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ABSTRACT

Researchers and developers often compare state-of-the-art and newly developed
models beyond benchmark scores, using techniques such as visualizations, case-
by-case analyses, and qualitative evaluations. Such analyses provide deeper in-
sights into model behaviors and often motivate the development of improved mod-
els and the establishment of new benchmarks. However, identifying strengths
and weaknesses typically requires extensive human effort, consuming a signif-
icant amount of time and resources. To address this challenge, we explore the
automatic generation of natural language explanations that describe the perfor-
mance differences between two models. We introduce three evaluation metrics
for explanations: Completeness for correctness and overall informativeness,
Density for token-level informativeness, and Token Length for the ver-
bosity of explanations. Building on these metrics, we propose three explanation
generation methods: Raw Differences, which enumerates all performance
differences; Summarization, which condenses them into concise summaries;
and Optimization, which optimizes explanations for both informativeness
and conciseness. We evaluate our framework on CMNIST, CLEVR, and CelebA,
showing that Optimization effectively uncovers model differences and biases
in natural language. For reproducibility, we will release the code and data.

1 INTRODUCTION

Curated
Dataset

Generated 
Probing Data Interpreted 

by AI

Model A excels at data of type c1 while
Model B performs better on data of type c2.

Model A

Model B

Single Score

Model A

Model B

Interpreted 
by Human

Model A is better than model B on this dataset.

Scores

A: 0.65

B: 0.59

Data c1
A: 0.81
B: 0.29

Data c2

Typical Model Comparison Pipeline

Automated Model Comparison Pipeline (Ours)

Repeat with new probing data ci

Figure 1: Given vision models, A and B,
our method for explanations leverages
an LLM to probe their predictions itera-
tively with the help of a generator.

Despite the prevalence of standardized benchmarks for
model evaluation (Deng et al., 2009; Lin et al., 2014),
researchers often conduct additional analyses such as vi-
sualizations or case studies (Naseer et al., 2021). These
reveal strengths and weaknesses overlooked by aggregate
metrics, guiding benchmark design (Liu et al., 2024b) and
inspiring new methods (Sagawa et al., 2020). However,
such analyses are typically ad hoc, labor-intensive, and
difficult to scale.

Our work aims to reduce or replace this process using
foundation models and synthetic data. Recent advances
show that large language models (LLMs) (Grattafiori
et al., 2024; Hurst et al., 2024) can substitute for human
evaluators (Chiang & Lee, 2023; Bills et al., 2023) and,
when used as agents, even perform autonomous decision-
making (e.g., LangChain). Synthetic data, meanwhile,
provides controllable resources for training models to ad-
dress weaknesses (Kim et al., 2024a) and enabling more
detailed evaluations (Geirhos et al., 2018). Figure 1
shows our framework for automatically comparing two
vision models and explaining their differences in natural language: instead of a human, an LLM
probes models with a generator and produces concise explanations.

We first introduce three metrics for evaluating explanation quality. Completeness measures
whether an explanation provides sufficient information, with higher values indicating accurate
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reasoning about model predictions from the explanation alone. Density quantifies how much
Completeness drops when tokens are randomly removed, indicating how informative each token
is. We also report Token Length to measure verbosity, since lengthy explanations are undesir-
able. Together, these metrics provide a comprehensive assessment of explanation quality.

We then propose one baseline and two methods for generating comparative explanations. First, the
Raw Differences baseline directly lists performance differences of two models across all con-
ditions. While comprehensive, it becomes overwhelming as conditions grow and fails to highlight
critical insights. To address this, Summarization uses an LLM-based summarization module to
condense listings into a concise and insightful explanation. However, summaries may omit subtle
details and rely on the LLM’s summarization capability. To overcome these issues, we propose
Optimization, which optimizes explanations to be both correct and concise. Following prior
work on text optimization (Yuksekgonul et al., 2025; Xiao et al., 2025; Khattab et al., 2024), we it-
eratively refine explanations using LLM feedback, preserving the coverage of Raw Differences
while gaining the conciseness of Summarization.

We evaluate our methods on CMNIST (Arjovsky et al., 2019), CLEVR (Johnson et al., 2017), a
synthetic gender dataset 1, and CelebA (Liu et al., 2015).Experiments show that our methods reveal
true differences between vision models, and performance gains from explanations further validate
their effectiveness. Our contributions are: (1) three metrics for evaluating explanations of model
differences; (2) an automatic framework for generating natural-language explanations of model dif-
ferences; (3) extensive experiments demonstrating the effectiveness of our methods.

2 RELATED WORK

Comparative Analysis. Many benchmarks (Deng et al., 2009; Lin et al., 2014) evaluate model per-
formance and represent it with a single compressed score, enabling direct comparison across models
by ranking. Such comparisons help assess whether new models improve upon previous ones, pro-
vide insights for refinement, and guide model selection for deployment. However, a single score
cannot capture the multifaceted nature of models (Geirhos et al., 2018; 2020). For example, im-
provements in fairness are often overlooked. As a result, researchers turn to qualitative analyses to
study differences, which motivates the development of new benchmarks and models that address di-
verse perspectives (Sagawa et al., 2020). Yet such analyses are labor-intensive and time-consuming,
as they require human effort. To overcome these limitations, we propose an automated framework
for explaining prediction differences between vision models.

Several comparative analysis methods have been proposed. Jhamtani & Berg-Kirkpatrick (2018)
describe differences between image pairs, while Dunlap et al. (2024) focus on image sets. Chiquier
et al. (2025) generate images with subtle differences while preserving identity. VibeCheck (Dunlap
et al., 2025) evaluates vibe differences between LLM outputs. In this work, we aim to compare two
vision models and generate concise explanations, along with metrics to evaluate the quality of these
explanations. Our method and metrics build on synthetic data generation and LLMs.

Synthetic Data. Synthetic data has long been used for evaluation (Hendrycks & Dietterich, 2019;
Mayer et al., 2016) and training (Tobin et al., 2017; Johnson et al., 2017), valued for its scalabil-
ity and manipulability. With advances in generative models such as diffusion models, synthetic
images now achieve unprecedented quality, spurring new applications (Kim et al., 2024a; Ye-Bin
et al., 2024; Augustin et al., 2022; Jeanneret et al., 2022). We leverage Blender (Blender Online
Community, 2025) and diffusion models (Esser et al., 2024) to analyze models without relying on
predefined image datasets.

Textual Optimization. Retraining LLMs is computationally expensive; therefore, many approaches
instead optimize the input text. Methods such as TextGrad (Yuksekgonul et al., 2025), DSPy (Khat-
tab et al., 2024), and Verbalized Machine Learning (Xiao et al., 2025) adapt text prompts to achieve
task-specific goals. Building on this work, we optimize explanations that capture prediction differ-
ences between two vision models. Our framework enables the LLM to iteratively refine explana-
tions, incorporate feedback, and determine which conditions to probe two vision models, thereby
improving the quality of the explanation.

1This dataset is constructed for the explanation evaluation on the proposed metrics.
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Condition c
1. Cowboy riding a horse
2. Ballerina
3. Female doctor

(a) Completeness

LLM
Predictor

Explanation
Compared to Model B, Model A’s
gender prediction results correlate
strongly with gender stereotypes.

