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Abstract

Transformers have been essential to pretrain-001
ing success in NLP. While other architectures002
have been used, downstream accuracy is ei-003
ther significantly worse, or requires attention004
layers to match standard benchmarks such as005
GLUE. This work explores pretraining without006
attention by using recent advances in sequence007
routing based on state-space models (SSMs).008
Our proposed model, Bidirectional Gated SSM009
(BiGS), combines SSM layers with a multi-010
plicative gating architecture that has been effec-011
tive in simplified sequence modeling architec-012
tures. The model learns static layers that do not013
consider pair-wise interactions. Even so, BiGS014
is able to match BERT pretraining accuracy015
on GLUE and can be extended to long-form016
pretraining of 4096 tokens without approxima-017
tion. Analysis shows that while the models018
have similar average accuracy, the approach019
has different inductive biases than BERT and020
scales more efficiently to longer sequences.021

1 Introduction022

Transformers are the de facto model architecture023

for NLP pretraining (Vaswani et al., 2017). Since024

BERT (Devlin et al., 2018), they have proven025

central to NLP tasks with their ability to learn026

effectively on large unlabeled datasets. Specif-027

ically, the use of attention as a central routing028

component seems to be critical to empirical suc-029

cess on downstream tasks. Other architectures030

have been proposed but require attention layers031

for high-accuracy (Tay et al., 2020b; Lee-Thorp032

et al., 2021).033

Is the centrality of attention in pretraining due034

to inductive bias or computational convenience?035

This question is complicated by the properties of036

common sequence routing layers: recurrent neu-037

ral network (RNN) models do not scale as well as038

attention, whereas convolutional neural networks039

(CNNs) can not easily model long-distance depen-040

dencies.041

State-space models (SSMs) for deep learning 042

provide a promising alternative. Recent works 043

show that SSMs are a competitive architecture 044

for long-range sequence modeling (Gu et al., 045

2021). SSMs achieve strong results on speech 046

generation (Goel et al., 2022) and on the Long 047

Range Arena benchmark (Tay et al., 2020a) outper- 048

form standard and long-range transformer architec- 049

tures (Gu et al., 2021; Gupta, 2022; Gu et al., 2022; 050

Smith et al., 2022). In addition to improving accu- 051

racy, SSM-based routing does not have quadratic 052

complexity as the length of the sequence grows. 053

Concretely, the model provides a way to achieve 054

RNN-like long-range dependencies with CNN-like 055

training speed. 056

This work proposes an architecture for apply- 057

ing SSMs using a Bidirectional Gated SSM (BiGS) 058

model for BERT-style pretraining. BiGS uses SSM- 059

routing at its core as a replacement for attention. 060

However, this change alone significantly degrades 061

the representational capacity of the model. To tar- 062

get this issue, we develop a multiplicative gating 063

architecture (Dauphin et al., 2017; Hua et al., 2022; 064

Mehta et al., 2022). In combination, this leads to a 065

simpler routing approach that remains surprisingly 066

effective at modeling necessary interactions. 067

Experiments compare SSMs to standard NLP 068

pretraining. While we find that SSMs by them- 069

selves underperform on NLP pretraining tasks, 070

BiGS is able to match the performance of a BERT 071

model when trained on the same data in a controlled 072

setting. By additionally pretraining on longer- 073

length instances, the model is able to grow with- 074

out approximation to extend to input sequences 075

of length 4,096. Analysis shows the importance 076

of multiplicative gating in fixing specific issues of 077

variable-length textual input. All models from this 078

work will be available open-source (Apache 2.0 079

license) upon release. 080
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2 Related Work081

