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Abstract

In this work we investigate the optimal se-001
lection and fusion of features across multiple002
modalities and combine these in a neural net-003
work to improve emotion detection. We com-004
pare different fusion methods and examine the005
impact of multi-loss training within the multi-006
modality fusion network, identifying surpris-007
ing findings relating to subnet performance.008
Our best model achieves state-of-the-art perfor-009
mance for three datasets (CMU-MOSI, CMU-010
MOSEI and CH-SIMS), and outperforms the011
other methods in most metrics. We have found012
that training on multimodal features improves013
single modality testing and designing fusion014
methods based on dataset annotation schema015
enhances model performance. These results016
suggest a roadmap toward an optimized feature017
selection and fusion approach for enhancing018
emotion detection in neural networks.019

1 Introduction020

The multimodal affective computing field has seen021

significant advances in feature extraction and mul-022

timodal fusion methodologies in recent years. By023

combining audio, text and visual signals, these024

models offer a more comprehensive, nuanced un-025

derstanding of human emotions. However, there026

are still limitations: hand-crafted feature extraction027

algorithms often lack flexibility and generalization028

across diverse tasks. To overcome these limitations,029

recent studies have proposed fully end-to-end mod-030

els that optimize both feature extraction and learn-031

ing processes jointly (Dai et al., 2021). Our work032

extracts feature representations from pre-trained033

models for different modalities and combines them034

in an end-to-end manner, which provides a com-035

prehensive and adaptable solution for multimodal036

affective feature computation. In the context of037

multimodal fusion, the challenge also lies in ef-038

fectively fusing diverse signals, including natural039
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language, facial gestures, and acoustic behaviors. 040

Methods like Tensor Fusion Network (TFN)(Zadeh 041

et al., 2017) have been proposed to model intra- 042

modality and inter-modality interactions. More 043

recently, transformer encoder structures such as 044

MULT(Tsai et al., 2019) with cross-modal atten- 045

tion have gained popularity for integrating multi- 046

modal data. In this paper, we propose a novel fu- 047

sion network structure that integrates cross-modal 048

attention and self-attention, with additional feed- 049

forward layers to refine the representations. We 050

have also experimented with variations of the pro- 051

posed fusion network. 052

Despite the recent advancements, there is still room 053

for improvement in multimodal feature extraction 054

and fusion. In this study, we present a series of 055

experiments that focus on feature selection, fusion 056

network performance comparison, and multi-loss 057

training analysis using audio and text data from 058

three datasets: CMU-MOSI, CMU-MOSEI, and 059

CH-SIMS. We compare different methods for ex- 060

tracting audio features as well as different fusion 061

network methods to combine audio and text signals 062

to identify the best-performing procedures. We find 063

that the addition of audio signals consistently im- 064

proves performance and also that our transformer 065

fusion network further enhances results for most 066

metrics and achieves state-of-the-art results across 067

all datasets, indicating its efficacy in enhancing 068

cross-modality modeling and its potential for multi- 069

modal emotion detection. From multi-loss training, 070

we also observe that 1) using distinct labels for 071

each modality in multi-loss training significantly 072

benefits the models’ performance, and 2) training 073

on multimodal features improves not only the over- 074

all model performance but also the model’s accu- 075

racy on the single-modality subnet. These novel 076

findings have advanced our understanding of multi- 077

modal sentiment analysis and hold promise for fur- 078

ther research and optimization in this field. 079
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2 Related Work080