1. -0.4
2. +0.8
3. +0.05
…

1. B wins : -1
2. A wins : 1
3. A wins : 1
…

𝝆 = 𝟎. 𝟔𝟒
Correlation

1. LLM-Predicted Difference Function from Eq. (3)

2. Model Performance Difference from Eq. (2)

(b) Density

Original Explanation:
Model A’s gender prediction
results correlate strongly with
gender stereotypes.

Explanation with Token Drop:
Model A’s gender prediction
results correlate strongly with
gender stereotypes.

𝚫 = 𝟎. 𝟑

Difference in 
Completeness

Model A

Model B

Images from Condition c
C1 C2 C3

Randomly 
drop tokens

Calculate 
Completeness

0.64

0.34

Predict which model is better.

Figure 2: Completeness and Density Metrics. Completeness measures the correlation
between the true difference of the two models’ predictions and LLM predicted differences based on
the explanation for the same set of data conditions. A higher value indicates that the explanation
enables the LLM to reliably recover the true model differences. Density measures the change of
Completeness after removing word tokens of the explanation randomly. A higher value indicates
that the explanation has high information density.
LLM Evaluator. LLMs are increasingly employed as evaluators to reduce time, labor, and
cost (Hackl et al., 2023; He et al., 2024; Liu et al., 2023). He et al. (2024) use LLMs as anno-
tators, while Liu et al. (2023) propose an LLM-based evaluation framework for natural language
generation. Bills et al. (2023) simulate neural activations using LLMs. Similarly, we use LLMs
to evaluate explanations. If the explanations are sufficiently complete and concise, an LLM can
correctly answer explanation-related questions.

3 EVALUATING EXPLANATIONS OF PREDICTION DIFFERENCES BETWEEN
TWO MODELS

Setup of Comparison of Two Vision Models. We are given two models, {fA, fB} : X → Y , and
a conditional generator, G : C → X ×Y , where X is the input of the models, Y is the corresponding
label, and C is the condition. For image tasks, the generator can be a conditional data generator,
such as a Blender (Blender Online Community, 2025) or a text-to-image (T2I) diffusion model.
Suppose that Explainer is an algorithm that creates an explanation describing how two models’
predictions differ in the form of natural language. Then, we formulate the process as follows:

Explanation = Explainer(fA, fB ,G), (1)

where Explainer has access to both of the models and a data generator to produce an explanation.

Explanation Completeness Score. A good explanation is one that fully expresses the phenomenon
in natural language and allows one to answer new questions about the phenomenon correctly. More-
over, a good explanation should be able to accurately predict which models will perform better on a
new, unseen sample, even before running any inference with the models.

To measure whether the explanation accurately approximates the models’ behaviors, we use an LLM
that is fed the explanation as a proxy model and measure Completeness by comparing the proxy
model’s outputs with those of the actual models for probing data. In the following, we first define
two functions representing the actual models’ performance difference and LLM prediction, and then
formally define Completeness. We represent the model performance difference as follows.

Definition 1.1. (Model Performance Difference Function) Let fA and fB be two models
to be compared. Given a condition c and corresponding data {xc

i , y
c
i }i=n

i=1 ∼ G(c), we define
the model performance difference function as:

DiffModel(fA, fB , c) = Perf(fA, {xc
i , y

c
i }i=n

i=1 )− Perf(fB , {xc
i , y

c
i }i=n

i=1 ), (2)

where Perf denotes the performance, e.g., accuracy, on the given data with condition c.

3
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The condition c can be any characteristic of the data that produces a subset of the data distribution
with the generator G. The model performance difference function DiffModel(·) is positive if model
fA achieves a higher accuracy, negative if model fB performs better, and 0 otherwise. We leverage
the reasoning capabilities of an LLM together with the explanation to create a proxy model that
predicts these model performance differences. Given an explanation and a condition c, we prompt
the LLM to predict which model would perform better.

Definition 1.2. (LLM-predicted Difference Function) Let c be the condition defining a
subset of the data, and o be the output of the LLM prompted to decide on the better model
based on the explanation and c. We define the LLM-predicted difference function as:

DiffLLM(c;Explanation) =

{
1 if o = “Model A is better”,
0 if o = “Cannot be determined”,
−1 if o = “Model B is better”.

(3)

We define the Completeness metric using the correlation between the LLM’s answers and the
actual model differences.

Definition 1. (Completeness) Given DiffLLM and DiffModel, we define Completeness
of an explanation as the correlation between the two functions:

Completeness = correlationC(DiffModel,DiffLLM). (4)

A higher correlation indicates a better explanation because it enables an LLM to predict the correct
outcome based solely on the explanation more frequently. A correlation of 1 across all samples
means that the model difference can be perfectly predicted based solely on the explanation. The
conditions c on which DiffModel is evaluated come from a pre-defined test set of textual conditions.
If such a set of conditions is not available, vision models can be evaluated by captioning each test
image and using the caption as c. Figure 2 summarizes the steps of computing Completeness.

Density Score. This metric is defined by computing counterfactual changes of Completeness
after perturbation: “What if a subset of the explanation is removed? Could an LLM still answer
correctly?” Based on this criterion, the tokens of an explanation can be categorized based on the
change of Completeness score after token removal (∆): unnecessary (removal does not change
the score, ∆ = 0), informative (removal decreases the score, ∆ > 0), and misleading (Removal
increases the score, ∆ < 0). A higher Density indicates that many tokens are informative, reflect-
ing greater information density. Perturbations are introduced by randomly removing tokens from
the explanation for each question, and the resulting changes are aggregated across questions.

Definition 2. (Density) We define Density of an explanation as:

Density = Completeness− ̂Completeness, (5)

where ̂Completeness is computed from the explanation with randomly dropped tokens.
Specifically, Completeness is evaluated for each condition c defined in Eq. (3), and the
Density captures how much the Completeness degrades under such perturbations.

Token Length. Lengthy and verbose explanations are harder to interpret and are more likely to
include redundant words. Therefore, we also report the number of tokens as an indicator of concise-
ness. Together, Completeness, Density, and the Token Length capture complementary aspects of an
explanation. While each metric focuses on a different dimension, considering them jointly provides
a more comprehensive understanding of explanation quality.

4 AUTOMATIC DISCOVERY OF MODEL DIFFERENCES

Now that we have established two metrics for evaluating textual explanation, we propose three
methods to create the explanations as in Eq. (1), with access to the two models, fA and fB , along
with the conditional generator G. We employ LLM to generate textual explanations.

4
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Conditions Generator

C1: man with a beard
C2: woman with a stroller
C3: man in a business suit

Difference
Calculation

Model A – Model B = 12.5%
Model A – Model B = 0.5%
Model A – Model B = 52.5%

On C1, Model A – Model B = 12.5%
…

Explanation

(a) Raw Differences

Model A tends to perform better than
Model B when the subject is a man […]

Explanation

Summarization

(b) Summarization

Model A outperforms Model B when the
men is in masculine contexts […]

T-th Explanation

Exploration Feedback & Update

(c) Optimization

C1: girl with a doll
C2: man in a sports jersey
…

Repeat 

Sh
ar

ed
 M

od
ul

e

Model A

Model B

Figure 3: Three Methods for Explanations. (a) Raw Differences aggregates performance
differences across conditions without losing information. (b) Summarization condenses the
results from all conditions into a single paragraph to reduce token length. (c) Optimization
iteratively refines the explanation, ensuring that no information is lost.

