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ABSTRACT

As a privacy-preserving and decentralized machine learning framework, Feder-
ated Learning (FL) is vulnerable to backdoor attacks. Current backdoor defenses
rely on a strong assumption: defenders have the ability of defining a benign pa-
rameter space using gradient information to detect or remove malicious updates.
However, in the real-world not-independent-and-identically-distributed (Non-IID)
FL scenarios, this is a particularly challenging task, exhibiting inconsistent perfor-
mance across different systems and settings. In this paper, we reveal the Backdoor-
Induced Model Bias Shift phenomenon, where the implantation of backdoor short-
cuts shifts the model bias on out-of-distribution (OOD) data toward the target
class. Inspired by this insight, we propose IOShift, a novel backdoor detection and
removal method based on model bias shift in federated learning. IOShift detects
malicious updates by measuring bias shifts on OOD data, using the model bias
on in-distribution data as a reference. Furthermore, it employs adaptive weight
pruning to maintain high utility on clean tasks. IOShift seamlessly integrates
into existing FL frameworks without requiring any modifications, such as alter-
ing communication protocols or injecting elaborated tasks. Experimental results
on benchmark datasets and backdoor attacks demonstrate that IOShift effectively
outperforms state-of-the-art backdoor defenses. Code is available here.

1 INTRODUCTION

Federated Learning (FL) has been widely applied in various domains, including healthcare, finance,
and smart city Shen et al. (2025); Yang et al. (2023b), enabling collaborative model training under
the coordination of a center server. In this paradigm, multiple clients trains a shared model locally
on their private data and then upload model updates to the FL server which aggregates them to im-
prove the global model iteratively. Notably, FL performs well even in real-world scenarios where
client data is not independent and identically distributed (Non-IID) Shi et al. (2025). However, en-
suring the integrity of FL remains a significant challenge, particularly in defending against backdoor
attacks Naseri et al. (2024); Fan et al. (2025); Li et al. (2025a;b). Adversaries can inject malicious
updates during training, embedding backdoor behaviors into the global model while maintaining
high performance on clean tasks.

Limitations. Recently, many research has focused on defending against backdoor attacks, primarily
including backdoor detection and backdoor removal.

Detection: Existing detection methods often rely on the assumption that malicious updates exhibit
significant differences from benign updates in the parameter space Li & Dai (2024). These methods
compute similarity metrics between malicious and benign updates, e.g., cosine similarity or manu-
ally defined features. However, recent adversarial backdoor attacks can carefully optimize malicious
updates to remain within the benign parameter space Zhang et al. (2023); Lyu et al. (2024). More
critically, under Non-IID, the performance of these anomaly detection-based methods significantly
degrades Li & Dai (2024). This is because benign updates from different distributions inherently
exhibit high dissimilarity, making it nearly impossible to define a clear benign parameter space.

Removal: Assuming malicious updates can be accurately detected, the most straightforward removal
strategy is to exclude them from aggregation, which inevitably leads to information loss Cao et al.
(2023); Blanchard et al. (2017). Another approach is to limit the impact of malicious updates by
constraining them within the benign parameter space, such as clipping techniques Nguyen et al.
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(2022). However, similar to backdoor detection, defining a benign update parameter space for un-
known client is highly challenging in the Non-IID scenarios. Even more absurdly, existing backdoor
removal methods impose an unreasonable requirement: cooperation from the attacker—an utterly
unacceptable premise Alam et al. (2024); Zhao et al. (2023).

Figure 1: The phenomenon of backdoor-induced
model bias shift.

Main Idea. In this paper, we pro-
pose IOShift, a federated backdoor de-
tection and removal framework based on
the model bias shift toward in-distribution
(ID) and out-of-distribution (OOD) data.
First, we reveal the phenomenon of
Backdoor-Induced Model Bias Shift for
OOD data. As illustrated in Figure 1, a)
Model bias arises due to data heterogene-
ity, leading to imbalanced class accuracy
during testing He & Garcia (2009); Wang
et al. (2024). b) For unseen data (OOD
data), models that obtains the decision
boundary based on heterogeneous dataset
exhibit a similar model bias Liu et al.
(2024a); Ghosh et al. (2024). c) Backdoor
embedding biases the model by establish-
ing a stronger activation path (shortcut)
between the trigger and the target class, resulting in an absolute bias toward unknown data. d)
Conversely, the activation paths for model bias classes in ID data are significantly suppressed due to
the establishment of this strong backdoor shortcut Yang et al. (2023a). See detail in Section 4.1.

