY-AWARE STRUCTURE-FROM-MOTION (SFM)

Under sparse-view capture, limited overlap makes tracks with |V,,| > 3 scarce in vanilla SfM,
leading to under-covered and uneven point distributions. To better exploit limited views, EAP-
GS (Dai & Xing, 2025) retains two-view tracks in addition to the standard three-view requirement

with fixed camera poses F;.

{X!} = argmin Z Z p(HW(Ki,fDi,X,'n)—®i7m||§). 4)

(X0} i V|2 i€V

where camera poses P, can be either provided or estimated from SfM. Unlike EAP-GS, which
identifies low-density regions and performs SfM twice merely to enlarge the point set, we adopt a
more effective strategy. High-frequency regions naturally produce more track matches in SfM due
to their richer image features, leading to an undesired concentration of points. To mitigate this, we
pre-mask these regions and feed two image sets into SfM simultaneously, thereby generating a more
balanced point cloud.

Formally, given N scene views {I;}¥.| with camera poses {P;}¥ ;, we derive low-frequency im-
ages {145k} by Gradient-based masking (Sobel et al., 1968). We then build an augmented view
set 7¢ = {T,, Imask}f\’zl, extract features on all 2NV views, and obtain the initial 3D point set Py
by running SfM once with Equation 4.
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4.2 3D GAUSSIAN SPLATTING SELF-INITIALIZATION

While SfM reconstructs 3D points by detecting and matching keypoints across views, its reliance on
local features causes failures in weakly textured or repetitive regions. To overcome this bottleneck,
we introduce a novel 3DGS self-initialization method, which elevates pixel-level photometric super-
vision into 3D space and constructs complementary point clouds by repurposing primitive centers
as new points.

Light-weight 3DGS. We train a light-weight first-pass 3DGS G(*) on downsampled images seeded
by Po, aiming to convert dense photometric cues into additional 3D points rather than high-fidelity
rendering. We use an economical parameterization and schedule: SH degree 0 (DC color) with
a short optimization on downsampled low-resolution inputs. Training stops when densification
plateaus or a small step budget is reached. We then form a colored point set by taking, for each Gaus-
sian primitive g, the primitive center and its DC color, i.e., Py = {(X,,,Cpn) M, with X,, = pp
and C,, = c,.

4.3 POINT CLOUD REGULARIZATION

Before feeding the merged points into the final 3DGS optimization, we regularize the initial colored
point cloud Py = {(Xk, Cy)} obtained by combining SfM points and light-weight 3DGS points,
Pinit = Po U P1. While this union improves coverage, it also aggregates errors from both sources:
(i) 3DGS-generated points with only single-view supervision, which lack geometric consistency.
(i1) noisy/duplicated points introduced by 3DGS split/clone densification; and (iii) outliers from
unstable two-view tracks; To obtain a reliable and uniformly distributed point set, we introduce three
complementary procedures: single-view point filtering, clustering-based denoising, and normal-
based consistency filtering. These procedures operate on disjoint criteria, so the order of application
has a negligible effect on the point set. We present the pseudocode in the Appendix Sec A.3.

Single-view Point Filtering. During 3DGS self-initialization, points supervised by a single view
suffer from inherent depth ambiguity and are thus relatively unreliable. Nevertheless, their reliability
is not uniform: among single-view-supported points, those closer to regions with two-view support
are more trustworthy, as they are typically produced by densifying (splitting or cloning) points al-
ready supported by multiple views. In other words, proximity to accurate two-view-supported points
mitigates depth ambiguity. To balance preserving single-view information with reducing noise, we
retain only the top 20% of single-view-supported points with the highest reliability. To formalize
this process simply:

Starting from the colored point cloud Pipiy = { X, Ci }, We split it into single-view and multi-view-
supported subsets by camera projection:

7Dinit = 73sv U va- (5)

For each single-view point X € Py, we assign a reliability score 7(X) based on its proximity to
Puy- Finally, we retain only the top fraction (i.e., 20%) of P, with the highest r(X):

Py = TOPQO%{ X ePy|r(X)}. (6)