Raw Differences. A concept-based approach inspires the first baseline. If the concepts within
images are known, we can evaluate the model’s performance on each concept to understand its
behavior better. Figure 3 (a) illustrates the pipeline of Raw Differences.

First, we sample conditions that define subsets of the data distribution, e.g., attributes of a person
that a gender classifier might be biased towards. These can either be drawn randomly from known
set of conditions or generated by an LLM to obtain open-set conditions. Next, we use a conditional
generator to produce images based on the sampled conditions and measure the performance differ-
ences between models, fA and fB . Finally, the explanation is given as a list of these performance
differences, one for each condition. The main advantage of this approach is that it avoids informa-
tion loss. If both humans and LLMs can correctly interpret the large amount of comparison data,
the explanation can clearly convey differences in model behavior. However, the drawback is that the
explanations become lengthy.

Summarization. To overcome the limitations of the above method, we introduce a summa-
rization module. Recent advances in LLMs have shown strong performance across diverse lan-
guage tasks, including condensing long documents into concise summaries (Zhang et al., 2024; Liu
et al., 2024a). We leverage this capability by applying LLM-based summarization to the output of
Raw Differences as shown in Fig. 3 (b). The key advantage of Summarization is its shorter
explanation length compared to Raw Differences, while still preserving essential information
when the summarization is effective. However, a drawback is that critical cues may be lost if LLM
summarization is not perfect.

Optimization. We introduce an explanation refinement method to ensure that discovered ex-
planations are both complete and concise. As LLMs can handle diverse tasks when guided by
appropriate prompts, considerable work has focused on optimizing how language is given to LLMs.
Approaches such as TextGrad (Yuksekgonul et al., 2025), DSPy (Khattab et al., 2024), and Verbal-
ized Machine Learning (Xiao et al., 2025) demonstrate the effectiveness of prompt optimization.
We adapt this idea to our task as follows:

1. Exploration: The LLM proposes new conditions to explore in order to improve the explanation.
2. Feedback/Update: Based on the outcomes under these conditions, the LLM provides feedback
on how to refine and update the explanation. Repeat steps 1-2 as in Fig. 3.

Step 1 (Explore conditions) can be viewed as generating probing samples: the LLM proposes can-
didate conditions, analogous to drawing data points from an open set of evaluation data for better
understanding the models. Step 2 (Update explanation with feedback) then functions as a reason-
ing step to describe the model differences more effectively: the LLM evaluates these conditions,
produces feedback, and refines the explanation accordingly. We define the objective function as the

5
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Table 1: Scores on CMNIST. We construct the human-written explanations under the assumption
that we already know how to train models, and denote these as Humans, which serve as the upper
bound. For automatic explanations, we adopt Llama 3.1 8B (Grattafiori et al., 2024) and Phi 4
14B (Abdin et al., 2024). We adopt GPT-5 mini as an evaluator. We find that iterative refinement,
Optimization, consistently outperforms other automatic explanation methods.

LLM Method Completeness Density Token Length

- Human 0.90 0.51 74
- Raw Differences 0.33 0.15 2813

Llama 3.1 8B Summarization 0.55 0.23 130
Optimization 0.66 0.28 61

Phi 4 14B Summarization 0.58 0.03 105
Optimization 0.67 0.23 71

sum of Completeness and Density. At each iteration, we start with n candidate explanations.
Each of them is refined through steps 1-2, producing n updated explanations. Among these 2n ex-
planations, we retain n explanations with the highest objective scores, where the objective function
is evaluated over the explored conditions. We set n to 3.

We design prompts for the Exploration and Feedback/Update steps. Each prompt assigns the role
of a machine learning researcher to the LLMs, a widely adopted strategy for guiding the behavior
of LLMs. To refine explanations, the prompts explicitly emphasize conciseness. For example, we
prevent the model from simply enumerating accuracy differences. Prompts also incorporate the
proposed metrics and task descriptions to ensure that the LLMs understand the intended objectives
and can reason about the best next condition to explore or how to update the explanation effectively.

In summary, Raw Differences provides a high level of information but tends to produce lengthy
explanations. Summarization yields concise explanations, but the important information could
be removed. In contrast, Optimization maintains a high level of information while also generat-
ing concise explanations, thereby combining the strengths of the other two approaches. Please refer
to Appendix A for additional details, including LLM prompts and pseudocode for all methods.

5 EXPERIMENTS

5.1 CMNIST EXPERIMENT

Setup. We construct two biased models on CMNIST (Arjovsky et al., 2019; Bahng et al., 2020), a
colored variant of MNIST, to compare image classifiers. In addition to digit and color, we introduce
a distracting factor, rotation, that is irrelevant to model performance. Specifically, Model A (fA) is
trained on digits 0–4 with red color and digits 5–9 with all colors, while Model B (fB) is trained on
digits 0–4 with all colors and digits 5–9 with blue color. To estimate the upper bound of the task, we
also provide explanations written with full knowledge of these biases (Human) shown in Fig. 4. The
number of conditions observed for the three methods is 100. We randomly sample 100 conditions
from all possible attribute combinations to obtain the raw differences for Raw Differences
and Summarization. The number of iterations for Optimization is 10; the LLM can freely
choose 10 different attribute combinations for each iteration during exploration.

Quantitative Results. Table 1 shows the performance on our proposed metrics. The LLM column
specifies which model was used to generate the explanations, while evaluation is consistently con-
ducted with GPT-5 mini. A human-written explanation achieves the highest scores (Completeness:
0.90, Density: 0.51) with 74 tokens, as experts with knowledge of the models write it. In con-
trast, Raw Differences yields low scores (Completeness 0.33, Density 0.15) despite covering
many performance cases, primarily due to its excessive length (2813 tokens). Summarization
improves both Completeness (0.55/0.58) and length (105/130 tokens), demonstrating that condens-
ing explanations enhances their effectiveness. Finally, Optimization achieves the best results,
reaching Completeness 0.66/0.67 and higher Density (0.23/0.28) with concise explanations (61/71
tokens). These results confirm that optimizing explanations leads to more faithful and compact
representations of model behavior.
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Human

Summary

Optimization

Figure 4: Attribution Score. We compute token attribution scores by evaluating the loss change
under a leave-one-out strategy. For fair comparison, the scores are normalized to lie between 0 and
1 using the same normalization factor across tokens. We observe that the informative tokens, e.g.,
digits, color, and performance, are highlighted.

Table 2: Ablation Study. Concise Prompt indicates whether the prompt guides to generate concise
explanations. Metrics for Optimization specifies the objective used during optimization. For exam-
ple, when both metrics are employed, optimization is performed to minimize their combined value.

