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Abstract

Theoretical results from discrete geometry suggest that normed spaces can abstractly embed
finite metric spaces with surprisingly low theoretical bounds on distortion in low dimensions.
Inspired by this theoretical insight, we highlight in this paper normed spaces as a more flexible
and computationally efficient alternative to several popular Riemannian manifolds for learning
graph embeddings. Normed space embeddings significantly outperform several popular
manifolds on a large range of synthetic and real-world graph reconstruction benchmark
datasets while requiring significantly fewer computational resources. We also empirically
verify the superiority of normed space embeddings on growing families of graphs associated
with negative, zero, and positive curvature, further reinforcing the flexibility of normed
spaces in capturing diverse graph structures as graph sizes increase. Lastly, we demonstrate
the utility of normed space embeddings on two applied graph embedding tasks, namely, link
prediction and recommender systems. Our work highlights the potential of normed spaces for
geometric graph representation learning, raises new research questions, and offers a valuable
tool for experimental mathematics in the field of finite metric space embeddings. We make
our code and data publically available 1.

1 Introduction

Graph representation learning aims to embed real-world graph data into ambient spaces while sufficiently
preserving the geometric and statistical graph structures for subsequent downstream tasks and analysis.
Graph data in many domains exhibit non-Euclidean features, making Euclidean embedding spaces an unfit
choice. Motivated by the manifold hypothesis (see, e.g., Bengio et al. (2013)), recent research work has
proposed embedding graphs into Riemannian manifolds (Chamberlain et al., 2017; Defferrard et al., 2020;
Grattarola et al., 2020; Gu et al., 2019; Tifrea et al., 2019). These manifolds introduce inductive biases,
such as symmetry and curvature, that can match the underlying graph properties, thereby enhancing the
quality of the embeddings. For instance, Chamberlain et al. (2017) and Defferrard et al. (2020) proposed
embedding graphs into hyperbolic and spherical spaces, with the choice determined by the graph structures.

1https://github.com/andyweizhao/graphs-normed-spaces
∗ These authors contributed equally to this work.
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More recently, López et al. (López et al., 2021; López et al., 2021) proposed Riemannian symmetric spaces as
a framework that unifies many Riemannian manifolds previously considered for representation learning. They
also highlighted the Siegel and SPD symmetric spaces, whose geometries combine the sought-for inductive
biases of many manifolds. However, operations in these non-Euclidean spaces are computationally demanding
and technically challenging, making them impractical for embedding large graphs.

In this work, we highlight normed spaces, particularly ℓd
1 and ℓd

∞, as a more flexible, more computationally
efficient, and less technically challenging alternative to several popular Riemannian manifolds for learning
graph embeddings. In particular, normed spaces are empirically observed to be easier to train and to perform
better in general graph embedding settings that leverage gradient descent. Our proposal is motivated by
theoretical results from discrete geometry, which suggest that normed spaces can abstractly embed finite
metric spaces with surprisingly low theoretical bounds on distortion in low dimensions. This is evident in the
work of Bourgain (1985); Johnson & Lindenstrauss (1984) and Johnson et al. (1987).

We evaluate the representational capacity of normed spaces on synthetic and real-world benchmark graph
datasets through a graph reconstruction task. Our empirical results corroborate the theoretical motivation;
as observed in our experiments, diverse classes of graphs with varying structures can be embedded in
low-dimensional normed spaces with low average distortion. Second, we find that normed spaces consistently
outperform Euclidean spaces, hyperbolic spaces, Cartesian products of these spaces, Siegel spaces, and
spaces of SPD matrices across test setups. Further empirical analysis shows that the embedding capacity of
normed spaces remains robust across varying graph curvatures and with increasing graph sizes. Moreover,
the computational resource requirements for normed spaces grow much slower than other Riemannian
manifold alternatives as the graph size increases. Lastly, we showcase the versatility of normed spaces in two
applied graph embedding tasks, namely, link prediction and recommender systems, with the ℓ1 normed space
surpassing the baseline spaces.

As the field increasingly shifts towards technically challenging geometric methods, our work underscores the
untapped potential of simpler geometric techniques. As demonstrated by our experiments, normed spaces set
a compelling baseline for future work in geometric representation learning.

2 Related Work

Graph embeddings are mappings of discrete graphs into continuous spaces, commonly used as substitutes for
the graphs in machine learning pipelines. There are numerous approaches for producing graph embeddings,
and we highlight some representative examples: (1) Matrix factorization methods (Belkin & Niyogi, 2001;
Cai et al., 2010; Tang & Liu, 2011) which decompose adjacency or Laplacian matrices into smaller matrices,
providing robust mathematical vector representations of nodes; (2) Graph neural networks (GNNs) (Kipf
& Welling, 2017; Veličković et al., 2018; Chami et al., 2019a) which use message-passing to aggregate node
information, effectively capturing local and global statistical graph structures; (3) Autoencoder approaches
(Kipf & Welling, 2016; Salha et al., 2019) which involve a two-step process of encoding and decoding to
generate graph embeddings; (4) Random walk approaches (Perozzi et al., 2014; Grover & Leskovec, 2016;
Kriege, 2022) which simulate random walks on the graph, capturing node proximity in the embedding space
through co-occurrence probabilities; and (5) Geometric approaches (Gu et al., 2019; López et al., 2021)
which leverage the geometric inductive bias of embedding spaces to align with the inherent graph structures,
typically aiming to learn approximate isometric embeddings of the graphs in the embedding spaces. We note
that these categories are not mutually exclusive. For instance, matrix factorization can be seen as a linear
autoencoder approach, and geometric approaches can be combined with graph neural networks. Here we
follow previous work (Gu et al., 2019; López et al., 2021; López et al., 2021; Giovanni et al., 2022) and use a
geometric approach to produce graph embeddings in normed spaces.

Recently, there has been a growing interest in geometric deep learning, especially in the use of Riemannian
manifolds for graph embeddings. Those manifolds include hyperbolic spaces (Chamberlain et al., 2017;
Ganea et al., 2018; Nickel & Kiela, 2018; López et al., 2019), spherical spaces (Meng et al., 2019; Defferrard
et al., 2020), combinations thereof (Bachmann et al., 2020; Grattarola et al., 2020; Law & Stam, 2020),
Cartesian products of spaces (Gu et al., 2019; Tifrea et al., 2019), Grassmannian manifolds (Huang et al.,
2018), spaces of symmetric positive definite matrices (SPD) (Huang & Gool, 2017; Cruceru et al., 2020),
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and Siegel spaces (López et al., 2021). All these spaces are special cases of Riemannian symmetric spaces,
also known as homogeneous spaces. Non-homogeneous spaces, such as Giovanni et al. (2022), have been
explored for embedding heterogeneous graphs. Other examples of mathematical spaces include Hilbert spaces
(Sriperumbudur et al., 2010; Herath et al., 2017), Lie groups (Falorsi et al., 2018) (such as the torus (Ebisu &
Ichise, 2018)), non-abelian groups (Yang et al., 2020) and pseudo-Riemannian manifolds of constant nonzero
curvature (Law & Stam, 2020). These spaces introduce inductive biases that align with critical graph features.
For instance, hyperbolic spaces, known for embedding infinite trees with arbitrarily low distortion (Sarkar,
2012), are particularly suitable for hierarchical data. Though the computations involved in working with
these spaces are tractable, they incur non-trivial computational costs and often pose technical challenges. In
contrast, normed spaces, which we focus on in this work, avoid these complications.

3 Theoretical Inspiration

In discrete geometry, abstract embeddings of finite metric spaces into normed spaces, which are characterized
by low theoretical distortion bounds, have long been studied. Here we review some of the existence results
that motivated our work. These results provide a rationale for using normed spaces to embed various graph
types, much like hyperbolic spaces are often matched with hierarchical graph structures. While these results
offer a strong motivation for our experiments, we emphasize that these theoretical insights do not immediately
translate to or predict our empirical results. Theoretical results and embedding spaces investigated in this
work are summarized in Tables 7 and 8 (Appendix).

It is a well-known fact that any n-pointed metric space can theoretically be isometrically embedded into
ℓn

∞. For many classes of graphs, the theoretical bound on dimension can be substantially lowered: the
complete graph Kn can theoretically be isometrically embeded in l

⌈log2(n)⌉
1 , every tree T with n vertices

can theoretically be isometrically embedded in ℓ
O(log n)
∞ , and every tree T with ℓ leaves can theoretically be

isometrically embedded in ℓ
O(log ℓ)
∞ (Linial et al., 1995).

Bourgain showed that similar dimension bounds can be obtained for finite metric spaces in general by relaxing
the requirement that the embedding is isometric. A map f : X → Y between two metric spaces (X, dX) and
(Y, dY ) is called a D-embedding for a real number D ≥ 1 if there exists a number r > 0 such that for all
x1, x2 ∈ X,

r · dX(x1, x2) ≤ dY (f(x1), f(x2)) ≤ D · r · dX(x1, x2).

The infimum of the numbers D such that f is a D-embedding is called the distortion of f . Every n-point
metric space (X, d) can be embedded in an O(log n)-dimensional Euclidean space with an O(log n) distortion
(Bourgain, 1985).

Johnson and Lindenstrauss obtained stronger control on the distortion at the cost of increasing the embedding
dimension. Any set of n points in a Euclidean space can be mapped to Rt where t = O( log n

ϵ2 ) with distortion
at most 1 + ϵ in the distances. Such a mapping may be found in random polynomial time (Johnson &
Lindenstrauss, 1984).

Similar embedding theorems were obtained by Linial et al. in other ℓp-spaces. In random polynomial-time
(X, d) may be embedded in ℓ

O(log n)
p (for any 1 ≤ p ≤ 2), with distortion O(log n) (Linial et al., 1995) or into

ℓ
O(log2 n)
p (for any p > 2), with distortion O(log n) (Linial et al., 1995).

When the class of graphs is restricted, stronger embedding theorems are known. Krauthgamer et al. obtain
embeddings with bounded distortion for graphs when certain minors are excluded; we mention the special
case of planar graphs. Let X be an n-point edge-weighted planar graph, equipped with the shortest path
metric. Then X embeds into ℓ

O(log n)
∞ with O(1) distortion (Krauthgamer et al., 2004).

Furthermore, there are results on the limitations of embedding graphs into ℓp-spaces. For example, Linial et
al. show that their embedding result for 1 ≤ p ≤ 2 is sharp by considering expander graphs. Every embedding
of an n-vertex constant-degree expander into an ℓp space, 2 ≥ p ≥ 1, of any dimension, has distortion Ω(log n).
The metric space of such a graph cannot be embedded with constant distortion in any normed space of
dimension O(log n) (Linial et al., 1995).
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Figure 1: Embedding distortion across spaces on a small synthetic graph, with color indicating distortion
levels (the absolute difference between graph edge and norm distances). The graph embeds well in the ℓ1 and
ℓ∞ normed spaces but endures distortion in other spaces.

These theoretical results illustrate the principle that large classes of finite metric spaces can in theory be
abstractly embedded with low theoretical bounds on distortion in low dimensional normed spaces. Furthermore,
the distortion and dimension can be substantially improved when the class of metric spaces is restricted. This
leaves open many practical questions about the embeddability of real-world data into normed spaces and
translating these theoretical results into predictions about the empirical results from experiments.

4 Experiments

We evaluate the graph embedding capacity of normed spaces alongside other popular Riemannian manifolds
in the graph reconstruction task on various synthetic and real-world graphs (§4.1).

We analyze further (a) the space capacity and computational costs for varying graph sizes and curvatures; (b)
space dimension; and in Appendix E, we extend our analysis to (c) expander graphs and (d) the asymmetry
of the loss function. Additionally, we evaluate normed spaces in two tasks: link prediction (§4.2) and
recommender systems (§4.3). For link prediction, we investigate the impact of normed spaces on four
popular graph neural networks.