The resulting point cloud is then
Pﬁlter = va U P:v (7)

Clustering-Based Point-Set Denoising. To reduce the noisy points introduced from unstable 2-
view SfM tracks and duplicated points from densify process in 3DGS self-initialization, we propose
a denoising technique based on the clustering algorithm, which discards 70% of the points. To
formalize:

Given the single-view filtered cloud Ppyer = { X, Cr }, we apply K-means clustering with K =
1000 clusters. For each cluster ¢ with centroid p. and size | Q.|, we retain 30% nearest points to ..
The cluster-filtered cloud is

Perw = {Xk € Priter 3 k € T0p30%{ ||Xk - MCH2 : Xy € Qc}, c=1,... ,K}. (8)

Normal-based Consistency Filtering. Finally, we remove geometrically inconsistent points by
enforcing local normal agreement in 3D space. Starting from the cluster-filtered cloud Py, =
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Figure 3: Qualitative comparisons on Mip-NeRF360 dataset and LLFF dataset.

{(Xk,Ck)}, we estimate a normal ny, for each point via PCA on its 10 nearest neighbors in Eu-
clidean space. Let NV, denote the neighbor set and assume all normals are unit-length. We compute
the mean cosine similarity

1 T
Cp = —— Ny Mg, ©)]
AP

and retain a point if ¢, > 0.2. This rejects isolated outliers and unstable estimates whose normals
disagree with the local surface. The final set is

Phina = {(X, Ck) € Paw | € = 0.2}, (10

which yields a clean, geometrically consistent point cloud.

5 EXPERIMENTS
5.1 EXPERIMENTAL SETTINGS

Evaluation Datasets. We evaluate our method on two representative benchmarks, Mip-
NeRF360 (Barron et al., 2022) and LLFF (Mildenhall et al., 2019). Following the conventional
sparse-view 3DGS setup (Zhu et al., 2024), we use 12 uniformly distributed input views for Mip-
NeRF360 and 3 views for LLFF. The camera poses are provided by the datasets. For evaluation,
every eighth image is reserved as test views, and input images are downsampled by a factor of 4 x
on both datasets.

Metrics. For quantitative comparison, we report three widely-used metrics: peak signal-to-noise
ratio (PSNR), structural similarity index (SSIM) (Wang et al., 2004), and learned perceptual image
patch similarity (LPIPS) (Zhang et al., 2018).
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Table 1: Comparison on Mip-NeRF360 and LLFF datasets. We color each cell as best,

second best , and third best . {: We reimplemented vanilla 3DGS with Multi-view Stereo (MVS,

a native dense reconstruction stage in COLMAP following SfM) initialization, which is also de-
ployed in FSGS, CoR-GS, and DropGS in their official implementations. It brings sizeable per-
formance gains but increases the initialization cost. Reported time includes both initialization and
training, averaged over all datasets.

Mip-NeRF360 Dataset LLFF Dataset
PSNR SSIM  LPIPS Time Iter | PSNR SSIM  LPIPS Time Iter

Methods

3DGST 19.24  0.5743  0.3660 | 8mS56s S5k | 1895 0.6464 0.1862 | 4m00s 5k
FSGS 19.25 05719 04072 | 12m42s 10k | 19.88 0.6120 0.3400 | 19m35s 10k
CoR-GS 19.52  0.5580 0.4180 | 39mlls 30k | 19.45 0.6520 0.2664 | 19m45s 10k
EAP-GS 19.21 05721  0.3072 | 4m27s Sk | 18.84 0.6358 0.1768 | 5m38s Sk
DropGS 19.74 05770 0.3640 | 11m25s 10k | 19.54 0.6549 0.1856 | 7mlls 10k

Ours 19.77 0.5892 0.3374 | 10m48s S5k | 19.60 0.6681 0.1852 | 5m46s Sk
+DropGS | 20.07 0.5992 0.3276 | 10m38s 10k | 1991 0.6835 0.1659 | 8m33s 10k

Table 2: Ablation study on the Mip-NeRF360 dataset. Each module is incrementally added to vanilla
3DGS.