Prior to BERT, promising pretraining approaches082

for learning contextual representations were083

learned using RNN-based models (McCann et al.,084

2017; Peters et al., 2018). While important pre-085

cursors, their accuracy did not scale with data or086

compute as well as Transformers. This gap re-087

mains even when back-porting best-practices from088

Transformer pretraining (Peters et al., 2019). Re-089

cently Tay et al. (2021) explored pretraining with090

several convolutional (CNN) variants. Results091

show that CNN without attention does not perform092

well, although they note benefits in routing speed.093

Lee-Thorp et al. (2021) propose FNet which re-094

places the attention layer with a Fourier transform.095

Without attention, this achieves 92-97% results on096

GLUE (Wang et al., 2018). Other works have used097

CNN-based models with multiplicative gating for098

NLP tasks such as machine translation (Dauphin099

et al., 2017). We believe BiGS is the first model to100

achieve BERT-level transfer learning on the GLUE101

benchmark without attention.102

Researchers have begun to use state-space mod-103

els for NLP tasks, and have primarily focused on104

auto-regressive language modeling. In S4 (Gu105

et al., 2021) and its variants (Gupta, 2022; Gu et al.,106

2022), researchers experimented with language107

modeling, achieving promising results, though108

slightly worse than transformers. Gated State109

Space adapts a SSM plus gating approach to lan-110

guage modeling (Mehta et al., 2022). Concurrent111

to this work, Dao et al. (2022b) propose H3 which112

closes the gap in auto-regressive language mod-113

eling, and with two attention layers outperforms114

transformers on OpenWebText. Finally, a related115

method, MEGA (Ma et al., 2022) combines expo-116

nential moving average routing with a simple atten-117

tion unit to outperform transformer baselines. Our118

approach instead focuses on bidirectional masked119

language modeling and questions of downstream120

generalization.121

3 Background122

3.1 State Space Models123

A state space model (SSM) is a general-purpose124

tool for describing the relationship between a125

continuous-time scalar input u(t) to scalar output126

y(t) by the following differential equations:127

x′(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t).128

Figure 1: A SSM learns a one-dimensional kernel K,
which is convolved with the input sequence u to produce
output y. Unlike attention, routing is static and does not
depend on the input. In BiGS, we use only two kernels
per layer (forward and backward). Figure 3 shows all
the kernels used in the fully trained model.

Where x(t) ∈ RN is a continuous-time state vec- 129

tor, x′(t) is its derivative, and the equation is pa- 130

rameterized by A ∈ RN×N ,B ∈ RN×1,C ∈ 131

R1×N ,D ∈ R1×1. 132

When applied to a discrete-time scalar input se- 133

quence u1, . . . uL, the SSM equations and param- 134

eters can be discretized, leading to the following 135

recursion, 136

xk = Axk−1 +Buk, yk = Cxk +Duk. 137

Where A,B,C,D are functions of the original 138

parameters and a discretization rate. 139

This equation can be computed like an RNN 140

where xk ∈ RN is a hidden state at time k. Un- 141

like an RNN though, the linearity of the recursion 142

allows y1 . . . yL to be computed directly using a 143

convolution with precomputed kernel K ∈ RL , 144

K = (CB,CAB, . . . ,CA
L−1

B) 145

y = K ∗ u 146

The process is illustrated in Figure 1. In a practical 147

sense, after training, this kernel K fully character- 148

izes the SSM, i.e. the model is a 1D convolution 149

with a very long kernel. 150

3.2 Learning SSMs 151

Gu et al. (2020, 2021) demonstrate an effective 152

approach for using SSMs in neural networks. The 153

core insight is to propose an initialization of the 154

transition matrix A, known as HiPPO, 155

Ank = −


(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

156
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Figure 2: Model Variants. (STACK) is the standard transformer architecture, (GATED) is based on the gated
unit (Mehta et al., 2022; Hua et al., 2022). For the Routing component (dashed lines), we consider both a
bidirectional SSM (shown) and standard self-attention. The gate (⊗) represents element-wise multiplication. The
BiGS model uses GATED with SSM.