4.1 Benchmark: Graph Reconstruction

Shortest Path Metric Embeddings. A metric embedding is a mapping f : X → Y between two metric
spaces (X, dX) and (Y, dY ). Ideally, one would desire metric embeddings to be distance preserving. In
practice, accepting some distortion can be necessary. In this case, the overall quality of an embedding can be
evaluated by fidelity measures such as the average distortion Davg and the mean average precision mAP (cf.
Appendix D.1 for the definitions). A special case of metric embedding is the shortest path metric embedding,
also known as low-distortion or approximate isometric embedding, where X is the node set V of a graph
G = (V, E) and dG corresponds to the shortest path distance within G. These embeddings represent or
reconstruct the original graph G in the chosen embedding space Y , ideally preserving the desirable geometric
features of the graph.
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Learning Framework. To compute these embeddings, we optimize a distance-based loss function inspired
by generalized MDS (Bronstein et al., 2006) and which was used earlier in, e.g., Gu et al. (2019); López et al.
(2021); Giovanni et al. (2022). Given graph distances dG(u, v) between all pairs u, v ∈ V of nodes connected
by a path in G, which we denote u ∼ v, the loss is defined as:

L(f) =
∑
u∼v

∣∣∣∣∣
(

dY (f(u), f(v))
dG(u, v)

)2
− 1

∣∣∣∣∣ , (1)

where dY (f(u), f(v)) is the distance between the corresponding node embeddings in the target embedding
space. In this context, the model parameters are a finite collection of points f(u) in Y , each indexed by a
specific node u of G. These parameters, i.e., the coordinates of the points, are optimized by minimizing the loss
function through gradient descent. This loss function treats the distortion of different path lengths uniformly
during training. We provide more context for the loss function in Appendix B. We also empirically evaluate
embeddings learned by the distance-based loss function from eq. (1) against another popular distance-based
loss function, namely mean squared error loss, in Appendix D.1.

Motivation. In geometric machine learning, graph reconstruction tasks have achieved a “de facto” bench-
mark status for empirically quantifying the representational capacity of geometric spaces for preserving
graph structures given through their local close neighborhood information, global all-node interactions, or an
intermediate of both (Nickel & Kiela, 2017; 2018; Gu et al., 2019; Cruceru et al., 2020; López et al., 2021;
López et al., 2021). This fidelity to structure is crucial for downstream tasks such as link prediction and
recommender systems, where knowing the relationships between nodes or users is key. Other applications
include embedding large taxonomies. For instance, Nickel & Kiela (2017) and Nickel & Kiela (2018) proposed
embedding WordNet while maintaining its local graph structure (semantic relationships between words),
and applied these embeddings to downstream NLP tasks. Additionally, low-distortion metric embeddings
have applications in approximation algorithms (Linial et al., 1995), online algorithms (Bansal et al., 2015),
and distributed algorithms (Khan et al., 2008). We note that though we employ a global loss function, the
resulting normed space embeddings preserve both local and global structure notably well.

Experimental Setup. Following the work of Gu et al. (2019), we train graph embeddings by minimizing
the previously mentioned distance-based loss function. We follow López et al. (2021), and we do not apply
any scaling to either the input graph distances or the distances calculated in the space, unlike earlier work
(Gu et al., 2019; Cruceru et al., 2020). We report the average results across five runs in terms of (a) average
distortion Davg and (b) mean average precision (mAP). We provide the training details and the data statistics
in Appendix D.1.

Baseline Comparison. We compare the performance of normed metric spaces with many other spaces
for graph embedding. These spaces fall under three classes: (a) Normed spaces: R20

ℓ1
, R20

ℓ2
and R20

ℓ∞
; (b)

Riemannian symmetric spaces (Cruceru et al., 2020; López et al., 2021; López et al., 2021), incl. the space
of SPD matrices: SPD6

R, Siegel upper half spaces: S4
R, S4

F1
, S4

F∞
, bounded symmetric spaces: B4

R, B4
F1

,
B4

F∞
, hyperbolic spaces (Nickel & Kiela, 2017): H20

R (Poincaré model), and product spaces (Gu et al., 2019):
H10

R × H10
R ; (c) Cartesian product spaces involving normed spaces: R10

ℓ1
× R10

ℓ∞
, R10

ℓ1
× H10

R , R10
ℓ2

× H10
R and

R10
ℓ∞

×H10
R ; (d) pseudo-Euclidean space (Goldfarb, 1985; Vishwakarma & Sala, 2022): R10+,10−

PSE . The notation
for all metrics follows a standardized format: the superscript scales with the space dimension, and the
subscript denotes the specific distance metric used (e.g., R for Riemannian and F for Finsler). Following
López et al. (2021), we ensure uniformity across metric spaces by using the same number of free parameters,
specifically a dimension of 20; and more importantly, we are concerned with the capacity of normed space at
such low dimensions where non-Euclidean spaces have demonstrated success for embedding graphs (Chami
et al., 2019b; Gu et al., 2019). We also investigate the capacities of spaces with growing dimensions, observing
that other spaces necessitate much higher dimensions to match the capacity of the ℓ∞ normed space (see Tab.
4). Note that Sn

· and Bn
· have n(n + 1) dimensions, and SPDn

· has a dimension of n(n + 1)/2. We elaborate
on these metric spaces in Appendix A.

Synthetic Graphs. Following the work of López et al. (2021), we compare the representational capacity of
various geometric spaces on several synthetic graphs, including grids, trees, and their Cartesian and rooted
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4D Grid Tree Tree × Tree Tree ⋄ Grid Grid ⋄ Tree
(|V |, |E|) (625, 2000) (364, 363) (225, 420) (775, 1270) (775, 790)

Davg mAP Davg mAP Davg mAP Davg mAP Davg mAP

R20
ℓ1 1.08 ±0.00 100.00 1.62±0.02 73.56 1.22±0.01 100.00 1.22±0.01 71.91 1.75±0.02 60.13

R20
ℓ2 11.24±0.00 100.00 3.92±0.04 42.30 9.78±0.00 96.03 3.86±0.02 34.21 4.28±0.04 27.50

R20
ℓ∞ 0.13±0.00 100.00 0.15±0.01 100.00 0.58±0.01 100.00 0.09±0.01 100.00 0.23±0.02 99.39

H20
R 25.23±0.05 63.74 0.54±0.02 100.00 20.59±0.11 75.67 14.56±0.27 44.14 14.62±0.13 30.28

SPD6
R 11.24±0.00 100.00 1.79±0.02 55.92 8.83±0.01 98.49 1.56±0.02 62.31 1.83±0.00 72.17

S4
R 11.27±0.01 100.00 1.35±0.02 78.53 8.68±0.02 98.03 1.45±0.09 72.49 1.54±0.08 76.66

S4
F∞ 5.92±0.06 99.61 1.23±0.28 99.56 3.31±0.06 99.95 10.88±0.19 63.52 10.48±0.21 72.53

S4
F1 0.01±0.00 100.00 0.76±0.02 91.57 1.08±0.16 100.00 1.03±0.00 78.71 0.84±0.06 80.52

B4
R 11.28±0.01 100.00 1.27±0.05 74.77 8.74±0.09 98.12 2.88±0.32 72.55 2.76±0.11 96.29

B4
F∞ 7.32±0.16 97.92 1.51±0.13 99.73 4.26±0.26 99.70 6.55±1.77 73.80 7.15±0.85 90.51

B4
F1 0.39±0.02 100.00 0.77±0.02 94.64 1.28±0.16 100.00 1.09±0.03 76.55 0.99±0.01 81.82

R10
ℓ1 × R10

ℓ∞ 0.16±0.00 100.00 0.63±0.02 99.73 0.62±0.00 100.00 0.54±0.01 99.84 0.60±0.01 94.81
R10

ℓ1 × H10
R 0.55±0.00 100.00 1.13±0.01 99.73 0.62±0.01 100.00 1.76±0.02 50.74 1.65±0.01 89.47

R10
ℓ2 × H10

R 11.24±0.00 100.00 1.19±0.04 100.00 9.30±0.04 98.03 2.15±0.05 58.23 2.03±0.01 97.88
R10

ℓ∞ × H10
R 0.14±0.00 100.00 0.22±0.02 96.96 1.91±0.01 99.13 0.15±0.01 99.96 0.57±0.01 90.34

H10
R × H10

R 18.74±0.01 78.47 0.65±0.02 100.00 8.61±0.03 97.63 1.08±0.06 77.20 2.80±0.65 84.88
R10+,10−

PSE 5.65±0.02 99.87 4.91±0.03 33.38 3.46±0.04 99.70 4.32±0.03 40.09 4.93±0.03 27.53

Table 1: Results on the five synthetic graphs. Lower Davg is better. Higher mAP is better. Metrics are given
as percentages.

products. Further, we extend our analysis to three expander graphs, which can be considered theoretical
worst-case scenarios for normed spaces embedding theorems (Linial et al., 1995), and thus are challenging
setups for graph reconstruction. Tab. 1 and 2 report the results on synthetic graphs and expanders.

Overall, the ℓ∞ normed space largely outperforms all other metric spaces considered on the graph configurations
we examine. Notably, it excels over manifolds typically paired with specific graph topologies. For instance, the
ℓ∞ space significantly outperforms hyperbolic spaces, and surpasses Cartesian products of hyperbolic spaces
and pseudo-Euclidean space on embedding tree graphs. Further, the ℓ∞ space outperforms sophisticated
symmetric spaces such as S4

F1
and B4

F1
on the graphs with mixed Euclidean and hyperbolic structures (Tree

⋄ Grids and Grids ⋄ Tree), although these symmetric spaces have compound geometries that combine
Euclidean and hyperbolic subspaces. We also observe competitive performance from the ℓ1 space, which
outperforms the ℓ2, hyperbolic, and symmetric spaces equipped with Riemannian and Finsler infinity metrics.
Interestingly, combining ℓ∞ and hyperbolic spaces using the Cartesian product does not bring added benefits
and is less effective than using the ℓ∞ space alone. Further, combining ℓ1 and ℓ∞ spaces yields intermediate
performance between the individual ℓ1 and ℓ∞ spaces, due to the substantial performance gap between these
two spaces. These findings underline the high capacity of the ℓ1 and ℓ∞ spaces, aligning with our theoretical
motivations.

In Tab. 2, we report graph reconstruction results for three expander graphs, namely Margulis-Gabber-Galil,
Paley, and Chordal-Cycle graphs (Bollobás & Bollobás, 1998; Lubotzky, 1994; Vadhan et al., 2012). We
note that expanders are considered representative of complex structures due to their high degree of sparsity
and connectivity. As observed in our results, none of the metric spaces investigated align well with these
intricate structures, leading to substantial distortion of graph structures across all spaces. Overall, graph
structures in the ℓ1 and ℓ∞ spaces endure much lower distortion in terms of Davg compared to the other
spaces. Importantly, even with considerable distortion, the ℓ1 and ℓ∞ spaces yield favorable mAP scores,
particularly on Chordal. This suggests that the Chordal graph, while not isometrically embedded, is
nearly isomorphic in these spaces, indicative of high-quality embeddings.

In sum, these results affirm that the ℓ1 and ℓ∞ spaces are well-suited for embedding graphs, showing robust
performance when their geometry closely, or even poorly, aligns with the graph structures.

Real-World Graph Networks. We evaluate the representational capacity of metric spaces on five popular
real-world graph networks. These include (a) USCA312 (Hahsler & Hornik, 2007) and EuroRoad (Šubelj
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Margulis Paley chordal
(|V |, |E|) (625, 2500) (101, 5050) (523, 1569)

Davg mAP Davg mAP Davg mAP

R20
ℓ1

13.4±0.00 87.97 22.7±0.00 65.84 10.7±0.01 99.66
R20

ℓ2
14.0±0.01 83.99 23.6±0.02 60.80 12.8±0.01 87.79

R20
ℓ∞ 14.2±0.01 82.73 16.1±0.01 66.88 10.5±0.01 98.39

H20
R 16.8±0.01 69.47 23.8±0.02 60.76 22.8±0.02 59.19

SPD6
R 14.1±0.01 84.98 23.6±0.01 61.76 12.8±0.01 77.59

S4
F1 24.2±0.02 2.24 26.6±0.01 51.94 38.1±0.02 1.40

B4
F1 24.1±0.01 2.17 26.5±0.01 52.97 37.2±0.01 1.43

R10
ℓ1

× R10
ℓ∞ 13.8±0.00 87.25 20.4±0.01 60.09 10.6±0.01 99.47

R10
ℓ1

× H10
R 14.2±0.00 83.63 23.3±0.00 62.77 11.7±0.00 82.95

R10
ℓ2

× H10
R 14.4±0.00 79.12 23.7±0.01 60.72 12.8±0.00 81.93

R10
ℓ∞ × H10

R 14.6±0.01 86.26 20.8±0.00 60.57 12.1±0.01 88.98
H10

R × H10
R 15.4±0.01 75.77 23.7±0.01 60.33 17.2±0.00 58.25

R10+,10−
PSE 15.7±0.02 45.25 24.7±0.01 56.78 9.1±0.02 76.48

Table 2: Results on the three expander graphs. Metrics are given as percentages.