Inspired by this, we determine whether a update has been implanted into backdoor by measuring
IOShift score between the model bias on ID and OOD data. If the detected score exceeds a threshold
(determined based on ASR, see Section 5 for detail), it indicates that the backdoor has affected the
model bias, thereby obtaining the target class. To mitigate the backdoor, we employ an adaptive
pruning strategy guided by IOShift score to preserve the model’s utility on clean tasks. IOShift
eliminates the strong assumption of existing defenses that rely on defining a benign parameter space,
achieving effective in high Non-IID FL scenarios. Moreover, IOShift can be seamlessly integrated
into existing FL frameworks with detection and removal steps without altering the core framework.

Contributions. The following are our contributions:

• We reveal the phenomenon of backdoor-induced model bias shift, breaking the limitations
of existing benign parameter space defining-based approaches. Since malicious updates are
detected individually, IOShift is also applicable to asynchronous FL.

• We propose IOShift, a unified framework for federated backdoor detection and removal.
IOShift can be seamlessly integrated into existing FL frameworks without adding any op-
eration such as model modifications, enabling effortless deployment for backdoor defense.

• Extensive experiments show that across various Non-IID distribution and adversarial back-
door settings, IOShift consistently outperforms SOTA backdoor defense methods.

2 RELATED WORK

Backdoor Attack. Backdoor attacks have become a well-studied security threat in federated
learning. In these attacks, adversaries inject backdoors into the global model by modifying training
samples and optimizing them using mini-batch SGD, a strategy known as the Vanilla attack Gu et al.
(2019). To improve stealthiness and robustness, various advanced techniques have been proposed.
PGD Wang et al. (2020) restricts malicious updates within a small perturbation range to avoid detec-
tion. Chameleon Dai & Li (2023) leverages contrastive learning to make backdoor samples visually
blend in while remaining effective. DarkFed Li et al. (2024) introduces data-free backdoor attacks
using shadow datasets, removing the dependency on local data. Recent attack methods leverage
adversarial optimization Li et al. (2025a) to enhance the effectiveness and stealth of trigger design.
A3FL Zhang et al. (2023) enhances backdoor persistence by incorporating adversarial training, mak-
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ing the attack more resistant to model updates. In personalized FL, FPedBA Lyu et al. (2024) opti-
mizes the loss function and aligning gradients to improve trigger injection. Mirages Li et al. (2025b)
leverages both in-distribution and out-of-distribution data to adversarially optimize a trigger that
induces an in-distribution mapping. Attackers employ distributed triggers to improve stealth and
flexibility. DBA Xie et al. (2019) splits a global trigger into local ones, trained independently and
jointly injected to evade detection. FCBA Liu et al. (2024b) enhances this by strategically combin-
ing local triggers. Other methods include Blend attacks Chen et al. (2017), which mix noise triggers
with benign samples for subtle manipulation, and Semantic attacks Wang et al. (2020), which lever-
age natural features as triggers. Edge-case attacks Wang et al. (2020) focus on rare samples, boosting
resistance to detection and preventing backdoor vanishing during training.

Backdoor Defense. To address backdoor attacks in federated learning, researchers have devel-
oped diverse defense mechanisms. Flame Nguyen et al. (2022) employs noise injection to neutralize
backdoors, integrating HDBSCAN-based suspicious update detection and magnitude constraints to
mitigate attacks. However, these methods face challenges in Non-IID environments, where benign
updates may vary significantly, and sophisticated backdoor updates can mimic legitimate patterns.
To address these limitations, Indicator Li & Dai (2024) introduces a “backdoor indicator task” dur-
ing training, which rapidly decays in benign clients but remains stable in malicious clients injecting
backdoors. FDCR Huang et al. (2024)detects potential attackers by estimating the Fisher informa-
tion matrix, and adjusts the contribution of each client’s update through reweighting. The recent
method, AlignIns Xu et al. (2025), detects and mitigates malicious backdoor updates in federated
learning by analyzing the directional characteristics of model updates on two levels: their alignment
with the global model and the sign consistency of critical parameters. Other state-of-the-art methods
are detailed in Appendix C.

3 THREAT MODEL

We consider a standard FL backdoor defense scenario, where the defender is the FL server.

Attacker’s Capabilities and Goals. The attacker can compromise a subset of clients in federated
learning, gaining full control over their local training, datasets, and model updates. Additionally, the
attacker has access to the global model and historical updates, enabling them to adapt their strategies
to enhance stealth while minimizing any negative impact on model accuracy. Notably, we do not
restrict the attacker’s choice of backdoor types for injection. The attacker’s objective is to poison
client updates so that the global model misclassifies inputs containing the trigger as the target class
while evading anomaly detection defenses.

Defender’s Capabilities and Goals. The defender aims to detect backdoors embedded in uploaded
updates through a defense protocol. Although the defender lacks access to both the raw data and the
data distribution of local clients, they do have white-box access to the model updates submitted by
participating clients. Additionally, we assume the defender has no access to any data that shares the
same distribution as the local clients’ raw data. The defender’s objective is to identify and remove
malicious backdoor while preserving the global model’s primary functionality.

