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ABSTRACT

In this paper, we propose a distribution-aware active learning strategy that captures
and mitigates the distribution discrepancy between the labeled and unlabeled sets
to cope with overfitting. By taking advantage of gaussian mixture models (GMM)
and Wasserstein distance, we first design a distribution-aware training strategy to
improve the model performance. Then, we introduce a hybrid informativeness
metric for active learning which considers both likelihood-based and model-based
information simultaneously. Experimental results on four different datasets show
the effectiveness of our method against existing active learning baselines.

1 INTRODUCTION

Active learning (AL), the method of actively selecting informative unlabeled samples to be labeled,
is one of the important and challenging problems in machine learning due to the scarcity of labeled
data in the learning process. The key idea of active learning is that some training samples are more
informative than others so deep neural network (DNN) models can achieve higher performance by
using only informative samples. Therefore, the common goal of AL algorithms is to design a good
informativeness criterion to label the most informative samples in the unlabeled pool.

Figure 1: T-SNE visualization of embedding
space of labeled and unlabeled samples.

Despite extensive progress in active learning, we point
out that existing works do not directly handle the distri-
bution discrepancy between labeled setXL and unlabeled
set XUL in the latent space which causes overfitting,
when (i) training the model or (ii) evaluating the infor-
mativeness of unlabeled samples. In Fig. 1, it is unveiled
that although DNN seems to be well trained since features
are meaningfully separated in XL, there exists a distinct
discrepancy betweenXL andXUL. In other words, given
a feature extractor fθ, p(fθ(XL)) ̸= p(fθ(XUL))). It be-
comes problematic when (i) we make evaluation on test
set or (ii) we estimate the informativeness of unlabeled
samples since the model is already overfitted to the dis-
torted and limited embedding region. Unfortunately, ex-
isting AL works tend not to take the distribution discrepancy into account carefully. Most of them
(Ash et al., 2019; Parvaneh et al., 2022; Agarwal et al., 2020; Liu et al., 2021) train DNN models by
using only labeled set and do not consider the overfitting to the labeled set. As for informativeness
estimation, some works (Sener & Savarese, 2017; Parvaneh et al., 2022) consider features of unla-
beled samples but disregard the distribution discrepancy; they rely on Euclidean distance (e.g., L2
norm) which cannot reflect distorted latent space compared to probabilistic distance.

Goal and contribution. The general goal of this paper is to mitigate the overfitting caused by distri-
bution discrepancy between XL and XUL, which is pathologically prominent in active learning. To
this end, we suggest (i) novel training strategies and (ii) new informativeness metrics; these meth-
ods should be able to capture and resolve the discrepancy. Our key idea is to adopt a well-known
unsupervised clustering method, gaussian mixture models (GMM), which is an useful tool to proba-
bilistically interpret the latent distribution. We propose to characterize each dataset as a probabilistic
model by fitting a GMM and measure likelihoods of unlabeled samples xul from the perspective of
XL and XUL. Along with GMM, our overall contributions are summarized as follows:
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Figure 2: Proposed active learning strategy using gaussian mixtures.

• We propose training strategies that consider the distribution discrepancy using GMM. We intro-
duce a semi-supervised learning stage to reduce the Wasserstein distance between XL and XUL.

• We propose a hybrid informativeness metric that takes both likelihood-based and model-based in-
formation simultaneously. This metric prioritizes unlabeled samples which are expected to resolve
the distribution discrepancy the most by means of distributional knowledge obtained from GMM.

2 PROPOSED METHOD

In AL, DNN is trained through successive active learning cycles t = 0, 1, .., T . During tth cycle,
DNN is trained using a small labeled set Xt

L and a large unlabeled set Xt
UL. At the end of the

tth cycle, the DNN selects a small set of unlabeled samples It with the highest informativeness.
Then, human experts annotate It to update the labeled set as Xt+1

L = Xt
L ∪ It and the unlabeled

set as Xt+1
UL = Xt

UL \ It. This process is repeated until the labeling budget is depleted. In the
following, we describe our distribution-aware training strategy (in Sections 2.1 & 2.2 & 2.3) and our
distribution-aware informativeness scores (in Section 2.4) for the distribution-aware active learning.