Configuration | PSNR? SSIM? LPIPS|

vanilla 3DGS 18.52 0.5230 0.4150

+ Low-Frequency-Aware SfM (Sec. 4.1) 19.251073 0575810053 ,357540-575
+3DGS Self-Initialization (Sec. 4.2) 19.4210170.592410:017  0.32460-329
+ Single-View Point Filtering (Sec. 4.3) 19.491097  0.587240:095 0336310011
+ Clustering-Based Denoising (Sec. 4.3) 19.6170-12° 0.5910+0-004  (,3356+0-001
+ Normal-Based Consistency Filtering (Sec. 4.3) | 19.7770-16  0.5892+0-002  (,337470-002

Baselines. To demonstrate the effectiveness of our initialization strategy, we compare against
several state-of-the-art 3DGS-based methods, including FSGS (Zhu et al., 2024), CoR-GS (Zhang
et al., 2024b), EAP-GS (Dai & Xing, 2025), and DropGaussian (Park et al., 2025).

Implementation Details. Following the official training set-ups of each baseline, we train FSGS,
CoR-GS, EAP-GS, and DropGaussian for 10k, 10k, 5k, and 10k iterations, respectively, on the
Mip-NeRF360 dataset, and for 10k, 30k, 5k, and 10k iterations on the LLFF dataset. For vanilla
3DGS and our method, we adopt Sk iterations on both benchmarks. COLMAP (Schonberger &
Frahm, 2016) is configured with the same parameters as FSGS (Zhu et al., 2024) to initialize all
baselines, except for EAP-GS and our approach, which are initialization-oriented methods. For each
baseline, we report the better result between our reimplementation and the original reported
performance, to ensure a fair and representative comparison. All experiments are conducted on the
same hardware with a single NVIDIA RTX 4090 GPU.

5.2 PERFORMANCE EVALUATION.

Qualitative Results. We report quantitative results on the Mip-NeRF360 and LLFF datasets in
Table 1. The experiments demonstrate that our initialization method alone already achieves state-
of-the-art overall performance across key metrics and two datasets. Moreover, when combined with
DropGS, our approach achieves further performance gains, indicating that the proposed initialization
can effectively raise the upper bound of sparse-view 3DGS. We report the total time, including both
initialization and training. Our method incurs a comparable time cost to existing baselines. The time
cost breakdown can be found in Appendix Sec A.2.
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Figure 4: Comparison of initialization quality and its impact on reconstruction performance. Our
method provides more accurate initialization points, especially around scene edges, leading to im-
proved final renderings.

We further compare the performance curves of our method against baseline methods on the Mip-
NeRF360 dataset, as shown in Figure 5. It demonstrates that our initialization not only achieves
superior final performance but also enables faster convergence.

Qualitative Results. The qualitative comparisons
are presented in Figure 3. Our method demonstrates
consistently superior performance: it reconstructs
more balanced textures in low-frequency regions
(row 1), achieves robust recovery in less-featured
areas (rows 2 and 3), and produces sharper object  **
boundaries (rows 3-5) by converting pixel-level vari- .o
ations into reliable seed points through 3DGS self- s

107 1959

initialization. More visualization can be found in the — e
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lustrates the relationship between final reconstruc- reraton

tion quality and three initialization strategies: vanilla

SfM, EAP-GS, and ours. Our method generates

more robust initial points at scene boundaries, lead- Figure 5: Performance curves between ours
ing to consistently superior performance. More vi- and baselines on the Mip-NeRF360 dataset.
sualization can be found in the Appendix Sec A.2.

5.3 ABLATION STUDY

We conduct an ablation study to evaluate the contribution of each component in our initialization
pipeline to the final performance metrics, as shown in Table 2. The proposed Low-Frequency-
Aware SfM (Sec. 4.1) and 3DGS Self-Initialization (Sec. 4.2) yield the largest improvements across
all metrics, as they significantly increase the number of reliable initial points, particularly in low-
texture and feature-sparse regions. Furthermore, our point cloud regularization techniques (Sec. 4.3)
effectively suppress noise and redundancy in the initialization, leading to higher PSNR.

