
Medical Imaging with Deep Learning 2023

Outlier Detection for Mammograms

Ryan Zurrin ryan.zurrin001@umb.edu

Neha Goyal neha.goyal001@umb.edu

Pablo Bendiksen p.bendiksen001@umb.edu

Muskaan Manocha muskaan.manocha001@umb.edu

Dan Simovici dan.simovici@umb.edu

Nurit Haspel nurit.haspel@umb.edu

Marc Pomplun marc.pomplun@umb.edu

Daniel Haehn daniel.haehn@umb.edu

Abstract

Mammograms are vital for detecting breast cancer, the most common cancer among women
in the US. However, low-quality scans and imaging artifacts can compromise their effi-
cacy. We introduce an automated pipeline to filter low-quality mammograms from large
datasets. Our initial dataset of 176, 492 mammograms contained an estimated 5.5% lower
quality scans with issues like metal coil frames, wire clamps, and breast implants. Man-
ually removing these images is tedious and error-prone. Our two-stage process first uses
threshold-based 5-bin histogram filtering to eliminate undesirable images, followed by a
variational autoencoder to remove remaining low-quality scans. Our method detects such
scans with an F1 Score of 0.8862 and preserves 163, 568 high-quality mammograms. We
provide results and tools publicly available as open-source software.
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1. Introduction

Breast cancer, a prevalent cause of death among women (Yusuf et al., 2021; Lei et al., 2021),
can be better managed with early detection and advanced machine-learning tools (Lotter
et al., 2021). For a robust machine learning classifier, one strategy is to unify the quality
and content of training data by removing low-quality images and outliers (Chandola et al.,
2009; Smiti, 2020; Shvetsova et al., 2021). We are building an extensive, publicly available
mammography database from which we began with 967, 991 mammograms acquired by our
collaborators. Through data cleaning using metadata such as small dimensions and man-
ufacturer, we reduced the number of images to 176, 492 mammograms, but an estimated
5.5% remained low-quality. Manually selecting these images would be infeasible, prompt-
ing us to evaluate 26 unsupervised outlier detection algorithms, including traditional and
deep learning-based approaches (Section 2). Based on various experiments, we introduce
5-BHIST, a thresholded histogram-binning method paired with a variational autoencoder.
This two-stage outlier detection pipeline significantly outperforms other unsupervised ma-
chine learning algorithms in detecting low-quality mammograms.

2. Experimental Setup

Test Datasets. We initially created the five representative test datasets A, B, C, A*, and
B* with varying proportions of unwanted images (between 5 and 24%) by randomly sampling
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Figure 1: Two-stage Outlier Detection. Our method combines a 5-bin histogram fil-
tration technique (5-BHIST) with a variational autoencoder (VAE) to automati-
cally eliminate undesirable images. We perform experiments on a total of 6 test
datasets from our initial collection of mammograms. With optimized parameters
and normalization methods, we reduce the amount of low-quality mammograms
by 83.15%.

100 and 1000 mammograms from our original collection. We manually selected undesired
images through multiple consensus-driven user studies with 9 participants. After our initial
experiments, we filtered our large collection of mammograms with the best approach (5-
BHIST). We then randomly sampled dataset C* for additional testing to identify the optimal
algorithm for the second filtering stage (Figure 1).

Normalization. We applied various normalization methods to ensure comparable pixel
intensities across different device manufacturers (Patro and Sahu, 2015). Max: Re-scale
intensities between -1 and 1: xscaled = x/max(|x|). Min-Max: Re-scale intensities to the
fixed range [0, 1]: xnorm = (xi−xmin)/(xmax−xmin). Gaussian: Introduce a blur: xgaussian =
(xgaussian filter(sigma=20))/xmax. zscore: Standardize across a normal distribution: xgaussian =
(xi − µ)/σ. Robust: Scale data using median subtraction and IQR division: xrobust =
(xi − µ)/(IQR).