Metrics for Optimization Concise Prompt Completeness Density Token Length
Completeness Density

✓ ✗ ✗ 0.70 0.11 304
✓ ✓ ✗ 0.64 0.18 209
✓ ✗ ✓ 0.63 0.15 81
✓ ✓ ✓ 0.66 0.28 61

0.2 0.4 0.6 0.8
Threshold

0.0

0.2
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0.6

0.8

1.0
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Effective Token Ratio vs. Threshold
Human Explanation (Area: 0.306)
Summarized Explanation (Area: 0.240)
Optimized Explanation (Area: 0.291)

Figure 5: Effective Token Ratio. The
curves show the proportion of tokens
exceeding a given threshold from Fig. 4.
The area under each curve (AUC) is re-
ported in the legend.

Attribute Score. We compute token attribution, which
is the importance of each token on explaining the model
differences. Specifically, we measure the change in
loss2.under the Leave-One-Out approach. The influence
scores are normalized to the range [0, 1] with the same
normalization value. As shown in Fig. 4, tokens with
high scores correspond to key cues, such as digits and
performance-related expressions of the explanations. To
further analyze attribution, we introduce the effective to-
ken ratio, which measures the proportion of tokens whose
normalized influence score exceeds a given threshold. We
vary this influence-score threshold in increments of 0.05
and compute the corresponding token ratios to capture
how densely informative tokens are distributed within the
explanation. Figure 5 shows the results. We observe
that the curve of a good explanation lies higher. The area under the curve (AUC) for Human,
Summarization, and Optimization is 0.306, 0.240, and 0.291, respectively. This trend is
consistent with Density, since both metrics measure the information density within the explana-
tion.

Ablation Study. To validate the design choice of Optimization, we conduct an ablation
study, as shown in Table 2. The objective function is defined as the sum of Completeness and
Density. In the metrics columns, ✓ and ✗ indicate whether the corresponding metric is included
in the sum. The Concise Prompt column indicates whether an instruction to write updates concisely
and clearly was included when the LLM revised the explanation. Prompt details are included in
Appendix A.

The results highlight the tradeoffs between completeness, density, and token length. When optimiz-
ing only for completeness without a concise prompt, the explanation achieves the highest complete-

2We use a loss function that resembles the Completeness metric as explained in Appendix A.
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Table 3: Scores on Clevr. To discover an explanation, we adopt Llama 3.1 8B and Phi 4 14B. We
leverage GPT-5o mini as an evaluator. The tendency is same to Table 1

LLM Method Completeness Density Token Length

- Raw Differences 0.31 0.13 600

Llama 3.1 8B Summarization 0.22 0.05 127
Optimization 0.40 0.09 60

Phi 4 14B Summarization 0.10 -0.03 69
Optimization 0.30 0.07 133

Score: 0.40 /. 0.09 / 60

[…] Model B performs well with cylinders, especially
when they are medium-sized and made of metal, but
falters with spheres, especially when they are small and
made of rubber. […]

Score: 0.52 / 0.33 / 66

[…] Model B performs well with typical metal shapes
and standard sizes, but struggles with rubber shapes
and non-standard sizes. […]More Iterations

Figure 6: More Iterations Result on Clevr. The scores are Completeness / Density /
Token Length. We observe consistent improvements as the number of iterations increases.
Moreover, the written explanations become more accurate.

ness (0.70) but suffers from low density (0.11) and excessive length (304 tokens). Adding density to
the objective improves density (0.18) and shortens the explanation (209 tokens), but reduces com-
pleteness (0.64). Introducing a conciseness prompt alone reduces the output (from 81 tokens) while
moderately improving density (from 0.15). Finally, combining both density and concise prompt
yields the best balance: completeness remains competitive (0.66), while density reaches the highest
value (0.28) with the shortest length (61 tokens). These results demonstrate that Density and the
concise prompt complement each other, producing compact yet informative explanations.

5.2 CLEVR EXPERIMENT

Setup. We construct two biased models on CLEVR (Johnson et al., 2017), trained to predict the
shapes of geometric objects in the scene. Each image in CLEVER contains one object that is char-
acterized by four attributes: shape (cube, cylinder, sphere), material (metal, rubber), color (gray, red,
blue, green, brown, purple, cyan, yellow), and size (small, medium, large). fA/fB are biased toward
rubber/metal materials, i.e., they perform well on one material but poorly on the other. The number
of conditions observed for the three methods is 20. The number of iterations for Optimization
is 2 with 10 conditions per iteration.

Results. We observe that Raw Differences achieves higher Completeness and Density
scores compared to Summarization. This is because Summarization primarily focuses on
describing size, which is not a critical factor for distinguishing differences between fA and fB . In
the Phi-4 row, Summarization even produces a negative Density value, indicating that the
explanation includes incorrect or irrelevant information. As shown in Fig. D of the appendix, its
explanation mistakenly states that fA handles rubber poorly while fB excels at it, which contra-
dicts the actual material bias. Optimization consistently yields high Completeness and low
Token Length values.

To examine whether additional optimization yields further benefits, we extend Optimization
from 2 to 10 iterations as shown in Fig. 6. The completeness and density scores improve from
0.40/0.09 to 0.52/0.33, while the explanation length remains nearly unchanged. The resulting expla-
nations more clearly articulate the material bias. This indicates that the Optimization continu-
ously improves by scaling the number of iterations as more conditions can be explored to discover
better explanations.

5.3 EXAPLANATION OF ZERO-SHOT CLASSIFICATION OF VISION-LANGUAGE MODELS

Setup. To test a more realistic setting, we perform experiments on gender classification using a zero-
shot classifier, i.e., SigLIP (Zhai et al., 2023). To create differences between the two classifiers, we

8
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Model A outperforms Model B when the image condition involves men in professional or stereotypically masculine contexts, such as a man in a suit,
man holding a briefcase, or man with a beard. In contrast, Model B performs better in scenarios involving women or children, such as a girl playing
with dolls, woman with a purse, or woman with a baby. Model A and Model B perform equally well in conditions with neutral or ambiguous gender
cues, like a boy riding a bike, young girl smiling, or boy playing soccer.

Ask GPT-5 to improve prompt based on explanation

GapWorstAvg
28.458.386.7Orig.

Model A 11.8 (16.6)75.4 (17.1)87.2 (0.5)GPT-5
66.914.681.5Orig.

Model B
28.8 (38.1)58.3 (43.7)87.1 (5.6)GPT-5

For Model A: Since it favors masculine/professional cues, […]
• a man casually dressed in everyday clothing, smiling in a park
• a woman dressed in professional attire, confidently walking in an office

For Model B: Since it favors women/children, […]
• a man playing with a child at home, wearing casual clothes
• a woman wearing neutral clothing, speaking at a conference with a

laptop nearby

New prompts generated from GPT-5 given explanation

Figure 7: Performance Improvement From Explanation. We provide the discovered explanation
to GPT-5 and ask it to suggest ways to improve the vision models. Based on the explanation, GPT-5
generates new prompts. We observe a mitigation of bias, which further validates the effectiveness
of the discovered

use different prompts for classifying man and woman. For fA, we use “a photo of a man with black
hair” and “a photo of a woman with blond hair”; for fB , we adopt “a photo of a man with blond hair”
and “a photo of a woman with black hair”. All methods employ Stable Diffusion 3.5 (Esser et al.,
2024) as a data generator. The LLM explores open-set conditions, which substantially increase the
difficulty of the task. For evaluation, we construct a synthetic dataset of men and women based on
50 captions per gender to measure our proposed metrics. The number of conditions observed for
the three methods is 100. The number of iterations for Optimization is 10. Further details are
provided in Appendix A.

