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Abstract
Gaussian smoothing combined with a probabilis-
tic framework for denoising via the empirical
Bayes formalism, i.e., the Tweedie-Miyasawa
formula (TMF), are the two key ingredients in
the success of score-based generative models in
Euclidean spaces. Smoothing holds the key for
easing the problem of learning and sampling in
high dimensions, denoising is needed for recov-
ering the original signal, and TMF ties these to-
gether via the score function of noisy data. In
this work, we extend this paradigm to the prob-
lem of learning and sampling the distribution of
binary data on the Boolean hypercube by adopt-
ing Bernoulli noise, instead of Gaussian noise,
as a smoothing device. We first derive a TMF-
like expression for the optimal denoiser for the
Hamming loss, where a score function naturally
appears. Sampling noisy binary data is then
achieved using a Langevin-like sampler which
we theoretically analyze for different noise lev-
els. At high Bernoulli noise levels sampling be-
comes easy, akin to log-concave sampling in Eu-
clidean spaces. In addition, we extend the se-
quential multi-measurement sampling of Saremi
et al. (2024) to the binary setting where we can
bring the “effective noise” down by sampling mul-
tiple noisy measurements at a fixed noise level,
without the need for continuous-time stochastic
processes. We validate our formalism and theo-
retical findings by experiments on synthetic data
and binarized images.

1. Introduction
We would like to draw samples from a distribution p
on the Boolean hypercube {−1, 1}d. Langevin Markov

1Inria, Ecole Normale Supérieure, PSL Research, University,
Paris, France 2Frontier Research, Prescient Design, Genentech.
Correspondence to: Francis Bach <francis.bach@inria.fr>, Saeed
Saremi <saremi.saeed@gene.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

chain Monte Carlo (MCMC) is a general-purpose class of
gradient-based algorithms for sampling from a distribution
µ in the Euclidean space Rd, whose convergence proper-
ties are studied extensively with the assumption that µ is
log-concave (Dalalyan, 2017; Durmus & Moulines, 2017;
Cheng et al., 2018; Chewi, 2024). Recently, Gaussian
smoothing was effectively used for mapping the general
problem of sampling in Euclidean space to log-concave
sampling (Saremi et al., 2024). Inspired by this line of
work, we approach the problem of sampling binary data
with a “smoothing philosophy,” where Bernoulli noise plays
a prominent role.

In Euclidean space one can ease the sampling problem by
opting for sampling noisy data. In particular, instead of the
random variable x, we opt for sampling the random variable
y = x+ ε, where ε ∼ N(0, σ2I) follows a Gaussian distri-
bution. This scheme involves a single hyperparameter, the
standard deviation σ. Algebraically, this is akin to sampling
from the smoother density νσ of y, which is the convolution
of the distribution µ of x with the Gaussian distribution.
From a geometric perspective, the noise effectively “fills
up” the space with probability mass (the degree of which
one controls with σ) thus navigating the space becomes
easier. One can then “clean up” the mass that is added to
the space using denoising. In particular, classical results in
statistics (Robbins, 1956; Miyasawa, 1961) state:

E[x|y] = y + σ2∇ log νσ(y),

which we refer to as the Tweedie-Miyasawa formula (TMF).
Note that E[x|y] is the least-squares estimator of clean
data x given a noisy observation y, and∇ log νσ is known
as the score function (Hyvärinen, 2005).

In the generative modeling setting, where the distribution is
unknown but we have access to data {x(i)}ni=1, one can turn
TMF into a supervised least-squares denoising objective
for learning the score function of noisy data, where the
noisy data y = x + ε, ε ∼ N(0, σ2I) is the input and the
clean data x is the target (Hyvärinen, 2005; Vincent, 2011;
Saremi & Hyvärinen, 2019). One can then use Langevin
MCMC (“walk”) to sample from the learned νσ(y); the
noisy samples can be cleaned up with the learned denoiser
(“jump”). This sampling scheme was referred to as the walk-
jump sampling which we denote by WJS-1 (“1” anticipates
the extension we discuss below). There is a clear trade-off
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here: for higher σ, sampling from νσ(y) becomes easier,
but the distribution of denoised samples itself goes farther
away from µ(x). Despite this trade-off, WJS-1 has proven
to be effective in some applications (Pinheiro et al., 2023;
Frey et al., 2024; Kirchmeyer et al., 2024).

