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Abstract—Designing deep networks robust to adversarial ex-
amples remains an open problem. Recently, it was shown that
adversaries relying on only top-1 feedback (i.e., the hard-label)
from an image classification model can arbitrarily shift an image
towards an intended target prediction. Likewise, these hard-
label adversaries enjoy performance comparable to first-order
adversaries relying on the full model gradient. It was also shown
in the gradient-level setting that regular adversarial examples
leave the data manifold, while their on-manifold counterparts
are in fact generalization errors. In this paper, we argue that
query efficiency in the hard-label setting is also connected to
an adversary’s traversal through the data manifold. To explain
this behavior, we propose an information-theoretic argument
based on a noisy manifold distance oracle, which leaks manifold
information through the adversary’s distribution of gradient
estimates. Through numerical experiments of manifold-gradient
mutual information, we show this behavior acts as a function of
the effective problem dimensionality. On high-dimensional real-
world datasets and multiple hard-label attacks using dimension
reduction, we observe the same behavior to produce samples
closer to the data manifold. This can result in up to 10x
decrease in the manifold distance measure, regardless of the
model robustness. Our results suggest that our variant of hard-
label attack can find a higher concentration of generalization
errors than previous techniques, leading to improved worst-case
analysis for model designers.

Index Terms—adversarial machine learning, zero knowledge
attacks

I. INTRODUCTION

Adversarial examples against deep learning models have
become a persistent topic of investigation in recent years,
as they offer a principled approach to studying worst-case
behavior in machine learning systems [3], [4]. Formal methods
for discovering adversarial examples were originally conceived
by assuming gradient-level (i.e., first-order) access to machine
learning models, and these became the first techniques to
reach widespread attention within the deep learning com-
munity [5]–[9]. In order to compute the necessary gradient
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Figure 1. Our geometric interpretation of hard-label attack behavior
in the context of boundary tilting [1] (red) around original sample
x0 within a green ϵ-ball: (xa) zeroth-order attack using any search
direction, leaving the manifold, (xb) an efficient zeroth-order attack
(and dimension-reduced variants, denoted by smaller points), which
find on-manifold directions and maximize manifold-gradient mutual
information through dimension-reduction, and (xc) Stutz et al. [2]-
style attack on the manifold, where adversarial samples are least
concentrated, and may not be found within the ϵ radius.

information, gradient-level techniques required access to the
sensitive model parameters and a sizeable query budget. These
shortcomings were later addressed by the creation of score-
level attacks, which only required the confidence values output
by the deep learning models [10]–[13]. However, score-level
attacks still rely on models to divulge information that would
be impractical to receive in real-world systems. By contrast,
hard-label attacks make no assumptions about available model
information, and instead rely only on the top-1 predicted
class, thus providing the weakest, yet most realistic adversarial
threat model to date. Hard-label attacks have traditionally been
formulated by leveraging a framework known as zeroth-order
optimization, which allows to estimate the input gradient of



a sample with respect to the adversary’s desired label [14]–
[16]. These methods have been carefully refined to offer
convergence guarantees [17], query efficiency [18], [19], and
powerful capabilities in the physical world [20].

Despite the steady improvements of hard-label attacks,
open questions persist about their behavior and adversarial
machine learning (AML) attacks at large, particularly in
the task of image classification (the focus of this work).
Adversarial examples were originally assumed to lie in rare
pockets of the input space [4], but this conventional wisdom
was later challenged by the boundary tilting assumption [1],
[21], which adopts a “data-geometric” view that observable
inputs concentrate on a lower-dimensional connected region,
called a manifold. Through this lens, Stutz et al. [2] suggest
that adversarial examples can be categorized based on their
distance to the manifold. Adversaries may add unnatural high-
frequency distortion (e.g., noise), causing the image to leave
the data manifold to cross the model’s decision boundary
(blue orb in Figure 1). Another option is to only add natural
distortions that alter the image without changing the true
label (e.g., color shifting or distorting entire pixel groups).
This latter option produces on-manifold adversarial examples,
which are essentially generalization errors, i.e., examples not
captured by the model’s approximation of the manifold (green
orb in Figure 1). One can also produce arbitrarily near-
manifold examples, which can be considered on-manifold for
brevity (yellow orbs in Figure 1). As a direct consequence, an
adversarial example’s distance to the manifold describes the
feasibility for such an example to generate naturally from the
true data distribution. This makes it advantageous to produce
on-manifold adversarial examples, since the adversary can
exploit the inherent generalization error of the model, while
producing samples that are perceptually similar for humans.
Discovery of generalization errors are also motivated from
the perspective of adversarial training, since it was observed
that models adversarially trained with traditional off-manifold
examples can be easily bypassed by perceptual distance attacks
in the gradient-level setting [22]. Unfortunately, the true
data manifold is either difficult or impossible to describe, and
relying solely on approximations of the manifold can lead to
the creation of crude, high distortion examples [2].

In this paper, we adopt the boundary-tilting assumption
and demonstrate an unexpected benefit of dimension-reduced
zeroth-order attacks. These attacks are more likely to discover
on-manifold examples, which we theoretically demonstrate
is the result of manifold-gradient mutual information. Our
results suggest that this quantity can increase when data
dimensionality is reduced, allowing an attacker to learn useful
semantic variations of the data from the distribution of gra-
dient estimates alone. With this knowledge, we empirically
demonstrate how to improve hard-label worst-case analyses
in a generic yet principled way, by enabling the discovery of
new generalization errors within “robust” models that may be
useful for adversarial training in future work. Due to insights
from our experiments, we provide a geometric interpretation
of hard-label attack behavior, summarized in Figure 1.

Our specific contributions are as follows, with key contri-
butions and flow of arguments illustrated in Figure 2:
• Introduction of manifold distance oracle. To create on-

manifold examples, the adversary must leverage manifold
information during the attack phase. We thus propose an
information-theoretic formulation of the noisy manifold
distance (NMD) oracle, which can explain how zeroth-
order attacks craft on-manifold examples. We theoretically
demonstrate on a Gaussian data model that manifold-
gradient mutual information can increase as a function
of data dimensionality. We empirically show this is true
even on large-scale image datasets such as CIFAR-10 and
ImageNet. This finding relates to known behavior in the
gradient-level setting, where useful variations of the data
(e.g., shapes and textures) can be leaked from the model
gradient [23].

• Reveal new insights of manifold feedback during query-
efficient zeroth-order search. In practice, the data manifold
is difficult to characterize. We propose the use of two proxies
for manifold distance, which all show consistent results in
terms of an adversary’s ability to search near the manifold.
This methodology allows us to empirically demonstrate the
connection between dimension reduction, model robustness,
and manifold feedback from the model, beyond the known
convergence rates tied to dimensionality [24]. Our findings
inform how to search closer to the manifold (Table I
and Tables II-V), improve query efficiency (Figure 6), and
reduce gradient deviation (Table VI) in a simple and generic
way for hard-label attacks.

• Attack-agnostic method for semantic super-pixel con-
struction. We show that spatial dimension reduction of
a decision-based gradient estimate acts as an attack- and
knowledge-agnostic method for learning the most important
super-pixels of an image. More importantly, this allows an
attacker to synthesize the semantic search directions for
a sample using only the knowledge gathered during hard-
label boundary traversal. Our attack formulation leads to
a 2x success rate improvement for state-of-the-art hard-
label attacks such as HSJA [18], accompanied by up to 10x
lower manifold distance, well below the manifold distance
of previously-proposed RayS [25], the current state-of-the-
art for crafting on-manifold examples.
Code to reproduce experiments is made available online.1

II. RELATED WORK

We investigate the scenario where an adversary uses top-1
label feedback to estimate an input input gradient direction
with respect to a desired label, showcased by attacks such as
Sign-OPT [19] and HopSkipJumpAttack [18]. These contem-
porary attacks are variants of random gradient-free method
(RGF) [24] and aim to approximate the true input gradients
G with respect to the adversarial label through zeroth-order
estimates G̃. The core idea is to convert the top-1 (hard) label,
which is a step function, into a continuous real-valued function

1https://github.com/FICS/hard label manifolds
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Figure 2. Approach flowchart for our results based on the Markov chain (MC) assumption (left) and subsequent analysis using interpretable modeling
techniques (middle). Based on empirical observations on real-world data, we propose MC-based adversaries (right) and show a tendency for dimension-
reduced attacks to reduce manifold distance estimates in large-scale datasets.

g : Rd → R, which takes search direction θ ∈ Rd and outputs
the distance to the nearest adversarial example [15]. The
gradient estimates G̃ are conceived as a function of the local
search direction gradient ∇g, and can be estimated with either
two samples of information (Sign-OPT) [19], or a single point
(HopSkipJumpAttack) [18]. Details of specific formulations
for each attack are provided in Appendix B.