Existing research on multimodal affective comput-081

ing often employs hand-crafted algorithms to per-082

form initial feature representation extraction and083

retrieve some fixed representations for each modal-084

ity (Shenoy and Sardana, 2020). (Delbrouck et al.,085

2020) However, for these, the extracted features are086

static and lack the flexibility to be further fine-tuned087

for different target tasks; also, the manual determi-088

nation of feature extraction algorithms can lead to089

sub-optimal performance due to constraints in gen-090

eralization across diverse tasks (Dai et al., 2021).091

To address these issues, recent studies have pro-092

posed fully end-to-end models, effectively bridg-093

ing the gap between feature extraction and learning094

processes (Dai et al., 2021) (Wang et al., 2020).095

Our research also emphasizes an end-to-end struc-096

ture that optimizes both phases jointly, presenting097

a comprehensive and adaptable solution for multi-098

modal affective feature computation.099

Lexical features, owing to pre-training on ex-100

pansive corpora through Transformer-based mod-101

els, often outperform other modalities. Some re-102

cent work aims to improve model performance by103

incorporating speech information inside the text104

model such as SPECTRA (Yu et al., 2023), by pre-105

training a speech-text transformer model to capture106

the speech-text alignment effectively. A similar in-107

novative method is the Transformer-Based Speech-108

Prefixed Language Model (TEASEL) (Arjmand109

et al., 2021), which incorporates speech as a dy-110

namic prefix along with the textual.111

Many studies have explored multimodal human112

language time-series data, which typically includes113

a mixture of natural language, facial gestures, and114

acoustic behaviors. However, fusing these into a115

unified representation presents a significant chal-116

lenge due to the variable sampling rates across117

modalities and the difficulty in determining intra-118

modality dependencies. Various methods have119

been proposed to model the interaction across120

modalities, such as the Tensor Fusion Network121

(Zadeh et al., 2017), which utilizes the Cartesian122

product of different modalities to model both intra-123

modality and inter-modality interactions. More124

recent work has shifted toward employing trans-125

former encoder structures to integrate these signals126

via cross-modality attention. The MULT model127

(Tsai et al., 2019) has pioneered this approach, in-128

troducing directional pairwise cross-modal atten-129

tion. This method allows for interaction between130

multimodal sequences across distinct time steps 131

and inherently adapts streams from one modality 132

to another. Further research has also leveraged this 133

concept of cross-modality attention (Goncalves and 134

Busso, 2022) (Paraskevopoulos et al., 2022), yield- 135

ing valuable insights into how multimodal data can 136

be processed more effectively. We enhance this 137

approach by employing a self-attention encoder 138

and a feed-forward network to further optimize 139

the multimodal representation after one modality 140

is projected into another using the cross-modality 141

attention module, thus enriching our ability to pro- 142

cess and understand multimodal data. 143

3 Methodology 144

The methodology for emotion detection in our 145

study involves two primary components: the fea- 146

ture network and the fusion network. Each of 147

these has its own unique mechanisms and con- 148

tributes towards the overall functioning of our pro- 149

posed Multi-Modality Multi-Loss Fusion Network 150

(MMML) as illustrated in Figure 1. 151

3.1 Feature Network 152

The Feature Network employs two different pre- 153

trained models for text and audio processing. The 154

text subnet leverages RoBERTa, chosen for its sig- 155

nificantly superior performance on various down- 156

stream tasks. The audio subnet employs different 157

models for different languages: HuBERT for Man- 158

darin and Data2Vec for English. This ensures the 159

optimized extraction of features from the given 160

modalities, setting a solid foundation for the subse- 161

quent fusion process. 162

3.2 Fusion Network 163

The Fusion Network is the heart of the MMML, 164

where the information from multiple modalities 165

is combined. This network is divided into three 166

smaller components as shown in the yellow por- 167

tion of Figure 1. First, there is a Cross-Attention 168

Encoder, which adopts a mechanism similar to the 169

self-attention encoder but which employs a query 170

from one modality and uses keys and values gener- 171

ated from another modality. This cross-modal in- 172

teraction aims to capture the inter-dependencies be- 173

tween different modalities, contributing to a more 174

holistic understanding of the data. This encoder is 175

defined as: 176

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V 177
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Figure 1: Our Model Structure
Figure 2: Model Variations

178

where Q is the matrix of queries, K is the matrix179

of keys, V is the matrix of values, and dk is the180

dimension of the keys.181
In cross-modality attention, we denote queries182

as Qm1 (from modality 1) and the keys and values183
as Km2 and Vm2 (from modality 2). fm1 is the184
feature from modality 1 and fm2 is the feature from185
modality 2. The formula is:186