Image Features. We utilize image feature descriptors to reduce the number of data points
per mammogram. Full-intensity histograms, with bin sizes selected automatically based on
pixel ranges; Downsampling, which reduces the spatial resolution via stretching (without
anti-aliasing); Scale-invariant feature transforms (SIFT), used to create keypoints (Lowe,
2004); Oriented FAST and rotated BRIEF (ORB), similar to SIFT (Rublee et al., 2011).

Algorithms. We carried out unsupervised outlier detection on all our test datasets using
26 distinct algorithms from the PyOD1 software package (Zhao et al., 2019, 2021; Han et al.,
2022), with a total number of 340 configured experiments across all tests.

Evaluation Metric. To quantify outlier detection success, we measure the F1 Score as
F1 = 2 * (precision * recall) / (precision + recall) (Powers, 2011).

3. Results

We fully tuned the 26 anomaly detection algorithms available in PyOD for comparative anal-
ysis and evaluated the best-performing configurations on our representative test datasets
(Table 1). Initial results indicated a preference for a specific normalization and feature
descriptor configuration: Histogram binning after Gaussian normalization. We then per-
formed ablation studies regarding the number of histogram bins. We compared different

1. Python Outlier Detection (PyOD) available at https://github.com/yzhao062/pyod
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Table 1: Outlier Detection Results. Utilizing best-performing normalization and fea-
tures (G: Gaussian, M: Max, MM: Min-Max, R: Robust, Z: Z-Score, H: Histogram,
S: SIFT, O: ORB), our 5-BHIST method yields the highest average F1 Score of
0.8772 on varied test datasets. Incorporating a variational autoencoder (VAE) as
a second-stage algorithm elevates this to 0.8862.

Algorithm A (n=100, 8%) B (n=100, 13%) C (n=100, 24%) A* (n=1000, 6.3%) B* (n=1000, 5.0%) C* (n=1000, 1.5%)

AE M + H 0.2500 M + S 0.3077 M + S 0.4917± 0.0167 M + H 0.1270 M + H 0.1200 MM + H 0.1391
AvgKNN G + H 0.6250 G + H 0.6923 G + H 0.8333 G + H 0.7460 G + H 0.6600 Z + S 0.0522
VAE MM + H 0.2500 M + S 0.3077 MM + S 0.6000± 0.0333 MM + H 0.1111 MM + H 0.0940± 0.0092 MM + H 0.1530±0.0070

SOGAAL M + S 0.0250± 0.0500 G + O 0.0000 M + H 0.0000 M + S 0.0000 M + S 0.0000 M + S 0.0124± 0.0247
DeepSVDD G + H 0.6750± 0.0612 G + H 0.6978± 0.0111 G + H 0.2913± 0.2867 G + H 0.5322± 0.1676 G + H 0.4292± 0.0619 MM + H 0.1009± 0.0403
AnoGAN G + H 0.0000 M + S 0.0769 M + O 0.2083 G + H 0.0000 G + H 0.0000 Z + S 0.1043
HBOS G + H 0.6250 M + H 0.4615 G + H 0.8261 G + H 0.7885 G + H 0.7805 M + H 0.1217
LOF MM + S 0.1750± 0.0612 MM + S 0.3077 MM + S 0.6000± 0.0333 MM + S 0.5095± 0.0321 MM + S 0.6100± 0.0257 M + S 0.1391

OCSVM G + H 0.0000 G + H 0.0000 G + H 0.0000 G + H 0.0000 G + H 0.0000 G + O 0.0696
IForest G + H 0.5000 G + H 0.6154 G + H 0.5833 G + H 0.6739± 0.0328 G + H 0.6473± 0.0101 M + H 0.1148± 0.0260
CBLOF G + H 0.6250 G + H 0.6923 G + H 0.8333 G + H 0.7492± 0.0063 G + H 0.0202 Z + S 0.0452± 0.0085
COPOD G + H 0.3750 G + H 0.3846 G + H 0.6250 G + H 0.3651 G + H 0.4583 R + H 0.1217
SOS M + S 0.4750± 0.0500 M + S 0.5385± 0.0973 MM + S 0.7167± 0.0312 M + S 0.2159± 0.0384 M + S 0.5240± 0.0265 M + S 0.1217
KDE G + H 0.0000 G + H 0.0000 G + H 0.0000 G + H 0.0000 G + H 0.0000 M + O 0.0000