2.1 DATASET CHARACTERIZATION VIA GMM
We assume feature representations of training data follow an isotropic Gaussian mixture so that like-
lihood of each sample can be statistically estimated according to the learned mixture models. Given
a batch of samples {xi}Ni=1 and its feature representations {zi = fθ(xi)}Ni=1, GMM’s parameter set
ψ := (π, µ, σ2) can be optimized by Expectation Maximization algorithm as:

(E Step.) Compute the responsibility γ from the current parameter set ψ := (π, µ, σ2)

γ(zik) := p(yi = k|zi) =
πkN (zi|µk, σ

2
k)∑K

j=1 πjN (zi|µj , σ2
j )

(M Step.) Update the parameter set ψ := (π, µ, σ2) based on the current responsibilities

πk =

∑N
i=1 γ(zik)∑K

k=1

∑N
i=1 γ(zik)

, µk =

∑N
i=1 γ(zik)zi∑N
i=1 γ(zik)

, σ2
k =

∑N
i=1 γ(zik)(zi − µk)

2∑N
i=1 γ(zik)

(1)

where πk, µk, σk denote mixing coefficient, mean, diagonal covariance of kth modality andK is the
number of categories. γik stands for ‘responsibility’ of kth Gaussian N (z|µk, σ

2
k) for generating

the data zi. To characterize XL, XUL, we divide datasets into multiple batches and fit a GMM to
each batch. Afterwards, we average the learned ψ from all batches and regard the average as a prob-
abilistic characteristic of the datasets (i.e., ψL and ψUL characterize XL and XUL, respectively).

2.2 DISTRIBUTION AWARE REGULARIZATION

Most of the existing AL works supervise the output of softmax classifier by minimizing cross-
entropy loss ensuring that outputs of the classifier are well separated according to the target
class. On top of the cross-entropy loss, we propose to minimize an auxiliary regularization loss
LGMM to supervise latent space as well. LGMM is defined as NLL loss: LGMM (z, y;ψL) =∑K

k=1 −yklog(p(y = k|z;ψL)). Thus, the training objective for supervised learning stage now be-
comes LCE(y, ŷ)+αLGMM (z, y;ψL) where α is a constant weight. Benefits of this regularization
are two-fold. First, by supervising the latent space in itself, we can guide gaussian modalities to be
kept apart. Secondly, supervising the latent space during the supervised training stage improves the
interpretability of the feature extractor to understand uneven distribution of feature representations.
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2.3 DISTRIBUTION ALIGNMENT VIA WASSERSTEIN DISTANCE

Distribution alignment via adversarial learning. We introduce a semi-supervised adversarial
learning stage after the supervised learning stage in Section 2.2. Advantages of this method are
two-fold. 1) By aligning two distributions p(zL) and p(zUL), DNN is expected to learn a gen-
eral latent space which reduces the distribution discrepancy. 2) At the sample selection stage, the
learned discriminator can measure the model-based informativeness. For distribution alignment,
we minimize Wasserstein distance W (zL, zUL) = inf

δ∈Π(zL,zUL)
E(zl,zul)∼δ[||zl − zul||], which can

be modified into following adversarial training objective based on Kantorovich-Rubinstein Duality
Theorem as:

minθ maxϕ Ezul∼fθ(XUL)[Dϕ(zul)]− Ezl∼fθ(XL)[Dϕ(zl)] (2)
where fθ is the feature extractor and Dϕ is the 1-Lipschitz discriminator. The above training ob-
jective guides Dϕ to output Dϕ(zl) → 0, Dϕ(zul) → 1, while fθ is trained to confound Dϕ. Also,
we minimize the CE loss using labeled data so that adversarial learning process in Eq. 2 does not
harm the performance of the main task excessively. Note that we resolve the 1-Lipshitz continuous
constraints on Dϕ by adding the gradient penalty term of (Gulrajani et al., 2017) in Eq. 2.

Distribution aware distribution alignment via GMM. We propose to feed Dϕ with the distribu-
tional information from (ψL, ψUL) on top of z. This helps Dϕ consider global data distribution
rather than memorizing each of a small number of labeled samples. Considering ψ is a group of
high-dimensional vectors (e.g., µL ∈ R100×512 for CIFAR100), it’s hard to simply concatenate
(ψL, ψUL) to z, so we instead propose to indirectly exploit (ψL, ψUL) for the reduction of computa-
tional burdens. Specifically, we first compute posterior probability p(y = k|z;ψL), p(y = k|z;ψUL)
and likelihoods p(z;ψL), p(z;ψUL), and then concatenate z to the above probabilities and pass the
concatenated vectors to the discriminator. As for the computation of (ψL, ψUL), we found that it is
stable enough to sporadically characterize XL, XUL (e.g., every 500 out of 10,000 iterations).

2.4 HYBRID METHOD FOR INFORMATIVE IMAGE SELECTION

Likelihood-based informativeness metric. We prioritize samples that can mitigate the distribution
discrepancy between XL and XUL. In other words, these samples should be dissimilar to XL, yet
best representXUL at the same time. Accordingly, we define the likelihood-based metric as follows:

ILike(xul;ψL, ψUL) = p(zul;ψUL)− p(zul;ψL) where p(z;ψ) =

K∑
j=1

πjN (z|µj , σ
2
j ) (3)

Here, log-likelihood p(z;ψ) reflects the probability that data z comes from a Gaussian mixture ψ.