4 METHODS

4.1 INTUITION OF IOSHIFT

(a) Benign / Bias (b) Benign / IOShift (c) Malicious / Bias (d) Malicious / IOShift

Figure 2: Model bias scores on ID and OOD data, and their IOShift score under Dirichlet parameter
d = 0.1 for benign and BadNets-implanted malicious models.
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Before introducing IOShift in detail, we first present the key insight that motivated its design. We
focus on investigating how backdoor implantation affects the model inherent bias toward ID and
OOD data under a centralized setting from the white-box perspective. Specifically, the evaluation is
conducted using the widely used CIFAR10 dataset Krizhevsky et al. (2009) for classification task and
the ResNet18 He et al. (2016) model architecture. The data distribution is simulated using a Dirichlet
distribution with parameter d. The ID dataset consists of 200 images, selected by randomly choosing
20 images from each class in the CIFAR10 test set. For the OOD dataset, 200 images are randomly
sampled from commonly used OOD dataset, 300K Random dataset Hendrycks et al. (2019).

Figure 2 illustrates the model bias and IOShift scores for benign and BadNets-implanted malicious
models with target class 2. The model bias score is computed as the mean soft label values across all
samples in ID and OOD dataset, with the rationale and details explained in Section 4.2. We observe
that when client data is skewed (Non-IID), the model exhibits a noticeable bias toward both ID and
OOD data. Further, the implantation of a strong backdoor (Figure 2a to Figure 2c) forces the model
to classify OOD data into the target class with extremely high confidence, while simultaneously
reducing the bias toward ID data. The IOShift score quantifies the shift in model bias between ID
and OOD data after backdoor implantation. Notably, the bias shift for the target class is significantly
larger than for other classes. These results in Figure 2b to Figure 2d reveal that, under appropriate
evaluation, the strong associative activation paths introduced by backdoors effectively redirect the
model bias toward the target class. This insight motivates our detection approach, which identifies
malicious updates by analyzing the bias shift between ID and OOD data. All updates exhibiting
a high bias discrepancy are flagged as malicious and further mitigated through adaptive backdoor
removal. Figure 7 and Figure 8 in Appendix visualize scores under d = 0.5 and d = 1 (IID).

Figure 3: Workflow of IOShift. (1) Backdoor detection via model bias shift; (2) Backdoor removal
via adaptive pruning.

4.2 DETAILS OF IOSHIFT

Figure 3 and Algorithm 1 in Appendix illustrate the workflow of IOShift. IOShift consists of two
main phases, aligned with defender’s goals: 1) backdoor detection and 2) backdoor removal. Beyond
the standard FL pipeline of model distribution, local training, update uploading, and global model
aggregation, IOShift introduces three key components: ID and OOD dataset preparation, IOShift
score computation, and adaptive backdoor removal. We detail each component in the following.

ID and OOD dataset preparation. To assess model bias, IOShift requires both ID and OOD
datasets. We assume the defender has access to a small amount of test data, such as 20 samples per
class. This assumption is reasonable, as servers typically require test data to evaluate model general-
ization. Thus, ID dataset is represented by DI = xi, yi|i ∈ [1,MI ],MI = KI ∗N , where MI is the
total number, KI is the number of samples for each class and N is the number of classes. OOD data
lies outside the generalization scope of ID data and follows a different distribution. For example,
in a CIFAR10 classification task, we construct the OOD dataset by randomly sampling from Tiny-
ImageNet. Alternatively, unlabeled OOD samples can be drawn from public datasets or generated
randomly using uniform distribution with a fixed seed, represented by DO = xi|i ∈ [1,MO].
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IOShift score computation. Upon receiving update from client j, we convert the update into model
parameters θj to evaluate its bias. Next, for the ID and OOD datasets, we compute three scores: ID
bias score BSI , OOD bias score BSO, and IOShift score IOS . In simple terms, the ID bias score
is computed as:

BSI = Ave(SL(θj , DI)) =
1

M

∑
xi∈DI

SL(θj , xi), , (1)

where SL(θ, ·) represents the soft labels produced by the model θ for sample x, and Ave(·) denotes
the average function. The soft labels capture the probability distribution of the model bias toward
the given data, reflecting its classification confidence de Vries & Thierens (2024); Wu et al. (2024).
If a particular class consistently receives high confidence scores across all samples, the model is
inherently biased toward this class. Similarly, we compute the OOD bias score for the OOD dataset:

BSO = Ave(SL(θj , DO)) =
1

M

∑
xI∈DO

SL(θj , xi), (2)

Then, the IOShift score is given by:

IOS = |BSO −BSI |. (3)

At this stage, IOS is an N -dimensional vector, where each dimension represents the shift score for
a specific class. If the shift score of any class exceeds a predefined threshold α, we determine that
the class has been backdoor-biased and mark it as the target class.