The theory of gradient estimation error and convergence
provides some clues to improve efficiency, such as the fact
that the estimation cost is polynomial in d, the dimension of
the optimized variable, thus motivating standard dimension-
reduction techniques based on autoencoding [26]. Alterna-
tively, it is possible to change entire groups of pixels at a
time, a technique known as super-pixel grouping, which is
effective in attacks that leverage heuristic-based search rather
than gradient estimation, such as RayS [25]. However, it is not
completely understood how dimensionality-reduction relates
to the adversary’s probing of the data manifold. In the score-
level setting, it was shown that better query efficiency can
be achieved by leveraging time- and data-scale dependencies
within the distribution of gradient estimates [27]. We examine
analagous dependencies in service of generating on-manifold
adversarial examples, since to date it is unclear how such
dependencies interact with the model’s encoded manifold,
particularly in the hard-label setting.

III. NOISY MANIFOLD DISTANCE ORACLE

Main idea: Let F be a classifier that returns the top-
1 predicted label for some query, G the distribution of true
input gradients with respect to an adversary’s desired label,
and G̃ the distribution of respective hard-label gradient es-
timates. By the Data Processing Inequality (Definition III.1)
we posit that their mutual information (I) has the relation
I(F ;G) ≥ I(F ; G̃). We use I(F ; G̃) as a measure for how
much information F leaks in the gradient estimates G̃. The
main hypothesis is that as data dimension d increases, so does

I(F ;G), but at a lower rate when scaling for d in the Schmidt
et al. [28] data model, giving higher I(F ;G) at lower d.

A. Preliminaries

A common observation is that due to the low probability
of encountering “interesting” images in an entire input space
(e.g., images of numbers or animals), the data of interest highly
concentrates along a lower-dimension region of connected
points, referred to as a manifold and denotedM [1], [29], [30].
The manifold is considered lower-dimension because there are
generally only a few valid variations for interesting inputs,
such as translating or rotating objects in images, and connected
because traversal along the manifold yields new valid inputs
(i.e., rotating the object in an image does not change the
object’s true label). Likewise, one can consider a subset of
the manifold dimensions, which is analagous to considering a
subset of useful variations. It is also known that deep learning
models encode information about the data manifold [31]. Thus
we denote the model’s learned manifold asM(F) and useM
for brevity.

B. Approach

Due to the fact that observable data generates from a random
process, any function of the observed data (and corresponding
manifold) is random, and thus the model point estimate is
also a random variable. As described in Section II, hard-
label attacks assume the existence of true input gradients G
(a function of the model’s point estimate) which points in
the direction of a desired adversarial label. The task of hard-
label attacks is to synthesize an estimate of the true input
gradients, G̃, using only the top-1 feedback from the model.
Since the victim model’s loss cannot be observed, hard-label
attacks usually synthesize a continuous surrogate loss for es-
timation, e.g., distance to nearest adversarial sample, meaning
the adversary relies on data-driven feedback. We assume that a
Markov chain maps the hard-label attack pipeline originating
from the data manifold:M→ G → G̃, where G (G̃) describes



the true (estimated) input gradient distributions. From the hard-
label attacker’s perspective, the Markov chain is only partially
observable due to having access to top-1 feedback alone. We
posit that the adversary may be able to increase their available
information by leveraging a basic result from data processing.

Definition III.1 (Data Processing Inequality (DPI) [32]).
If three random variables form the Markov chain
X → Y → Z, then their mutual information (I) has the
relation I(X;Z) ⩽ I(X;Y ).

In the context of Definition III.1 and our hard-label attack
pipeline (M → G → G̃), I(M;G) acts as an upper bound
on I(M; G̃). In the information-theoretic sense, increasing
the upper bound allows an optimal hard-label adversary to
further maximize I(M; G̃), i.e., make the adversarial sample
look as if it generated from the true data distribution, which
is desireable for exploiting the generalization error of the
model as discussed by [2]. Ideally, one would also like to
show the lower bound of I(M; G̃) will also increase with
the upper bound if the adversary is stronger. However, to
the best of our knowledge such an ideal lower bound (e.g.,
some constant c < 1 such that c · I(M;G) is a lower bound
of I(M; G̃)) does not exist in general, unless one makes
further assumptions (e.g., the true distribution is a known
Gaussian) [33]. Leveraging DPI is a natural interpretation of
attack behavior, since maximum likelihood estimation (MLE)
can be interpreted as minimizing the dissimilarity between
the empirical data distribution (defined by the data manifold)
and the learned model distribution (defined by the point esti-
mate). In practice the dissimilarity is quantified by measures
of KL-divergence (e.g., binary cross entropy loss between
distributions of interest) [29], [33]. Although DPI only offers
an upper bound, rather than a guaranteed increase, it allows
us to operationalize the approach to hard-label attacks by
attempting to increase I(M;G). Since the states are only
partially observable by the adversary, how could they increase
the right-hand term I(M;G)? Recent work by [28] prove that
adversarial robustness requires a significantly larger number
of data samples as a function of data dimensionality (e.g.,

√
d

larger sample complexity for Gaussian data models), which
can be argued as an effect of the curse of dimensionality.
In a similar twist, [21] showed that the volume of an error
region along a subset of “adversarial directions” becomes ex-
ceedingly small with high data dimensionality. Under the data
model of [28], we expect the data categories to become more
separated with higher dimensionality, effectively concentrating
in smaller regions. This leads us to our main hypothesis.

Hypothesis 1. Assume the manifold-gradient Markov chain
M→ G → G̃ exists. Then if we decrease the data dimension
d by considering only a subset data dimensions, or equiva-
lently, considering lower-dimension versions of the manifold
distribution, we can yield higher mutual information I(M;G)
in the Schmidt et al. [28] data model.

In order to empirically verify Hypothesis 1, we perform
synthetic experiments quantifying I(M;G) under different

dimensionality values. In particular, we leverage the Gaussian
data model and results from [28] to derive an analytical
solution for I(M;G).

Definition III.2 (Data model and optimal weights [28]). Let
µ ∈ Rd be the per-class centers (means) and let σ > 0 be
the variance parameter. Then the (µ, σI)-Gaussian model is
defined by the following distribution over (x, y) ∈ Rd×{±1}:
First, draw a label y ∈ {±1} uniformly at random. Then
sample the data point x ∈ Rd from N (y · µ, σI).

Definition III.3 (Optimal classification weight [28]). Fix
σ ≤ c1d

1
4 for the universal constant c1, and samples

(x1, y1), · · · , (xn, yn) drawn i.i.d from the (µ, σI)-Gaussian
model with ||µ|| =

√
d (i.e., µk = 1 for all dimensions

k ∈ {0, . . . , d}). Schmidt et al. [28] prove the weight setting
ŵ = 1

n

∑n
i=1 yixi yields an lϵ∞-robust classification error of at

most 1% for the linear classifier fŵ : Rd → {±1} instantiated
as fŵ(x) = sgn(ŵTx) if

n ≥

{
1, for ϵ ≤ 1

4
d−

1
4

c2ϵ
2
√
d, for 1

4
d−

1
4 ≤ ϵ ≤ 1

4

, (1)

for a universal constant c2.

Note that the instantiation of ŵ must change with choice
of ϵ and d. We can leverage the weight settings as a function
of n and d to give a definition of manifold-gradient mutual
information.

C. Manifold-Gradient Mutual Information

Notice the classifier sgn(·) in Definition III.3 is discon-
tinuous at xk = 0 for any dimension k. Instead we con-
sider the sub-gradient of the classifier at xk < 0 and
xk > 0. In either case (non-robust or robust), the in-
put sub-gradient for fŵ(x

′
k) is defined dimension-wise for

our isotropic Gaussian as ∇x′
k
fŵk

= sgn(wk). Since the
weight of each dimension is Gaussian distributed with ŵk ∼
N (µk, σ

2), we can define the distribution of gradients as
G ∼ Rademacher (Pŵk∼N [ŵk ≥ 0]). Using this fact, we
define manifold-gradient mutual information in three parts: (1)
defining the manifold-gradient point-wise joint probabilities
between gk and xk at each dimension k for the sub-gradient
cases where xk > 0 and xk < 0, (2) defining the manifold-
gradient marginal probability under the gradient, and (3)
defining the marginal probability under the manifold. The
complete derivation of the joint and marginal probabilities
can be found in Appendix A. The three parts are used in the
standard definition of mutual information [33].

Notation. Fix σ = c1d
1
4 for both cases. We denote the sub-

manifold sampled from the positive (y = 1) and negative (y =
−1) classes as M+ and M−, respectively. For brevity we
label xk > 0 as x+ and xk < 0 as x−.