USCA312 bio-diseasome csphd EuroRoad Facebook
(|V |, |E|) (312, 48516) (516, 1188) (1025, 1043) (1039, 1305) (4039, 88234)

Davg Davg mAP Davg mAP Davg mAP Davg mAP

R20
ℓ1 0.29±0.01 1.62±0.01 89.14 1.59±0.02 52.34 1.73±0.01 93.61 2.38±0.02 31.22

R20
ℓ2 0.18±0.01 3.83±0.01 76.31 4.04±0.01 47.37 4.50±0.00 87.70 3.16±0.01 32.21

R20
ℓ∞ 0.95±0.02 0.53±0.01 98.24 0.42±0.01 99.28 1.06±0.01 99.48 0.71±0.02 42.21

H20
R 2.39±0.02 6.83±0.08 91.26 22.42±0.23 60.24 43.56±0.44 54.25 3.72±0.00 44.85

SPD6
R 0.21±0.02 2.54±0.00 82.66 2.92±0.11 57.88 19.54±0.99 92.38 2.92±0.05 33.73

S4
R 0.28±0.03 2.40±0.02 87.01 4.30±0.18 59.95 29.21±0.91 84.92 3.07±0.04 30.98

S4
F∞ 0.57±0.08 2.78±0.49 93.95 27.27±1.00 59.45 46.82±1.02 72.03 1.90±0.11 45.58

S4
F1 0.18±0.02 1.55±0.04 90.42 1.50±0.03 64.11 3.79±0.07 94.63 2.37±0.07 35.23

B4
R 0.24±0.07 2.69±0.10 89.11 28.65±3.39 62.66 53.45±2.65 48.75 3.58±0.10 30.35

B4
F∞ 0.21±0.04 4.58±0.63 90.36 26.32±6.16 54.94 52.69±2.28 48.75 2.18±0.18 39.15

B4
F1 0.18±0.07 1.54±0.02 90.41 2.96±0.91 67.58 21.98±0.62 91.63 5.05±0.03 39.87

R10
ℓ1 × R10

ℓ∞ 0.47±0.01 1.56±0.01 98.22 1.38±0.02 89.18 1.65±0.02 98.34 2.16±0.02 39.90
R10

ℓ1 × H10
R 0.72±0.01 1.99±0.01 93.78 1.83±0.02 78.10 2.26±0.02 96.19 2.77±0.02 33.79

R10
ℓ2 × H10

R 0.18±0.00 2.52±0.02 91.99 3.06±0.02 73.25 4.24±0.02 89.93 2.80±0.01 34.26
R10

ℓ∞ × H10
R 0.42±0.02 1.42±0.02 96.51 1.16±0.01 76.91 1.77±0.01 97.38 1.41±0.02 35.03

H10
R × H10

R 0.47±0.18 2.57±0.05 95.00 7.02±1.07 79.22 23.30±1.62 75.07 2.51±0.00 36.39
R10+,10−

PSE 0.41±0.01 3.87±0.02 70.82 3.17±0.02 35.41 2.49±0.01 90.33 5.10±0.03 20.36

Table 3: Results on the five real-world graphs. Metrics are given as percentages.

& Bajec, 2011), representing North American city networks and European road systems respectively; (b)
bio-diseasome (Goh et al., 2007), a biological graph representing the relationships between human disorder
and diseases and their genetic origins; (c) CSPHD (Nooy et al., 2011), a graph of Ph.D. advisor-advisee
relationships in computer science and (d) Facebook (McAuley & Leskovec, 2012), a dense social network
from Facebook.

In Tab. 3, the ℓ1 and ℓ∞ spaces generally outperform all other metric spaces on real-world graphs, consistent
with the synthetic graph results. However, for USCA312—a weighted graph of North American cities where
edge lengths match actual spherical distances—the inherent spherical geometry limits effective embedding
into the ℓ1 and ℓ∞ spaces at lower dimensions.

Graph Representational Capacity. We assess the capacity of the metric spaces for embedding graphs
of increasing size, focusing on trees (negative curvature), grids (zero curvature), and fullerenes (positive
curvature). See the illustrations of these graphs in Appendix F. For trees, we fix the valency at 3 and vary
the tree height from 1 to 7; for 4D grids, we vary the grid dimension from 2 to 7; for fullerenes, we vary the
number of carbon atoms from 20 to 240. We report the average results across three runs.
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Figure 2: Metric space capacities with growing graph size and unnoticeable distortion variance.

Fig. 2 (left) reports the results on trees. Within the range of computationally feasible graphs, we see that as
graph size grows, the capacity of all metric spaces, barring the ℓ∞ space and its product with hyperbolic
space, improves significantly before plateauing. In hyperbolic spaces, which are not scale-invariant, embedding
trees with high fidelity to all path lengths could require scaling (see, e.g., Sarkar (2012), Sala et al. (2018)).
This can be seen in the high embedding distortion of small trees, specifically those with a height less than
4. Further empirical analysis demonstrates that the optimization goal localizes unavoidable distortion to
some paths of short combinatorial lengths and their contribution to the average loss becomes smaller with
increased size since there are relatively fewer of them. In contrast, the ℓ∞ space consistently exhibits a high
capacity, largely unaffected by graph size, and significantly outperforms the hyperbolic space within the
observed range.

Fig. 2 (center) reports the results on 4D grids with zero curvature. We find that the metric spaces whose
geometry aligns poorly with grid structures, such as the ℓ2 space, the hyperbolic space and their products,
exhibit weak representational capacity. In contrast, the ℓ1 and ℓ∞ spaces preserve grid structures consistently
well as the graph size increases. Fig. 2 (right) reports the results on fullerenes with positive curvature. Given
that none of the spaces considered feature a positively curved geometry, they are generally ill-suited for
embedding fullerenes. However, we see that the ℓ1 and ℓ∞ spaces and the product spaces accommodating
either of these two spaces consistently outperform others even as the number of carbon atoms increases.

Overall, these results show that the ℓ1 and ℓ∞ spaces consistently surpass other metric spaces in terms of
representation capacity. They exhibit small performance fluctuation across various curvatures and maintain
robust performance within graph configurations and size ranges we consider.

Training Efficiency. Fig. 3 compares the training time for different metric spaces on grids and trees with
growing size. The training time grows as C(space) × O(number of paths), where C(space) is a constant that
depends on the embedding space. Among these spaces, SPD demands the highest amount of training efforts,
even when dealing with small grids and trees. For other spaces, the training time differences become more
noticeable with increasing graph size. The largest difference appears at a grid size of 7 and a tree height of 6:
The ℓ1, ℓ2, and ℓ∞ normed spaces exhibit the highest efficiency, outperforming product, hyperbolic and SPD
spaces in training time.

These results are expected given that transcendental functions and eigendecompositions are computationally
costly operations. Overall, normed spaces show high scalability with increasing graph size. Their training
time grows much slower than product spaces and Riemannian alternatives.

Space Dimension. Tab. 4 compares the results of different spaces across dimensions on the Bio-Diseasome
dataset. The surveyed theoretical results suggest that in sufficiently high dimensions, space capacities appear
to approach theoretical limits, leading to the possibility that the performance of different spaces can become
similar. However, we find that other spaces necessitate very high dimensions to match the capacity of the ℓ∞
normed space. For instance, even after tripling space dimension, H66

R and SPD11
R still perform much worse

than R20
ℓ∞

. R66
ℓ1

rivals R20
ℓ∞

only in mAP. R33
ℓ1

× R33
ℓ∞

surpasses R20
ℓ∞

in mAP but lags behind in Davg. López
et al. (2021) similarly evaluated Euclidean, hyperbolic and spherical spaces, their products, and Siegel space
at n = 306. Their best results on Bio-Diseasome were Davg = 0.73 and mAP = 99.09 for S17

F1
. In contrast,

8



Published in Transactions on Machine Learning Research (05/2024)

2 3 4 5 6 7
Grid Size

0

1000

2000

3000
T

ra
in

in
g

T
im

e
(S

ec
on

d
s)

4D-Grid

1 2 3 4 5 6
Tree Height

0

200

400

600

800

1000

1200

T
ra

in
in

g
T

im
e

(S
ec

on
d

s)

Tree
R20
`1

R20
`2

R20
`∞

H20
R

H10
R ×H10

R

R10
`1
×H10

R

R10
`2
×H10

R

R10
`∞ ×H10

R

SPD6
R

Figure 3: Training time scales up as the graph size increases.

ℓ20
∞ and ℓ18

1 × ℓ18
∞ achieved Davg = 0.5 ± 0.01 and mAP = 99.4, respectively. These results show that normed

spaces efficiently yield low-distortion embeddings at much lower dimensions than other spaces.

n = 20 n = 36 n = 66
Davg mAP Davg mAP Davg mAP

Rn
ℓ1

1.6±0.01 89.1 1.6±0.01 94.3 1.7±0.01 98.1
Rn

ℓ2
3.8±0.01 76.3 3.8±0.01 85.9 3.9±0.01 86.2

Rn
ℓ∞ 0.5±0.01 98.2 0.5±0.01 98.3 0.6±0.01 99.2
Hn

R 6.8±0.08 91.2 5.8±0.06 93.6 5.9±0.05 93.2
SPDk

R 2.5±0.00 82.6 2.4±0.02 87.8 2.3±0.02 90.5

R
n
2

ℓ1
× R

n
2

ℓ∞
1.5±0.01 98.2 1.2±0.01 99.4 1.4±0.01 99.8

R
n
2

ℓ1
× H

n
2

R
1.9±0.01 93.7 1.8±0.01 95.8 1.7±0.01 98.4

R
n
2

ℓ2
× H

n
2

R
2.5±0.02 91.9 2.6±0.02 92.3 2.5±0.01 94.6

R
n
2

ℓ∞
× H

n
2

R
1.4±0.02 96.5 1.1±0.02 98.6 0.8±0.01 98.8

H
n
2

R
× H

n
2

R
2.5±0.05 95.0 2.5±0.04 97.4 2.6±0.05 97.6

Table 4: Results on BIO-DISEASOME. When n takes 20, 36, 66, k in SPDk
R takes 6, 8, 11. Metrics are

given as percentages.

4.2 Application 1: Link Prediction

Experimental Setup. We comparably evaluate the impact of normed spaces on four popular architectures
of graph neural networks (GNNs), namely GCN (Kipf & Welling, 2017), GAT (Veličković et al., 2018), SGC
(Wu et al., 2019) and GIN (Xu et al., 2019). Following Kipf & Welling (2016); Chami et al. (2019a), we
evaluate GNNs in the link prediction task on two citation network datasets: Cora and Citeseer (Sen et al.,
2008). This task aims to predict the presence of edges (links) between nodes that are not seen during training.
We split each dataset into train, development and test sets corresponding to 70%, 10%, 20% of citation links
that we sample at random. We report the average performance in AUC across five runs. We provide the
training details in Appendix D.2.