Sampling G + H 0.5750± 0.0612 G + H 0.5077± 0.0377 G + H 0.6500± 0.1007 G + H 0.5508± 0.2622 G + H 0.3341± 0.3221 Z + S 0.0417± 0.0085
PCA G + H 0.3750 G + H 0.4800 G + H 0.5366 G + H 0.3651 G + H 0.4783 MM + H 0.1391
LMDD G + H 0.0000 M + S 0.1692± 0.0897 MM + S 0.2250± 0.1225 G + H 0.0000 G + H 0.0000 M + O 0.1217
COF G + H 0.6250 MM + S 0.3077 M + S 0.6250 G + H 0.1746 G + H 0.1000 M + S 0.1217
ECOD G + H 0.5333 G + H 0.6154 G + H 0.6250 G + H 0.7097 G + H 0.6600 R + H 0.1217
KNN G + H 0.6250 G + H 0.6400 G + H 0.8085 G + H 0.7460 G + H 0.6600 M + S 0.0522

MedKNN G + H 0.6250 G + H 0.6923 G + H 0.8333 G + H 0.7460 G + H 0.6600 Z + S 0.0522
SOD MM + S 0.3500± 0.0935 MM + S 0.4308± 0.0615 MM + S 0.6167± 0.0167 MM + S 0.2714± 0.0404 MM + S 0.2000± 0.0346 MM + S 0.0870
INNE M + S 0.5500± 0.0612 MM + S 0.6308± 0.0308 MM + S 0.7833± 0.0312 M + S 0.3444± 0.0471 M + S 0.4280± 0.0431 MM + S 0.1530± 0.0170
FB M + S 0.2500 G + H 0.3077 G + H 0.6250 M + S 0.4476± 0.0525 M + S 0.5900± 0.0392 MM + S 0.1496± 0.0085

LODA G + H 0.3800± 0.1122 G + H 0.4017± 0.1585 G + H 0.4167 G + H 0.3312± 0.3241 G + H 0.5019± 0.3246 Z + H 0.0522± 0.0156
SUOD G + H 0.5000 G + H 0.5742± 0.0444 G + H 0.6583± 0.0408 G + H 0.6926± 0.0104 G + H 0.6446± 0.0079 M + H 0.0939± 0.0085

5-BHIST G + H 0.8571 G + H 0.8696 G + H 0.9333 G + H 0.8908 G + H 0.8352 N/A N/A

bin configurations (b = 2, 5, 10), optional Gaussian blur with varying sigma (σ = 5, 10, 20),
and all normalization techniques with a 2-bin limitation based on previous explorations.
Min-max normalization outperformed Gaussian, highlighting bin size as a critical factor
for optimal algorithm performance. However, a 2-bin approach contributed to significant
false positive classifications. Further ablation studies and consensus-driven inspection con-
firmed a setting of 5-bins with a bi-conditional thresholding operation (bins b2 < 2000 and
b5 > 15, 000) for high F1 scores. We report the performance of 5-BHIST in Table 1.
Limitations. Our evaluations are based on algorithm tuning from representative mam-
mogram subsets and validated by user studies; thus, results are estimates. Future public
access to our full mammogram collection will allow broader expert validation.

4. Conclusions

We evaluate 26 unsupervised algorithms for filtering low-quality mammograms in extensive
data collections. Our findings indicate that a combination of min-max normalized histogram
binning paired with a variational autoencoder can detect unwanted images with an average
F1 Score of 0.8862. This reduces the number of unwanted images in our collection by
5.93x, from an estimated 9,708 low-quality scans to 1,636. Our final dataset now contains
1% unwanted images as validated by manual inspection. All code, data, experiments, and
additional information are available at https://github.com/mpsych/ODM.
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