Definition III.4 (Manifold-Gradient Mutual Information). We
define the manifold-gradient mutual information, based on the
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standard definition of mutual information from information
theory [33], as

I(M;G)ϵ,k = 2

∫
M+

p(1,x+) log(
p(1,x+)

pG(1)pM(x+)
) dx+

+ 2

∫
M+

p(−1,x+) log(
p(−1,x+)

pG(−1)pM(x+)
) dx+.

(2)

with the total unnormalized mutual information defined
as the summation over dimensions (due to dimension co-
independence) I(M;G)ϵ =

∑d
k=1 I(M;G)ϵ,k.

D. Mutual information as a function of dimensionality

To provide numerical support for Hypothesis 1, we run
experiments using the Riemann approximation of Equation 2,
provided in the Appendix as Equation 15. We estimate the
average per-dimension mutual information, I(M;G)ϵ,k =
I(M;G)ϵ

d , for the case where x ∈ Rd while varying the dimen-
sionality term d ∈ [5, 2000) with ϵ ∈ {0.000, 0.180, 0.250}.
We target an error within 10−1 (i.e., 0.9 ≤ pG(1)+pG(−1) ≤
1.0) by setting the multiplicative factor c2 = 102, and
multiplying each branch of Equation 1 by a large constant
(104). We run the approximation over ten different random
seeds and show the average with standard error shaded.

The estimation result is shown in Figure 3 with log-scale
x-axis. Regardless of ϵ, lower values of the dimensionality
evidence a higher mutual information. Since the curve is
normalized with respect to d, it shows that although mutual
information scales with d, the rate of increase for mutual
information is slower than the rate of increase for d.

Observation 1. Given reduced data dimensionality, an ad-
versary could increase I(M;G)ϵ,k and lead to leaking better
search direction through the gradient. This supports Hypoth-
esis 1.

An implication of Observation 1 is that better search di-
rections come from a better encoding of the data manifold.
This same behavior was observed empirically by [23] and
[30], who demonstrated that the input gradient from a “ro-
bustified” model leads to synthesizing images with higher
visual alignment to the training data, which are essentially

on-manifold synthetic images. In this capacity, it is useful to
describe any sample’s distance to the true manifold w.l.o.g
as manifold distance, often quantified by the Lp-norm of the
distance between a synthetic sample (e.g., machine-generated
or adversarial sample) and the original when projected onto
an approximate manifold representation [2], [31]. Given Ob-
servation 1 and the previous empirical results by Santurkar et
al. [30], we denote the true input gradient distribution G as a
manifold distance oracle, because it offers useful variations
of the input data for decreasing manifold distance. In the
hard-label setting, the data manifold, true gradient, and model
parameters are not accessible, but they may be connected
due to the Markov chain assumption of Hypothesis 1. Thus
we propose the noisy manifold distance (NMD) oracle, an
abstraction of the information captured by the distribution of
gradient estimates G̃. From the security perspective, the NMD
oracle acts as a side channel leaking information (e.g., useful
semantic directions) as a factor of the data dimensionality.

IV. ZEROTH-ORDER SEARCH THROUGH THE MANIFOLD
DISTANCE ORACLE

According to Observation 1, dimensionality reduction could
increase the upper bound on I(M, G̃). Under our Markov
chain assumption, this means the distribution of gradient
estimates from an attack algorithm can act as a noisy manifold
distance oracle. However, Observation 1 mainly applies to a
Gaussian data model with a simple manifold, thus it does
not necessarily lift into real-world datasets. Likewise, to our
best knowledge, previous work have yet to decompose the
hard-label attack process into the Markov chain described
in Section III. Since Observation 1 relies on its existence,
we proceed by first formulating dimension-reduced versions
of existing hard-label attacks, then demonstrating through an
empirical study that in practice, the Markov chain assumption
is reasonable due to the learnability of semantic directions
in the neighborhood around a hard-label sample. We subse-
quently show that lower search dimensions lead to a higher
quality model of the adversarial sample’s semantic directions,
which in turn enables a lower manifold distance measured by
standard metrics such as LPIPS and FID, introduced later.

A. Dimension-reduced zeroth-order search

We modify existing hard-label attacks to produce
dimension-reduced variants. In practice we modify attacks
so they generate dimension-reduced gradient estimates to
update their candidate search direction θ′ ∈ Rd′

for reduced
image dimension d′, where d′ < d and d is the original data
dimension. To update an adversarial example and query the
victim model, the candidate direction is upsampled using
a decoding map D : Rd′ → Rd. In general the adversarial
sample is created by x = x0 + g

(
D(θ′)

) D(θ′)
||D(θ′)|| , where

g : Rd → R is a regularizing function dependent on the
attack formulation. For Sign-OPT attack, g is the distance to
the decision boundary in direction D(θ′), while for HSJA,
g represents the optimal step-size in direction D(θ′). For
our purposes, the decoder function D is initialized with a



Algorithm 1: Local Markov chain step (MC_step)
Input: Hard-label Gaussian process (GP), LIME

kernel width k
Output: Sample feature coefficients W ∈ Rd and their

quality score R2 ∈ R, GP result (res)
1 initialize LIME Ridge regression trainer (LIME) [34]
2 /* Execute GP to collect samples */
3 X,Y,res← GP()
4 fW ← LIME(X,Y, k)
5 R2 ← fW (X)
6 return W,R2,res

bilinear upsampler (henceforth referred to as BiLN followed
by d′) which simply scales the height and width dimensions
of candidate directions (shaded middle section of Figure 2).
It is possible to instantiate more complex mapping functions,
for example the use of autoencoders [2], [26]. We forego
analysis of autoencoder variants, since hard-label adversaries
may not have access to the full training or test set necessary
to create such an approximation in the first place.

B. Attack-agnostic model of the manifold-gradient Markov
chain

Due to the hard-label threat model, an adversary does not
have access to the true manifold distribution (e.g., training
samples) M or the distribution of true input gradients G. The
distribution of gradient estimates G̃ is updated over the course
of a hard-label attack, and in the score-level setting, is known
to possess useful time-scale dependencies [27]. Unfortunately,
current hard-label attacks immediately discard the distribution
after each attack iteration [18], [19]. Due to the complexity
of real-world data, even if each of the global distributions
was known, it would be intractable for designers, much less
adversaries, to analytically model every possible relationship
between manifold points and gradient estimates. Instead, we
can study the local Markov chain at a single point on the
manifold (e.g., starting from a singular clean image). If an
adversary can learn the semantic features of an image using
only previous adversarial attempts, it may validate the Markov
chain assumption.

It was previously shown that a designer can find a sam-
ple’s semantic directions using only a linear model of their
classifier’s local decision boundary, e.g., the LIME technique
proposed by Ribeiro et al. [34]. The linear model (standard
Ridge regression) is trained using uniform-random perturba-
tions around a sample. The linear model coefficients are in-
terpreted as per-pixel feature importance, the quality of which
is measured by the linear model’s R2 score. Rather than use
uniform-randomly perturbed samples, we propose to leverage
samples collected during hard-label attack initialization and
gradient estimation to train the LIME model. If the hard-label
adversary’s LIME model yields a high quality (i.e., high R2)
set of coefficients, it shows that the local manifold-gradient
Markov chain can be directly modeled over the course of an

attack. In fact, the R2 score is a weighted estimate based on
an exponential kernel, which in our implementation is chosen
to correspond with a local measure of mutual information
(i.e,. binary cross entropy between original sample and hard-
label attempts). We can later use the R2 score to measure the
quality of the linear model after applying different dimension-
reduction schemes, providing additional empirical validation
for Observation 1.

In practice, LIME was shown to have unstable behavior
due to the difficulty in selecting a kernel width for the
weighted estimate of coefficients [35]. Instead we leverage
OptiLIME, which factorizes individual training runs of LIME
as Gaussian processes, and maximizes R2 by trying different
kernel width selections at each run through Bayesian opti-
mization [35]. Similarly, we decompose the typical hard-label
attack into independent Gaussian processes corresponding to
common parameter-independent attack stages, e.g., sample
initialization, gradient approximation, and binary search for
nearest boundary [15], [18], [19]. A stage can be called
multiple times to collect independent sets of samples, allowing
to train OptiLIME’s Bayesian classifier and obtain optimal
coefficients for that stage. We implement this logic for whole-
attack Markov chain (MC) analysis across two algorithms,
illustrated visually in Figure 2. The first algorithm, described
in Algorithm 1 (MC_step), takes as input an attack stage
Gaussian process (denoted GP) and acts as the vehicle for
collecting a neighborhood of hard-label samples around the
attacker’s current sample. LIME is used in this algorithm
alongside a candidate kernel width k to train a linear model f ,
parameterized by model coefficients W ∈ Rd, which outputs
an R2 score that acts as an objective function of the candidate
kernel width. Thus MC_step is used as the input to OptiLIME
to conduct independent trials for kernel width optimization at
each attack stage.