The sampling trade-off in WJS-1 is addressed in multi-
measurement models (Saremi & Srivastava, 2022; Saremi
et al., 2024), in which one is interested in the distribu-
tion νσ(y1:m) associated with y1:m := (y1, . . . , ym), where
yk = x+εk, k ∈ [m], and εk∼N(0, σ2I) all independent
and independent of x. Saremi et al. (2024) studied a se-
quential strategy for sampling from νσ(y1:m) and showed
that the noise level effectively goes down (as far as the de-
noiser is concerned) at the rate σ/

√
m. Furthermore, if one

chooses σ such that the distribution νσ(y1) is log-concave,
all the subsequent conditional distributions νσ(yk|y1:k−1),
k ∈ [m] remain log-concave. The general sampling problem
is therefore mapped to a sequence of log-concave sampling
while the effective noise goes down via this accumulation of
measurements. We refer to this scheme as WJS-m, which
involves two hyperparameters: the noise level σ, and the
number of measurements m. This approach has deep con-
nections to sampling via diffusion and stochastic localiza-
tion (Montanari, 2023). The main conceptual difference is
that the multi-measurement sampling does not involve dis-
cretizing an SDE (Song et al., 2021; Campbell et al., 2022)
for bringing the noise down. Fundamentally, this is due to
the discrete nature of measurement accumulation.

1.1. Contributions

Given this background, we approached the problem of sam-
pling from a distribution p(x) on {−1, 1}d by devising
a smoothing method, with the key restriction to stay on
the Boolean hypercube (in this purely binary world Gaus-
sian noise does not exist). The natural choice to “smooth”
the binary data is to use (isotropic) random sign flips dic-
tated by the Bernoulli noise: y = x ◦ ε, where ◦ denotes
the Hadamard (i.e., pointwise) product. The noise ε is
drawn from the Bernoulli distribution, P(εi = 1) = σ(2α),
where σ is the sigmoid function, and α ⩾ 0 is the noise
parameter. The probability mass function of the noisy data
qα(y) happens to be a transformation of p(x) via an expo-
nential tilt governed by exp(αx⊤y). As α decreases, the
probability mass gets more spread out on the hypercube,
thus easing the sampling problem, where in the extreme
case, α = 0, we arrive at the uniform distribution.

For denoising there are subtle differences between the
Boolean/Bernoulli and Euclidean/Gaussian setups, where
the optimal denoiser f takes values on the Boolean hyper-
cube and the Hamming loss is the natural loss. We show in
Lemma 2.1 that f takes the form f(y) = sign(E[x|y]), and

in Lemma 2.2 we show that

E[x|y] = 1

α
∇ log qα(y).

This is essentially the form of TMF for the Bernoulli noise,
where crucially the score function appears again. We should
emphasize that the score function is well-defined here since
qα(y) has an analytical form (dictated by the exponential
tilt) beyond {−1, 1}d. Finally, similar to the Gaussian case
discussed earlier we can learn the score function given a
dataset {x(i)}ni=1 by denoising, the subtle difference here
is that since x and y are both binary, we can also set up
the denoising objective via logistic regression (Section 2.3).
Naturally, denoising becomes harder as α decreases, which
we can characterize by the Wasserstein distance between
the law of x and the law of E[x|y] (Lemma 2.3).