Attention(Qm1,Km2, Vm2) = softmax
(
Qm1K

T
m2√

dk

)
Vm2187

188
where:189

Qm1 = Wq · fm1190

Km2 = Wk · fm2191

Vm2 = Wv · fm2192
193

Our proposed network also includes additional Self-194

Attention Encoders which use a traditional self-195

attention mechanism, as found in the original trans-196

former models and is designed to find the correla-197

tion within a single modality, thereby capturing the198

intra-modal dynamics of the data. In our model,199

the self-attention module serves to model the con-200

nections across time steps of the new feature repre-201

sentation after passing through the cross-modality202

encoder.203

Finally, it includes a Pointwise Feed-Forward204

Network which applies fully connected feed-205

forward networks and ReLU activation functions206

to each individual position, further refining the en-207

coded feature representations. Through combin-208

ing these methodologies, we aim to optimize the209

multi-modal feature extraction and fusion process,210

enhancing the MMML’s performance in emotion 211

detection tasks. 212

The operationalization of our methodology in- 213

volves processing the raw text and audio data 214

through their respective pre-trained models. The 215

final hidden states obtained from both the text and 216

audio subnets are employed in two experimental 217

ways: 1) Direct Concatenation, in which the mean 218

of the hidden states from different modalities is 219

computed and utilized as the feature set. These 220

mean features are then directly concatenated to rep- 221

resent the combined information from all modali- 222

ties; 2) Fusion Network, which incorporates addi- 223

tional layers of the fusion network before concate- 224

nation, as illustrated in the yellow portion of Figure 225

1. The process begins with the introduction of a 226

CLS token pre-pended to the hidden states for each 227

modality which then serve as markers for the final 228

modality representation. 229

A critical piece of this fusion approach is the 230

role of the cross-attention encoder, which initiates 231

the fusion process by generating a query from the 232

text modality and inquiring keys from the audio 233

modality. It seeks to identify which values from 234

the audio modality relate to each text segment and 235

to then provide each text segment with a weighted 236

average of audio hidden states. This interaction is 237

critical because the cross-attention encoder essen- 238

tially projects the hidden states from one modality 239

into the space of another modality. After this inter- 240

modal projection, a self-attention layer is added to 241
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find the correlation within the newly formed space242