At each attack stage, MC_step is instantiated with the
stage’s Gaussian process and given to OptiLIME in Algo-
rithm 2 (Lines 2 and 9), which handles the collection of
feature coefficients and linear model scores at different attack
stages for a generic hard-label attack. For simplicity, we
only consider attack initialization (Line 1-3) and subsequent
gradient estimation attempts (Lines 7-9). Although the OptiL-
IME Bayesian optimization requires several trials to choose
an optimal kernel width, in practice OptiLIME can obtain
reasonable R2 scores from only twenty LIME training runs
(each requiring 10-200 hard-label queries, depending on the
attack and particular stage). The final output of Algorithm 2
is the feature coefficients W and corresponding R2 score at
each attack stage from initialization (Init) through to the
i-th gradient estimation step (ĝi). We emphasize that Algo-
rithm 2 does not interfere with the initialization or gradient
approximation of the attack, and merely serves to model the
manifold-gradient Markov-chain in generic hard-label attacks.
An example of this process is illustrated in Figure 4 on a
single sample from CIFAR-10. Each column after the input
represents the activated feature coefficients at the specified
attack stage, visualized by white pixels (positive coefficients)



Algorithm 2: Markov chain probing of hard-label
attack

Input: Benign sample x0, Hard-label attack
initialization (init) and gradient
approximation (approximate_gradient),
OptiLIME bayesian optimization routine for
kernel width (OptiLIME), num. iterations n

Output: Hard-label attack sample x, whole-attack
feature coefficients {Winit,Wĝ1

, . . . ,Wĝn
}

and their quality scores
{R2

init, R
2
ĝ1
, . . . , R2

ĝn
}

1 GP := (init,x0)
2 kernel width k ← OptiLIME(MC_step,GP)
3 /* Initialize through MC_step */
4 Winit, R

2,x← MC_step(GP, k)
5 for i := 1 to n do Hard-label attack loop
6 GP← (approximate_gradient,x)
7 k ← OptiLIME(MC_step,GP,x′)
8 /* Approximate through MC_step */
9 Wĝi

, R2,θ ← MC_step(GP, k)
10 Update x from θ using attack formulation
11 end
12 return x, {Winit,Wĝ1

, . . . ,Wĝn
},

{R2
init, R

2
ĝ1
, . . . , R2

ĝn
}

and black pixels (negative coefficients). Notably, the hard-
label adversary’s initialization (Init.) is enough to learn
a coarse spatial representation of the subject in the image,
seen as the rough outlines of the cruise ship in the second
column. Counter-intuitively, the subject can be isolated with
better detail using dimension-reduced variants of HSJA (e.g.,
BiLN 4 in row one and BiLN 8 in row two) compared to
regular HSJA in the final row. The increased semantic quality
of the dimension-reduced variants is reflected in the higher
R2 score of the learned feature coefficients (e.g., R2 = 0.42
of BiLN+HSJA 8 compared to R2 = 0.24 of regular HSJA).
Likewise, we see that the feature importance of subsequent
gradient estimation steps is scattered throughout the spatial
dimension of the image, although larger patches of the image
are affected in lower-dimension variants, which retain a higher
R2 score for more iterations.

To gain a holistic view of the phenomenon observed in
Figure 4, we attack 500 samples on a standard CIFAR-10
model with variants of HSJA in the l∞ setting and obtain
the mean R2 score at each stage using Algorithm 2, shown in
Figure 5. As before, we observe that on average, each HSJA
variant can learn a reasonable representation of the semantic
features in the image, evidenced by high R2 scores up to the
second gradient estimation stage, thereafter decreasing quickly
depending on the use of dimension reduction. Surprisingly,
dimension-reduced variants can retain high semantic quality
of the learned feature coefficients for more iterations, as evi-
denced by the ability for BiLN+HSJA 4 to retain an R2 ≥ 0.8
on average through every stage.
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ĝ1

R2 =1.00

ĝ2
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ĝ3

R2 =0.01

ĝ4
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Figure 4. Comparison of learned feature importance coefficients from hard-
label boundary traversal alone, each column representing different stages of
attack. Dimension-reduced attack variants (first two rows) can isolate the ship
in the single input image with better clarity during initialization (quantified
by higher R2 score), and enable larger pixel grouping during subsequent
estimation stages.
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Figure 5. Comparison of the learned semantic coefficients quality (R2 score)
on CIFAR-10 at different HSJA attack stages and dimension-reduced variants,
each averaged over 500 samples.

C. Estimating manifold distance

Given the ability for the hard-label adversary to model
coarse semantic features of the input sample, this may indicate
that the manifold-gradient Markov chain is a reasonable as-
sumption. However, the result in Observation 1 implies that the
dimension-reduced attack variants should lead to adversarial
samples lying closer to the original concentration of training
points (i.e., closer to the manifold). To connect Observation 1
to the findings in Figures 4 and 5, we leverage an estimate of
manifold distance to determine if higher R2 score does in fact
lead to samples lying closer to the data manifold. The Learned



Table I
MARKOV CHAIN MODELING STATISTICS FOR HSJA VARIANTS.

Attack
Variant R̄2 FID SR@40k

(ϵ=0.031)
LPIPS

HSJA 0.259 0.244 0.272 0.676±0.275

Madry
CIFAR-10

→ BiLN 16 0.363 0.074 0.298 0.654±0.277

→ BiLN 8 0.624 0.026 0.224 0.668±0.304

→ BiLN 4 0.779 0.026 0.130 0.709±0.345

HSJA 0.263 0.240 1.000 0.496±0.211

Natural
CIFAR-10

→ BiLN 16 0.368 0.085 0.984 0.543±0.227

→ BiLN 8 0.622 0.028 0.826 0.624±0.253

→ BiLN 4 0.759 0.012 0.472 0.651±0.297

Perceptual Image Patch Similarity (LPIPS) acts as such a
measure for manifold distance, since it was previously shown
to correlate with human visual perception [22], [31]. We use
the same LPIPS code and checkpoint provided by the authors.
In addition to LPIPS, we rely on the popular Fréchet Inception
Distance (FID) to measure the semantic drift between sets
of original samples and their adversarial counterparts [36].
Although FID lacks human studies, Heusel et al. showed that
the internal representations of Inception network capture the
visual semantic quality of synthetically generated images [36].
Our attack variants do not target the Inception network directly,
meaning the results should not be affected by the addition
of low-magnitude adversarial noise. When measuring either
LPIPS or FID, we use the first successful adversarial sample
which was below the noise threshold ϵ = 0.031 studied by
previous hard-label attacks in the l∞ setting [18], [25]. In this
way, all comparison samples for the purposes of measuring
FID and LPIPS are “clipped” at the same distortion threshold,
so as to not bias the computation of either score.

We measure FID and the average LPIPS of the same 500
samples generated during the Markov-chain attack probe de-
scribed in Algorithm 2. As observed in Table I, the dimension-
reduced variants create samples with consistently lower FID,
which is strongly negatively correlated with the average whole-
attack R2 score from these same variants (denoted R̄2). Shown
in bold, the BiLN 4 variant of HSJA achieves over ten
times lower FID score on an adversarially trained model [37]
(denoted Madry CIFAR-10) compared to the baseline attack.
The same trend holds on the natural model without adversarial
training, where the FID is instead twenty times lower. The
trade-off in the natural case is the success rate; as is observed
in the fourth column, success rate after forty thousand queries
(SR@40k) is consistently lower as the dimension is reduced,
but the opposite is true for the adversarially trained model.
Instead, we see that the BiLN 16 variant (bold) outperforms the
standard HSJA attack on adversarially trained models. From
the perspective of human alignment, we see that the average
LPIPS score for each attack variant is within the standard
deviation of the baseline attack’s LPIPS score, meaning these
variants are likely not discernible by the human eye. We
summarize our findings so far.

Observation 2. Motivated by Hypothesis 1 and Observation 1,

we proposed a probing algorithm to investigate if the manifold-
gradient Markov chain assumption is reasonable on real-world
datasets. Based on the holistic comparison in Figure 5 and
Table I, we show it is possible to model the Markov chain (i.e.,
the noisy manifold distance oracle) from boundary traversals
alone, leading to discovery of the semantic directions which
correspond to manifold traversal, as illustrated by the feature
importance masks of Figure 4. The lower FID in Table I for
dimension-reduced variants offer further empirical support for
Hypothesis 1.

V. INFORMING PRACTICE

Our findings so far offer empirical support for Hypoth-
esis 1 through the existence of a usable manifold-gradient
Markov chain, which could serve as a passive noisy manifold
distance (NMD) oracle in dimension-reduced attacks. In this
sense, we are left with key research questions concerning
the practical application of the increased manifold-gradient
mutual information that the NMD oracle provides, beyond the
contemporary interest of query efficiency. We outline our key
research questions as follows.
Q1. Although dimension-reduction offers lower manifold dis-

tance, it may not be clear how many dimensions to
choose from the outset of an attack. From the active
learning sense, how can Algorithm 2 be modified so that
an adversary actively maximizes the manifold-gradient
mutual information (by way of automatically maximizing
their whole-attack R2 score)?