Results. Tab. 5 reports the results of GNNs across different spaces for link prediction. While previous
works showed the superiority of hyperbolic over Euclidean space for GNNs at lower dimensions on these
datasets (Chami et al., 2019a; Zhao et al., 2023), our findings indicate the opposite (see the results from Hn

R

and Rn
ℓ2

). This is attributed to the vanishing impact of hyperbolic space when operating GNNs in a larger
dimensional space (with up to 128 dimension to achieve optimal performance on development sets). The ℓ1
normed space consistently outperforms other spaces (including the ℓ∞ and product spaces), demonstrating
its superiority for link prediction.
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Cora Citeseer
GCN GAT SGC GIN GCN GAT SGC GIN

Rn
l1

93.4±0.3 92.8±0.4 93.7±0.5 91.6±0.5 93.1±0.3 93.1±0.4 93.8±0.4 92.4±0.3
Rn

l2
92.1±0.5 91.7±0.5 91.1±0.3 90.2±0.5 91.4±0.5 91.1±0.4 93.8±0.4 92.0±0.3

Rn
l∞ 89.5±0.4 88.2±0.5 88.8±0.3 88.4±0.5 90.3±0.4 89.5±0.5 91.7±0.3 90.5±0.3
Hn

R 86.1±0.5 92.1±0.6 89.9±0.4 87.7±0.3 92.5±0.2 91.1±0.3 91.0±0.3 91.7±0.4

R
n
2

ℓ1
× R

n
2

ℓ∞
93.0±0.5 92.3±0.3 93.5±0.5 90.9±0.4 92.9±0.5 92.8±0.6 94.6±0.5 92.4±0.4

R
n
2

ℓ1
× H

n
2

R
89.5±0.5 90.7±0.4 88.7±0.4 89.0±0.6 91.5±0.4 90.3±0.3 90.6±0.4 90.3±0.5

R
n
2

ℓ2
× H

n
2

R
90.2±0.4 90.6±0.5 88.3±0.6 87.8±0.4 90.8±0.5 91.2±0.3 91.0±0.5 90.4±0.3

R
n
2

ℓ∞
× H

n
2

R
89.7±0.5 90.7±0.3 89.2±0.3 87.7±0.4 90.5±0.3 90.2±0.4 90.8±0.4 90.4±0.3

H
n
2

R
× H

n
2

R
85.2±0.3 88.0±0.4 88.7±0.4 87.6±0.3 90.4±0.3 87.2±0.5 89.2±0.3 91.3±0.5

Table 5: Results of GNNs in different spaces for link prediction, where n is a hyperparameter of space
dimension that we tune on the development sets. Results are reported in AUC.

ml-100k lastfm MeetUp
HR@10 nDG HR@10 nDG HR@10 nDG

R20
ℓ1

54.5±1.2 28.2 69.3±0.4 48.9 82.1±0.4 63.3
R20

ℓ2
54.6±1.0 28.7 55.4±0.3 24.6 79.8±0.2 59.5

R20
ℓ∞ 50.1±1.1 25.5 54.9±0.5 31.7 70.2±0.2 45.3

H20
R 53.4±1.0 28.2 54.8±0.5 24.9 79.1±0.5 58.8

SPD6
R 53.3±1.4 28.0 55.4±0.2 25.3 78.5±0.5 58.6

S4
F1 55.6±1.3 29.4 61.1±1.2 38.0 80.4±0.5 61.1

R10
ℓ1

× R10
ℓ∞ 52.0±1.1 27.1 68.2±0.4 47.3 79.6±0.3 60.1

R10
ℓ1

× H10
R 53.1±1.2 27.6 69.2±0.5 49.9 80.6±0.3 61.2

R10
ℓ2

× H10
R 53.1±1.3 27.9 45.5±0.4 18.9 79.3±0.2 58.9

R10
ℓ∞ × H10

R 54.9±1.2 28.4 66.2±0.5 48.2 77.8±0.4 57.2
H10

R × H10
R 54.8±0.9 29.1 55.0±0.6 24.6 79.5±0.2 59.2

Table 6: Results on the three recommendation bipartite graphs. Higher HR@10 and nDG are better.

4.3 Application 2: Recommender Systems

Experimental Setup. Following López et al. (2021), we conduct a comparative examination of the impact
of the choice of metric spaces on a recommendation task. This task can be seen as a binary classification
problem on a bipartite graph, in which users and items are treated as two distinct subsets of nodes, and
recommendation systems are tasked with predicting the interactions between user-item pairs. We adopt the
approach of prior research (Vinh Tran et al., 2020; López et al., 2021) and base recommendation systems on
graph embeddings in metric spaces. Our experiments include three popular datasets: (a) ml-100k (Harper
& Konstan, 2015) from MovieLens for movie recommendation; (b) last.fm (Cantador et al., 2011) for music
recommendation, and (c) MeetUp (Pham et al., 2015) from Meetup.com in NYC for event recommendation.
We use the train/dev/test sets of these datasets from the work of López et al. (2021), and report the
average results across five runs in terms of two evaluation metrics: hit ratio (HR) and normalized discounted
cumulative gain (nDG), both at 10. We provide the training details and the statistics of the graphs in
Appendix D.3.

Results. Tab. 6 reports the results on three bipartite graphs. We find that the performance gaps between
metric spaces are small on ml-100k. Therefore, the choice of metric spaces does not influence much the
performance on this graph. In contrast, the gaps are quite noticeable on the other two graphs. For instance,
we see that the ℓ1 space largely outperforms all the other spaces, particularly on last.fm. This showcases
the importance of choosing a suitable metric space for downstream tasks. It is noteworthy that the ℓ1
norm outperforms the ℓ∞ norm on the recommender systems task, while the opposite is true for the graph
reconstruction task. This raises intriguing questions about how normed space embeddings leverage the
geometries of the underlying normed spaces.
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5 Conclusions

Classical discrete geometry results suggest that normed spaces can abstractly embed a wide range of finite
metric spaces, including graphs, with surprisingly low theoretical bounds on distortion. Motivated by these
theoretical insights, we highlight normed spaces as a valuable complement to popular manifolds for graph
representation learning. Our empirical findings show that normed spaces consistently outperform other
manifolds across several real-world and synthetic graph reconstruction benchmark datasets. Notably, normed
spaces demonstrate an enhanced capacity to embed graphs of varying curvatures, an increasingly evident
advantage as graph sizes get bigger. We further illustrate the practical utility of normed spaces on two applied
graph embedding tasks, namely link prediction and recommender systems, underscoring their potential for
applications. Moreover, while delivering superior performance, normed spaces require significantly fewer
computational resources and pose fewer technical challenges than competing solutions, further enhancing their
appeal. Our work not only emphasizes the importance of normed spaces for graph representation learning
but also naturally raises several questions and motivates further research directions:

Modern and Classical AI/ML Applications. The potential of normed space embeddings can be tested
across a wide range of AI applications. In many machine learning applications, normed spaces provide a
promising alternative to existing Riemannian manifolds, such as hyperbolic spaces (Nickel & Kiela, 2017; 2018;
Chami et al., 2020a;b) and other symmetric spaces, as embedding spaces. Classical non-differentiable discrete
methods for embedding graphs into normed spaces have found applications in various areas (Livingston &
Stout, 1988; Linial et al., 1995; Deza & Shtogrin, 2000; Mohammed, 2005). Our work demonstrates the
efficient computation of graph embeddings into normed spaces using a modern differentiable programming
paradigm. Integrating normed spaces into deep learning frameworks holds the potential to advance graph
representation learning and its applications, bridging modern and classical AI research.

Discrete Geometry. Further analysis is needed to describe how normed space embeddings leverage the
geometry of normed spaces. It is also important to investigate which emergent geometric properties of the
embeddings can be used for analyzing graph structures, such as hierarchies. Lastly, we anticipate our work
will provide a valuable experimental mathematics tool.

Limitations and Future Research. Our work and others in the geometric machine literature, such
as Nickel & Kiela (2017; 2018); Chami et al. (2019a); Cruceru et al. (2020); López et al. (2021); Giovanni
et al. (2022), lack theoretical guarantees. It is crucial to connect the theoretical bounds on distortion for
abstract embeddings and the empirical results, especially for real-world graphs. In particular, it is possible
that hyperparameter tuning or different spaces and training techniques than normed spaces and gradient
descent can achieve better performance in general settings, in addition to the restricted cases where some
geometric spaces perform exceptionally well on particular graphs, such as hyperbolic geometry and trees. It
would also be valuable to analyze more growing families of graphs, such as expanders and mixed-curvature
graphs. Furthermore, embedding larger real-world networks would provide insights into scalability in practical
settings, and how the benefits would translate to graphs of larger scale. Lastly, future work should expand
this study to dynamic graphs with evolving structures and investigating the transferability of embeddings
learned on one task, e.g., link predictions with GNNs, to other tasks.

Acknowledgments

We would like to extend our thanks to Anna Wienhard, Maria Beatrice Pozetti, Ullrich Koethe, Federico
López, and Steve Trettel for many interesting conversations and valuable insights. We extend our sincere
gratitude to the reviewers for their insightful comments and suggestions, which have significantly enhanced
the quality of this paper. J.M. Riestenberg was supported by the RTG 2229 “Asymptotic Invariants and
Limits of Groups and Spaces” and by the DFG under Project-ID 338644254 - SPP2026. Wei Zhao was
supported by the Klaus Tschira Foundation and a Young Marsilius Fellowship at Heidelberg University.

11



Published in Transactions on Machine Learning Research (05/2024)

References
G. Bachmann, G. Bécigneul, and O.-E. Ganea. Constant curvature graph convolutional networks. In 37th

International Conference on Machine Learning (ICML), 2020.

Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. A polylogarithmic-competitive algorithm
for the k-server problem. Journal of the ACM (JACM), 62(5):1–49, 2015.

Gary Bécigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. In 7th International
Conference on Learning Representations, ICLR, New Orleans, LA, USA, May 2019. URL https://
openreview.net/forum?id=r1eiqi09K7.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering.
In Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani (eds.), Advances in Neural Information
Processing Systems 14 [Neural Information Processing Systems: Natural and Synthetic, NIPS 2001,
December 3-8, 2001, Vancouver, British Columbia, Canada], pp. 585–591. MIT Press, 2001. URL https:
//proceedings.neurips.cc/paper/2001/hash/f106b7f99d2cb30c3db1c3cc0fde9ccb-Abstract.html.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspectives.
IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.

Béla Bollobás and Béla Bollobás. Random graphs. Springer, 1998.

Silvère Bonnabel. Stochastic gradient descent on Riemannian manifolds. IEEE Transactions on Automatic
Control, 58, 11 2011. doi: 10.1109/TAC.2013.2254619.

J. Bourgain. On Lipschitz embedding of finite metric spaces in Hilbert space. Israel J. Math., 52(1-2):46–52,
1985. ISSN 0021-2172. doi: 10.1007/BF02776078. URL https://doi.org/10.1007/BF02776078.

Alexander M Bronstein, Michael M Bronstein, and Ron Kimmel. Generalized multidimensional scaling:
a framework for isometry-invariant partial surface matching. Proceedings of the National Academy of
Sciences, 103(5):1168–1172, 2006.

Deng Cai, Xiaofei He, Jiawei Han, and Thomas S Huang. Graph regularized nonnegative matrix factorization
for data representation. IEEE transactions on pattern analysis and machine intelligence, 33(8):1548–1560,
2010.

Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik. 2nd Workshop on Information Heterogeneity and Fusion
in Recommender Systems (HetRec 2011). In Proceedings of the 5th ACM Conference on Recommender
Systems, RecSys 2011, New York, NY, USA, 2011. ACM.

Ben Chamberlain, Marc Deisenroth, and James Clough. Neural embeddings of graphs in hyperbolic space. In
Proceedings of the 13th International Workshop on Mining and Learning with Graphs (MLG), 2017.

Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolu-
tional neural networks. In Advances in Neural Information Processing Systems 32, pp. 4869–
4880. Curran Associates, Inc., 2019a. URL https://proceedings.neurips.cc/paper/2019/file/
0415740eaa4d9decbc8da001d3fd805f-Paper.pdf.

Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural networks.
In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and
Roman Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pp. 4869–4880, 2019b.

Ines Chami, Albert Gu, Vaggos Chatziafratis, and Christopher Ré. From trees to continuous em-
beddings and back: Hyperbolic hierarchical clustering. In Hugo Larochelle, Marc’Aurelio Ranzato,
Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Pro-
cessing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020a. URL https://proceedings.neurips.cc/paper/2020/hash/
ac10ec1ace51b2d973cd87973a98d3ab-Abstract.html.

12

https://openreview.net/forum?id=r1eiqi09K7
https://openreview.net/forum?id=r1eiqi09K7
https://proceedings.neurips.cc/paper/2001/hash/f106b7f99d2cb30c3db1c3cc0fde9ccb-Abstract.html
https://proceedings.neurips.cc/paper/2001/hash/f106b7f99d2cb30c3db1c3cc0fde9ccb-Abstract.html
https://doi.org/10.1007/BF02776078
https://proceedings.neurips.cc/paper/2019/file/0415740eaa4d9decbc8da001d3fd805f-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/0415740eaa4d9decbc8da001d3fd805f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/hash/ac10ec1ace51b2d973cd87973a98d3ab-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ac10ec1ace51b2d973cd87973a98d3ab-Abstract.html


Published in Transactions on Machine Learning Research (05/2024)

Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, and Christopher Ré. Low-dimensional
hyperbolic knowledge graph embeddings. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 6901–6914, Online, July 2020b. Association for Computational Linguistics.
doi: 10.18653/v1/2020.acl-main.617. URL https://www.aclweb.org/anthology/2020.acl-main.617.