Table 4: Scores on Gender. We adopt Llama 3.1
8B for generating explanations.

Method Completeness Density Token Length

Raw Differences 0.11 0.05 2375

Summarization 0.11 -0.05 100
Optimization 0.17 0.01 107

Results. Table 4 shows scores on our synthetic
gender dataset. Optimization provides the
best trade-off between all three metrics. Unlike
CMNIST, gender prediction requires more so-
phisticated reasoning because the search con-
ditions are unconstrained and the correlations
are subtle. Our primary objective is to gain
a deeper understanding of the differences be-
tween models, which can guide improvements
to these models.

To examine whether the discovered explanations can also guide model improvement in practice, we
further conduct experiments on CelebA, a widely used dataset for gender prediction that is known
to exhibit strong correlations with hair color. On CelebA, we measure the average accuracy, the
worst-case accuracy across hair-color subgroups, and the performance gap between groups.

We provide the explanation from Optimization to GPT-5 and ask it to create new prompts
that address the weaknesses of both models in order to enhance gender classification performance.
Figure 7 shows the explanation discovered by Optimization, GPT-5’s response, and the resulting
performance changes on CelebA. The new prompts from GPT-5 mitigate the discovered weaknesses
of the models. When using the prompts, we observe consistent improvements in average accuracy,
worst-case subgroup performance, and inter-group gap. The positive results further validate the
quality of the discovered explanation.

6 CONCLUSION

To the best of our knowledge, we present the first study on explaining vision model differences in
natural language. We introduce evaluation metrics that capture the desirable properties of an expla-
nation: informativeness and conciseness. We propose methods for generating textual explanations
of model differences. Among them, Optimization achieves the best performance by integrat-
ing the advantages of the other approaches. We further demonstrate that the discovered explanation
can mitigate the weakness of vision models, which validates the effectiveness of the explanation.
Our metrics and methods are validated on vision classification tasks, and extending them to other
domains and modalities represents a promising direction for future research.

9
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REPRODUCIBILITY STATEMENT

For reproducibility, we provide detailed setups in Appendix A. Specifically, Appendix A.1 describes
the prompts and hyperparameters used in the evaluation metrics. In Appendix A.2, prompts and
pseudocode for each method are given. Appendix A.3 explains the datasets and provides sample
instances, and Appendix A.4 reports the computing resources and hyperparameters used with LLMs.
We plan to release the code and data publicly upon acceptance of the paper for reproducibility.
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USE OF LARGE LANGUAGE MODELS (LLMS)

We made use of large language models (LLMs) to assist in refining the writing of the paper. In
addition, LLMs provided support in improving the clarity of the writing and offering guidance on
LATEX usage and formatting.

A DETAIL AND SETUP

A.1 EVALUATION

Completeness. We evaluate Completeness by measuring the correlation between ground-
truth answers (Eq. (2)) and LLM predictions (Eq. (3)). A high-quality explanation should enable the
LLM to give the correct answer. To this end, we adopt LLMs as evaluators, leveraging their strong
reasoning capabilities. Such use of LLMs, often referred to as LLM judges, has become common in
prior work (Verga et al., 2024; Kim et al., 2024b; Hackl et al., 2023; He et al., 2024; Liu et al., 2023);
the key advantage is automatic and scalable evaluation. We use the following prompt template to
get the LLM prediction given an explanation:

You are a machine learning researcher. Model A and Model B are {Task Description}. You
will be given an explanation that describes model A and model B. Given the explanation
and corresponding question, you need to choose an answer from the options.

[Example]
{In-Context Example}

Now, let’s start the evaluation.
Explanation: {Explanation}
Question: {Question}
Options: [1] Model A, [2] Model B, [3] Cannot be determined
Answer:

{Task Description} specifies the models’ task (e.g., classifying digit images from 0 to 9). {In-
Context Example} provide the task information to LLM explicitly. We give one example to LLM.
{Explanation} and {Question} refer to the generated explanation and the test question, respectively.
After obtaining LLM’s predictions, we convert the answers through the LLM-predicted Difference
Function as shown in Eq. (3).
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Algorithm 1 Raw Differences

Input: Two models fA, fB ; condition set C = {c1, . . . , cK}; generator G; difference metric
DiffModel(fA, fB , ·) from Eq. (2); samples per condition n

Output: Explanation table E listing ck 7→ DiffModel(fA, fB , ck)
1: for k = 1 to K do
2: {xc

i , y
c
i }i=n

i=1 ∼ G(ck) ▷ Generate n samples under condition ck
3: ∆k ← DiffModel(fA, fB , ck) ▷ e.g., accuracy gap, error rate gap
4: end for
5: E ← {(ck,∆k)}Kk=1
6: return E

Algorithm 2 Summarization
Input: E from Alg. 1; Summarization LLM S; prompt template πsum

Output: Concise natural-language explanation Ê
1: p← FillTemplate(πsum, E)
2: Ê ← S(p)
3: return Ê ▷ e.g., “Model A tends to outperform B when the subject is a man . . . ”

This metric evaluates the completeness, correctness, and sufficiency of an explanation. For instance,
when explaining a phenomenon to someone unfamiliar with it, we can assess their understanding
by asking a related question. If the explanation is effective, they will be able to provide the correct
answer. The choice of the evaluator is critical. In the main paper, GPT-5-mini is employed as a fixed
LLM evaluator to provide a consistent assessment of explanation quality across different explana-
tions. Results obtained with alternative LLM evaluators are additionally reported in the Appendix
(Experiments section), which further confirms that high-quality explanations remain effective across
evaluators.

Density. We evaluate the counterfactual changes of Completeness by applying random
dropout to explanation tokens for each question. We use the same above prompt to compute
Completeness and 25% drop ratio for dropout.

Token Length. The token count is computed using the tiktoken API released by OpenAI. The
tokenizer corresponding to the specific model (GPT-5-mini) is employed.

Attribute Score. We introduce the attribution score, as shown in Fig. 4. In the CMNIST exper-
iments, the better model under each condition is known. That is, for the question “Which model
performs better given c?”, a ground-truth answer exists (e.g., “Model A”). Using this setup, we can
get a loss based on an explanation, a question, and its answer from LLM. To measure token-level
contributions, we compute the counterfactual change in loss by removing explanation tokens one
at a time (Leave-One-Out): Loss(ê) − Loss(e). This procedure resembles Density (change of
completeness), since loss and completeness are inversely related. However, unlike Density, it
allows fine-grained token-level analysis, albeit at higher computational cost.

A.2 METHOD

See Alg. 1 for Raw Differences, Alg. 2 for Summarization, and Alg. 3 for
Optimization. Below, we describe the prompts used for each method.

Summarization. Given the results taken from Eq. (2), we provide the below prompt to the
summarization LLM.