Adaptive backdoor removal. After detecting the target class j and its corresponding shift score
IOS

j , our goal is to remove the backdoor by suppressing backdoor-related updates. However, the
challenge lies in determining the minimal number of pruned neurons, K, that effectively eliminates
the backdoor while preserving neurons essential for the clean task.

Guided by IOS
j , we assume that once IOS

j falls below a removal threshold β, the backdoor effect
has been mitigated to an acceptable level. The specific relationship between backdoor ASR and the
threshold β is detailed in Figure 6. β is obtained by average IOShfit score from the first 30 epochs
of the number of epochs in which the backdoor occurs. To determine the order of neurons to prune,
we estimate neuron importance using the Fisher Information Matrix on the OOD dataset DO and
rank neurons from most to least important:

IOw = (
∂L (DO, θj)

∂w
)2. (4)

This approach is based on the observation that if a backdoor path exists, OOD data will also activate
this shortcut path. Thus, we prioritize pruning neurons that are highly important for the backdoor
task. In summary, we initialize K and iteratively increase it, pruning the top-K gradient updates
until the predefined stopping condition is met. Note that the pruning operation targets malicious
updates. If applied during model retrospection, direct neuron pruning can be performed instead.
Empirical results demonstrate that both approaches yield similar performance.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets and Models. We conduct comprehensive evaluations of IOShift on two benchmark
datasets: CIFAR10 Krizhevsky et al. (2009) and Tiny-ImageNet Le & Yang (2015). Our experi-
ments utilize three representative neural architectures: ResNet18 He et al. (2016), VGG16 Simonyan
(2014) and ResNet50 He et al. (2016) (Appendix C).

FL setup. By default, we set the total number of clients to N = 100, with the server randomly
selecting M = 10 (10%) clients per each epoch for model updates. To simulate realistic federated
learning scenarios, we distribute each dataset across clients in a Non-IID manner using a Dirichlet
distribution-basedHsu et al. (2019) sampling strategy. The concentration parameter d is set to 0.1,
creating a challenging testing environment with significant differences in client data distribution.

5
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Additionally, to thoroughly evaluate the robustness of IOShift, we conduct further experiments under
various Non-IID conditions by adjusting the Dirichlet concentration parameter, simulating different
levels of data heterogeneity among clients.

Attack Settings. We evaluate IOShift against seven types of backdoor attacks, including three
fixed-trigger attacks: Vanilla Gu et al. (2019), PGD Wang et al. (2020), ChameleonDai & Li (2023),
data-free attack: DarkFed Li et al. (2024) and there adversarial trigger attacks: A3FL Zhang et al.
(2023), PFedBA Lyu et al. (2024), Mirages Li et al. (2025b). To ensure optimal attack performance,
we configure these attacks following their original settings and released code as closely as possible.
By default, we consider a FL setting with B = 10 malicious clients among N = 100 total clients.
At each epoch, FL server randomly select ten clients to participant updates. The malicious clients
can only perform attacks during the FL epochs in which they are selected. For CIFAR10, we set the
trigger size to 3×3, and for Tiny-ImageNet, we set the trigger size to 6×6.

Defense Settings. We compare IOShift with eight state-of-the-art defenses: Flame Nguyen et al.
(2022), FDCR Huang et al. (2024), Indicator Li & Dai (2024), AlignIns Xu et al. (2025), as well as
Multi-Krum Blanchard et al. (2017), Deepsight Rieger et al. (2022), Foolsgold Fung et al. (2018),
Rflabt Wang et al. (2022) (Appendix C). Also, we compare IOShift with one model recovery ap-
proaches: FedRecover Cao et al. (2023). For a fair comparison, we closely follow their original
settings based on their released codes. For IOShift, we set the α to 0.8 and β to 0.5, with K in-
creasing by 0.5% per step. We randomly selected 1,000 images from the Random Image dataset
to serve as the OOD dataset. The ID dataset consists of 20 images per class, which is sufficiently
small to meet practical requirements. For models with batch normalization (BN) layers, we estimate
the mean and standard deviation using the OOD dataset and the global model to mitigate statistical
biases during inference caused by BN layers.

Evaluation Metrics. We use accuracy (ACC) to assess model performance on clean data and attack
success rate (ASR) to evaluate the backdoor effect, with higher ASR indicating a stronger attack. To
evaluate defense performance, we employ true positive rate (TPR) and false positive rate (FPR) Qi
et al. (2023b). TPR is calculated as the ratio of correctly identified malicious updates to the total
number of malicious updates; FPR is computed as the ratio of benign clients mistakenly classified
as malicious to the total number of benign updates.