of hidden states. This layer allows for the capture243

of intra-modal dynamics within this new mixed244

space.245

After completing these stages of interaction and246

transformation, the final output values from the247

CLS tokens are used as the final modality repre-248

sentation. The concatenated representation is then249

passed through a series of three fully connected250

layers to generate the final prediction.251

The fusion network approach aims to enhance252

the integration of multi-modal information and pro-253

vide more in-depth insight into the correlations and254

interdependencies between different modalities.255

3.3 Multi-Loss Training256

In order to leverage multi-loss training, we mod-257

ified the architecture of our fusion network to in-258

corporate an additional fully-connected layer at the259

termination of each feature network, as illustrated260

in the green portion of Figure 1. This modifica-261

tion enables two additional outputs from individual262

modalities, in addition to the combined feature out-263

put. This design facilitates the application of three264

distinct loss functions during training, each corre-265

sponding to one of the outputs.266

The rationale behind implementing additional267

losses for each individual modality is to bolster the268

respective feature networks’ comprehension and269

processing of their respective signals. Given that270

each feature network perceives and handles signals271

distinctively, akin to how humans discern emotions272

through different sensory signals, the multi-task273

loss serves a dual purpose: First, it encourages each274

feature network to refine its method of processing275

its specific modality, akin to honing the ’sense’276

associated with that modality; Second, it trains the277

fusion network to effectively combine the distinct278

signals relayed by the feature networks, as guided279

by the loss from the combined modality.280

Through this multi-loss training approach, we281

create a model that efficiently mirrors human-like282

multi-modal emotion perception, each modality283

working independently and collaboratively to un-284

derstand the comprehensive emotional context.285

3.4 Variations of the Fusion Network286

In our investigation of the fusion network, we de-287

veloped two variants designed to mitigate potential288

loss of original signals during the cross-modal pro-289

jection process. Because the cross-attention mech-290

anism projects one modality into another, some291

original signals might be obscured or lost. There- 292

fore, these variations aim to combine the original 293

signal with the projected signal, thereby enhancing 294

the ability of the network to learn from both signals 295

simultaneously: 296

The first is Concatenation Variation which con- 297

catenates the original feature with the fused feature. 298

This fusion of original and projected information 299

within each modality aims to maintain the integrity 300

of the original signals, while also integrating the 301

enriched cross-modal information. The combined 302

features then go through a linear layer and are sub- 303

sequently concatenated with features from other 304

modalities. 305

The second is the Transformer Variation. This 306

variation merges the original hidden states and the 307

fused hidden states along the feature dimension. 308

Transformer encoders further process these com- 309

bined hidden states. Finally, the mean of the hidden 310

states serves as the feature for that modality, and 311

these features are concatenated. The transforma- 312

tional capabilities of the transformer network are 313

leveraged to refine and combine the feature sets, 314

which are then used for the final prediction. 315

By incorporating both original and projected sig- 316

nals, these variations offer a more comprehensive 317

feature set for the final layers of the model, en- 318

hancing the model’s ability to accurately detect and 319

interpret emotions from multimodal inputs. These 320

variations provide a comprehensive exploration of 321

feature fusion strategies. 322

4 Experiments 323

4.1 Experimental Setup 324

We use three primary datasets, each characterized 325

by its unique properties and content, to test the per- 326

formance of the Multi-Modality Multi-Loss Fusion 327

Network on emotion detection. 328

The CMU-Multimodal Opinion Sentiment and 329

Emotion Intensity (CMU-MOSI)(Zadeh et al., 330

2016): This dataset, developed in English, com- 331

prises audio, text, and video modalities compiled 332

from 2199 annotated video segments collected 333

from YouTube monologue movie reviews. It offers 334

a focused approach to studying emotion detection 335

within the context of film critique. 336

The CMU-Multimodal Sentiment Analysis 337

(CMU-MOSEI)(Bagher Zadeh et al., 2018) is an ex- 338

tension of CMU-MOSI, including the same modali- 339

ties of audio, text, and video from YouTube videos, 340

but it has a broader scope, covering a wider range of 341
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Has0_ACC2 Has0_F1 Non0_ACC2 Non0_F1 ACC5 ACC7 MAE CORR

TEASEL 84.79 84.72 87.5 85 - 47.52 64.4 83.6
SPECTRA - - 87.5 - - - - -
UniMSE 85.85 85.83 86.9 86.42 - 48.68 69.1 80.9
MMML (Ours) 85.91 85.85 88.16 88.15 56.08 48.25 64.29 83.8

(a) CMU-MOSI
Has0_ACC2 Has0_F1 Non0_ACC2 Non0_F1 ACC5 ACC7 MAE CORR

SPECTRA - - 87.34 - - - - -
UniMSE 85.86 85.79 87.5 87.46 - 54.39 52.3 77.3
MMML (Ours) 86.32 86.23 86.73 86.49 57.32 54.95 51.74 79.08

(b) CMU-MOSEI

ACC2 ACC3 ACC5 F1 MAE CORR

EMT 80.1 67.4 43.5 80.1 39.6 62.3
MMML(ours) 82.93 69.37 49.38 82.9 33.2 73.26

(c) CH-SIMS

Table 1: Comparison with SOTA: All three datasets achieve state-of-the-art performance. All experimental results
presented are averages derived from three separate runs.