This matrix yields a stable training regime that157

can also be efficiently trained. The full model,158

S4, retains the SSM ability to model long-term159

sequences while being more efficient than RNNs160

to train.161

Recently, researchers (Gu et al., 2022; Gupta,162

2022) have proposed simplified diagonalized ver-163

sions of S4, which achieve comparable results with164

a simpler approximation of the original parameteri-165

zation. In preliminary experiments, we used several166

different S4 parameterizations but did not find a167

significant difference in accuracy. Throughout the168

work, we use S4D as the parameterization.169

While the specifics of SSM discretization, pa-170

rameterizations, and training are beyond the scope171

of this work, at a high-level, we note that each vari-172

ant of SSMs leads to a similar convolution form.173

The model can therefore be trained by backpropaga-174

tion through the convolution without the serial bot-175

tleneck of RNNs, and applied without the quadratic176

cost of attention.177

3.3 Multiplicative Gating178

Gating units have been widely used to improve the179

performance of various architectures such as MLP,180

CNN, and Transformers (Dauphin et al., 2017;181

Shazeer, 2020; Narang et al., 2021). One exam-182

ple of such a gating unit is the Gated Linear Unit 183

(GLU) which has been used effectively for CNN- 184

based NLP systems (Dauphin et al., 2017). Let u 185

represent an input activation. GLU first computes 186

both a gating vector and a linear transform, σ(Wu) 187

and Vu respectively. The output of the layer is 188

then the element-wise product σ(Wu)⊗ (Vu). 189

Recent work has shown that gating can increase 190

the performance of models using simplified rout- 191

ing. Hua et al. (2022) show that linear time at- 192

tention models can benefit from improved gating. 193

Mehta et al. (2022) propose a Gated State Space 194

architecture using gating for unidirectional SSM 195

models. Multiplicative gating may restore some of 196

the interaction capacity from full attention-based 197

interactions. 198

4 BiGS Model 199

We consider two different architectures for SSM 200

pretraining: a stacked architecture (STACK) and a 201

multiplicative gated architecture (GATED) shown 202

in Figure 2. 203

Transformer Architecture The STACK architec- 204

ture with self-attention is equivalent to the BERT / 205

transformer model. We replace the attention block 206

with two sequential SSM blocks to mimic the na- 207

3



ture of bi-directional self-attention.208

Gated Architecture The GATED architecture is209

a bidirectional adaptation of the gated unit of Hua210

et al. (2022). Specifically, let Xi ∈ RL×d be ac-211

tivations at the i-th layer where the length is L,212

and the model size is d. We use the activation213

GELU (Hendrycks and Gimpel, 2016) for σ. The214

first stage computes,215

X = LayerNorm(Xi) ∈ RL×d216

V = σ(WvX) ∈ RL×3d217

F = σ(WfX) ∈ RL×d218

B = σ(WbFlip(X)) ∈ RL×d219

The second stage uses 2 sequential blocks (i.e., a220

forward and backward SSM layer) with a multi-221

plicative gate.222

U1 = Wu1SSM(F) ∈ RL×d223

U2 = Wu2SSM(B) ∈ RL×d224

U = σ(Wu(U1 ⊗ Flip(U2))) ∈ RL×3d225

The third stage uses a feed-forward layer again226

with gating, to replace the two dense blocks in the227

traditional transformer architecture. We sum this228

output O with the original input Xi finally as the229

input Xi+1 of the next layer i+ 1.230

O = Wo(U⊗V) ∈ RL×d,231

Xi+1 = O+Xi ∈ RL×d232

The number of parameters per layer in gated233

SSM is roughly 13d2 while the number of parame-234

ters per layer in the stack is 12d2. We compensate235

for this difference by using fewer gated layers.236

SSM Layer The SSM layer under both architec-237

tures is a map over vector sequences, SSM(X) :238

RL×d 7→ RL×d. However, we defined SSM over239

scalar sequences. Past work, creates d differently240

parameterized SSMs for each dimension (Gu et al.,241

2021). Experimentally though, we found it just242

as effective to use the same parameterization (and243

therefore kernel K) for each hidden dimension.244

This simplifies model analysis and makes the total245

number of SSM parameters negligible.246

5 Experimental Setup247

Experiments compare the performance of SSM-248

based models to attention-based models on several249

standard fine-tuning benchmarks. Experiments con- 250

trol for total parameter-size and amount of pretrain- 251

ing in terms of the number of tokens. All models 252

are on the order of magnitude of BERT-Large at 253