C. Cruceru, G. Bécigneul, and O.-E. Ganea. Computationally tractable Riemannian manifolds for graph
embeddings. In 37th International Conference on Machine Learning (ICML), 2020.

Michaël Defferrard, Martino Milani, Frédérick Gusset, and Nathanaël Perraudin. DeepSphere: A graph-
based spherical CNN. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=B1e3OlStPB.

M Deza and Mikhail Ivanovich Shtogrin. Embeddings of chemical graphs in hypercubes. Mathematical Notes,
68:295–305, 2000.

Takuma Ebisu and Ryutaro Ichise. Toruse: Knowledge graph embedding on a Lie group. In Sheila A.
McIlraith and Kilian Q. Weinberger (eds.), Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th
AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018, pp. 1819–1826. AAAI Press, 2018. URL https://www.aaai.org/ocs/index.
php/AAAI/AAAI18/paper/view/16227.

Luca Falorsi, Pim de Haan, Tim R. Davidson, Nicola De Cao, Maurice Weiler, Patrick Forré, and Taco S.
Cohen. Explorations in homeomorphic variational auto-encoding, 2018.

Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic entailment cones for learning
hierarchical embeddings. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 1646–1655,
Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL http://proceedings.mlr.press/
v80/ganea18a.html.

Francesco Di Giovanni, Giulia Luise, and Michael M. Bronstein. Heterogeneous manifolds for curvature-aware
graph embedding. CoRR, abs/2202.01185, 2022. URL https://arxiv.org/abs/2202.01185.

Kwang-Il Goh, Michael E Cusick, David Valle, Barton Childs, Marc Vidal, and Albert-László Barabási. The
human disease network. Proceedings of the National Academy of Sciences, 104(21):8685–8690, 2007.

Lev Goldfarb. A new approach to pattern recognition. Progress in pattern recognition, 2:241–402, 1985.

Daniele Grattarola, Daniele Zambon, Lorenzo Livi, and Cesare Alippi. Change detection in graph streams by
learning graph embeddings on constant-curvature manifolds. IEEE Trans. Neural Networks Learn. Syst., 31
(6):1856–1869, 2020. doi: 10.1109/TNNLS.2019.2927301. URL https://doi.org/10.1109/TNNLS.2019.
2927301.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Balaji Krishnapuram,
Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi (eds.), Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San
Francisco, CA, USA, August 13-17, 2016, pp. 855–864. ACM, 2016. doi: 10.1145/2939672.2939754. URL
https://doi.org/10.1145/2939672.2939754.

Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. Learning mixed-curvature representations in
product spaces. In International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=HJxeWnCcF7.

Michael Hahsler and Kurt Hornik. Tsp-infrastructure for the traveling salesperson problem. Journal of
Statistical Software, 23(2):1–21, 2007.

F. Maxwell Harper and Joseph A. Konstan. The MovieLens datasets: History and context. ACM Trans.
Interact. Intell. Syst., 5(4), December 2015. ISSN 2160-6455. doi: 10.1145/2827872. URL https:
//doi.org/10.1145/2827872.

13

https://www.aclweb.org/anthology/2020.acl-main.617
https://openreview.net/forum?id=B1e3OlStPB
https://openreview.net/forum?id=B1e3OlStPB
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16227
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16227
http://proceedings.mlr.press/v80/ganea18a.html
http://proceedings.mlr.press/v80/ganea18a.html
https://arxiv.org/abs/2202.01185
https://doi.org/10.1109/TNNLS.2019.2927301
https://doi.org/10.1109/TNNLS.2019.2927301
https://doi.org/10.1145/2939672.2939754
https://openreview.net/forum?id=HJxeWnCcF7
https://openreview.net/forum?id=HJxeWnCcF7
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872


Published in Transactions on Machine Learning Research (05/2024)

Sigurdur Helgason. Differential geometry, Lie groups, and symmetric spaces. Academic Press New York,
1978. ISBN 0123384605.

Samitha Herath, Mehrtash Tafazzoli Harandi, and Fatih Porikli. Learning an invariant Hilbert space for domain
adaptation. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu,
HI, USA, July 21-26, 2017, pp. 3956–3965. IEEE Computer Society, 2017. doi: 10.1109/CVPR.2017.421.
URL https://doi.org/10.1109/CVPR.2017.421.

Zhiwu Huang and Luc Van Gool. A Riemannian network for SPD matrix learning. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, pp. 2036–2042. AAAI Press, 2017.

Zhiwu Huang, Jiqing Wu, and Luc Van Gool. Building deep networks on Grassmann manifolds. In Sheila A.
McIlraith and Kilian Q. Weinberger (eds.), Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th
AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018, pp. 3279–3286. AAAI Press, 2018. URL https://www.aaai.org/ocs/index.
php/AAAI/AAAI18/paper/view/16846.

William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space.
In Conference in modern analysis and probability (New Haven, Conn., 1982), volume 26 of Contemp.
Math., pp. 189–206. Amer. Math. Soc., Providence, RI, 1984. doi: 10.1090/conm/026/737400. URL
https://doi.org/10.1090/conm/026/737400.

William B. Johnson, Joram Lindenstrauss, and Gideon Schechtman. On Lipschitz embedding of finite metric
spaces in low-dimensional normed spaces. In Geometrical aspects of functional analysis (1985/86), volume
1267 of Lecture Notes in Math., pp. 177–184. Springer, Berlin, 1987. doi: 10.1007/BFb0078145. URL
https://doi.org/10.1007/BFb0078145.

Mahmut Kaya and Hasan Şakir Bilge. Deep metric learning: A survey. Symmetry, 11(9):1066, 2019.

Maleq Khan, Fabian Kuhn, Dahlia Malkhi, Gopal Pandurangan, and Kunal Talwar. Efficient distributed
approximation algorithms via probabilistic tree embeddings. In Proceedings of the twenty-seventh ACM
symposium on Principles of distributed computing, pp. 263–272, 2008.

Thomas N. Kipf and Max Welling. Variational graph auto-encoders. CoRR, abs/1611.07308, 2016. URL
http://arxiv.org/abs/1611.07308.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings, 2017. URL https://openreview.net/forum?id=SJU4ayYgl.

Max Kochurov, Rasul Karimov, and Sergei Kozlukov. Geoopt: Riemannian optimization in PyTorch. ArXiv,
abs/2005.02819, 2020.

Robert Krauthgamer, James R Lee, Manor Mendel, and Assaf Naor. Measured descent: A new embedding
method for finite metrics. In 45th Annual IEEE Symposium on Foundations of Computer Science, pp.
434–443. IEEE, 2004.

Nils M. Kriege. Weisfeiler and leman go walking: Random walk kernels revisited. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems,
volume 35, pp. 20119–20132. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/
paper_files/paper/2022/file/7eed2822411dc37b3768ae04561caafa-Paper-Conference.pdf.

Brian Kulis et al. Metric learning: A survey. Foundations and Trends® in Machine Learning, 5(4):287–364,
2013.

Marc T. Law and Jos Stam. Ultrahyperbolic representation learning. In Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020.

14

https://doi.org/10.1109/CVPR.2017.421
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16846
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16846
https://doi.org/10.1090/conm/026/737400
https://doi.org/10.1007/BFb0078145
http://arxiv.org/abs/1611.07308
https://openreview.net/forum?id=SJU4ayYgl
https://proceedings.neurips.cc/paper_files/paper/2022/file/7eed2822411dc37b3768ae04561caafa-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/7eed2822411dc37b3768ae04561caafa-Paper-Conference.pdf


Published in Transactions on Machine Learning Research (05/2024)

Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of its algorithmic
applications. Combinatorica, 15(2):215–245, 1995. ISSN 0209-9683. doi: 10.1007/BF01200757. URL
https://doi.org/10.1007/BF01200757.

Marilynn Livingston and Quentin F Stout. Embeddings in hypercubes. Mathematical and Computer Modelling,
11:222–227, 1988.

Federico López, Benjamin Heinzerling, and Michael Strube. Fine-grained entity typing in hyperbolic space.
In Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), pp. 169–180,
Florence, Italy, August 2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-4319. URL
https://www.aclweb.org/anthology/W19-4319.

Federico López, Beatrice Pozzetti, Steve Trettel, Michael Strube, and Anna Wienhard. Symmetric spaces for
graph embeddings: A finsler-riemannian approach. In Marina Meila and Tong Zhang (eds.), Proceedings
of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pp. 7090–7101. PMLR, 2021. URL http:
//proceedings.mlr.press/v139/lopez21a.html.

Federico López, Beatrice Pozzetti, Steve Trettel, Michael Strube, and Anna Wienhard. Vector-valued distance
and gyrocalculus on the space of symmetric positive definite matrices. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 34.
Curran Associates, Inc., 2021.

Alex Lubotzky. Discrete groups, expanding graphs and invariant measures, volume 125. Springer Science &
Business Media, 1994.

Julian McAuley and Jure Leskovec. Learning to discover social circles in ego networks. In Proceedings of
the 25th International Conference on Neural Information Processing Systems - Volume 1, NIPS’12, pp.
539–547, Red Hook, NY, USA, 2012. Curran Associates Inc.

Yu Meng, Jiaxin Huang, Guangyuan Wang, Chao Zhang, Honglei Zhuang, Lance Kaplan, and Jiawei
Han. Spherical text embedding. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32, pp.
8208–8217. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
043ab21fc5a1607b381ac3896176dac6-Paper.pdf.

Qatawneh Mohammed. Embedding linear array network into the tree-hypercube network. European Journal
of Scientific Research, 10(2):72–76, 2005.

Maximilian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in
Neural Information Processing Systems 30, pp. 6341–6350. Curran Associates, Inc., 2017. URL https:
//proceedings.neurips.cc/paper/2017/file/59dfa2df42d9e3d41f5b02bfc32229dd-Paper.pdf.

Maximillian Nickel and Douwe Kiela. Learning continuous hierarchies in the Lorentz model of hyperbolic geom-
etry. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pp. 3779–3788, Stockholmsmässan,
Stockholm Sweden, 10–15 Jul 2018. PMLR. URL http://proceedings.mlr.press/v80/nickel18a.html.

Wouter De Nooy, Andrej Mrvar, and Vladimir Batagelj. Exploratory Social Network Analysis with Pajek.
Cambridge University Press, USA, 2011. ISBN 0521174805.

OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2023. Published electronically at
http://oeis.org.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of social representations.
In Sofus A. Macskassy, Claudia Perlich, Jure Leskovec, Wei Wang, and Rayid Ghani (eds.), The 20th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14, New
York, NY, USA - August 24 - 27, 2014, pp. 701–710. ACM, 2014. doi: 10.1145/2623330.2623732. URL
https://doi.org/10.1145/2623330.2623732.

15

https://doi.org/10.1007/BF01200757
https://www.aclweb.org/anthology/W19-4319
http://proceedings.mlr.press/v139/lopez21a.html
http://proceedings.mlr.press/v139/lopez21a.html
https://proceedings.neurips.cc/paper/2019/file/043ab21fc5a1607b381ac3896176dac6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/043ab21fc5a1607b381ac3896176dac6-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/59dfa2df42d9e3d41f5b02bfc32229dd-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/59dfa2df42d9e3d41f5b02bfc32229dd-Paper.pdf
http://proceedings.mlr.press/v80/nickel18a.html
http://oeis.org
https://doi.org/10.1145/2623330.2623732


Published in Transactions on Machine Learning Research (05/2024)

T. N. Pham, X. Li, G. Cong, and Z. Zhang. A general graph-based model for recommendation in event-based
social networks. In 2015 IEEE 31st International Conference on Data Engineering, pp. 567–578, 2015. doi:
10.1109/ICDE.2015.7113315.

Frederic Sala, Chris De Sa, Albert Gu, and Christopher Re. Representation tradeoffs for hyperbolic embeddings.
In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pp. 4460–4469, Stockholmsmässan,
Stockholm Sweden, 10–15 Jul 2018. PMLR. URL http://proceedings.mlr.press/v80/sala18a.html.