Our second main contribution in this work is to analytically
study sampling from qα(y) using gradient-based methods
with a formal understanding of the role the Bernoulli noise
level α plays in easing the problem of sampling binary
data. There has been a recent interest on devising gradient-
based sampling strategies for discrete distributions from the
perspective of Gibbs sampling (Grathwohl et al., 2021), and
Langevin MCMC (Zhang et al., 2022). Our approach here is
close to the later, where in addition we introduce a new two-
stage discrete Langevin MCMC algorithm (Section 3.2),
with improved behavior at high noise.

Langevin-like updates are especially motivated here on two
fronts: (i) the probability mass of noisy data is more spread
out on the Boolean hypercube and it demands coming up
with Markov moves where many coordinates are updated in
parallel (in contrast to “cautious” single-coordinate Gibbs
updates), (ii) the score function∇ log qα(y) is readily acces-
sible to be used via denoising and our binary TMF. Regard-
ing the first point, we theoretically analyze the contraction
properties of the vanilla (one-stage) and two-stage discrete
Langevin MCMC, where the noise level α plays a promi-
nent role in the exponential convergence of the algorithms.
To our knowledge, there is no prior work on the exponen-
tial convergence of discrete Langevin-like algorithms in the
Wasserstein metric (Propositions 3.1 and 3.3). Furthermore,
we extend our contraction results by proving bounds on the
distance between the stationary distributions of the discrete
Langevin algorithms and the target distribution qα in the
Wasserstein metric (Propositions 3.2 and 3.4). These results
again highlight the important role the noise level α plays.

Informally, there are parallels between contractivity results
for high Bernoulli noise (small α) and the exponential con-
vergence of Langevin MCMC for log-concave distributions
achieved for large σ in the Euclidean/Gaussian case (Saremi
et al., 2024, Theorem 1). We make this connection for-
mal from the angle of sampling multiple noisy data, where
multiple Bernoulli noise is added independently to clean
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data, where the noise level is held fixed. The TMF for the
multiple Bernoulli measurements takes the form

E[x|y1:m] =
1

mα
∇ log qmα(ȳ1:m),

where ȳ1:m = 1
m

∑m
i=1 yi, which corresponds to a reduced

noise dictated by mα (Lemma 2.4).

We conduct a set of experiments on synthetic data, where
we study a mixture model on {−1, 1}d, akin to mixture of
Gaussians in Rd. The experiments were designed to quantify
denoising for strong and weak priors and probe the sampling
properties of our scheme. We also conduct experiments on
binarized MNIST by qualitatively studying the role of α, and
demonstrate the fast mixing our algorithm can achieve with
essentially no tuning (the step-size is simply set to 1/α).

1.2. Related work

There is a growing body of work on sampling from dis-
crete distributions with score-based models that build on
denoising diffusion models (Sohl-Dickstein et al., 2015;
Hoogeboom et al., 2021; Austin et al., 2021; Campbell et al.,
2022; Lou et al., 2024; Shi et al., 2024; Kim et al., 2025).
There are variations between these models, but they are
all fundamentally formulated based on a forward/backward
continuous-time diffusion process for corrupting the data
and learning score functions, via denoising, to reverse the
process. In particular, Montanari (2023, Section 4.4) con-
siders a noise process similar to ours and Pham et al. (2025)
show how it can be inverted using Markov jump processes,
with denoisers which are similar to the ones defined in Sec-
tion 2. Algorithmically, these continuous-time processes are
then discretized using various schemes. Our approach here
is fundamentally different with a single noise scale sampling
strategy: at each stage of measurement accumulation the
data is sampled at a fixed noise scale. The process to bring
the noise down is therefore discrete by nature, characterized
by a single hyperparameter, the number of measurements m,
in contrast to devising a noise schedule in diffusion-based
prior works.

2. Denoising and Binary Score Functions
We consider a binary random vector x ∈ {−1, 1}d, with
probability mass function p(x) (that sums to one).