around 350M parameters; all GATED SSM mod- 254

els use 23 layers and STACK models 24 to match 255

parameter count. In order to run ablation tests, 256

we consider three different pretraining scales: 11B 257

(short), 29B (medium), and 97B (full) tokens. Mod- 258

els and architectures are roughly similar in training 259

speed at this length. The 11B (short) training scale 260

is roughly equivalent to the "24h BERT" setting typ- 261

ically used in research studies (Izsak et al., 2021). 262

Full training is closer to the original BERT model 263

which was trained on 128B tokens. 264

For all pretraining, we follow the training data 265

and masking strategy of Izsak et al. (2021). Since 266

RoBERTa (Liu et al., 2019) shows it does not hurt 267

accuracy, we use only masked language modeling 268

and not next-sentence prediction. We preprocess 269

and mask tokens offline for all models for consis- 270

tency, with maximal sequence length to be 128. We 271

use a grid search on perplexity to select configu- 272

rations of weight decay and learning rate; other 273

hyperparameters follow Izsak et al. (2021). For 274

SSM, we use a cosine decay learning rate scheduler, 275

which starts at 0, warms up to the peak learning 276

rate, and then decays back (Gu et al., 2021). 277

Pretraining is done with length 128 token se- 278

quences. In order to adapt to longer sequences 279

we apply continued pretraining. To adapt to 512 280

tokens for the SQuAD dataset, we follow the pro- 281

tocol of Wettig et al. (2022) and train on longer 282

sequences of the same pretraining dataset. To adapt 283

to 4,096 tokens, we follow the Longformer (Belt- 284

agy et al., 2020) protocol and continue training the 285

BiGS model on the text of length up to 4,096 to- 286

kens long, for 10k more steps using their proposed 287

training corpus of longer documents. For 4,096 288

tokens, we also use a smaller BiGS model (119M) 289

so that it is comparable in size Longformer-base 290

and BART-base models. We note that Longformer 291

(LED) and BART are based on superior underlying 292

models that are trained significantly longer. 293

Our SSM implementation is based on the Anno- 294

tated S41 (Rush, 2022), and our pretraining uses 295

the template from Hugging Face Transformers2 296

(Wolf et al., 2020). We experimented with variants 297

of SSMs and found they performed similarly; ex- 298

1https://srush.github.io/annotated-s4
2https://github.com/huggingface/transformers
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Arch / Route MNLI QNLI QQP RTE SST2 MRPC COLA STSB AVG
393k 105k 364k 2.5k 67k 3.7k 8.5k 7k

Short Training / ∼ 11B Tokens

BERT STACK / ATT 82.7 90.1 87.7 76.8 91.5 90.8 58.6 88.6 83.3
STACK / SSM 78.4 83.5 85.6 60.5 91.6 83.9 53.1 81.3 77.2
GATED / ATT 82.2 88.3 87.4 71.7 91.3 88.5 58.8 86.5 81.8

BiGS GATED / SSM 82.6 89.2 87.6 73.8 92.8 88.9 63.2 88.4 83.3

Medium Training / ∼ 29B Tokens

BERT STACK / ATT 85.0 90.9 87.9 80.5 93.0 90.9 60.8 89.2 84.8
STACK / SSM 80.1 86.5 87.2 65.6 92.3 86.5 56.5 83.4 79.8
GATED / ATT 83.5 90.2 87.6 72.0 91.7 88.7 61.6 87.5 82.9

BiGS GATED / SSM 84.5 90.2 88.3 78.6 94.4 89.6 63.9 89.3 84.8

Full Training / ∼ 97B Tokens

BiGS GATED / SSM 86.2 90.9 88.3 79.4 94.6 89.5 67.3 90.1 85.8

Non-Attention Based Pretraining

CNN STACK / CNN ∼75 - - - 92.2 - - - -
ELMo STACK / RNN 68.6 71.2 84.3 53.4 91.5 70.5 44.1 82.3 68.7
FNetL STACK / FNT 78.0 85.0 85.0 69.0 94.0 88.0 - 84.0 -

GLUE Test Result

BERT1 STACK / SSM 86.7/85.9 92.7 72.1 70.1 94.9 88.9 60.5 86.5 79.6
BERT2 STACK / SSM 86.0/85.2 92.6 72.0 78.3 94.5 89.9 60.9 87.5 83.0
BiGS GATED / SSM 86.1/85.0 91.6 71.2 77.6 94.9 88.7 64.4 87.5 83.0

Table 1: GLUE Results. (Top) Comparison of different architectures and routing in a controlled setting (Izsak et al.,
2021). See Figure 2 for details. We fine-tune RTE, MRPC, and STS-B from a MNLI checkpoint following the
convention by (Izsak et al., 2021). We average results of six runs and report accuracy for MNLI, QNLI, RTE, SST-2
and F1 score for QQP, MRPC and Matthew’s correlation for CoLA and Spearman’s correlation for STS-B. All
models are comparable to BERT-Large in size. (Bottom) Reported comparable results for other non-attention-based
pretraining models based on CNNs, LSTMs and FNet (Peters et al., 2018; Tay et al., 2021; Lee-Thorp et al., 2021;
Wang et al., 2018). BERT1 represents the official BERT result (Devlin et al., 2018), and BERT2 represents the
result using an MNLI checkpoint for other NLI tasks (Izsak et al., 2021). We use − to denote those results were not
reported by previous research.