5.2 EXPERIMENT RESULTS

Detection Performance. Table 1 shows the comparison of IOShift with four SOTA backdoor
defenses on TPR, FPR and ASR under different attacks and training epochs. Visualizations of the
corresponding IOShift scores are shown in Figure 9 in Appendix. The Dirichlet parameter d is set
to 0.1. The attacker starts attacking at global epochs 400, 800 or 1200, representing different train-
ing stages of clean task. The attack lasts for 100 global epochs, and we report overall performance
metrics. Compared to other methods, IOShift achieves the highest TPR, the lowest FPR and ASR
across all attack methods, datasets, and attack epochs. This is because the strong activation path
of backdoors significantly shift model bias. For DarkFed, A3FL, PFedBA and Mirages the TPR
remains close to 100%, highlighting the effectiveness of recent adversarial backdoor attacks to shift
model bias. However, ASR does not reach zero because IOShift relies on IOShift scores, which can-
not directly capture the exact trigger pattern. Notably, Mirages is particularly difficult to eliminate,
as it leverages both in-distribution and out-of-distribution data to optimize its trigger, thereby con-
structing a backdoor path that remains within the in-distribution mapping space, rendering it highly
stealthy and resistant to detection. Nevertheless, when ASR falls below 15, we consider the attack
to be effectively failed. The results indicate that under highly non-IID scenarios, Flame is largely
ineffective against existing attacks—even the most basic ones such as the vanilla attack. Further-
more, Flame’s effectiveness is worse than no protection at all. This is because its FPR is relatively
high, resulting in the removal of numerous benign clients and consequently increasing the propor-
tion of malicious clients. While FDCR and AlignIns show relatively good performance in defending
against simple attacks, they struggle to detect more recent and sophisticated trigger-optimization-
based attacks. This limitation arises because these defenses rely heavily on statistical indicators
such as norm-based metrics and cosine similarity. However, under highly non-IID scenarios, even
benign updates can exhibit significant divergence, making it difficult to reliably distinguish between
malicious and benign clients using these metrics.
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Table 1: Comparison of TPR, FPR and ASR under different defenses, d = 0.1.

Datasets Attack Epoch No Defense Flame FDCR Indicator AlignIns IOShift
ASR TPR FPR ASR TPR FPR ASR TPR FPR ASR TPR FPR ASR TPR FPR ASR

C
IFA

R
10

Vanilla
400 46.7 17.0 38.1 61.9 87.0 26.8 19.2 88.0 48.9 18.6 90.0 45.9 12.5 95.0 2.4 9.8
800 52.4 21.0 34.6 70.2 88.0 29.6 12.1 90.0 44.0 13.4 90.0 44.8 12.8 95.0 3.2 10.2

1200 70.5 18.0 36.2 76.5 90.0 28.4 11.2 93.0 46.3 11.2 92.0 44.2 11.8 95.0 2.8 9.2

PGD
400 48.4 10.0 40.8 55.9 75.0 29.1 26.9 80.0 42.8 21.4 48.0 23.4 62.8 93.0 4.2 11.2
800 51.1 12.0 32.8 70.9 78.0 28.1 24.3 88.0 46.7 12.8 49.0 24.5 63.9 94.0 2.2 10.9

1200 67.3 15.0 32.0 73.8 80.0 29.3 22.1 90.0 41.3 10.8 54.0 25.8 61.0 96.0 3.1 9.9

Chameleon
400 50.2 14.0 31.4 56.2 70.0 28.4 34.8 90.0 41.4 20.2 82.0 22.8 32.9 94.0 2.8 10.2
800 62.6 19.0 29.0 74.8 72.0 28.9 33.1 92.0 42.0 11.1 84.0 21.2 30.8 94.0 2.3 10.2

1200 71.9 14.0 36.4 75.8 76.0 27.5 30.2 92.0 43.4 11.9 88.0 20.1 24.5 95.0 2.1 9.6

DarkFed
400 65.5 13.0 33.8 70.1 82.0 25.1 22.0 92.0 38.9 13.8 74.0 24.8 41.8 98.0 2.4 9.8
800 80.1 11.0 28.9 84.2 85.0 27.8 20.1 94.0 43.4 13.0 78.0 25.1 38.2 100.0 3.4 9.1

1200 88.2 13.0 32.9 89.1 88.0 29.1 17.9 94.0 46.0 15.2 82.0 25.4 34.8 100.0 4.5 9.2

A3FL
400 94.5 8.0 38.4 96.5 71.0 28.9 56.8 92.0 39.0 34.5 38.0 25.8 87.9 100.0 2.0 14.0
800 96.9 8.0 38.2 97.8 72.0 29.8 58.9 93.0 39.0 37.8 40.0 25.1 84.2 100.0 2.6 14.5