topics, and is more substantial in size, with 23,453342

annotated video segments.343

The Chinese Multimodal Sentiment Analysis344

Dataset (CH-SIMS)(Yu et al., 2020), a Mandarin345

language dataset incorporating the same modalities:346

audio, text, and video, collected from 2281 anno-347

tated video segments. It comprises data from TV348

shows and movies, making it culturally distinct and349

diverse, and includes multiple labels for the same350

utterance based on different modalities, which adds351

an extra layer of complexity and richness to the352

data.353

These datasets provide a broad and multi-354

cultural perspective on emotion detection, allowing355

for a thorough evaluation and comparative analysis356

of the MMML’s performance across diverse data357

landscapes.358

Our MMML model was evaluated using metrics359

consistent with existing research against existing360

benchmarks, which enables comprehensive evalu-361

ation of our model’s performance across diverse362

sentiment analysis dimensions (detailed descrip-363

tions in Appendix A.2). Additional sets of ablation364

experiments on different components of the model365

were conducted for analysis, to interpret and ex-366

plain the model performance.367

4.2 Results368

Our overall results are shown in Table 1. When369

compared with contemporary state-of-the-art mod-370

els, our method emerges as a robust performer, of-371

fering superior outcomes for both CMU-MOSI and372

CMU-MOSEI. Among recent models, UniMSE 373

(Hu et al., 2022) has delivered good results on the 374

English datasets. Nonetheless, our MMML model 375

surpasses UniMSE in most of the evaluation met- 376

rics, reinforcing the effectiveness of our approach. 377

Intriguingly, there is little research on CH-SIMS for 378

emotion detection tasks. However, one state-of-the- 379

art model is the Efficient Multimodal Transformer 380

(EMT) (Sun et al., 2023), which has demonstrated a 381

high degree of performance over existing methods. 382

Our MMML model significantly outperforms EMT 383

across all metrics, further underscoring the poten- 384

tial of our fusion network. These results not only 385

validate our multimodal fusion network but also 386

affirm the robustness of our chosen methodology 387

for emotion detection tasks. Our impressive perfor- 388

mance on all three datasets, CMU-MOSI, CMU- 389

MOSEI, and CH-SIMS, verifies the versatility and 390

adaptability of our MMML model, emphasizing its 391

value in advancing the field of emotion detection. 392

4.3 Audio Feature Selection 393

To incorporate the best speech information into our 394

model, the initial stage of our experimentation pro- 395

cess involved comparing the performance on audio 396

features for sentiment analysis from two datasets, 397

CMU-MOSI (English) and CH-SIMS (Mandarin), 398

using openSMILE and Mel spectrograms, each 399

with customized parameters for optimal feature 400

extraction to compare with features from a pre- 401

trained audio model. Implementation details are in 402

Appendix A.2. 403
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Feature name ACC2

openSMILE 0.6696
Mel Spectrogram 0.6805
Fine-tuned HuBert(CH) 0.7465
(a) CH-SIMS

Feature name ACC2

openSMILE 0.4606
Mel Spectrogram 0.4519
Fine-tuned Data2vec(EN) 0.7099
(b) CMU-MOSI

Table 2: Audio Feature Selection Results: Fine-tuning
a pre-trained audio model works significantly better than
using other audio features.