You are a machine learning expert. Based on the evaluation results below, explain the
strengths and weaknesses of Model A and Model B.
Requirements:
- The explanation must be correct and cover all aspects of the given results.
- Do not simply restate the evaluation results, list pros/cons as is, or include numerical

II



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 3 Optimization: Iterative Optimization with Feedback and Exploration

Input: Models fA, fB ; initial conditions C0; generator G; scorerQ (Completeness, Density); Feed-
back & Update LLM U ; Exploration LLM X ; iterations T ; samples per condition n

Output: Optimized explanation z⋆

1: E0 ← RawDifferences(fA, fB , C0,G, n) ▷ Alg. 1
2: z0 ← Summarize(E0,S, πsum) ▷ Alg. 2
3: s0 ← Q(z0) ▷ s: overall score
4: z⋆ ← z0; s⋆ ← s0; C ← C0
5: for t = 1 to T do
6: Cnew ← X (zt−1, st−1) ▷ Propose exploratory conditions (e.g., “girl with a doll”)
7: C ← C ∪ Cnew
8: Et ← RawDifferences(fA, fB , C,G, n)
9: zdraft

t ← U(zt−1, Et, st−1) ▷ Edit/Refine the explanation
10: st ← Q(zdraft

t )
11: if st > s⋆ then
12: z⋆ ← zdraft

t ; s⋆ ← st
13: end if
14: end for
15: return z⋆

values or result labels.
- Keep it as a single paragraph, concise enough to fit in one or two lines.
- Write in a concise style with short, direct sentences. Avoid unnecessary connectors or
long clauses.

Evaluation results:
{List of Model Performance Difference}

Write the explanation in the following format: {”explanation”: explanation}.

{List of Model Performance Difference} represents a list of observations, e.g., Model Performance
Difference Function.

When we use T2I diffusion models, the possible conditions are open and numerous. In this case, we
use LLM to sample the conditions. The below prompt is used for gender experiments.

You are a machine learning expert. Model A and Model B are binary classification models
designed to predict gender—either man or woman—from images. Based on the evaluation
results below, you need to explain the strengths and weaknesses of Model A and Model B.

To do this, you will identify and list a set of [condition, label] pairs representing different
scenarios that could affect model performance. These pairs will be used to further analyze
and compare the models’ behavior.

Guidelines for the list:
- ‘label‘ should be an integer: ‘0‘ for man, and ‘1‘ for woman.
- ‘condition‘ should be a brief phrase describing the content of the image, e.g. caption.
- If ‘label‘ is ‘0‘, the condition must include a masculine term (e.g., man, boy, etc.).
- If ‘label‘ is ‘1‘, the condition must include a feminine term (e.g., woman, girl, etc.).

Please generate exactly {number} pairs in the following list-of-list format: [[condition1,
label1], [condition2, label2], ..., [condition{number}, label{number}]]. Do not write any
additional text outside of the list.

Task description and guidelines for the condition can be adapted for the models’ task.
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Optimization. This method has a feedback/update prompt for Feedback LLM and an explo-
ration prompt for Exploration LLM. Feedback LLM is given the following prompt:

You are a machine learning expert. Your task is to evaluate an explanation of model results
and update it if necessary.

You are given:
- An explanation of the results
- {Metrics}
- New experimental results and updated {Metrics}

Definitions: {Definition of Metrics}
Requirements for the explanation:
- The explanation must be correct and cover all aspects of the given results.
- Do not simply restate the evaluation results, list pros/cons as is, or include numerical
values or result labels
- Keep it as a single paragraph, concise enough to fit in one or two lines.
- Write in a concise style with short, direct sentences. Avoid unnecessary connectors or
long clauses.

Your role:
1. Review whether the given explanation sufficiently accounts for the new experimental
result.
2. Provide feedback on how the explanation can be improved.
3. Suggest an updated explanation that integrates both the original points and the new
findings, ensuring it is both complete and compact.

Inputs:
- Explanation: {explanation}
- {Metrics}: {metric}
- Experimental result under new condition: {model performance difference}
- Updated {Metrics}: {update metcis}

Please provide your answer in the following format: ”feedback”: feedback, “explanation”:
explanation. Please do not write any additional text outside of the dictionary.

{Metrics} denote the proposed evaluation metrics introduced in the main paper. In practice, we may
provide either a single metric or the full metrics. The definitions are given to the LLM to ensure that
it can interpret the intended meaning of each metric. Given both the previous metric values and the
updated ones under the new result of model performance differences, the LLM is required to reason
about how the explanation should be improved with respect to these metrics. Exploration LLM is
given the following prompt:

You are a machine learning expert. You wrote the explanations that describe the strengths
and weaknesses of two models, Model A and Model B. Below are the scores of your
explanations based on {Metrics}.

{Definition of Metrics}

History:
{Explanation 1}: {explanation 1}
{Metricsc 1}: {metrics 1}

{Explanation 2}: {explanation 2}
{Metricsc 2}: {metrics 2}
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(a) Red (b) Green (c) Blue (d) Yellow (e) Magenta

(f) Cyan (g) Orange (h) Pink (i) Purple (j) Grey

Figure A: CMNIST color examples.

{Explanation 3}: {explanation 3}
{Metricsc 3}: {metrics 3}

To improve the scores of these explanations, you need to gather additional information by
exploring further conditions:
{Description of Conditions}

The chosen values should be those you consider the most important to explore further, and
they must fall within the given ranges. Additionally, you must decide whether the strategy is
”exploration” (searching new conditions broadly) or ”exploitation” (focusing on promising
conditions).

Please output the conditions in the following list-of-dictionaries format: [{strategy: explo-
ration or exploitation, {condition: condition}, ...]. Please provide {exploration size} differ-
ent conditions, and do not write any additional text outside of the list.

This prompt is designed to guide an LLM in simulating the process of improving explanations for
comparing two models (Model A and Model B). The LLM is first provided with prior explanations
and their corresponding scores under the proposed {Metrics}. To ensure proper interpretation, the
definitions of the metrics ({Definition of Metrics}) are explicitly given. With this context, the LLM
is tasked with enhancing explanation quality by identifying additional conditions that could reveal
further insights. The prompt supplies a description of available conditions ({Description of Con-
ditions}). The LLM must select the conditions it considers most important to explore further and
assign a strategy of either exploration (broadly searching new conditions) or exploitation (focusing
on promising conditions).

A.3 DATA

We need two pre-trained models to be compared. We prepare the training data, the models, and the
evaluation set as described in the main paper.

CMNIST. The MNIST dataset (LeCun et al., 2010) is a handwritten digits dataset widely used in
machine learning research. It is composed of 28×28 handwritten digits (0–9). CMNIST (Arjovsky
et al., 2019; Bahng et al., 2020) introduces color bias by associating each digit with a specific back-
ground color (e.g., digit 0 with red). For two models to be compared, each model is trained on
different color biases explicitly. The model has the same CNN architecture: four 7 × 7 convolu-
tional layers, batch normalization (Ioffe & Szegedy, 2015), and ReLU. The colors are chosen in
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red, green, blue, yellow, magenta, cyan, orange, pink, purple, and grey. See Fig. A for the color
examples.

The test questions cover all combinations of a digit, a color, and a rotation. Rotation does not affect
the performance compared to the color and acts as a confusing factor. We have 10 digits, 10 colors,
and 13 degrees, so the total number of test questions is 1,300.