Q2. Does the phenomenon of manifold-gradient mutual infor-
mation hold across different attacks, datasets, and levels
of model robustness?

Q3. Is there a connection between gradient estimation attacks
(Sign-OPT [19], HSJA [18]) and combinatorial search
attacks (RayS [25]) in terms of the hard-label adversary’s
manifold traversal?

We subsequently answer each research question through
our experimental design, enabling the following experimental
highlights.
A1. We propose two variants of existing gradient estimation-

based hard-label attacks by modifying our Markov chian
probe described in Algorithm 2: (1) Markov chain (MC)
variant and (2) Dynamic R2-based upsampling attack
variant (denoted DynBiLN), based on the MC variant,
which can automatically upsample the attack search
dimension based on the quality of the learned feature
importance W (described fully in Algorithm 3).

A2. By conducting experiments over three state-of-the-art
attacks, two large-scale image datasets, and both natural
and adversarially trained models, we show a consistent
trend for dimension-reduced attacks to achieve lower
FID, while remaining visually imperceptible to humans
according to LPIPS standard deviation.

A3. Through dimension-reduction techniques and attack vari-
ants proposed in A1, we show it is possible for
theoretically-grounded gradient estimation attacks such



as Sign-OPT and HSJA to achieve up to 39x lower FID
than the state-of-the-art combinatorial search-based RayS
attack.

Experiment setup. To provide widespread empirical evidence
for the NMD oracle and address the research questions, we
compare between three state-of-the-art attacks which adopt
unique approaches to the hard-label attack problem.

1) Sign-OPT [19] is a variant of random gradient-free (RGF)
method [24] and enjoys both query efficiency (due to its
sample update using the sign of the gradient estimate)
and convergence guarantees grounded in the theory of
zeroth-order optimization [38].

2) HSJA [18] is another variant of RGF, which like Sign-
OPT, only uses the sign of the gradient estimate to update
the attack sample. HSJA enjoys a bounded estimation
error and design optimized for l∞ setting, which enables
better query efficiency than Sign-OPT, but lacks the
respective convergence guarantees.

3) RayS [25] does not employ gradient estimation, and
instead performs a combinatorial ray search in image
space using progressively larger search dimensions. RayS
can create semantically similar adversarial samples in
the least amount of queries, but lacks the theoretical
grounding of Sign-OPT and HSJA.

We perform experiments with the above attacks (and our
variants) using CIFAR-10 [39] and ImageNet [40] as input
image data. The natural CIFAR-10 network is the same imple-
mentation open-sourced by Cheng et al. [19]. The architecture
(and accompanying pre-trained weights) for natural ImageNet
are taken from the ResNet-50 network implementation in
the PyTorch Torchvision library.2 In addition, we leverage
the representative adversarial training technique proposed by
Madry et al. [37] (and their ϵ = 8

255 = 0.031 checkpoints for
l∞ setting) as the robust models for CIFAR-10 and ImageNet.
In all experiments, our BiLN variants rescale the attack search
directions to the dimension shown next to their denomination
(e.g., BiLN 4 scales attack spatial dimensions for θ′ to 4×4).
We use l∞-norm versions of attacks for all experiments, and
the same ϵ = 0.031 distortion threshold to measure success for
both natural and robust models (hereafter referred to as Madry
CIFAR-10 and Madry ImageNet). All attacks run for 25k
queries without early stopping on correctly classified samples.
For brevity, we only show results for the untargeted case.
Additional implementation details, such as hyperparameters
and hardware used, can be found in Appendix C. Code for
experiments will be released publicly to encourage repro-
ducibility.

A. Actively exploiting the NMD oracle (Q1)

Motivated by the results in Section IV, we propose an attack
algorithm which can leverage the learned feature importance
coefficients W from the LIME Ridge regression model to
inform the initial attack search directions. This leads to our

2https://pytorch.org/docs/stable/torchvision/models.html

Algorithm 3: Dynamic R2-based upsampling attack
variant (DynBiLN)
Input: Benign sample x0, original attack dimension d,

intial reduced attack dimension d′ << d,
DynBiLN differential coefficient η

Output: Hard-label attack sample x
1 GP := (init,x0)
2 kernel width k ← OptiLIME(MC_step,GP)
3 W,R2,x← MC_step(GP, k)
4 /* Set best score at current d′ */
5 R2

d′ ← R2

6 /* Use W to mask initialization */
7 x← init(x0,W )
8 for i := 1 to n do Hard-label attack loop
9 GP← (approximate_gradient,x)

10 /* Re-use initial kernel width */
11 W,R2,θ′ ← MC_step(GP, k)
12 if R2

d′ −R2 > ηR2
d′ then

13 d′ ← min(2d′, d)
14 R2

d′ ← R2

15 end
16 Update x from θ′ using attack formulation
17 end
18 return x

Markov chain (MC) variant, which uses the learned W from
trials of attack initialization to mask the search directions for
a “final” attack initialization step (i.e., only perform Line 7 in
Algorithm 3). This MC variant acts as a baseline for the case
where W informs only the attack sample initialization. Further
motivated by the negative correlation between FID and R2

score in Table I, we propose a dynamic attack variant which in
addition to using W for attack initialization, also maximizes
the average whole-attack R2 score. Our proposed dynamic
R2-based upsampling attack variant, denoted DynBiLN and
described in Algorithm 3, automatically upsamples the attack
search dimension d′ based on the quality of the learned feature
importance coefficients. This is achieved by recording the
best R2 score at the current reduced attack dimension d′

(starting on Line 5, denoted R2
d′ ) and updating each time

the upsampling occurs (Line 13). Upsampling is performed
when the current linear model R2 score drops below a small
differential factor η of R2

d′ (Lines 12-14). In this way, we can
gain the query efficiency of low search dimension, without
incurring the damaging estimation bias during later stages
(which lead to low SR AUC in Table I). To avoid the
query overhead of Bayesian optimization for kernel width at
every attack iteration, the adversary re-uses the kernel width
obtained from initialization (Line 2), as in practice, this choice
offers reasonable linear model quality for subsequent itera-
tions. Since DynBiLN does not make assumptions about the
underlying intitialization or gradient approximation routines,
it can be adapted to any gradient estimate-based hard-label
attack that uses sample initialization [15], [18], [19]. Although



Table II
NATURAL CIFAR-10 COMPARISON OF MANIFOLD DISTANCES AND

SUCCESS RATE FOR OUR ATTACK VARIANTS (ITALICIZED).

Attack Variant FID SR AUC
(ϵ=0.031)

LPIPS

HSJA 0.238 0.967 0.506±0.212

→ BiLN 4 0.016 ↓ 0.485 0.642±0.297

→ BiLN 8 0.028 ↓ 0.804 0.614±0.263

→ BiLN 16 0.088 ↓ 0.950 0.538±0.225

MC HSJA 0.192 ↓ 0.967 0.489±0.226

→ BiLN 4 0.018 ↓ 0.521 0.623±0.303

→ BiLN 8 0.028 ↓ 0.808 0.610±0.286

→ BiLN 16 0.071 ↓ 0.948 0.521±0.234

→ DynBiLN 0.030 ↓ 0.907 0.581±0.250

Sign-OPT 0.023 0.507 0.212±0.089

→ BiLN 4 0.252 0.132 0.512±0.830

→ BiLN 8 0.076 0.171 0.288±0.504

→ BiLN 16 0.001 ↓ 0.230 0.153±0.065

MC Sign-OPT 0.248 0.469 0.224±0.223

→ BiLN 4 0.051 0.122 0.348±0.625

→ BiLN 8 0.032 0.155 0.270±0.453

→ BiLN 16 0.020 ↓ 0.206 0.188±0.300

RayS 0.039 1.000 0.706±0.269

DynBiLN depends on the differential parameter η, we found
through grid search experiments any choice of η ∈ [0.2, 0.5]
provides adequate scaling performance for both CIFAR-10 and
ImageNet. For the sake of comparison, we choose η = 0.3 for
CIFAR-10 and η = 0.5 for ImageNet. The full grid search for
η on CIFAR-10 is made available in Appendix D.