6 CONCLUSION

We show that sparse-view 3DGS is fundamentally initialization-limited: while training-time regular-
ization offers only modest gains, the quality of the seed point cloud determines the achievable perfor-
mance. To address this, we propose a three-stage initialization pipeline, low-frequency-aware SfM,
3DGS self-initialization, and point-cloud regularization that yields cleaner, denser, and more reliable
points. Experiments on LLFF and Mip-NeRF360 confirm that our method not only surpasses prior
approaches but also synergizes with existing regularization techniques, setting a stronger foundation
for sparse-view novel view synthesis.
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Ethics Statement: This work aims to advance the development of sparse-view 3D Gaussian recon-
struction. While the method has positive academic value, potential risks include misuse in sensitive
scenarios, the inheritance and amplification of dataset biases, and environmental impact due to com-
putational cost. To mitigate these risks, we rely only on publicly available datasets, clearly document
data sources and preprocessing steps, restrict the method to academic research purposes, and adopt
efficiency-oriented experimental settings to reduce energy consumption.

Reproducibility Statement: We have taken concrete measures to ensure reproducibility: all
datasets are publicly available, preprocessing steps are described in the main text, and all hyper-
parameter settings are reported in the main text.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

We used large language models to assist in code refinement and in polishing the writing of this

manuscript.

A.2 ADDITIONAL COMPARISONS

Performance Visualization.

We present additional visualization comparisons on Mip-NeRF360

dataset and LLFF datasets in Figure 6 and Figure 7, respectively.

Initialization Performance Visualization. We present additional initialization performance com-
parisons on Mip-NeRF360 dataset and LLFF datasets in Figure 8 and Figure 9, respectively.

Time Cost Breakdown. The detailed time cost between our method and baselines is presented in

Table 3.

Table 3: Time Cost Breakdown.

Mip-NeRF360 Dataset LLFF Dataset
Methods
Init. Training Total Init. Training Total

3D-GS Sm04s 3m52s 8m56s 1m32s 2m28s 4m00s
FSGS Sm04s 7m38s 12m42s | 1m32s  18m03s  19m35s
CoR-GS 5Sm04s  34m07s  39mlls | 1m32s 18ml3s  19m45s
EAP-GS 2ml5s  4m27s 6m42s | 2m23s 3ml15s 5m38s
DropGS Sm04s 6m21s 11m25s | 1m32s 5m39s Tmlls
Ours 6m06s  4m42s 10m48s | 4ml6s 1m30s Sm46s
Ours+DropGS | 6m06s  4m32s 10m38s | 4ml6s  4ml7s 8m33s

13
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A.3 THE PSEUDOCODE OF SEC. 4.3.

Algorithm 1 Point Cloud Regularization

Input: Initial colored point cloud Py = Py U P
Output: Regularized point cloud Py
Step 1: Single-view Point Filtering:
Split P, into Py, (single-view) and Py, (multi-view)
for each X € P, do
Compute reliability score (X)) w.r.t. proximity to Ppy
end for
Retain top-20% of Py, ranked by r(X), denoted P,
7Dﬁlter <~ va U ’P:i,
Step 2: Clustering-based Denoising:

. Apply K-means clustering (K = 1000) on Pjer
: for each cluster ¢ with centroid p. and points Q. do

Retain nearest-30% points to ..

: end for

¢ Peu < U, (retained points from Q)

: Step 3: Normal-based Consistency Filtering:
: for each X € P, do

Estimate surface normal n(X)

if angular deviation from neighbors > 7 then
Discard X

end if

: end for
: Phinal < remaining points

14
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GT 3DGS CoR-GS FSGS DropGS Ours

Figure 6: Qualitative comparisons on Mip-NeRF360 dataset.
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Figure 7: Qualitative comparisons on LLFF dataset.
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Figure 8: Initailization comparisons on Mip-NeRF360 dataset.
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Figure 9: Initialization comparisons on Mip-NeRF360 dataset.
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