periments use S4D (Gu et al., 2022) for simplicity.299

Note that for a fair comparison, we keep the size300

of the gated architecture comparable to a stacked301

architecture and our BERT implementation.302

6 Results303

6.1 GLUE304

Table 1 (Top) shows the main results for different305

pretrained models on the GLUE benchmark. In306

short and medium training, we note that the STACK307

architecture is significantly better with attention308

than with SSM-routing. However, with the GATED309

architecture, the SSM achieves competitive results.310

To confirm this is not simply from a better architec-311

ture, we try gating with attention but find it does 312

not improve. On full training, BiGS continues to 313

improve in accuracy. 314

Table 1 (Bottom) compares the BiGS architec- 315

ture to other reported results on GLUE. First, we 316

compare to other non-attention based pretrained 317

models based on RNNs and CNNs (Peters et al., 318

2019; Tay et al., 2021; Lee-Thorp et al., 2021). Re- 319

sults from these works all show significant degra- 320

dation in transfer learning with GLUE scores far 321

below BERT. Next, we compare BiGS to the full 322

BERT results as reported in past work, both from 323

the original paper (Devlin et al., 2018) and from 324

follow-up works with an improved fine-tuning con- 325
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SQuAD 1.1

BERT (512) 90.9

BERT (128 → 512) 87.3
BiGS (128 → 512) 89.5

Table 2: SQuAD F1 Dev Results. Models are trained by
adapting full 128 token models to 512 tokens (Wettig
et al., 2022).

Length QALT CNLI

LED 1024 26.6/27.2 73.4
LED 4096 26.6/27.3 71.5
LED 16384 25.8/25.4 71.5

BART 256 26.0/25.8 69.8
BART 512 26.8/27.4 71.6
BART 1024 26.0/25.9 77.4

BiGS 128 32.3/30.0 68.7
BiGS 4096 32.8/31.7 71.4

Table 3: SCROLLS Encoder Test set results. Baseline
models are both encoder-decoder models, one based on
Longformer (LED) (Beltagy et al., 2020) and the other
on BART (Lewis et al., 2019). Inputs are truncated at
length.

vention (Izsak et al., 2021). We see that the BiGS326

model achieves comparable test scores. While the327

final GLUE score is nearly identical we do see that328

the models perform differently on the underlying329

tasks, which we explore more below.330

We also apply BiGS to SQuAD (Rajpurkar et al.,331

2016). SQuAD requires extending the length of the332

model from 128 to 512 tokens through additional333

training. We report the F1 score in Table 2. We see334

that BiGS outperforms BERT when adapted with335

this procedure (Wettig et al., 2022). We note that336

both of these results underperform original BERT337

SQuAD results.338

6.2 Long-Form Classification339

An advantage of SSM-based routing is that mod-340

els can extend to longer-ranges without requiring341

approximation. To adapt to longer range classi-342

fication, we continue pretraining on longer data343

(4,096). Table 3 shows results on encoder-only ex-344

periments in SCROLLS (Shaham et al., 2022), a345

recent long-range language modeling benchmark.346

We can compare the model to Longformer Encoder-347

Decoder (LED) and BART. On these long-range348

Figure 3: Complete SSM routing learned in BiGS.
Shows forward and backward kernels K at each layer
(0-22). Values indicate the absolute value of the contri-
bution of each relative position (-10, . . ., 10) cropped
from the full 2 × 128. Min-max scaling of absolute
values is used for visual normalization.

Figure 4: Change in SSM kernel after finetuning. Shows
K after pretraining and after MNLI finetuning for Layer
14, Layer 18, and Layer 17 over all relative positions(-
128, . . . , 128).

tasks, it performs as well or better, taking advan- 349

tage of the long-range context. 350

7 Analysis 351

7.1 Role of SSM 352

Compared to multi-head attention where routing is 353

determined by L2 attention coefficients per head 354

per layer, the BiGS SSM routing is relatively com- 355

pact. Each layer has only 2L static values in K. 356

Figure 3 shows these values in the form of the 357

forward and backward kernels. These kernels cor- 358

respond partially to local aggregations such as the 359

next word (layer 1) or a preceding trigram (layer 360

6), and partially to long-term future or past infor- 361

mation (layer 14, layer 17). 362

Figure 4 shows how these kernels change during 363

finetuning. In particular, during MNLI finetuning, 364

the model needs to look at more long-distance in- 365

formation to match between sentences. This results 366

in most local kernels remaining the same, but long 367
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Figure 5: Role of gating in downstream accuracy. Com-
pares MNLI accuracy with respect to MLM loss. BERT
values from Devlin et al. (2018). Gated SSM shows sim-
ilar pretraining transfer as BERT, whereas Stack SSM
does not.