Upon evaluation of the different audio feature404

extraction methods shown in Table 2, we found that405

use of a pre-trained model for raw audio yielded406

higher accuracy rates: accuracy rates of approx-407

imately 71% and 75% were achieved for CMU-408

MOSI and CH-SIMS, respectively. This outper-409

formed the other two techniques (openSMILE and410

Mel spectrograms) by a significant margin. Interest-411

ingly, openSMILE and Mel spectrograms displayed412

comparable performance on CH-SIMS. However,413

their performance on CMU-MOSI was notably sub-414

par. We hypothesize that CH-SIMS, comprising415

audio from TV shows and movies, presents a more416

straightforward task for audio emotion classifica-417

tion.418

This analysis highlights the effectiveness of us-419

ing pre-trained models for raw audio in achieving420

superior emotion classification accuracy. It also421

underscores the need to consider the characteris-422

tics and source of audio data in applying different423

feature extraction techniques.424

4.4 Comparison of Simple Concatenation and425

Fusion Network426

To prove the superiority of our proposed fusion net-427

work, we compared it against concatenation. Upon428

analysis of our results, as shown in Table 3, we ob-429

served that the introduction of the transformer fu-430

sion network yielded improvements in performance431

in most metrics for CMU-MOSEI and CH-SIMS,432

and half of the metrics for CMU-MOSI. These433

results underscore the effectiveness of our trans-434

former fusion network in enhancing cross-modality435

modeling and suggest its potential as a powerful436

tool for multi-modal emotion detection.437

Beyond these observations, it is imperative to 438

highlight that both methods which combined audio 439

and text signals outperformed methods utilizing 440

only text signals in almost all metrics across the 441

three datasets. A noteworthy increase in perfor- 442

mance was recorded on the CH-SIMS dataset upon 443

the addition of audio signals, while the two English 444

datasets, CMU-MOSI and CMU-MOSEI, exhib- 445

ited smaller improvements. The substantial im- 446

provement observed in CH-SIMS can be attributed 447

to two factors. First, CH-SIMS assigns unique 448

labels to audio and text, thereby facilitating the net- 449

work’s ability to learn distinct signals from each 450

modality. Second, the source for CH-SIMS is TV 451

show and movie videos, which typically display 452

easily-interpretable emotions. This characteristic 453

probably contributes to the effectiveness of com- 454

bining audio and text signals for emotion detection. 455

4.5 Multi-loss Training Experiments 456

To investigate the effectiveness of multi-loss train- 457

ing, we performed comparative experiments on two 458

different datasets: CMU-MOSEI and CH-SIMS. 459

CMU-MOSEI provides a single target for each 460

utterance, whereas CH-SIMS offers different la- 461

bels for each modality in addition to the combined 462

modalities. We easily adapted multi-loss training to 463

CH-SIMS, given its distinct labels for each modal- 464

ity. For CMU-MOSEI, we duplicated the single 465

target across different losses to enable multi-task 466

training. 467

The results, as show in Table 4, were striking: 468

while multi-loss and single-loss training performed 469

similarly on CMU-MOSEI, multi-loss training sig- 470

nificantly boosted performance on CH-SIMS. This 471

underscores the value of unique labels for each 472

modality when employing multi-task training. The 473

improved performance on CH-SIMS can be at- 474

tributed to the distinct nature of the signals pro- 475

cessed by each feature network. Since audio in- 476

cludes acoustic signals that are not present in the 477

text, it is common for them to have different senti- 478

ment. Having distinct labels assists each network 479

in learning better how to process its unique signal. 480

Surprisingly, as shown in Table 5, the multi-loss 481

training also contributed to an enhanced perfor- 482

mance of the text subnet when compared to train- 483

ing with only the text. The additional audio signal 484

appears to support the performance improvement. 485

This suggests that even when the goal is to use 486

only the text input for inference, multi-loss training 487
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Has0_ACC2 Has0_F1 Non0_ACC2 Non0_F1 ACC5 ACC7 MAE CORR

text-only 84.79 84.72 87.29 87.29 56.41 48.68 64.96 83.61
concatenation 85.77 85.74 87.6 87.62 56.51 48.79 64.27 84.06
+ fusion network 85.91 85.85 88.16 88.15 56.08 48.25 64.29 83.8

(a) CMU-MOSI
Has0_ACC2 Has0_F1 Non0_ACC2 Non0_F1 ACC5 ACC7 MAE CORR

text-only 84.81 84.95 86.34 86.19 54.99 52.7 53.31 78.6
concatenation 84.77 84.9 86.82 86.65 55.99 53.94 51.63 79.81
+ fusion network 86.32 86.23 86.73 86.49 57.32 54.95 51.54 79.08

(b) CMU-MOSEI

ACC2 ACC3 ACC5 F1 MAE CORR

text-only 79.21 65.06 42.02 79.14 42.65 59.4
concatenation 81.91 70.68 47.12 82.1 34.96 72.37
+ fusion network 82.93 69.37 49.38 82.9 33.2 73.26

(c) CH-SIMS

Table 3: Concatenation vs. Transformer Fusion: Integration of audio signals enhances performance across almost
all metrics, with more pronounced impact on CH-SIMS. Implementing the Fusion Network augments performance
slightly in most metrics. All experimental results presented are averages derived from three separate runs.