We demonstrate the effectiveness of our MC and DynBiLN
variants by implementing MC HSJA, MC Sign-OPT, and
DynBiLN HSJA variants to compare against baseline versions.
The average success rate across 200 samples is plotted against
25k queries in Figure 6 (and the corresponding distortion plots
with error regions are made available in Appendix D). The
MC HSJA (dashed blue lines) and MC Sign-OPT (dashed
green lines) are able to closely match the SR curve of their
baseline versions, but can subsequently lower the FID as
shown in MC HSJA and MC Sign-OPT rows of Tables II-V.
The same is true for DynBiLN HSJA (cyan lines), which can
automatically strike a balance between the query efficiency
of down-sampling attacks (orange lines) and simplicity of
the baseline HSJA attack (blue lines), meanwhile achieving
lower FID compared to HSJA. In fact, on large scale data
such as ImageNet (Figure 6b), DynBiLN enables a gradient
estimate-based attack, such as HSJA, to gain enough query
efficiency to be competitive against RayS (red lines), the
current state-of-the-art which does not use gradient estimation
(and likewise cannot enjoy the theoretical guarantees from
zeroth-order optimization).

B. NMD oracle across attacks, datasets, and robustness (Q2)

We summarize results on key attack implementations in Fig-
ure 6, and provide quantitative analysis in Tables II-V through
FID, LPIPS, and normalized area-under-curve (AUC) of the
average success rate curves for all attacks across 25k queries
and 200 samples. On natural models (Tables II and III), we

Table III
NATURAL IMAGENET COMPARISON OF MANIFOLD DISTANCES AND

SUCCESS RATE FOR OUR ATTACK VARIANTS (ITALICIZED).

Attack Variant FID SR AUC
(ϵ=0.031)

LPIPS

HSJA 1.989 0.832 0.513±0.223

→ BiLN 16 0.411 ↓ 0.890 ↑ 0.765±0.275

→ BiLN 32 1.176 ↓ 0.950 ↑ 0.816±0.274

→ BiLN 64 2.871 0.947 ↑ 0.795±0.271

MC HSJA 1.813 ↓ 0.839 ↑ 0.511±0.218

→ BiLN 16 0.390 ↓ 0.858 ↑ 0.756±0.269

→ BiLN 32 1.101 ↓ 0.948 ↑ 0.795±0.279

→ BiLN 64 2.502 0.931 ↑ 0.774±0.247

→ DynBiLN 0.716 ↓ 0.905 ↑ 0.772±0.276

Sign-OPT 0.087 0.142 0.148±0.109

→ BiLN 8 0.002 ↓ 0.108 0.123±0.072

→ BiLN 16 0.002 ↓ 0.133 0.179±0.234

→ BiLN 32 0.001 ↓ 0.143 ↑ 0.147±0.075

MC Sign-OPT 0.220 0.127 0.179±0.220

→ BiLN 8 0.001 ↓ 0.088 0.114±0.056

→ BiLN 16 0.001 ↓ 0.127 0.160±0.237

→ BiLN 32 0.005 ↓ 0.135 0.179±0.244

RayS 0.445 1.000 0.851±0.296

Table IV
MADRY CIFAR-10 COMPARISON OF MANIFOLD DISTANCES AND

SUCCESS RATE FOR OUR ATTACK VARIANTS (ITALICIZED).

Attack Variant FID SR AUC
(ϵ=0.031)

LPIPS

HSJA 0.253 0.537 0.683±0.284

→ BiLN 4 0.026 ↓ 0.342 0.700±0.351

→ BiLN 8 0.023 ↓ 0.574 ↑ 0.646±0.306

→ BiLN 16 0.074 ↓ 0.720 ↑ 0.623±0.266

MC HSJA 0.213 ↓ 0.545 ↑ 0.645±0.244

→ BiLN 4 0.022 ↓ 0.356 0.695±0.316

→ BiLN 8 0.026 ↓ 0.577 ↑ 0.616±0.240

→ BiLN 16 0.068 ↓ 0.705 ↑ 0.636±0.239

→ DynBiLN 0.030 ↓ 0.607 ↑ 0.651±0.256

RayS 0.057 1.000 0.827±0.310

observe the consistent trend for BiLN HSJA variants to reduce
the FID compared to baseline (downward green arrows). This
trend is only present for Sign-OPT on large-scale ImageNet
data, although in both cases of CIFAR-10 and ImageNet,
BiLN Sign-OPT variants enjoy the lowest FID score across
all attacks (FID of 0.001 for Sign-OPT BiLN 16 and MC
Sign-OPT BiLN 8, respectively). Although RayS retains the
best query efficiency (SR AUC of 1.0), BiLN variants have an
inverse effect on the query efficiency depending on original
data dimension. On natural CIFAR-10 (Table II), SR AUC
is lowered alongside BiLN dimension, whereas for natural
ImageNet (Table III), SR AUC is consistently higher for lower
BiLN dimension on HSJA (upward green arrows), and similar
or higher on Sign-OPT. In both cases, LPIPS of attack variants
remains within the margin of error for their baseline versions.

To summarize, the effectiveness of dimension reduction may
depend on the attack difficulty. We can track this idea by
investigating the HSJA attack performance on adversarially-
trained models (Tables IV and V). We omit Sign-OPT due
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Figure 6. Success rates across key attack implementations over 200 samples on CIFAR-10 (a) and ImageNet (b). Corresponding distortion plots are available
in Appendix D.

Table V
MADRY IMAGENET COMPARISON OF MANIFOLD DISTANCES AND

SUCCESS RATE FOR OUR ATTACK VARIANTS (ITALICIZED).

Attack Variant FID SR AUC
(ϵ=0.031)

LPIPS

HSJA 1.541 0.344 0.480±0.211

→ BiLN 16 0.312 ↓ 0.777 ↑ 0.696±0.288

→ BiLN 32 1.085 ↓ 0.771 ↑ 0.785±0.317

→ BiLN 64 2.567 0.655 ↑ 0.777±0.350

MC HSJA 1.591 0.331 0.492±0.202

→ BiLN 16 0.271 ↓ 0.772 ↑ 0.654±0.269

→ BiLN 32 1.079 ↓ 0.771 ↑ 0.797±0.293

→ BiLN 64 2.287 0.615 ↑ 0.753±0.316

→ DynBiLN 0.657 ↓ 0.774 ↑ 0.725±0.293

RayS 0.302 1.000 0.676±0.301

to achieving insufficient samples within the adversarial radius
ϵ = 0.031 for FID and LPIPS calculation. As in the case
of Natural ImageNet, regardless of dataset or baseline attack
choice, dimension-reduced variants showcase the consistent
trend of lower FID (downward green arrows) and increased
SR AUC (upward green arrows). We can likewise observe that
the DynBiLN HSJA variant from Q1 offers a balance between
low FID and higher SR AUC, evidenced by the performance
on Madry ImageNet (doubling SR AUC and halving FID
compared to HSJA in Table V).

C. Connection to combinatorial search attacks (Q3)

Dimension-reduced attacks have so far exhibited the ability
to achieve lower FID compared to their baseline versions,
in some cases reducing FID by 10x on HSJA (e.g., MC
HSJA+BiLN 4 in Table V) and 87x on Sign-OPT (MC Sign-
OPT+BiLN 8 in Table III). However, there is a persistent
need for query efficiency in the design of hard-label attacks.
As evidenced in Tables II-V, RayS achieves the best query
efficiency, but is often out-performed on FID compared to
dimension-reduced variants of gradient estimation attacks (and
in some cases, regular Sign-OPT as well). In this sense, our

results show that the ability to generate adversarial samples
closer to the original model observations (i.e., the data man-
ifold) stem from the ability to abstract away unnecessary
dimensions in the attack search space, rather than the specific
attack formulation or design (e.g., using gradient estimation or
combinatorial search techniques). RayS upsamples the attack
search space dynamically, thereby eliminating unnecessary
search directions early on, similar to our DynBiLN variant,
but certain BiLN variants show there is untapped potential
in simply searching a single attack dimensionality over the
entire attack. In the case of Madry CIFAR-10 (Table IV),
the MC HSJA+BiLN 4 variant achieves less than half the
FID that was possible using RayS. Dynamic subsampling
is not unwarranted, since in comparison, DynBiLN on the
same model achieves a similar FID (0.030) with double the
SR AUC (0.607). Our empirical results highlight a limitation
of Observation 1; although higher manifold-gradient mutual
information may lower the manifold distance, the search
directions near the manifold yield a lower concentration of
adversarial samples on average. This presents an interesting
trade-off which builds on previous work investigating the data
geometric properties of deep learning models. Stutz et al. [2]
used autoencoders to synthesize on-manifold examples which
are far from a sample’s nearest decision boundary (giving
the lowest success rate), while Chen et al. [25] showcased
the ability for RayS to find the nearest decision boundary
(giving the highest success rate). In this sense, we find that
on-manifold generalization errors are more common than
originally captured by Stutz et al. [2]; some can be found near
the decision boundary, showcased by the low FID of RayS,
but they also become more common as we drift away from
the boundary, as we obtain the lowest FID using the lowest-
dimension BiLN attacks, at the cost of lower SR AUC.