Guillaume Salha, Romain Hennequin, Viet Anh Tran, and Michalis Vazirgiannis. A degeneracy framework
for scalable graph autoencoders. In 28th International Joint Conference on Artificial Intelligence (IJCAI),
2019.

Rik Sarkar. Low distortion delaunay embedding of trees in hyperbolic plane. In Marc van Kreveld and Bettina
Speckmann (eds.), Graph Drawing, pp. 355–366, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
ISBN 978-3-642-25878-7.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad. Collective
classification in network data. AI magazine, 29(3):93–93, 2008.

Carl Ludwig Siegel. Symplectic geometry. American Journal of Mathematics, 65(1):1–86, 1943. ISSN
00029327, 10806377. URL http://www.jstor.org/stable/2371774.

Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf, and Gert R.G. Lanckriet.
Hilbert space embeddings and metrics on probability measures. J. Mach. Learn. Res., 11:1517–1561, August
2010. ISSN 1532-4435.

Lovro Šubelj and Marko Bajec. Robust network community detection using balanced propagation. The
European Physical Journal B, 81:353–362, 2011.

Lei Tang and Huan Liu. Leveraging social media networks for classification. Data Mining and Knowledge
Discovery, 23:447–478, 2011.

The Sage Developers. SageMath, the Sage Mathematics Software System (Version x.y.z), 2023.
https://www.sagemath.org.

Alexandru Tifrea, Gary Bécigneul, and Octavian-Eugen Ganea. Poincare GloVe: Hyperbolic word embeddings.
In 7th International Conference on Learning Representations, ICLR, New Orleans, LA, USA, May 2019.
URL https://openreview.net/forum?id=Ske5r3AqK7.

Salil P Vadhan et al. Pseudorandomness, volume 7. Now Publishers, Inc., 2012.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=rJXMpikCZ.

Lucas Vinh Tran, Yi Tay, Shuai Zhang, Gao Cong, and Xiaoli Li. HyperML: A boosting metric learning
approach in hyperbolic space for recommender systems. In Proceedings of the 13th International Conference
on Web Search and Data Mining, WSDM ’20, pp. 609–617, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN 9781450368223. doi: 10.1145/3336191.3371850. URL https://doi.org/10.
1145/3336191.3371850.

Harit Vishwakarma and Frederic Sala. Lifting weak supervision to structured prediction. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing
Systems, volume 35, pp. 37563–37574. Curran Associates, Inc., 2022. URL https://proceedings.neurips.
cc/paper_files/paper/2022/file/f463d31ed2fdd7b0ec585c041ec1baa8-Paper-Conference.pdf.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying graph
convolutional networks. In International conference on machine learning, pp. 6861–6871. PMLR, 2019.

16

http://proceedings.mlr.press/v80/sala18a.html
http://www.jstor.org/stable/2371774
https://openreview.net/forum?id=Ske5r3AqK7
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1145/3336191.3371850
https://doi.org/10.1145/3336191.3371850
https://proceedings.neurips.cc/paper_files/paper/2022/file/f463d31ed2fdd7b0ec585c041ec1baa8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/f463d31ed2fdd7b0ec585c041ec1baa8-Paper-Conference.pdf


Published in Transactions on Machine Learning Research (05/2024)

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=ryGs6iA5Km.

Tong Yang, Long Sha, and Pengyu Hong. NagE: Non-Abelian Group Embedding for Knowledge Graphs, pp.
1735–1742. Association for Computing Machinery, New York, NY, USA, 2020. ISBN 9781450368599. URL
https://doi.org/10.1145/3340531.3411875.

Wei Zhao, Federico Lopez, J Maxwell Riestenberg, Michael Strube, Diaaeldin Taha, and Steve Trettel.
Modeling graphs beyond hyperbolic: Graph neural networks in symmetric positive definite matrices. In
Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, 2023.

17

https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1145/3340531.3411875


Published in Transactions on Machine Learning Research (05/2024)

A Embedding Spaces

Metric Spaces. Let X be a non-empty set. A metric space is an ordered pair (X, d), where d : X × X → R
is a function, called the metric or distance function, that satisfies the following properties for all x, y, z ∈ X:
(i) d(x, y) ≥ 0, (ii) d(x, y) = 0 if and only if x = y, (iii) d(x, y) = d(y, x), and (iv) d(x, z) ≤ d(x, y) + d(y, z).
A map f : X → Y between two metric spaces (X, dX) and (Y, dY ) is an isometric embedding if it preserves
distances, i.e., dY (f(x1), f(x2)) = dX(x1, x2), ∀ x1, x2 ∈ X.

Riemannian Manifolds. Let M be a smooth manifold, p ∈ M be a point, and TpM be the tangent
space at the point p. A Riemannian manifold (M, g) is a smooth manifold M equipped with a Riemannian
metric g given by a smooth inner product gp : TpM × TpM → R at each point p ∈ M . Euclidean space is the
simplest example of a Riemannian manifold. Let V be any n-dimensional real vector space endowed with the
Euclidean metric g given by g(v, w) = ⟨v, w⟩ for any p ∈ V and any v, w ∈ TpV ∼= V .

Normed Spaces. A normed space is a vector space V over the real numbers R or complex numbers C
equipped with a norm. A norm is a function ∥·∥ : V → [0, +∞) satisfying the following properties for all
vectors x, y ∈ V and scalars α ∈ F: (i) ∥x∥ ≥ 0, with equality if and only if x = 0, (ii) ∥αx∥ = |α|∥x∥, and
(iii) ∥x + y∥ ≤ ∥x∥ + ∥y∥. Normed spaces induce metric spaces via the induced distance function, defined as
d(x, y) = ∥x − y∥. The p-norms are among the most important examples of norms. For a real number p ≥ 1,
the p-norm of a vector x ∈ Rd is given by ∥x∥p := (|x1|p + |x2|p + · · · + |xd|p)

1
p . The definition is extended

for p = ∞ as ∥x∥∞ := max1≤i≤d|xi|. The space Rd equipped with p-norm is denoted as ℓd
p. Here we focus on

the cases p = 1, 2, and ∞.

Pseudo-Euclidean Spaces. Denote the product Rd+ × Rd− , where d+ and d− are non-negative integers,
by Rd+,d−

PSE , and write any element x ∈ Rd+,d−

PSE as x = (x+, x−), where x+ ∈ Rd+ and x− ∈ Rd− . Then
the pseudo-Euclidean space Rd+,d−

PSE is the set Rd+ × Rd− with the squared distance function defined by
d2

PSE(x, y) = ∥x+ − y+∥2
2 − ∥x− − y−∥2

2, where ∥ · ∥2
2 is the square of the ℓ2 norm on the respective space.

Hyperbolic Space. Hyperbolic space is a Riemannian manifold with a constant negative curvature. There
are several models of hyperbolic space, such as the Poincaré ball model and Lorentz model. The models
are essentially the same in a mathematical sense (they are pairwise isometric), but one model can have
computational advantages over another.
Definition 1 (Poincaré Ball Model). Let ∥ · ∥ be the Euclidean norm. Given a negative curvature c, the
Poincaré ball model is a Riemannian manifold (Bn

c , gB
x ), where Bn

c =
{

x ∈ Rn : ∥x∥2 < −1/c
}

is an open ball
with radius 1/

√
|c| and gB

x = (λc
x)2Id, where λc

x = 2/(1 + c∥x∥2
2) and Id is the identity matrix.

Product Manifold. Let M1, M, . . . , Mk be a sequence of smooth manifolds. The product manifold is given
by the Cartesian product M = M1 × M2 × · · · × Mk. Each point p ∈ M has the coordinates p = (p1, . . . , pk),
with pi ∈ Mi for all i. Similarly, a tangent vector v ∈ TpM can be written as (v1, . . . , vk), with each
vi ∈ TpiMi. If each Mi is equipped with a Riemannian metric gi, then the product manifold M can be given
the product metric where g(v, w) =

∑k
i=1 gi(vi, wi).

Riemannian Symmetric Spaces. Riemannian symmetric spaces are connected Riemannian manifolds
such that the geodesic symmetry2 at each point defines a global isometry of the space. For simply connected
manifolds this condition is equivalent to having covariantly constant curvature tensor. A key consequence of
the definition is that symmetric spaces are homogeneous manifolds. Intuitively, this means that the manifold
“looks the same" at every point. Furthermore, simply connected symmetric spaces decompose into products of
irreducible symmetric spaces and Euclidean space. Irreducible symmetric spaces can be described in terms of
semisimple Lie groups. Basic examples of Riemannian symmetric spaces include Euclidean spaces, hyperbolic

2For any point p in any Riemannian manifold, there exists a sufficently small ϵ > 0 such that the map Sp : B(p, ϵ) → B(p, ϵ)
defined by Sp(c(t)) = c(−t) is well-defined for any unit-speed geodesic c : (−ϵ, ϵ) → B(p, ϵ) with c(0) = p. Such a map Sp is
called the geodesic symmetry at p.
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Space Underlying Set Distance

Rn
ℓp

normed space Rn d(x, y) = ∥x − y∥p

Hn
R hyperbolic space {Rn | ∥x∥2 ≤ 1} d(x, y) = arcosh

(
1 + 2 ∥x−y∥2

2
(1−∥x∥2

2)(1−∥y∥2
2)

)
SPDk

R SPD (López et al., 2021) symmetric positive definite k × k matrices d(x, y) = ∥(λi(x−1y))k
i=1∥2,

where λi(x−1y) is the ith eigenvalue of x−1y

Siegel spaces (López et al., 2021)
Sk

R upper half model {Z = X + iY ∈ Sym(n,C) | Y >> 0} see Algorithm 1
Sk

F∞
upper half model {Z = X + iY ∈ Sym(n,C) | Y >> 0} see Algorithm 1

Sk
F1

upper half model {Z = X + iY ∈ Sym(n,C) | Y >> 0} see Algorithm 1
Bk

R bounded symmetric domain model {Z ∈ Sym(n,C) | Id − Z∗Z >> 0} see Algorithm 1
Bk

R bounded symmetric domain model {Z ∈ Sym(n,C) | Id − Z∗Z >> 0} see Algorithm 1
Bk

R bounded symmetric domain model {Z ∈ Sym(n,C) | Id − Z∗Z >> 0} see Algorithm 1

Rd+,d−

PSE pseudo-Euclidean space (Vishwakarma & Sala, 2022) Rd+ × Rd− d(x, y) =
√

∥x+ − y+∥2
2 − ∥x− − y−∥2

2 (when defined),
where x = (x+, x−) and y = (y+, y−)

M1 × M2 product space M1 × M2
d(x, y) =

√
d1(x1, y1)2 + d2(x2, y2)2,

where x = (x1, x2) and y = (y1, y2)

Table 7: A summary of the embedding spaces.

spaces and spheres. In the following we will describe two further special cases: Siegel space and the space of
symmetric positive definite (SPD) matrices.

Siegel spaces, HypSPDn, are matrix versions of the hyperbolic plane, accommodating many products of
hyperbolic planes and the copies of SPD as submanifolds. These spaces support Finsler metrics that induce
the ℓ1 and the ℓ∞ metric on the Euclidean subspaces. HypSPDn has the two following models with n(n + 1)
dimensions, both of which are open subsets of the space Sym(n,C) over C. These two models generalize the
Poincaré disk and the upper half plane model of the hyperbolic space.
Definition 2 (Bounded Symmetric Domain Model). The bounded symmetric domain model for HypSPDn

generalizes the Poincaré disk. It is given by Bn := {Z ∈ Sym(n,C)| Id − Z∗Z >> 0}.
Definition 3 (Siegel Upper Half Space Model). The Siegel upper half space model for HypSPDn generalizes
the upper half plane model of the hyperbolic plane by Sn := {Z = X + iY ∈ Sym(n,C)| Y >> 0}.

There exists an isomorphism from Bn to Sn given by the Cayley transform, which is a matrix analogue of the
familiar map from the Poincare disk to upper half space model of the hyperbolic plane:

Z 7→ i(Z + Id)(Z − Id)−1.