can be beneficial. The text subnet, after training488

with the multi-modal model, can be extracted and489

used independently, offering superior performance490

compared to when it is trained alone.491

Interestingly, this improvement was not observed492

in the audio subnet, potentially due to the stronger493

signal from the text subnet (reflected by a 10%494

higher accuracy when trained alone) which made495

it easier to train, and thus the network might have496

focused on reducing its loss.497

In summary, the benefits of multi-loss training498

are threefold. First, it substantially boosts the per-499

formance of the entire network when distinct labels500

for different modalities are available. Second, loss501

from other modalities enhances the performance502

of the text subnet, indicating that we can utilize503

other modalities in training even when the text sub-504

net is the only required component for inference.505

Third, it is capable of handling missing modalities,506

enabling outputs when only text or audio inputs507

are available. These findings shed light on the508

potential of multi-loss training in the context of509

multi-modality fusion networks, opening avenues510

for further research and optimization.511

4.6 Result for Fusion Network Variations512

To understand the effect of restoring original sig-513

nals, we conducted a comparative analysis of pro-514

posed fusion network variations, which reveals a515

relatively consistent performance across all varia-516

tions. As shown by the results presented in Table517

6, the three methods demonstrate similar perfor- 518

mance across all metrics for both CMU-MOSEI 519

and CH-SIMS. Surprisingly, reincorporating the 520

original signal into the fused signal did not lead 521

to any significant improvement in performance. In 522

essence, while similar performance across differ- 523

ent fusion network variations was unanticipated, it 524

paves the way for a deeper understanding of the 525

interactions within the fusion network and the role 526

of original signals in such approaches. 527

5 Conclusion 528

In conclusion, this study has provided novel, im- 529

portant findings for multi-modal sentiment analysis 530

that should benefit future researchers in the design- 531

ing of sentiment analysis and other models, pre- 532

senting a SOTA model. First, the use of pre-trained 533

models for raw audio yielded superior results, high- 534

lighting their effectiveness in feature extraction. 535

Second, combining audio and text signals consis- 536

tently outperformed using text signals alone, with 537

the transformer fusion network showing promise in 538

enhancing cross-modality modeling. Third, multi- 539

loss training proved beneficial, particularly with 540

unique labels for each modality. Last, achieving 541

state-of-the-art results on three emotion detection 542

datasets underscores the effectiveness of our ap- 543

proach. Still, the performance of fusion network 544

variations did remain consistent, prompting further 545

investigation. 546
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Has0_ACC2 Has0_F1 Non0_ACC2 Non0_F1 ACC5 ACC7 MAE CORR

single-loss 85.22 85.39 87.02 86.91 55.95 53.85 51.96 79.68
multi-loss 84.77 84.9 86.82 86.65 55.99 53.94 51.63 79.81

(a) CMU-MOSEI
ACC2 ACC3 ACC5 F1 MAE CORR

Single-loss 78.34 67.18 46.83 78.59 39.09 62.69
multi-loss 81.91 70.68 47.12 82.1 34.96 72.37

(b) CH-SIMS

Table 4: Single-Loss Training vs. Multi-Loss Training: While multi-loss training does not yield performance
improvement when identical labels are used for different losses, as in the case of CMU-MOSEI, it does contribute
significantly to performance enhancement when unique labels are assigned to each modality, as observed with
CH-SIMS.

Has0_ACC2 Has0_F1 Non0_ACC2 Non0_F1 ACC5 ACC7 MAE CORR

text-loss only 84.79 84.72 87.29 87.29 56.41 48.68 64.96 83.61
multi-loss 85.62 85.56 87.91 87.9 55.01 47.42 64.76 83.79

(a) CMU-MOSI
Has0_ACC2 Has0_F1 Non0_ACC2 Non0_F1 ACC5 ACC7 MAE CORR

text-loss only 84.81 84.95 86.34 86.19 54.99 52.97 53.31 78.6
multi-loss 84.36 84.62 86.85 86.76 56.06 53.61 52.35 79.49

(b) CMU-MOSEI

ACC2 ACC3 ACC5 F1 MAE CORR

text-loss only 79.21 65.06 42.02 79.14 42.65 59.4
multi-loss 83.15 72.14 48.21 83.74 28.58 78.72

(c) CH-SIMS

Table 5: Impact of Multi-Loss on Text Subnet: Utilizing audio-related losses can enhance performance of the
text subnet, even when identical labels are employed, as is the case with CMU-MOSEI. Remarkably, using specific
labels for different modalities results in a substantial performance boost in the text subnet, as evidenced by the
results from CH-SIMS.

Has0_ACC2 Has0_F1 Non0_ACC2 Non0_F1 ACC5 ACC7 MAE CORR

Fused Features Only 86.32 86.23 86.73 86.49 57.32 54.95 51.54 79.08
Concatenation 84.96 85.09 86.78 86.61 56.86 57.78 51.88 79.09
Transformer 86.11 86.08 86.7 86.46 57.01 54.31 51.97 78.96

(a) CMU-MOSEI
ACC2 ACC3 ACC5 F1 MAE CORR

Fused Features Only 82.93 69.37 49.38 82.9 33.2 73.26
Concatenation 82.42 69.44 49.82 82.38 33.6 72.87
Transformer 82.42 69.95 49.89 82.52 33.12 72.61