1200 100 6.0 37.8 98.0 76.0 28.9 52.1 92.0 41.0 38.0 46.0 25.9 81.1 100.0 1.1 14.6

PFedBA
400 90.1 4.0 39.6 91.5 73.0 28.8 55.2 90.0 42.8 26.1 42.0 24.8 76.5 100.0 2.1 13.7
800 93.5 3.0 39.2 95.2 76.0 29.1 51.1 91.0 45.1 26.4 45.0 26.0 72.1 100.0 1.9 14.8

1200 100 3.0 39.9 99.2 77.0 27.4 49.8 92.0 43.5 30.5 48.0 25.1 70.5 100.0 2.6 13.9

Mirages
400 100.0 17.0 38.1 61.9 40.0 27.9 88.5 88.0 48.9 18.6 37.0 26.2 90.5 100.0 1.8 5.0
800 100.0 17.0 38.1 61.9 36.0 27.8 90.2 88.0 48.9 18.6 41.0 25.1 88.1 100.0 1.8 4.9

1200 100.0 17.0 38.1 61.9 41.0 28.6 89.6 88.0 48.9 18.6 43.0 26.0 84.1 100.0 2.0 4.2

Tiny-Im
ageN

et

Vanilla
800 57.5 0.0 40.4 66.5 66.0 33.6 32.5 74.0 38.2 27.4 78.0 36.0 20.2 93.0 1.6 9.5

1200 70.2 0.0 42.5 68.3 69.0 34.8 33.8 79.0 41.5 29.4 82.0 35.4 18.1 95.0 2.0 5.0
1600 81.4 0.0 41.6 75.9 68.0 36.2 34.1 84.0 42.1 38.2 84.0 36.5 16.1 95.0 1.5 4.7

PGD
800 54.1 0.0 42.1 60.1 54.0 39.2 42.0 69.0 41.2 22.9 44.0 37.2 44.8 91.0 1.9 8.4

1200 67.8 0.0 44.9 67.1 51.0 38.4 46.1 76.0 43.1 15.9 46.0 36.8 42.1 92.0 2.1 7.1
1600 75.9 0.0 44.6 71.1 50.0 39.9 48.5 82.0 39.8 12.5 47.0 36.2 41.5 92.0 2.0 5.2

Chameleon
800 58.45 3.0 42.8 64.8 53.0 38.1 44.1 70.0 40.5 34.1 70.0 35.2 28.2 96.0 2.3 4.3

1200 72.6 2.0 43.0 70.8 55.0 39.6 45.8 74.0 42.5 36.2 74.0 35.6 25.1 98.0 2.2 1.2
1600 84.1 3.0 43.2 86.9 55.0 38.1 48.3 75.0 42.2 39.2 75.0 35.8 22.5 100.0 2.1 0.6

DarkFed
800 74.2 6.0 41.5 76.1 54.0 37.8 42.5 72.0 41.6 38.2 77.0 35.2 21.5 100.0 1.9 0.4

1200 85.6 7.0 40.5 84.3 56.0 38.2 41.8 76.0 41.1 41.5 79.0 34.8 20.8 100.0 2.2 0.6
1600 90.1 7.0 42.6 90.4 55.0 38.1 43.1 78.0 42.0 41.2 82.0 33.1 19.5 100.0 2.0 0.5

A3FL
800 99.5 0.0 43.2 99.3 44.0 37.7 74.8 73.0 41.2 78.5 40.0 37.5 76.2 100.0 1.7 6.5

1200 98.8 0.0 41.5 98.5 48.0 38.1 76.5 75.0 40.8 72.6 42.0 37.1 75.2 100.0 2.1 6.3
1600 100.0 0.0 41.8 99.6 50.0 38.9 80.5 75.0 39.8 73.8 46.0 36.5 70.1 100.0 1.9 5.7

PFedBA
800 96.2 0.0 41.6 99.4 48.0 35.2 68.9 72.0 42.1 71.5 41.0 37.1 75.2 100.0 2.1 6.6

1200 97.6 0.0 40.8 99.3 49.0 35.1 73.5 78.0 41.9 64.3 43.0 36.9 73.1 100.0 2.3 5.8
1600 99.5 0.0 40.4 98.8 52.0 35.8 83.5 76.0 41.2 68.9 46.0 35.1 70.5 100.0 2.0 5.4

Mirages
400 100.0 17.0 38.1 61.9 42.0 34.8 88.2 88.0 48.9 18.6 36.0 36.2 82.0 100.0 2.0 5.1
800 100.0 17.0 38.1 61.9 45.0 35.6 90.5 88.0 48.9 18.6 38.0 35.9 80.1 100.0 1.9 5.5

1200 100.0 17.0 38.1 61.9 44.0 35.1 90.2 88.0 48.9 18.6 42.0 36.1 79.2 100.0 2.1 5.9

In contrast, Indicator injects an active backdoor to facilitate defense and generally achieves a higher
TPR compared to other methods. Nonetheless, its performance still falls short of IOShift. Moreover,
Indicator suffers from a notably high FPR. This is because, although the active backdoor improves
detection capabilities, it tends to misclassify benign clients—particularly those with highly skewed
local data distributions—as malicious, thereby significantly increasing the FPR.