distance kernels adjusting. The figure shows three368

kernels expanding their scope outward.369

7.2 Role of Gating370

GLUE results show a significant improvement in371

downstream accuracy with the GATED model; how-372

ever, we actually find that the worse STACK SSM373

model has a similar pretraining MLM loss. Figure 5374

illustrates the difference of MLM loss and MNLI375

accuracy for both GATED and STACK SSM, com-376

pared to the MLM loss and expected MNLI values377

presented in BERT (Devlin et al., 2018). The figure378

shows that for the GATED model downstream accu-379

racy tracks MLM loss, while for STACK it does not.380

We speculate that multiplicative gating helps the381

SSM model recover some of the generalization abil-382

ity of attention, particularly for handling long se-383

quences. For example, table 6 compares accuracy384

of examples binned by length on the QNLI task.385

We see that the GATED SSM maintains accuracy386

as examples get longer and required dependencies387

move further apart.388

7.3 Efficiency Analysis389

A benefit of BiGS is the ability to scale to much390

longer sequences without a quadratic increase391

in Floating Point Operations (FLOPs). In Ap-392

pendix A.4, we compare theoretical FLOPs of393

BiGS and BERT for different input token lengths394

to better understand their relative scalability. At395

lengths up to 512, the cost of both models is dom-396

inated by the feed-forward networks, but when397

growing beyond 1024, the BiGS approach has a398

significant FLOP advantage over attention.399

Figure 6: Role of gating in generalization. Compares
accuracy on QNLI by binned length. Gated models
generalize to similar length sequences as BERT (stack /
att).

Figure 7: Efficiency analysis. Compares several opti-
mized implementations: BiGS with FlashConv, BERT,
BERT with FlashAttention, and a gated architecture
with no routing.

In practice, efficiency is dependent on hard- 400

ware and implementation. Figure 7 shows an 401

empirical comparison between two versions of 402

BERT - HuggingFace BERT (Wolf et al., 2020) 403

and BERT with FlashAttention (Dao et al., 2022a) 404

- to BiGS equipped with FlashConv (Dao et al., 405

2022c). FlashAttention and FlashConv are highly 406

optimized FP16 implementations of attention and 407

long-range convolution respectively. These models 408

were tested under identical conditions on a single 409

NVIDIA RTX A6000 GPU for one forward pass 410

of the large model. The results show that BiGS out- 411

performs basic attention, and outperforms highly- 412

optimized FlashAttention when sequence length 413

passes 2.5k. When comparing to a model without 414

any routing, we can see that the efficiency bottle- 415

neck of BiGS lies in the dense layers, while the 416

SSM adds relatively little overhead, even past 8k 417

tokens. 418
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BiGS BERT LSTM

SUBJECT-VERB:
Simple 100.0 100.0 94.0
Sentential complement 85.1 85.6 99.0
Short VP coordination 91.0 86.5 90.0
Long VP coordination 97.5 97.5 61.0
Across prep phrase 88.6 84.8 57.0
Across subj relative clause 88.4 84.9 56.0
Across obj relative clause 89.9 85.1 50.0
Across obj relative (-that) 86.9 81.1 52.0
In obj relative clause 97.2 99.1 84.0
In obj relative (-that) 88.7 81.6 71.0

REFL ANAPHORA:
Simple 97.1 98.9 83.0
In a sentential complement 79.9 86.2 86.0
Across a relative clause 79.1 75.9 55.0

Table 4: Targeted Syntactic Evaluation from Marvin and
Linzen (2018). Numbers of LSTM models are taken
from (Goldberg, 2019).

Figure 8: Syntactic Attractors task from Linzen et al.
(2016). Tests ability of models to match word agreement
in the presence of intervening attractors.