VI. DISCUSSION

Through our theoretical results in Section III, we evidenced
the ability for manifold-gradient mutual information to in-
crease with lower data dimension. This motivated empirical



experiments on real-world data to support our Markov chain
assumption. By borrowing techniques from the interpretable
ML literature, we showed the gradient estimate distribution
can be leveraged to model the Markov chain, by way of
learning the feature importance coefficients in image space
that correspond to manifold traversal. By reducing the attack
dimensionality, we showed that an attacker increases the
quality of these coefficients (represented by R2 score), and
counter-intuitively, better inform the possible search directions
during the course of an attack. As a result, we propose a novel
attack-agnostic variant (Algorithm 3) which can initialize
attack samples in the most semantically plausible direction.
By tracking the decrease of R2 during each attack iteration,
an attacker can also automatically increase the attack search
space dimensionality to ensure better search resolution in later
attack stages. In the end, the reduced-dimension attacker can
achieve lower FID than was previously possible with RayS,
and an attack variant based on our proposed DynBiLN can
automatically select the ideal search dimension with minimal
tuning.

Geometric interpretation of hard-label attacks. Based on
our results, we can view zeroth-order attacks as following a
geometric hierarchy that reveals the inherent concentration
of adversarial samples. Our interpretation is illustrated in
Figure 1. Each technique offers a traversal direction which
is either away from the manifold (towards xa), arbitrarily
near the manifold (xb), or along the manifold (xc). Efficient
attacks create samples such as xb, by finding the direction
of the nearest decision boundary which also points to the
data manifold. This is representative of RayS, which can find
adversarial samples closer to the manifold through elimination
of off-manifold directions. The smaller points below xb are
representative of BiLN and DynBiLN variants, which can get
closer to the manifold, despite this region having a lower
concentration of adversarial samples. In contrast, traversing
close to an approximate manifold description leads to xc,
which may not find adversarial samples inside the ϵ radius.
As shown by Stutz et al. [2], strict manifold traversal leads to
a lower concentration of adversarial samples and high average
distortion. To this end, the R2 score of local semantic features
can inform the geometric behavior of hard-label attacks which
resemble the smaller yellow points near xb, rather than xa

or xc. This ultimately enables a better evaluation of model
robustness in future work, as we are able to find errors which
are closer to the manifold.

Implications for robust models. As discussed in Sec-
tion V-C, our results highlight specific nuances for designing
dimension-reduced hard-label attacks against robust models.
When measuring FID as a proxy of manifold distance in Ta-
bles II-V, we observed that dimensionality-reduction favored
“harder” learning problems such as Madry CIFAR-10 and
ImageNet. We know from empirical results by Santurkar et
al. [30] that gradients of adversarially trained models contain
better semantic alignment with the original image. From the
gradient estimation perspective, the gradient estimates could

Table VI
PER-PIXEL GRADIENT l2-DEVIATION MEASUREMENT FOR OUR ATTACK

VARIATIONS (ITALICIZED).

Attack Variant Natural CIFAR-10 Madry CIFAR-10

HSJA 5.42± 0.02 5.46± 0.06
→ BiLN 4 3.72± 0.35↓ 3.72± 0.39↓
→ BiLN 8 3.83± 0.22↓ 3.84± 0.27↓
→ BiLN 16 3.83± 0.15↓ 3.85± 0.21↓
MC HSJA 5.42± 0.02↓ 5.47± 0.05↑
→ BiLN 4 3.74± 0.33↓ 3.76± 0.34↓
→ BiLN 8 3.82± 0.20↓ 3.89± 0.22↓
→ BiLN 16 3.83± 0.12↓ 3.91± 0.16↓
→ DynBiLN 3.96± 0.33↓ 3.96± 0.25↓

Sign-OPT 0.12± 0.42 0.84± 1.16
→ BiLN 4 0.16± 0.29↑ 0.41± 0.42↓
→ BiLN 8 0.15± 0.30↑ 0.73± 0.44↓
→ BiLN 16 0.16± 0.24↑ 0.81± 0.43↓
MC Sign-OPT 0.13± 0.32↑ 0.72± 0.51↓
→ BiLN 4 0.15± 0.23↑ 0.45± 0.44↓
→ BiLN 8 0.18± 0.32↑ 0.73± 0.40↓
→ BiLN 16 0.17± 0.30↑ 0.82± 0.41↓

leverage the upper-bounded noisy mutual information during
attacks (Hypothesis 1). This would manifest in a lower gradi-
ent deviation, or in other words, a lower distance between the
true gradient from a robust model and the gradient estimate
at the first attack step. Since adversarial training effectively
smooths the sampled data manifold by augmenting perturbed
data samples during training, robust models have a well-
defined boundary that aligns with salient input changes [30].

We posit that adversarial trained models lower the variance
of the gradient estimate compared to natural models. We test
this idea by calculating per-pixel gradient deviation ||g−ĝ||2

H×W
for true gradient g (in the direction of the adversarial label)
from an adversarially trained model, first gradient estimate
ĝ, estimate height H , and estimate width W . When taking
the true input gradient in the direction of the adversarial
label, we use the robust model’s original criterion to calcu-
late the gradient, which was cross-entropy for all models in
our evaluation. The results of this experiment are shown in
Table VI, which exhibits a consistent trend for dimension-
reduced attacks to reduce the gradient deviation, particularly
for HSJA (which is known to have a higher gradient estimation
error due to relying on a single point estimate [16]). In this
sense, dimension-reduced attacks can turn the strength of
adversarial training into a weakness, since the robust model
now leaks more semantically meaningful decision boundaries.
This reveals an interesting direction for future work, as it can
lead to creation of hard-label attacks specifically formulated
for adversarial training schemes, which can heal the inherent
generalization errors due to adversarial training on narrow
threat models [22]. On supplemental experiments in the Ap-
pendix, we show that our hard-label attacks are in fact capable
of lower manifold distance than strong white-box attacks such
as AutoAttack [41]. Although it remains outside the scope
of this work, incorporating the hard-label threat model into
adversarial training provides a ripe direction for future work.



VII. CONCLUSION

Despite the recent progress in zeroth-order attack methods,
open questions remain about their precise behavior. We de-
velop an information-theoretic analysis that sheds light on
their ability to produce on-manifold adversarial examples.
Through experiments on real-world datasets, we show an
over two-fold increase in attack success rates by leveraging
new findings about manifold distance and gradient deviation.
With knowledge of the manifold-gradient relationship, it is
possible to further refine hard-label attacks, and inform a better
evaluation of model robustness. Given the availability of larger
datasets in the future, our method may turn the strength of deep
learning, which is efficiently extracting patterns in large-scale
data, into a weakness.
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APPENDIX

A. Derivation of Manifold-Gradient Mutual Information (MI)

We define the manifold-gradient point-wise joint probability
in a case-wise manner, for the respective values under g ∈
{−1, 1}d and x ∈ Rd. We are concerned with the sub-gradient
cases where x > 0 (denoted x+) and x < 0 (denoted x−)
which correspond to fixed values of g based on class means
y · µ with y ∈ {−1, 1}. This gives for each dimension k,
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(4)

Since the Schmidt et al. Gaussian mixture is created sym-
metrically (the probability mass is evenly split between the
two classes i.e., the mixture comprises one Gaussian offset by
µk and mirrored at xk = 0) we can simplify to
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(6)
where x ∼ N (y · µ, σI). In words, Equation 6 is the

symmetrical tail of the Gaussian mixture marginal while
Equation 5 is the remainder of the mixture.

Similarly, a point-wise gradient is given as the Rademacher
outcome gk ∈ {±1}. The choice of ϵ directly influences
the marginal probability over the manifold. The marginal
probability over the manifold can be given as the Riemann
approximations
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with ∆i = x+

i,k − x+
i−1,k for arbitrary x∗

i,k ∈ [x+
i−1,k,x

+
i,k],

and n is controlled by the hyper-parameter ϵ.
The marginal for the manifold under the gradient is given

similarly as
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(9)

where x+
k > 0 for all dimensions k. Denote the sub-

manifold sampled from the positive (y = 1) and negative
(y = −1) classes asM+ andM−, respectively. Our definition
for manifold-gradient mutual information is based on the
standard definition of mutual information from information
theory [33],



I(M;G)ϵ,k =

∫
M

∫
G
p(gk,xk) log(
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) dgk dxk,

(10)
where ϵ is treated as a hyper-parameter controlling the value

of n in pG(gk). By substitution into Equation 10 we have
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This is split further similar to true positive, true negative,

false positive, and false negative, as
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and simplified due to symmetry at 0 as
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The total un-normalized mutual information is given by the

summation over dimensions I(M;G)ϵ =
∑d

k=1 I(M;G)ϵ,k.
Notably the cases for each possible scenario under detection
theory are represented. Each case is bounded by the results
of [28]. By substitution from each marginal and joint proba-
bility in Equations 7, 3, and 4 respectively, we have the closed
form solution for mutual information.