(a) CIFAR10 (b) Tiny-ImageNet

Figure 4: Comparison of removal performance on Accuracy (ACC) at different global training
epochs and different defenses under Vanilla attack.

Removal Performance. Figure 4 shows the comparison of accuracy of global model and SOTA
methods at different training epochs under Vanilla attack. The performances under A3FL attack is
shown in Figure 12 in Appendix. The purple dashed line represents the average value across training
epochs. For FedRecover, we apply backdoor removal based on the current best-performing detection
method, Indicator. The results show that IOShift consistently achieves higher accuracy than other
recovery methods across all training epochs, with an average improvement of 9% on CIFAR10 task.
This advantage stems from our adaptive pruning strategy, which automatically determines the min-
imal pruning required to eliminate ASR while minimizing the impact on the clean task. The lowest
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performance observed with Indicator highlights the necessity of backdoor removal, demonstrating
that targeted pruning is more effective than simply discarding updates.

5.3 IMPACT OF HYPERPARAMETERS

(a) Vanilla / CIFAR (b) Vanilla / Tiny (c) A3FL / CIFAR (d) A3FL / Tiny

Figure 5: Performance of IOShift under different detection threshold α.

Different Detection Threshold α. Figure 5 shows the performance of IOShift under different
detection threshold α. Overall, reducing α slightly increases the TPR of IOShift. For the A3FL
attack, when α = 0.8, TPR reaches nearly 99%. In contrast, for CIFAR10, TPR is limited to 90%
because the adversarial method in A3FL causes the model bias on OOD data to exceed 0.8, which
also explains its higher ASR. In general, ASR follows the same trend as TPR: when detection rates
are high, ASR can be fully eliminated. However, as α increases, FPR rises significantly. This is
because some benign clients with skewed data distributions may exhibit random ID bias scores,
though this does not affect the effectiveness of ASR suppression.

(a) Vanilla/CIFAR (b) Vanilla/Tiny (c) A3FL/CIFAR (d) A3FL/Tiny

Figure 6: Relationship between ASR and β.

Relationship between ASR and β. Figure 6 illustrates the relationship between ASR and the
threshold β during backdoor removal via adaptive pruning. The results show that as β increases,
ASR also rises, aligning with the principles underlying our backdoor detection approach. This
is because the effectiveness of a backdoor stems from embedding a strong activation path, which
significantly biases the model. Notably, when β is below 0.5, the model’s ASR drops to 40%, which
we consider the threshold for an unsuccessful backdoor attack.

5.4 FURTHER UNDERSTANDING

Table 2: Performance of IOShift under different sources of OOD data.

OOD Source
Vanilla A3FL

CIFAR10 Tiny-ImageNet CIFAR10 Tiny-ImageNet
TPR FPR ASR TPR FPR ASR TPR FPR ASR TPR FPR ASR

Random 95.0 2.4 9.8 95.0 1.5 0.7 100.0 2.0 16.0 100.0 1.7 6.2
CIFAR100 93.0 3.4 9.9 92.0 2.6 1.1 100.0 2.6 15.7 100.0 2.0 6.4

Noise 93.0 5.9 10.5 92.0 7.9 1.2 98.0 3.2 18.2 100.0 2.8 6.7
GTSRB 92.0 5.5 10.4 91.0 6.3 1.2 98.0 2.7 17.8 99.0 2.2 7.5

Different Sources of OOD data. Table 2 shows the performance of IOShift with different sources
of OOD data under CIFAR10 and Tiny-ImageNet datasets. The 300K Random dataset Hendrycks
et al. (2019) is a widely used dataset for outlier exposure, which is a subset from 80 Million Tiny
Images. For Noise, we generate samples using a fixed seed following a uniform distribution. For
GTSRB, images are converted into corresponding pixel representations with clean tasks. The results
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indicate that detection performance is not sensitive to the choice of OOD data source, whether on
CIFAR10 or Tiny-ImageNet tasks. This is because all these datasets are out-of-distribution, making
it difficult for the model to make reliable predictions, as discussed in He & Garcia (2009).

Table 3: Performance on TPR, FPR and ASR under different numbers of compromised clients.