(b) CH-SIMS

Table 6: Comparative Performance of Model Variations: The Fused Features Only model employs only the
features following the fusion network, while the Concatenation model merges the original signal with the fused
signal. The Transformer model uses a transformer to combine these two signals. Across all metrics for both
CMU-MOSEI and CH-SIMS, these three methods exhibit similar performance.
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6 limitations547

One limitation of this paper is that the proposed548

model is studied under two language, English and549

Mandarin. Another is that the coverage of domains550

is limited to the design of the datasets we choose551

to use, which is from YouTube Videos and TV552

shows. Hence, it’s likely that a portion of the data553

is acted rather than naturally occurring in real life,554

and acted emotions may be expressed differently555

than natually occurring emotions.556

Another limitation is that among the 3 pub-557

lic dataset we used, which are all collected from558

YouTube and TV shows, not all have detailed de-559

scriptions about anonymization of the persons ap-560

peared in the dataset. However, we did not modify561

the dataset, since the datasets are widely used and562

we would like to create coherent and comparable563

results with previous work.564

As for potential risk of misuse, since the pa-565

per is focus on more fundamental sinde of the566

research, it’s possible that the model might not567

perform well if deployed in other scenarios with-568

out additional fine-tuning and training, because the569

model is trained on public dataset collected from570

TV shows and YouTube. Misuse of directly deploy-571

ing the model into real-life applications create risks572

as the prediction will not always be accurate.573
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A Appendix657

A.1 Training Details658

The training process employed a learning rate of659

1e-5, batch size of 16, and the AdamW optimizer.660

L2 loss was used to optimize the model during the661

training process. The validation set loss and ac-662

curacy were monitored to ensure the model was663

not overfitting to the training data. An early stop-664

ping mechanism with patience of 8 epochs was em-665

ployed to ensure the generalizability of the model.666

The entire procedure was conducted on a single667

RTX 4090 GPU. For the audio pre-trained model,668

the Convolutional Neural Network (CNN) portion,669

used for feature extraction, was frozen. The im-670

pact of different learning rates for various parts of671

the network was explored, but no significant dif-672

ferences were observed. Moreover, We found that673

using 5 layers of fusion network achieves the best674

results. All the results presented in the tables are675

averaged over three independent runs.676

A.2 Audio Feature Extraction and Modeling677

Details678

For openSMILE, we manipulated the frame size679

and step, setting them to 0.06 seconds and 0.02680

seconds respectively. For Mel spectrograms, the681

number of Mel filterbanks was set to 128, while682

the window size and step were adjusted to 0.06683

seconds and 0.02 seconds respectively. These con-684

figurations were chosen to enhance the precision685

of audio feature extraction without sacrificing com-686

putational efficiency.687

Following the feature extraction phase, these fea-688

tures were used to construct models with varying689

architectures: Transformer models, incorporating690

between 2 and 4 encoder layers complemented with691

positional encoding, were employed to process the692

openSMILE features. A feed-forward layer was693

subsequently added to process feature embeddings694

in the CLS token of the final transformer encoder.695

For processing Mel spectrogram features, we lever-696

aged convolutional neural network (CNN) models,697

including a custom 8-layer CNN model and mod-698

ified versions of ResNet-18 and ResNet-32. The699

choice of these CNN architectures was driven by700

their known effectiveness in handling image-like701

data structures such as spectrograms.702

A.3 Metrics703

Our MMML model was evaluated using metrics704

consistent with existing research.705

For CMU-MOSI and CMU-MOSEI, we used: 706

• Has0_ACC2, Has0_F1, including zero 707

sentiment scores as positive; 708

• Non0_ACC2, Non0_F1, ignoring zero 709

sentiment scores; 710

• ACC5, ACC7, represent 5-class and 7-class 711

accuracies respectively; 712

• MAE, Mean Absolute Error; 713

• CORR, assesses correlation between pre- 714

dicted and actual scores. 715

For CH-SIMS, we utilized: 716

• ACC2, ACC3, ACC5, represent 2-class, 717

3-class, and 5-class accuracies respectively; 718

• F1, balances precision and recall; 719

• MAE, mean absolute error; 720

• CORR, assesses correlation between pre- 721

dicted and actual scores. 722

These metrics enable comprehensive evaluation of 723

our model’s performance across diverse sentiment 724

analysis dimensions. 725
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