Model-based informativeness metric. We make use of the output of the discriminator Dϕ learned
during distribution alignment as: Imodel = Dϕ(z). Note that Imodel prioritize samples that have not
been seen during the training process. Finally, our proposed acquisition function is:

Itotal(xul;ψL, ψUL) = ILike(xul;ψL, ψUL) + βImodel(xul;ψL, ψUL) (4)

where β is the mixing coefficient. Now we can select informative samples at the end of every cycle
by selecting a candidate set S whose samples have the largest Itotal. To keep S balanced, we select
the same number of samples per each category based on pseudo-labels. Lastly, following (Parvaneh
et al., 2022; Ash et al., 2019), we apply K-means clustering to S for the diversity of selected samples.

3 EXPERIMENTS

Dataset. Our proposed work is evaluated on four popular benchmark datasets: SVHN (Netzer et al.,
2011), Fashion-MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky et al., 2009) and CIFAR-100
(Krizhevsky et al., 2009). For all datasets except CIFAR-100, 1,000 samples are initially labeled
and additionally 1,000 samples are labeled at the end of every cycle until the size of labeled set
reaches 10,000. As for CIFAR-100, size of the XL increases from 2,000 to 20,000 in steps of 2,000.

Implementation details. Following the experimental setup of (Kim et al., 2021; Caramalau et al.,
2021), we implement the main classifier using ResNet-18 (He et al., 2016) which is combined with
a single linear layer softmax classifier. The classifier is optimized via SGD optimizer with learning
rate of 0.1; momentum of 0.9; batch size of 100; epoch number of 200. The discriminator is com-
posed of three linear layers with a sigmoid activation and optimized by Adam optimizer for 10,000
iterations with a learning rate of 5e-4 which is decayed to 5e-5 for the last 2,000 iterations.
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(d) Fashion-MNIST

Figure 3: Performance comparison on balanced datasets with state-of-the-art methods.
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(c) CIFAR-100

Figure 4: Performance comparison on imbalanced datasets and ablation studies on proposed methods.

Baselines. We compare our work with the following schemes: Random sampling, TA-VAAL (Kim
et al., 2021), CoreSet (Sener & Savarese, 2017), LL4AL (Yoo & Kweon, 2019), MC-Dropout (Gal
et al., 2017), VAAL (Sinha et al., 2019) and CoreGCN (Caramalau et al., 2021). For a fair compari-
son, we train five independent networks with different seeds and report the mean performance.

Results on balanced dataset. In Fig. 3, we compare the performance of our method with various
baselines on balanced datasets. It can be seen that the proposed algorithm performs the best on all
datasets. Also, it is noteworthy that the proposed method shows a particular excellence in the early
stages wherein other methods show lower performance because of overfitting to the small-sized
labeled set. The result shows that the proposed methods such as distribution-aware distribution
alignment and distribution-based acquisition function helps the DNN to prevent overfitting.

Results on imbalanced dataset. Fig. 4a compares the performance on imbalanced CIFAR-10
whose imbalance ratio is set to 10 (i.e., 5 classes have 10 times more samples than the remaining 5
classes). As shown, the proposed method exhibits a margin over baseline methods. We suppose that
ILike in (Eq. 3) reflects the imbalance in the labeled set. This is because π in GMM parameters ψ
reflects the number of per-class samples so that the likelihood-based metric (Eq. 3) guides to select
unlabeled samples which resolve the category imbalance between the labeled and unlabeled sets.

Ablation studies. Fig. 4b and Fig. 4c show ablation studies on our proposed methods. Note that, for
brevity, we denote the distribution-aware regularization in Section 2.2 as Reg; distribution alignment
in Section 2.3 as DA; active sample selection in Section 2.4 as AS. In every cycle, it can be seen that
proposed methods consistently improve the performance. Specifically, Reg and DA contribute more
to performance gain in early cycles while AS serves prominent gain at late cycles. It is confirmed
that Reg and DA resolve distribution discrepancy better when the size of a labeled set is small and
the model is vulnerable to overfitting. On the other hand, AS steadily improves performance even in
late cycles by utilizing both likelihood-based metrics and model-based metrics.

4 CONCLUSION

In this work, we propose a unified framework for active learning which makes use of Gaussian mix-
ture models. We fit GMM to labeled set and unlabeled set to characterize distributional information
and assist the active learning in versatile ways including distribution-aware regularization, distri-
bution alignment, likelihood-based informativeness metric. We validate the superiority of proposed
methods through extensive comparisons with baselines and ablation studies. In the future, we plan to
extend our work on various computer vision tasks (e.g., object detection (Haussmann et al., 2020))
or various settings such as open set (Park et al., 2022), model evaluation (Kossen et al., 2022)
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