Datasets Num% Vanilla PGD Chameleon DarkFed A3FL PFedBA Mirages
TPR FPR ASR TPR FPR ASR TPR FPR ASR TPR FPR ASR TPR FPR ASR TPR FPR ASR TPR FPR ASR

CIFAR10
5% 96.0 3.2 8.6 95.0 2.9 8.7 96.0 2.6 9.1 100.0 3.6 9.2 100.0 1.6 13.7 100.0 2.0 13.5 100.0 2.1 12.1
10% 95.0 2.8 9.2 96.0 3.1 9.9 95.0 2.1 9.6 100.0 4.5 9.2 100 1.1 14.6 100.0 2.6 13.9 100.0 1.8 13.9
20% 95.0 1.5 12.1 94.5 2.2 12.1 95.5 1.8 10.5 100.0 3.6 8.9 97.5 1.0 16.2 97.0 2.2 14.1 98.0 2.0 12.6

Tiny-
ImageNet

5% 94.0 2.0 5.2 94.0 2.3 4.8 98.0 1.9 2.6 100.0 2.3 0.9 100.0 2.2 5.9 100.0 2.1 5.9 100.0 1.6 5.8
10% 95.0 1.5 4.7 92.0 2.0 5.2 100.0 2.1 0.6 100.0 2.0 0.5 100.0 1.9 5.7 100.0 2.0 5.4 100 1.9 5.5
20% 94.0 1.0 8.6 90.0 2.0 8.5 99.0 1.6 2.1 100.0 1.6 1.2 99.0 1.2 7.8 98.5 1.6 6.2 99.0 1.8 5.1

Different Numbers of Compromised Clients. Table 3 shows the performance of IOShift in
a federated learning system with varying proportions of attackers. Results indicate that IOShift
is robust to varying numbers of attackers. This robustness stems from IOShift’s individualized
detection approach, which leverages the Backdoor-Induced Model Bias Shift phenomenon on a per-
model basis. Compared to existing defenses based on anomaly detection or benign parameter space
estimation, IOShift offers greater resilience.

Table 4: Performance of IOShift against
advanced backdoor types.

Dataset Type TPR FPR ASR

CIFAR10

FCBA 99.0 3.7 8.2
DBA 99.0 4.1 7.9

Semantic 74.0 3.6 21.5
Blend 87.0 2.2 14.1
Edge 79.0 4.1 8.1

WaNet 59.0 2.2 14.2
A Blend 73.0 3.6 21.8

Tiny-
ImageNet

FCBA 98.0 2.5 5.1
DBA 95.0 2.9 6.9
Blend 84.0 2.8 11.2
WaNet 68.0 2.4 1.2

A Blend 65.0 3.2 2.2

Advanced Backdoor Attack Types. Table 4 shows the
performance of IOShift against advanced backdoor attack
types. The results demonstrate that IOShift maintains sig-
nificant detection and removal effectiveness even against
more advanced distributed backdoor attacks. This is be-
cause, whether the attack is distributed or centralized, as
long as the local ASR is high, it inevitably biases the
model. For Semantic and Blend attacks, IOShift achieves
TPR of 74% and 87%, respectively. The reason is that
trigger in Semantic attack has subtle features within the
benign data space, causing partial overlap between the
backdoor and benign activation paths. Similarity, Blend
attack introduce small perturbations across the entire in-
put space, leading to a more concealed model bias shift.
Note that in our experimental setting, WaNet Nguyen & Tran (2021) and A Blend Qi et al. (2023a),
which perform well in centralized training scenarios, can hardly be considered as a successful attack
in distributed scenarios.

Other Experiments. Experiments on different Dirichlet settings, poisoned learning rates, different
network architectures, backdoor removal performance, computational costs, visualization of IOShift
scores are detailed in Appendix C.

6 CONCLUSION

In this paper, we introduce the Backdoor-Induced Model Bias Shift phenomenon, where backdoors
introduce a stronger malicious activation path between the trigger and the target class, leading to
an absolute bias toward OOD data. Inspired by this observation, we propose IOShift, a federated
backdoor detection and removal framework based on model bias shift between ID and OOD data.
Specifically, if an uploaded model exhibits a significant bias shift toward a particular class, it in-
dicates that a strong backdoor activation has been embedded in that class. IOShift breaks away
from the strong assumption of existing defenses that rely on defining a benign parameter space,
making it more effective in FL with high Non-IID degree. Moreover, IOShift can be seamlessly
deployed in existing FL frameworks by adding detection and removal steps without modifying the
core framework. Extensive experiments demonstrate that IOShift outperforms existing methods in
both backdoor detection and removal, achieving superior performance across various settings.

Limitations. One limitation of IOShift is that we still require a very small set of clean ID samples
(e.g., 20 samples per class). Despite being small, it still introduces an extra capability of defender. In
addition, based on the better performances, our running time is a bit more than the gradient checking
scheme. However, these times are essentially negligible compared to the client training time.
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