7.4 Task Analysis: Syntactic Properties419

While the average GLUE results are similar, BiGS420

underperforms on some tasks, and overperforms421

on syntactic tasks such as CoLA (Warstadt et al.,422

2019) (Appendix Figure 9 and 10). We speculate423

that these results indicate that SSM-routing may424

have different inductive biases than attention. We425

follow Goldberg (2019) in adapting two prelimi-426

nary experiments with of syntactic tests for masked427

language modeling:428

Linzen et al. (2016) test a model’s ability to dis-429

tinguish agreement in the presence of spurious in-430

tervening "agreement attractors". For example, the431

sentence "Yet the ratio of men who survive to the432

women and children who survive [is] not clear in433

this story" has three attractors for the masked work434

[is]. Figure 8 shows that BiGS consistently outper-435

forms BERT as number of attractors grows.436

Marvin and Linzen (2018) develop pairs of man- 437

ually constructed examples targeting various syntax 438

phenomena and difficulties. Given a pair of exam- 439

ples from this stimuli: “No students have ever lived 440

here" and “Most students have ever lived here", 441

we feed an adapted version “[MASK] students have 442

ever lived here" into a model and compare the pre- 443

dicted scores for the masked position “No” and 444

“Most” from it. Results are reported in Table 4 and 445

again show that SSM outperforms BERT on several 446

agreement phenomena. While more experiments 447

are needed, it is possible that BiGS leads to an 448

inductive bias to a more stack-like representation, 449

since it cannot rely only on dynamic matching. 450

8 Limitations 451

While SSMs are a promising technology for pre- 452

training, they are not yet a full replacement for 453

attention. One limitation is that this work only 454

considers an encoder model and not an encoder- 455

decoder setup. This makes it challenging to com- 456

pare to BART and LED in some longer-range eval- 457

uations. For example, in our preliminary studies 458

in applying BiGS to long-range question answer- 459

ing (WikiQA (Yang et al., 2015), TriviaQA (Joshi 460

et al., 2017)), we did not see direct benefits of 461

SSM in an encoder setting. Others have experi- 462

mented with decoder SSM models, but it is not 463

clear how cross-attention should work with these 464

models. This work also considers SSMs for bidirec- 465

tional pretraining, and not autoregressive modeling. 466

Therefore, some benefits of SSMs are less apparent, 467

such as the utilization of RNN generation. 468

9 Conclusion 469

We propose BiGS as a model for pretraining with- 470

out attention. BiGS makes use of SSM-based rout- 471

ing and multiplicative gating. Results show that 472

SSMs alone perform poorly in a stacked architec- 473

ture, but gating helps them to generalize. As far 474

as we are aware, this architecture is the first to 475

replicate BERT results without attention. 476

This work opens up many interesting questions. 477

We experimented with adapting to longer text, but 478

SSM-based models could be pretrained fully on 479

much longer sequences. Combining SSMs with 480

reductions in feed-forward costs could give further 481

optimizations. Finally, we took the steps in explor- 482

ing the syntactic properties of SSMs, but need fur- 483

ther probing of how their internal representations 484

lead to these properties. 485
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10 Ethical Considerations486

Our models are trained using a corpus consisting487

of existing collections of text from Wikipedia and488

books. Recent research has uncovered potential489

societal biases that are embedded within many es-490

tablished corpora. While it is beyond the scope of491

this paper to delve into these biases in depth, we492

acknowledge the potential risk that our pre-trained493

models may inherit these biases. In light of this,494

we are interested in exploring whether previous re-495

search on language bias detection can be applied496

to BiGS, as part of future work. Additionally, in497

this paper, we have focused solely on the English498

corpus, and it would be interesting to investigate499

how BiGS can contribute to multi-lingual language500

modeling in the future.501
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A Appendix680

A.1 Pre-training Procedure681

All models are pretrained using a single cloud TPU-682

v3. Table 5 shows hyperparameter configurations683

that we examine in our pretraining.684

BiGS with 512 token length model is trained685

with 10,000 steps (53,248 tokens per batch) using686

learning rate 4e-5.687

To compare with LED (Beltagy et al., 2020) and688

BART (Lewis et al., 2019) in the scroll experiment,689

we first train a BiGS with 12 layers (119M param-690

eters in total) and 128 maximal sentence length691

using 500,000 steps and later extend it to 4096692

token length with 10k more training steps using693

learning rate 3e-5.694

A.2 Downstream Tasks695

All models are finetuned using either a single cloud696

TPU-v3 or TPU-v2.697

A.2.1 GLUE698

Table 6 shows hyperparameter configurations used699

to finetune GLUE tasks.700

A.2.2 Other tasks701

Table 7 shows hyperparameter configurations used702

to finetune SQuAD and QALT/CNLI tasks.703

A.3 Annotated CoLA704

The CoLA corpus collection, as described in705

(Warstadt et al., 2019), is a vital task within the706

GLUE benchmark (Wang et al., 2018) for evalu-707

ating the acceptability of language models. This708

corpus has been specifically annotated with 13 dif-709

ferent syntactic phenomena in order to more ac-710

Hyperparameter BiGS BERT

Number of Layers 23 24
Hidden size 1024 1024

Intermediate size 3072 4096
Dropout 0.1 0.1

Learning Rate Decay {Cosine, Linear} {Linear}
Weight Decay {0.05, 0.01} {0.01}
Learning Rate {2e-4, 4e-4, 6e-4, 8e-4} {2e-4, 4e-4}