CLEVR. We employ the CLEVR dataset (Johnson et al., 2017), which consists of synthetic images
generated using Blender. Each image is characterized by four attributes: shape, material, color, and
size. Specifically, the dataset includes three shapes (cube, cylinder, sphere), two materials (metal,
rubber), eight colors (gray, red, blue, green, brown, purple, cyan, yellow), and three sizes (small,
medium, large). To facilitate comparison, we train two models with explicitly imposed material
biases. The CNN architecture used is identical to that employed for CMNIST. The test set comprises
a total of 144 questions.

Gender Dataset. For gender prediction, we use SigLIP, a zero-shot image classification model
guided by text prompts. Model A has the prompts: “a photo of a man with black hair” and “a
photo of a woman with blond hair”. Model B has the prompts: textit“a photo of a man with blond
hair” and “a photo of a woman with black hair”. Since hair color and gender are correlated, we
hypothesize that Model A is more biased toward gender cues than Model B.

To measure Sufficiency, we need to test questions and corresponding images. As mentioned
in the main paper, we generate the synthetic dataset using Stable Diffusion 3.5 (Esser et al., 2024).
Males and females have 50 captions for conditions, respectively. Thus, the total number of text
questions is 100. Texts used to generate the synthetic dataset are listed below.

A lone {male or female} traveler walking across a desert at sunset
A smiling {male or female} chef cooking in a cozy kitchen
A {male or female} ballerino mid-twirl on an empty stage
A solitary {male or female} knight standing in a misty forest
A young {male or female} scientist working late in a lab
A {male or female} fisherman casting a line into a calm lake at dawn
A {male or female} business professional presenting in a modern office
A {male or female} painter creating a colorful mural on a blank wall
A {male or female} street musician playing violin under a lamppost
A {male or female} yoga instructor meditating on a mountain peak
A medieval {male or female} archer aiming at a target in a clearing
A futuristic {male or female} soldier in armor on a dystopian street
A {male or female} librarian reading quietly in an ancient library
A {cowboy or female cowboy} riding a horse across an open plain
A {male or female} deep-sea diver swimming near coral reefs
A teenage {boy or girl} skateboarding down an empty road
A {male or female} writer typing intensely in a cluttered study
A {male or female} monk praying inside an ancient temple
A {male or female} singer performing passionately on a lit stage
A {male or female} firefighter standing heroically amidst smoke
A {male or female} fashion model posing on a minimalist set
A {male or female} gardener tending flowers in a sunny backyard
A {male or female} pilot in uniform walking across a runway
A {male or female} astronaut with his helmet off floating inside a space station
A {male or female} swordsman practicing under cherry blossoms
A {male or female} mountain climber reaching the summit alone
A {male or female} mechanic fixing a car in a dimly lit garage
A {male or female} police officer directing traffic at a busy crossing
A {male or female} student studying alone in a library at night
A {male or female} surfer riding a massive wave at sunset
A {male or female} samurai standing in a bamboo forest
A {male or female} poet reciting verses by a riverside
A {male or female} detective inspecting a crime scene at night
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“A {male or female} baker decorating a cake in a colorful bakery.” “A {male ballerino or ballerina} mid twirl on an empty stage.”

“A {male or female}  firefighter standing heroically amidst smoke.” “A {male or female} samurai standing in a bamboo forest.”

Figure B: Samples of gender synthetic dataset samples.

A {male or female} farmer harvesting crops under a bright sky
A {male or female} violinist practicing in a grand concert hall
A {male or female} boxer training alone in a gym
A {male or female} baker decorating a cake in a colorful bakery
A {male or female} priest giving a sermon in an empty cathedral
A {male or female} doctor examining an X-ray in a quiet office
A {male or female} sailor steering a boat through foggy waters
A {male or female} carpenter building furniture in a sunlit workshop
A {male or female} sorcerer casting spells in a dark forest
A {male or female} fashion designer sketching new outfits
A {male or female} wizard studying ancient scrolls in a stone tower
A {male or female} robot engineer assembling a humanoid android
A {male or female} jazz musician playing saxophone in a smoky bar
A {male or female} skier descending a snowy mountain slope
A {male or female} dancer practicing moves in a mirrored studio
A {male or female} photographer setting up a tripod on a beach
A {male or female} biologist examining plants in a dense rainforest

Under the above conditions, we generate image samples for Eq. (2); we also remove ambiguous
images and re-generate images if necessary. The number of image samples for each condition is 8,
so the number of total images is 800. Figure B shows the generated image samples.

CelebA. CelebA (Liu et al., 2015) is a large-scale facial attribute dataset. The dataset is available
for non-commercial research purposes only. We use it to evaluate the impact of initialization and to
demonstrate the application of textual explanations.

A.4 EXPERIMENT

Experiments compute resources. We conduct our experiments using A6000, A100 (40GB), and
V100 GPUs on a Slurm-based infrastructure. Our method runs on a single GPU by leveraging
efficient LLM inference techniques, such as 8-bit or 4-bit quantization.

Hyperparameters. We fix the random seed for reproducibility. For explanation generation, we use
LLMs with a temperature of 1.0 to allow non-deterministic outputs. All other hyperparameters fol-
low the default settings of the Hugging Face API. During evaluation, we use LLMs in a deterministic
setting. Additionally, we set the number of explanations to be kept during explanation generation to
three.
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Model A is better than model B when the digits of 0, 1, 2, 3, and 4 are colored in red regardless of the rotation angle, 
but not in other colors. Model B is better than model A when the digits of 5, 6, 7, 8, and 9 are colored in blue 
regardless of the rotation angle, but not in other colors.

Human 1

Model A is worse than model B when the digits of 0, 1, 2, 3, and 4 are not colored in red regardless of the rotation 
angle. Model B is worse than model A when the digits of 5, 6, 7, 8, and 9 are not colored in blue regardless of the 
rotation angle.

Human 2

Model B is better than model A for the digits 0, 1, 2, 3, and 4 in any color other than red regardless of the rotation 
angle. Model A is better than model B for the digits 5, 6, 7, 8, and 9 in any color other than blue regardless of the 
rotation angle.

Human 3

Model A performs well when the digit is 9, color is magenta or grey, and angle is within a certain range. However, 
Model A struggles with digits 0, 4, and 2, especially when the color is yellow, green, or cyan, and the angle is outside 
of a specific range. Model B performs better with digits 0, 4, and 2 in various color and angle combinations, but its 
accuracy drops when the digit is 9, color is magenta or grey, and angle is within a specific range. Both models have 
strengths and weaknesses, and their performance varies depending on the input conditions.

Summarization
(Llama 3.1)

Model A and Model B show varied performance under different conditions. While A underperforms with digit 1 and 
certain angles, it outperforms with digits 5, 6, 7, and 8. Model B shows relative stability with certain digits and 
conditions but underperforms with others.

Optimization
(Llama 3.1)

Model A excels in scenarios involving digits 9, 5, and 7 with specific color and angle combinations, showing strong 
performance in these contexts. Conversely, Model B performs better with digits 0, 4, and 3, particularly when certain 
colors and angles are present. Model A struggles with digits 1 and 4 across various conditions, while Model B shows 
weaknesses with digits 9 and 8 in specific settings. Both models have instances of equal performance, indicating 
potential areas of overlap in their capabilities.