We refer readers to Siegel (1943) and López et al. (2021) for an in-depth overview of Siegel spaces and their
applications in graph embeddings.
Definition 4 (SPD Space). SPDn is the space of positive definite real symmetric n × n matrices, given by
SPD(n,R) := {X ∈ Sym(n,R)| X >> 0}. It has the structure of a Riemannian manifold of non-positive
curvature of n(n + 1)/2 dimensions. The Riemannian metric on SPDn is defined as follows: if U, V ∈ Sn are
tangent vectors based at P ∈ SPDn, their inner product is given by ⟨U, V ⟩P = Tr(P −1UP −1V ).

The tangent space to any point of SPDn can be identified with the vector space Sn of all real symmetric n × n
matrices. SPDn is more flexible than Euclidean or hyperbolic geometries, or products thereof. In particular,
it contains n-dimensional Euclidean subspaces, (n − 1)-dimensional hyperbolic subspaces, products of ⌊ n

2 ⌋
hyperbolic planes, and many other interesting spaces as totally geodesic submanifolds, see the reference
(Helgason, 1978) for an in-depth introduction.

B Graph Reconstruction Loss Function

The graph reconstruction task aims to empirically quantify the capacity of a space for embedding graph
structure given through its node-to-node shortest paths. Recent work has generally employed local, global, or
hybrid loss functions, focusing on close neighborhood information, all-node interactions, or an intermediate of
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Finite Metric Spaces Embedding Space Distortion Bound Reference

Complete graph (Kn) l
⌈log2(n)⌉
1 O(1) (Linial et al., 1995)

Tree (Tn) ℓ
O(log n)
∞ O(1) (Linial et al., 1995)

Planar graph with n vertices ℓ
O(log n)
∞ O(1) (Krauthgamer et al., 2004)

Expander with n vertices ℓp of any dimension (2 ≥ p ≥ 1) Ω(log n) (Linial et al., 1995)
Metric space (X, d) with n points ℓ

O(log n)
p (for any 1 ≤ p ≤ 2) O(log n) (Linial et al., 1995)

Metric space (X, d) with n points ℓ
O(log2 n)
p (for any p > 2) O(log n) (Linial et al., 1995)

Table 8: A summary of theoretical results.

both. Local loss functions emphasize preserving neighborhoods, exemplified by the loss function

L(f) = −
∑

(u,v)∈E

log
exp

(
− dY (f(u), f(v))

)∑
w∈N (u) exp

(
− dY (f(u), f(w))

) .

from Nickel & Kiela (2017; 2018), where N (u) = {w | (u, w) ̸∈ E} ∪ {v} is the set of negative examples for u
(including v). The resulting embeddings are typically favored by rank-based evaluation metrics such as mean
average precision mAP. On the other hand, global functions emphasize preserving distances directly via loss
functions motivated by generalized MDS (Bronstein et al. (2006)), exemplified by the loss function

L(f) =
∑
u∼v

∣∣∣∣∣
(

dY (f(u), f(v))
dG(u, v)

)2
− 1

∣∣∣∣∣ ,

from Gu et al. (2019), and which we use in this work. The resulting embeddings are typically favored
by average distortion Davg. Lastly, hybrid loss functions, such as the Riemannian Stochastic Neighbor
Embedding (RSNE) from Cruceru et al. (2020), aim to balance the emphasis on local and global, sometimes
with a tunable parameter for controlling the optimization goal.

We note that though we employ a global loss function, the resulting normed space embeddings notably
perform well on both Davg and mAP.

C Metric Learning

Metric learning is a machine learning approach concerned with learning distance metrics in an embedding
space, with the aim of using the distances between data points as features for tasks such as classification,
regression, clustering, and image retrieval. In connection with our work, metric learning pipelines broadly
consist of a learnable embedding function f : X → Y that maps data from an input space X into a target
embedding space Y equipped with a distance metric dY , a machine learning component that takes the values
of the distance df (·, ·) := dY (f(·), f(·)) as input features for a task, and appropriate optimization algorithms
for learning the parameters in the pipeline. The embedding function and the parameters of the machine
learning components (if any) could be jointly learned in a supervised manner or otherwise hand-crafted
or leveraged from embeddings trained on another task. In deep metric learning, typically, the embedding
function and the machine learning component are differentiable, and parameter optimization takes place by
minimizing or maximizing an appropriate loss function with gradient descent. For reference, we recommend
the following excellent surveys on metric learning: Kulis et al. (2013); Kaya & Bilge (2019). We note that
many geometric machine learning pipelines, including ours, align with the metric learning paradigm, where
the metric space has a Riemannian manifold structure. Check, for example, Nickel & Kiela (2017; 2018);
Chami et al. (2019a); Cruceru et al. (2020); López et al. (2021); Giovanni et al. (2022).

We summarize the metric learning pipelines used in this work in Table 9. A shallow embedding is a function
that simply assigns each entity to a point in the target embedding space, with these points serving as the
learnable parameters. On the other hand, a graph neural network maps the features of a node and its
neighbors to a point in the target space, with the network weights being the learnable parameters.
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Task Embedding Function ML Component Loss Function

Graph Reconstruction
(§4.1, D.1) shallow embedding — distance-based loss (eq. 1)

Link Prediction
(§4.2, D.2) graph neural network Fermi-Dirac decoder (eq. 4) binary cross-entropy (eq. 5)

Recommender System
(§4.3, D.3) shallow embedding similarity score (eq. 6) hinge loss (eq. 7)

binary cross-entropy (eq. 8)

Table 9: Summary of metric learning pipelines.

Graph Nodes Edges Triples Grid
Layout

Tree
Valency

Tree
Height

4D Grid 625 2000 195,000 (5)4 - -
Tree 364 363 66,066 - 3 5

Tree × Tree 225 420 25,200 - 2 3
Tree ⋄ Grids 775 1,270 299,925 5 × 5 2 4
Grid ⋄ Trees 775 790 299,925 5 × 5 2 4

Table 10: Characteristics of synthetic graphs.

D Experiments

Hardware and Code Release. All experiments were executed on an Intel(R) Xeon(R) CPU E5-2650
computer, equipped with 48 CPUs operating at 2.2 GHz and a single Tesla P40 GPU with a 24GB of memory
running on CUDA 11.2.

D.1 Graph Reconstruction

Implementation Details. In all setups, we use the RAdam optimizer (Bécigneul & Ganea, 2019), and
run the same grid search to to train graph embeddings. The implementation of all baselines are taken from
Geoopt (Kochurov et al., 2020) and López et al. (2021). We train for 3000 epochs, and stop training when
the average distortion has not decreased for 200 epochs. We experiment with three hyperparameters: (a)
learning rate ∈ {0.1, 0.01, 0.001}; (b) batch size ∈ {512, 1024, 2048, −1} with −1 as the node count within a
graph and (c) maximum gradient norm ∈ {10, 50, 250}. Table 10 and 11 report the stats of all the synthetic
and real-world graphs.

Evaluation Metrics. We evaluate the quality of the learned embeddings using distortion and precision
metrics. Consider a graph G, a target metric space Y , and a metric embedding f : G → Y . The distortion of
the embedding of a pair of nodes u, v is given by:

distortion(u, v) = |dY (f(u), f(v)) − dG(u, v)|
dG(u, v) .

Graph Nodes Edges Triples

USCA312 312 48,516 48,516
bio-diseasome 516 1,188 132,870
csphd 1,025 1,043 524,800
road-euroroad 1,039 1,305 539,241
facebook 4,039 88,234 8,154,741

Margulis 625 2,500 195,000
Paley 101 5,050 5,050
Chordal 523 1,569 136,503

Table 11: Characteristics of real-world and expander graphs.
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BIO-DISEASOME CSPHD
(|V |, |E|) (516, 1188) (1025, 1043)

Davg mAP Davg mAP

Stress Loss
R20

ℓ1
2.79±0.01 87.09 2.16±0.01 45.55

R20
ℓ2

4.41±0.02 76.71 4.51±0.01 39.05
R20

ℓ∞ 1.88±0.01 88.86 1.54±0.01 69.00
H20

R 11.34±0.05 66.55 30.88±0.06 19.62

Distortion Loss
R20

ℓ1
1.62±0.01 89.14 1.59±0.02 52.34

R20
ℓ2

3.83±0.01 76.31 4.04±0.01 47.37
R20

ℓ∞ 0.53±0.01 98.24 0.42±0.01 99.28
H20

R 6.83±0.08 91.26 22.42±0.23 60.24

Table 12: Comparison of distortion and stress loss functions.

We denote the average of distortion over all pairs of nodes by Davg.

The other metric that we consider is the mean average precision (mAP). It is a ranking-based measure for
local neighborhoods that does not track explicit distances. For the mean average precision (mAP) metric,
consider G = (V, E) as a graph and Na as the neighborhood of the node a ∈ V . Let Ra,bi

be the smallest
neighborhood of f(a) in the space Y that contains f(bi), with f : G → P as a metric embedding. Then, mAP
can be defined as follows:

mAP(f) = 1
|V |

∑
a∈V

1
deg(a)

|Na|∑
i=1

|Na ∩ Ra,bi |
|Ra,bi |

.

mAP quantifies how well the embedding approximates graph isomorphism, applicable only to unweighted
graphs. mAP measures the average discrepancy between the neighborhood of each node u ∈ V and the
neighborhood of f(u) ∈ Y . It’s important to note that an embedding with zero average distortion guarantees
a perfect mean average precision score (i.e., 100.00), but the inverse is not always true: an embedding that
effectively preserves the adjacency structure might not be an isometry.

Distortion Loss vs. Stress Loss. We note that distance-based loss functions inspired by generalized
MDS (Bronstein et al., 2006) include distortion and stress loss functions. Distortion loss, which is the main
loss function we use for learning embeddings in this work, is given by:

Ldistortion(f) =
∑
u∼v

∣∣∣∣∣
(

dY (f(u), f(v))
dG(u, v)

)2
− 1

∣∣∣∣∣ . (2)

(Compare eq. (2) with eq. (1).) On the other hand, strain loss, also known as mean squared error loss, is
given by:

Lstress(f) =
∑
u∼v

(dG(u, v) − dY (f(u), f(v)))2
. (3)

In Table 12, we compare the impacts of distortion loss and mean squared error loss functions on graph
embeddings for graph reconstruction. Our results show that with respect to the Davg and mAP evaluation
metrics, ℓ∞ embeddings trained with both loss functions consistently outperform the other embeddings, and
for each space, the embeddings trained with the distortion loss outperform the embeddings trained with
mean squared error. This justifies our choice for learning embeddings with distortion loss.

Space Dimension. In Table 14, 15, 16, and 13, we vary the dimension size on datasets with varying
curvatures. Our results show that for ℓ1 and ℓ∞, performance generally improves as dimension grows bigger.
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We also observe that increasing the dimension does not seem to help much when there is mismatch between
the geometry of a space and a graph, such as is the case with Rn

ℓ2
and Hn

ℓR
on Grid, and Hn

ℓR
on Fullerenes.

Lastly, we highlight that López et al. (2021) similarly evaluated embeddings on the BIO-DISEASOME
dataset in Euclidean, hyperbolic and spherical spaces, their products, and Siegel space at dimension n = 306;
our low-dimensional normed spaced embeddings outperformed their high-dimensional embeddings.

Choice of Norm. The choice of the norm could be considered a hyperparameter to be tuned. In our
experiments, ℓ∞ performs best in the graph reconstruction task on 10/13 datasets, whereas for downstream
tasks (link prediction and recommender systems), ℓ1 performs consistently best in almost all cases on five
datasets. So, we recommend using ℓ∞ for graph reconstruction and ℓ1 for downstream tasks. Alternatively,
we recommend the product of ℓ1 and ℓ∞ in all setups, as that product performs consistently as the second
best option behind ℓ1 and ℓ∞.

Link Prediction. We evaluate the performance of task-agnostic shortest-path metric embeddings in a link
prediction task. Here, task-agnostic and task-specific refer to the technique used for training the embeddings.
We first embed the nodes of the Cora and Citeseer datasets by minimizing the distance-based distortion
loss defined in eq. (1) using a training set of existing edges. We note that no node features are used in this
process. Subsequently, we train a logistic regression classifier on the Hadamard product of source and target
node embeddings to predict whether a link exists between the nodes for a training set that includes existing
and non-existing edges. Lastly, we evaluate the classifier on a test set of existing and non-existing edges.
We follow the same experimental setup for link prediction from Appendix D.2 and tune hyperparameters
(including dimension size and learning rate) on the development set.