Optimizer AdamW AdamW
Adam ϵ 1e-6 1e-6

Adam β1 0.9 0.9
Adam β2 0.98 0.98

Gradient Clipping 0.0 0.0
Batch Size {760, 1048, 1136} {840}

Warmup Proportion {1%} {2%}

Table 5: Hyperparameters used for pretraining BiGS
and BERT models

Hyperparameter GLUE

Learning Rate {1e-5, 2e-5, 3e-5, 5e-5, 6e-5}
Weight Decay {0.01, 0.1}

Batch Size {16, 32}
Max Epochs {3, 5, 8}

Warmup Proportion {0.1}

Table 6: Hyperparameters used for finetuning our model
on GLUE benchmark tasks.

Hyperparameter SQuAD QALT/CNLI

Learning Rate {4e-5, 6e-5} {3e-5, 5e-5}
Weight Decay {0, 0.01} {0, 0.01}

Batch Size {32} {16, 24}
Max Epochs {2} {5, 8, 10}

Warmup Proportion {0.1} {0.1}

Table 7: Hyperparameters used for finetuning our model
in SQuAD and QALT/CNLI tasks.

curately quantify the linguistic knowledge of pre- 711

trained language models (LLMs) (Warstadt and 712

Bowman, 2019). We utilized the annotated in- 713

stances from this corpus to conduct a detailed anal- 714

ysis of the mistakes made by BiGS and BERT mod- 715

els. Specifically, we used the annotated instances 716

to break down the errors made by these models 717

and understand where they struggle with linguistic 718

knowledge. Results are shown in Figure 9. We 719

discovered that in 9 out of the 13 categories of 720

syntactic phenomena, the BiGS model performed 721

better than the BERT model, and significantly so 722

in two domains. We hypothesize that the inductive 723

bias that BiGS learned during training may have 724

contributed to its superior performance in under- 725

standing these syntactic phenomena. It is likely 726

that the specific inductive biases encoded in the 727

BiGS model enabled it to better comprehend the 728

nuances of these syntactic phenomena, leading to 729

its improved performance. 730

Length BiGS BERT

128 8.1E+10 7.9E+10
512 3.2E+11 3.4E+11
1024 6.5E+11 7.2E+11
4096 2.6E+12 4.1E+12

Table 8: FLOP comparison between BiGS and BERT
with respect to input token length. We calculated FLOP
with a batch size of 1 and considered both the forward
and backward passes.
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Figure 9: CoLA Results in Different Categories as annotated by Warstadt and Bowman (2019). MCC was used to
measure the performance.
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Figure 10: Performance of CoLA w.r.t sentence length
using matthews correlation coefficient(MCC). The red
and navy dashed lines in the graph represent the mean
value obtained from multiple rounds of evaluation.

We break down the matthews correlation coef-731

ficient(MCC) of the BiGS and BERT model w.r.t732

sentence length in Figure 10. BiGS outperforms733

BERT on both short and long text.734

A.4 FLOP analysis735

Table 8 gives the Floating Point Operations736

(FLOPs) for both BiGS and BERT models. FLOPs737

measure the best case computational cost of models.738

By comparing the FLOPs of BiGS and BERT for739

different input token lengths, we can better under-740

stand their relative efficiency and scalability. We741

calculate the training complexity, including both742

forward and backward passes for both BiGS and743

BERT, assuming a single instance per batch.744

When the input token length is 128, BiGS shows745

slightly lower FLOPs than BERT, indicating a746

marginal advantage in terms of computational com-747

plexity. As the input token length increases to 512, 748

BiGS surpasses BERT by a noticeable margin. This 749

increasing efficiency gap trend continues nonlin- 750

early with token lengths of 1024 and 4096 respec- 751

tively, implying that BiGS is better equipped to 752

handle applications with longer input sequences. 753
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