Summarization
(Phi 4)

Model A excels with digits 9 and 7 in specific conditions, while Model B outperforms with digits 4, 0, 1, 2, 3, and 5 in 
various colors and angles. Model A also excels with digit 8 in orange at -30 degrees and digit 6 in orange at 5 
degrees.

Optimization
(Phi 4)

Figure C: Generated Explanation on CMNIST. We offer three explanations using the knowledge
of how to train Model A/B, which are the upper bound. Human 2 is used in the main paper.

Model A performs well when classifying cubes with various colors and materials, especially when the size is large. 
Model A also excels with spheres of certain colors and materials, particularly when the size is large. However, Model 
A struggles with cylinders, especially when the material is metal and the size is large. Model B, on the other hand, 
struggles with spheres of certain colors and materials, particularly when the size is small, and performs poorly with 
cylinders of various colors and materials when the size is large. Model B has some strengths with cylinders of specific 
colors and materials when the size is medium, but these are not consistent across all evaluations.

Summarization
(Llama 3.1)

Model A excels at classifying spheres, especially when they are large and made of rubber, but struggles with 
cylinders, particularly those with varying colors and materials. Model B performs well with cylinders, especially when 
they are medium-sized and made of metal, but falters with spheres, especially when they are small and made of 
rubber. Overall, both models have strengths and weaknesses, suggesting that they are complementary and could be 
used in conjunction to improve overall accuracy.

Optimization
(Llama 3.1)

Model A excels with spheres, particularly in specific color-material-size combinations, and performs well with large 
gray rubber cubes, while Model B is superior with blue rubber cubes and medium green rubber cubes. Model A 
struggles with brown rubber cylinders and large brown rubber cylinders, whereas Model B shows consistent 
performance with metal cylinders and rubber cubes of various colors and sizes.

Summarization
(Phi 4)

Model A excels with small, cyan spheres and medium, green or gray cubes, while Model B performs better with large, 
blue, metallic cylinders or medium-sized, brown or cyan cylinders. Model A struggles with large, yellow cylinders or 
medium-sized, brown ones, whereas Model B is consistent with cylinders. New results show Model A outperforms 
Model B with large, red, rubber spheres, while Model B excels with small, purple, metal cubes and medium, gray, 
rubber cylinders. Model A also outperforms Model B with large, brown, rubber cubes, but both models perform equally 
with medium, cyan, metal cylinders and large, red, metal cubes.

Optimization
(Phi 4)

Figure D: Generated Explanation on CLEVR.

B ADDITIONAL EXPERIMENT RESULTS

B.1 GENERATED EXPLANATIONS

We provide qualitative results of the generated explanations for the CMNIST (Fig. C), CLEVR
(Fig. D), and Gender classification experiments (Fig. E).

B.2 OTHER LLM EVALUATOR

Table A reports completeness scores when alternative LLM evaluators (Llama 3.1 and Phi 4) are
used in place of GPT-5. While the overall trends remain consistent—optimization-based methods
generally outperform summarization—the absolute scores differ across evaluators. For instance,
Llama 3.1 and Phi 4 sometimes assign higher Completeness values to Summarization com-
pared to GPT-5. These variations suggest that evaluator choice can influence the absolute scale of
scores. For consistency and reliability, we therefore use GPT-5 as the primary evaluator in the main
experiments.

VIII



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Model A tends to perform better than Model B when the subject is a man, especially in scenarios where men are 
dressed formally or have distinct facial features, such as a beard or mustache. However, Model A struggles to 
accurately classify pregnant women and women with babies, indicating potential biases in its training data. Model B 
appears to be more accurate in these cases, but its overall performance is weaker compared to Model A, particularly 
when the subject is a man in a specific context or with distinct facial features.

Summarization
(Llama 3.1)

Model A outperforms Model B when the image condition involves men in professional or stereotypically masculine 
contexts, such as a man in a suit, man holding a briefcase, or man with a beard. In contrast, Model B performs better 
in scenarios involving women or children, such as a girl playing with dolls, woman with a purse, or woman with a baby. 
Model A and Model B perform equally well in conditions with neutral or ambiguous gender cues, like a boy riding a 
bike, young girl smiling, or boy playing soccer.

Optimization
(Llama 3.1)

Figure E: Generated Explanation on Gender.

Table A: Other Evaluator Results on CMNIST.

LLM Method Completeness
GPT 5 Llama 3.1 Phi 4

- Human 1 0.00 -0.16 0.00
- Human 2 0.90 0.06 0.69
- Human 3 0.90 0.88
- Raw Differences 0.33 0.50 -

Llama 3.1 8B Summarization 0.55 0.50 0.42
Optimization 0.66 0.66 0.46

Phi 4 14B Summarization 0.58 0.70 0.80
Optimization 0.67 0.62 0.67

20 30 40 50 60 70 80 90 100
Number of Iterations

0.0

0.1

0.2

0.3

0.4

0.5

Co
m

pl
et

en
es

s

Completeness vs. Number of Iterations

Summarization
Optimization

Figure F: Completeness With Varying Numbers of Iterations on CLEVR. The optimization-
based method exhibits stable improvements as iterations increase, whereas the summarization-based
method fluctuates and even degrades after peaking around 50 iterations.

Model A excels at classifying spheres, especially when they are large and made of rubber, but struggles with 
cylinders, particularly those with varying colors and materials. Model B performs well with cylinders, especially when 
they are medium-sized and made of metal, but falters with spheres, especially when they are small and made of 
rubber. Overall, both models have strengths and weaknesses, suggesting that they are complementary and could be 
used in conjunction to improve overall accuracy.

20 Iteration

Model A excels with rubber shapes, especially spheres and small cubes, but struggles with metal shapes. Model B 
performs better with metal shapes, particularly cylinders, but underperforms with rubber shapes. New results show 
Model A's strong performance with rubber spheres and cubes, but Model B's edge with metal cylinders and rubber 
cubes.

30 Iteration

Model A excels in cube classification, especially with rubber and large sizes, and shows an advantage in some 
sphere scenarios. Model B performs well in sphere classification, particularly with metal and specific color 
combinations. However, both models have varying performance under different conditions, with some scenarios 
showing no difference or even a disadvantage for Model A, as seen in the new experimental results where accuracy 
differences range from 0.0% to 100.0%.

50 Iteration

Model A excels with uncommon combinations and improves with certain color-material pairs, but struggles with small 
shapes and specific color-material combinations. Model B performs well with typical metal shapes and standard sizes, 
but struggles with rubber shapes and non-standard sizes. The accuracy difference between models varies with 
specific attributes, with some combinations showing significant gaps in performance.

100 Iteration

Figure G: Generated Explanation from CLEVR with More Iterations
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B.3 MORE ITERATION

As shown in Fig. F, Completeness under the optimization-based approach steadily improves as
the number of iterations increases, indicating stable refinement. In contrast, summarization fluc-
tuates considerably and even declines after 50 iterations, suggesting limited robustness to iteration
scaling. Figure G shows the generated explanations.
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