Table 17 compares the results for link prediction using the task-agnostic and task-specific embeddings on
the Cora and Citeseer datasets. (The results for the task-specific embeddings are taken from Table 5.)
We observe that ℓ1 space performs best among task-agnostic embeddings on these link prediction datasets,
but overall, task-agnostic embeddings underperform task-specific counterparts in our setup. Even though
shortest-path metric embeddings capture enough information to enable non-trivial accuracy in link prediction,
they fall short of capturing the more nuanced information present in node features and higher-order proximity,
resulting in performance that lags behind task-specific embeddings that do capture the aforementioned
information. Thus, among the embeddings considered for link prediction in this work, we recommend
task-specific ℓ1 GNN embeddings for practitioners.

n = 20 n = 36 n = 66
Davg mAP Davg mAP Davg mAP

Rn
ℓ1

1.59±0.02 52.34 1.32±0.01 68.35 1.11±0.01 82.40
Rn

ℓ2
4.04±0.01 47.37 3.84±0.01 62.35 3.77±0.02 68.86

Rn
ℓ∞ 0.42±0.01 99.28 0.50±0.01 99.16 0.47±0.01 99.57
Hn

R 22.42±0.23 60.24 21.81±0.20 74.62 21.54±0.15 75.45

Table 13: Results on CSPHD.

n = 20 n = 36 n = 66
Davg mAP Davg mAP Davg mAP

Rn
ℓ1

1.08±0.00 100.00 0.36±0.00 100.00 0.21±0.00 100.00
Rn

ℓ2
11.24±0.00 100.00 11.23±0.00 100.00 11.22±0.00 100.00

Rn
ℓ∞ 0.13±0.00 100.00 0.02±0.00 100.00 0.02±0.00 100.00
Hn

R 25.23±0.05 63.74 25.30±0.05 68.69 25.25±0.05 68.78

Table 14: Results on Grid (zero curvature).
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n = 20 n = 36 n = 66
Davg mAP Davg mAP Davg mAP

Rn
ℓ1

1.62±0.02 73.56 0.96±0.02 90.61 0.68±0.02 97.80
Rn

ℓ2
3.92±0.04 42.30 3.13±0.02 55.19 2.77±0.02 55.59

Rn
ℓ∞ 0.15±0.01 100.00 0.02±0.01 100.00 0.02±0.01 100.00
Hn

R 0.54±0.02 100.00 0.43±0.02 100.00 0.51±0.02 100.00

Table 15: Results on Tree (negative curvature).

n = 20 n = 36 n = 66
Davg mAP Davg mAP Davg mAP

Rn
ℓ1

3.32±0.02 100.00 3.06±0.03 100.00 2.97±0.03 100.00
Rn

ℓ2
8.53±0.03 100.00 8.45±0.03 100.00 8.25±0.03 100.00

Rn
ℓ∞ 2.95±0.02 100.00 1.96±0.01 100.00 1.59±0.01 100.00
Hn

R 25.18±0.05 84.13 25.34±0.04 84.51 25.22±0.05 84.89

Table 16: Results on Fullerenes-140 (positive curvature).

D.2 Link Prediction

Implementation Details. For each dataset, we use grid search to tune hyperparameters on the development
set. Our hyperparameters include (a) dimension ∈ {32, 64, 128} and (b) learning rate ∈ {0.1, 0.01, 0.001}.
We set batch size to the number of nodes present in each graph dataset. We train for 1000 epochs and stop
training when the loss on the development set has not been decreased for 200 epochs. We report the average
performance in AUC across five runs. Following Chami et al. (2019a), we use the Fermi-Dirac decoder to
compute the likelihood of a link between node pairs, and generate negative sets by randomly selecting links
from non-connected node pairs. All graph neural networks are trained by optimizing the cross-entropy loss
function. We extend the implementation of Poincaré GCN (Chami et al., 2019a) to support the other three
architectures, enabling them to operate in both hyperbolic space and product spaces. We reduce the learning
rate by a factor of 5 if GNNs cannot improve the performance after 50 epochs for hyperbolic and product
spaces.

Model. Given a graph G = (V, E) with a vertex set V and edge set E , node features xu ∈ Rd for each node
u ∈ V, and a target metric space (Z, dZ), a GNN is used to map each node u to an embedding zu ∈ Z. The
Fermi-Dirac decoder is used to compute probability scores for edges:

pu,v =
(

1 + exp
(

d2
Z(zu, zv) − r

t

))−1

, (4)

where pu,v is the probability of an edge existing between nodes u and v, dZ(zu, zv) is the distance between the
embeddings of the nodes, r is a learnable parameter that adjusts the decision boundary, and t is a learnable
temperature parameter that controls the sharpness of the decision boundary.

Loss Function. Given a training set Etrain := Epos ∪ Eneg consists of existing edges Epos and non-existing
edges Eneg, the binary cross-entropy loss used to train the model is given by:

L = −

 ∑
(u,v)∈Epos

log(σ(pu,v)) +
∑

(u,v)∈Eneg

log(1 − σ(pu,v))

 , (5)

where pu,v is the output of the model and σ(x) = 1
1+e−x is the sigmoid function.

Space Dimension. In Table 18, we vary the dimension size on the Cora dataset for link prediction. Our
results show that, ℓ1 performs consistently best across GNNs and dimensions from 32 to 128, and overall, the
results show improvement with increased dimension.
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Embedding Cora Citeseer

Low-Distortion Embeddings (task-agnostic)
Rn

ℓ1
81.3±0.3 76.3±0.5

Rn
ℓ2

79.5±0.4 73.8±0.3
Rn

ℓ∞ 77.0±0.3 76.3±0.5

GCN Embeddings (task-specific)
GCN in Rn

ℓ1
93.4±0.3 93.1±0.3

GCN in Rn
ℓ2

92.1±0.5 91.4±0.5
GCN in Rn

ℓ∞ 89.5±0.4 90.3±0.4

Table 17: Results for link prediction on Cora and Citeseer using different embeddings.

n = 32 n = 64 n = 128
GCN GAT SGC GIN GCN GAT SGC GIN GCN GAT SGC GIN

Rn
ℓ1

93.4±0.3 91.2±0.3 92.5±0.3 90.2±0.4 92.1±0.3 92.2±0.3 93.7±0.5 91.6±0.5 92.5±0.3 92.8±0.4 93.0±0.3 91.0±0.3
Rn

ℓ2
91.3±0.3 91.1±0.2 90.7±0.1 90.2±0.5 91.5±0.5 90.9±0.5 90.8±0.3 89.5±0.5 92.1±0.5 91.7±0.5 91.1±0.3 89.2±0.5

Rn
ℓ∞ 89.0±0.4 86.2±0.2 87.6±0.3 87.4±0.4 89.1±0.4 87.2±0.5 88.8±0.3 88.4±0.5 89.5±0.4 88.2±0.5 87.8±0.3 87.2±0.5
Hn

R 84.8±0.3 84.3±0.2 87.7±0.3 86.6±0.3 86.1±0.3 89.0±0.5 88.7±0.3 85.9±0.3 86.1±0.5 92.1±0.6 89.9±0.4 87.7±0.3

Table 18: Results on Cora for link prediction.

D.3 Recommender Systems

Implementation Details. We follow a metric learning approach Vinh Tran et al. (2020), with the
implementation of all baselines taken from López et al. (2021). We minimize the hinge loss function for
ml-100k and last.fm, while minimizing the binary cross-entropy (BCE) function for MeetUp. We use the
Rsgd optimizer (Bonnabel, 2011) to tune graph node embeddings. In all setups, we run the same grid search
to train recommender systems. We train for 500 epochs, reduce the learning rate by a factor of 5 if the model
does not improve the performance after 50 epochs. We stop training when the loss on the dev set has not been
decreased for 50 epochs. We use the burn-in strategy (Nickel & Kiela, 2017; Cruceru et al., 2020) that trains
recommender systems with a 10 times smaller learning rate for the first 10 epochs. We experiment with three
hyperparameters: (a) learning rate ∈ {0.1, 0.01, 0.001}; (b) batch size ∈ {512, 1024, 2048} and (c) maximum
gradient norm ∈ {5, 10, 50}. Table 19 reports the stats of all the bipartite graphs in the recommendation task.

Model. Given a set of entities E and a target metric space (X, dX), we associate with each entity e ∈ E an
embedding f(e) ∈ X and bias terms be,lhs, be,rhs ∈ R, where f : E → X is a learnable embedding function.
Given a pair of entities e1, e2 ∈ E , the model computes a similarity score ϕ(e1, e2) as follows

ϕf,b,X(e1, e2) := be1,lhs + be2,rhs − d2
X(f(e1), f(e2)). (6)

Subtracting the square distance ensures that the entities whose embeddings are closer in the metric space
have a higher score, making it a suitable representation of similarity. The model we use is shallow: It learns
a collection of points f(e) ∈ M indexed by the entities e ∈ E . In our setting, E = U ∪ V , where U is the space
of users and V is the space of items.

Hinge Loss Function. Given a set T = {(u, v)} of observed user-item interactions, the hinge loss function
is given by:

L =
∑

(u,v)∈T

∑
(u,w)̸∈T

[m + ϕf,b,X(u, v) − ϕf,b,X(u, w)]+, (7)

where w is an item the user u has not interacted with, m is the hinge margin, and [z]+ = max(0, z). For each
user u, we generate a negative set by randomly selecting 100 items that the user has not interacted with.

Binary Cross-Entropy Loss Function. Let T1 and T2 be a set of observed user-item interactions and a set
of non-interactions, respectively. Consider T = T1 ∪T2 as the collection of all interactions and non-interactions.
For each pair (u, v) ∈ T , let yu,v ∈ {0, 1} denote the true label: If the pair belongs to T1, then yu,v = 1,
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Dataset Users Items Interactions Density (%)

ml-100k 943 1,682 100,000 6.30
last.fm 1,892 17,632 92,834 0.28
meetup-nyc 46,895 16,612 277,863 0.04

Table 19: Recommender system dataset stats

`20
1 Normed Space

0.0 0.5 1.0

`20
2 Euclidean Space

0.0 0.5 1.0

`20
∞ Normed Space

0.0 0.5 1.0

H20
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0.0 0.5 1.0

H10
R ×H10
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Figure 4: Embedding distortion shown in various spaces on a small expander-chordal graph. Color range
indicates distortion levels.

otherwise yu,v = 0. The BCE loss function is given by:

L =
∑

(u,v)∈T

−yu,v · log(σ(ϕf,b,X(u, v))) − (1 − yu,v) · log(1 − σ(ϕf,b,X(u, v))), (8)

where σ(x) = 1
1+e−x is the sigmoid function. For each user u, we generate a negative set by randomly selecting

one item that the user has not interacted with.

E Supplementary Graph Reconstruction Analysis

Results of Expander Graphs. For readability, we choose to embed a small expander graph into various
spaces and visually compare embedding distortion in these spaces, as displayed in Figure 4. We find that
both normed spaces perform much better than other spaces. Further, we see that the graph undergoes small
distortion in the ℓ1 space and unnoticeable distortion in the ℓ∞ space when dealing with a small expander,
although embedding expanders into normed spaces is a well-known challenge (Linial et al., 1995, Proposition
4.2).

F Trees, Grids, and Fullerenes

In our Large Graph Representational Capacity experiments (Section 4), we used trees, grids, and fullerenes as
discretizations of manifolds with negative, zero, and positive curvatures, respectively. Refer to Figure 5 for a
visual illustration of these discretizations. In chemistry, a fullerene is any molecule composed entirely of carbon
in the form of a hollow spherical, ellipsoidal, or cylindrical mesh. In our experiments, we used combinatorial
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Figure 5: Top: surfaces of negative, zero, and positive curvature (from left to right). Bottom: graphs of
negative, zero, and positive curvature (from left to right).

graphs representing spherical fullerenes. We generated the fullerene graphs using the graphs.fullerenes()
function from SageMath (The Sage Developers, 2023). The number of possible fullerenes grows fast as a
function in the number of nodes (OEIS Foundation Inc., 2023, A007894), and we used the first fullerene
graph generated by graphs.fullerenes() for each node count. The graph data for the specific fullerenes
used in our experiments can be found in our code repository, ensuring reproducibility and facilitating further
analysis. Trees and grids are well-known and require no further description.
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