This leads to the Riemann approximation of Equation 2,
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with ∆i = x+

i,k − x+
i−1,k for arbitrary positive x∗

i,k ∈
[x+

i−1,k,x
+
i,k]. Since x+ is a standard multi-variate Gaus-

sian [33], the final mutual information is the summation over
each dimension,
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B. Hard-label attack formulation

Contemporary hard-label attacks are variants of random
gradient-free method (RGF) [24], a gradient estimator which
yields the estimate ĝ over q random directions {ui}qi=1.

OPT-Attack For benign example x0, true label y0, and hard-
label black-box function f : Rd → {1, . . . ,K}, [17] define
the objective function g : Rd → R as a function of search
direction θ, where the optimal solution is g(θ∗), the minimum
distance from x0 to the nearest adversarial example along the
direction θ∗. For the untargeted attack, g(θ) is the distance
to any decision boundary along direction θ, and allows for
estimating the gradient as

ĝ =
1

q

q∑
i=0

g(θ + βui)− g(θ)

β
· ui, (16)

where β is a small smoothing parameter. Notably, g(θ) is
continuous even if f is a non-continuous step function.

Sign-OPT [19] later improved the query efficiency by only
considering the sign of the gradient estimate,

∇̂g(θ) ≈ ĝ :=

q∑
i=1

sgn (g(θ + βui)− g(θ))ui. (17)

We focus on the Sign-OPT variant, since the findings are
more relevant to the current state-of-the-art.

HopSkipJumpAttack Similar to Sign-OPT,
HopSkipJumpAttack (HSJA) [18] uses a zeroth-order
sign oracle to improve Boundary Attack [42]. HSJA lacks the
convergence analysis of Sign-OPT and relies on one-point
gradient estimate. Regardless, HSJA is competitive and can
excel in the L∞ setting.

Dimension-reduced Sign-OPT & HSJA. In general, for
attacks relying on the [17] formulation, the update in Equa-
tion 16 becomes

ĝ =
1

q

q∑
i=0

g(θ′ + βu′
i)− g(θ′)

β
· u′

i (18)

for the reduced-dimension Gaussian vectors {u′
i ∈ Rd′}qi=0

for integer d′ < d and direction θ′ ∈ Rd′
. The reduced-

dimension direction θ′ is initialized randomly with θ′ ∼
N (0, 1) for the untargeted case, or for the targeted case as
θ′ = E(xt), where xt is a test sample correctly classified as
target class t by the victim model. This scheme also applies
to HSJA, since HSJA performs a single-point sign estimate.
As in the normal variants, ĝ is used to update θ′.



Table VII
COMPARISON OF KEY ATTACK VARIANTS FROM THE MAIN TEXT AGAINST

STRONG WHITE-BOX ATTACKS FORMULATED FOR ADVERSARIAL
TRAINING.

SR LPIPS FID

Benign 0.132 - -

HSJA 0.240 0.696± 0.272 0.262
BiLN+HSJA 8 0.220 0.735± 0.315 0.035
DynBiLN+HSJA 0.240 0.666± 0.271 0.046
RayS 0.306 0.822± 0.297 0.054

l∞ AutoAttack [41] 0.560 1.096± 0.286 0.072
LPA [22] 0.998 0.470± 0.038 0.120
PPGD [22] 0.990 0.387± 0.084 0.092

C. Implementation details

1) Hardware and Attack Hyperparameters: All experi-
ments in the main paper were performed on an internal high-
performance compute cluster equipped with NVIDIA Tesla
V100 Tensor Core GPUs and high-speed non-volatile flash
storage. In total 16 GPUs, 1TB main system memory, and
40 Intel Xeon CPU cores were used to run experiments
completely.

Depending on dataset dimension, HSJA requires tuning of
parameter γ for best performance. On CIFAR-10 we used γ =
10.0. For ImageNet, it was necessary to set γ ≥ 1000.0 to
re-create the published results of the regular variant [18].
Due to similar performance we use γ = 1000.0 for regular
and dimension-reduced variants. We note that the dimension-
reduced variants like HSJA+BiLN were less sensitive to γ,
performing similarly regardless of the setting.

2) Data sampling: Original samples are chosen from the
test set using a technique similar to Chen et al. [18]: on
CIFAR-10, twenty random samples are taken from each of
the ten chosen classes (200 total samples). On the ImageNet
dataset, twenty classes are uniform-randomly chosen and ten
random samples taken from each (200 total samples).

D. Supplemental Results

1) Query vs. Distortion Plots: We show the model queries
against attack distortion measurement in Figure 7 to accom-
pany the results in the main paper.

2) Grid search for DynBiLN Differential Factor: We per-
formed a simple grid search to find an ideal differential factor
η for our proposed DynBiLN attack variant. The result on
CIFAR-10 is shown in Figure 8, averaged over 40 samples.

3) Comparison to strong white-box attacks: Recent work
found that traditional adversarial training relies on narrow
threat models which do not accurately capture the generaliza-
tion error of a model, or equivalently, the distinction between
off- and on-manifold examples [22]. Laidlaw et al. proposed to
instead formulate LPA and PPGD within the neural perceptual
threat model (NPTM), directly optimizing for lower LPIPS,
since it acts as a reliable estimator of perceptual distance
(i.e., manifold distance) from adversarial sample to original.
In this way LPA and PPGD act as a best-case scenario for the

Table VIII
ADOPTING THE NEURAL PERCEPTUAL THREAT MODEL (NPTM) [22] TO

COMPARE “UNCONSTRAINED” HARD-LABEL ATTACKS AGAINST
NPTM-FORMULATED ATTACKS WHICH DIRECTLY OPTIMIZE LPIPS.

NPTM
(no ϵ-ball) SR l∞

distance LPIPS FID

HSJA 0.748 0.058± 0.041 1.407± 0.588 1.715
BiLN+HSJA 8 0.886 0.061± 0.044 1.458± 0.506 0.305
DynBiLN+HSJA 0.736 0.041± 0.038 1.222± 0.475 0.397
RayS 0.832 0.041± 0.027 1.292± 0.478 0.355

LPA [22] 0.998 0.277± 0.155 0.470± 0.038 0.120
PPGD [22] 0.990 0.223± 0.136 0.387± 0.084 0.092

l∞ AutoAttack [41] 0.560 0.013± 0.016 1.096± 0.286 0.072

creation of on-manifold adversarial examples in the gradient-
level setting. We examine the relationship of these idealized
gradient-level attacks to hard-label variants discussed in the
main text, by attacking 500 samples with each attack on an
adversarially trained model (equivalent to Madry CIFAR-10
in the main text). We show in Table VII that on successful
samples within the ϵ-ball, our hard-label attack variants can
achieve a similar decrease in LPIPS and FID, undercutting
the narrow threat model and gradient-level baseline of l∞
AutoAttack. Notably our attacks can generate adversarial
examples closer to the manifold, without having to directly
optimize LPIPS (e.g., LPA and PPGD).

The success rate gap between hard-label and gradient-level
attacks in Table VII evidences the need for further improve-
ments in hard-label attack efficiency. To this end, it is notable
that LPA and PPGD generate adversarial samples outside the
ϵ-ball, which would be considered invalid in our threat model.
However, Laidlaw et al. demonstrate that incorporating these
“invalid” samples into adversarial training leads to models
that are holistically more robust against unseen adversaries
compared to previous adversarial training schemes. If we
relax the requirement for hard-label attacks to land inside the
traditional l∞ ϵ-ball, and instead adopt the NPTM, can hard-
label attacks still find on-manifold examples? We perform this
comparison in Table VIII by examining the “unconstrained”
performance of the same hard-label attack variants. We provide
results within the radius using AutoAttack as a comparison
in the last row. Under the NPTM, we can see that hard-
label success rate is much higher due to finding samples
arbitrarily close to the ϵ = 0.031 radius (a known behavior
of adversarially trained models [7], [43]), at the cost of higher
LPIPS and FID, since our hard-label variants still rely on
l∞ distance for their objectives (e.g., formulation of g for
gradient estimation is optimal l∞ step size in HSJA). LPA and
PPGD, which are gradient-level attacks, have the advantage
of directly optimizing LPIPS instead of l∞, resulting in lower
FID and LPIPS. It can be observed that FID is still consistently
lower for dimension-reduced variants (e.g., 0.305/1.715 for
BiLN+HSJA/HSJA). This motivates an exciting new research
direction for hard-label attacks which formulate their objec-
tive surrogates under NPTM, rather than traditional lp-based
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Figure 7. Query vs. distortion plots for a) CIFAR-10 and b) ImageNet, corresponding to the success rate plots in the main text. Horizontal dashed lines
denote the value of ϵ = 0.031.
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Figure 8. Result of grid search for DynBiLN differential parameter η on
CIFAR-10 over 40 samples.

metrics.