2.1. Noise models for binary vectors

A natural noise model is to use random sign flips, that is,

y = x ◦ ε (1)

(for the component-wise product ◦), where ε ∈ {−1, 1}d
has independent components, and, for i ∈ {−1, . . . , 1}d,

P(εi = 1) = σ(2α),

where σ(u) = 1
1+e−u = eu/2

eu/2+e−u/2 is the sigmoid func-
tion, and α ⩾ 0 is the noise parameter (the noise decreases
with α). When α is large, σ(2α) is close to one, and thus ε is
the vector of all ones with high probability, and y is close to
x (small noise). When α is equal to zero, then σ(2α) = 1/2,
and ε is uniform, and so is y (high noise). Moreover, The ex-
pected number of flips is equal to dσ(−2α), and goes from
d/2 when α = 0 to 0 exponentially fast when α = +∞. We
refer to this noise model as Bernoulli noise (in {−1, 1}d).

We can write the probability mass r function of ε as

r(ε)=

d∏
i=1

σ(2αεi)=

d∏
i=1

eαεi

eα + e−α
=

1

(2 coshα)d
eα1

⊤
d ε,

and the probability mass function qα of y defined in Eq. (1)
as:

qα(y) =
∑

x∈{−1,1}d

p(x)r(y ◦ x)

=
1

(2 coshα)d

∑
x∈{−1,1}d

p(x)eαx
⊤y (2)

= σ(2α)d
∑

x∈{−1,1}d

p(x)e−
α
2 ∥x−y∥2

2 ,

since on the hypercube ∥x∥22 = ∥y∥22 = d.

When α = 0, qα is the uniform distribution, while for
α = +∞, qα = p. Thus, α plays exactly the role of the
inverse variance, as can be seen with last expression above
that mimics Gaussian noise.

A key observation is that the function qα(y) defined in
Eq. (2) is defined for all y ∈ Rd, and not only in {−1, 1}d,
so that we can take continuous gradients—not discrete
gradients as sometimes done for score matching exten-
sions (Hyvärinen, 2007; Meng et al., 2022).

2.2. Denoising

Given the noisy (random) version y ∈ {−1, 1}d, how can
we recover a good denoised x ∈ {−1, 1}d? Like for
the Gaussian case, once given a loss function, the opti-
mal denoiser has a closed-form expression. We consider
the Hamming loss, which has several expressions when
x, x′ ∈ {−1, 1}d, as an ℓ1-norm or a squared ℓ2-norm:

ℓ(x, x′) =
∑d

i=11xi ̸=x′
i
= 1

2

∑d
i=1 |xi − x′

i| = 1
2∥x− x′∥1

= 1
4

∑d
i=1 |xi − x′

i|2 = 1
4∥x− x′∥22.

It simply counts the number of mistakes, between 0 and d.
We then obtain the optimal denoiser from the conditional
expectation (which extends classical results from binary
classification, see Bach (2024, Section 4.1)).
Lemma 2.1 (Optimal denoiser). Given a joint distribution
on (x, y), the function f : {−1, 1}d → {−1, 1}d that mini-
mizes E[ℓ(x, f(y))] is f(y) = sign(E[x|y]).
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Proof. We have:

E[ℓ(x, f(y))]=
∑

y∈{−1,1}d

p(y)
∑

x∈{−1,1}d

p(x|y)ℓ(x, f(y)),

and fi(y) ∈ {−1, 1} can be optimized independently for
each y ∈ {−1, 1}d and i ∈ {1, . . . , d}, and maximizes∑

x∈{−1,1}d p(x|y)1xi=fi(y) = P(xi = fi(y)|y). Thus,
fi(y) = 1 if P(xi = 1|y) > P(xi = −1|y), which exactly
leads to the sign of E[xi|y]. The value of the sign at zero
can be taken to be uniformly at random in {−1, 1}.

We can now consider the noise model in Eq. (2) from Sec-
tion 2.1 and compute the gradient of log qα as

∇ log qα(y) =

∑
x∈{−1,1}d p(x)αxeαx⊤y∑
x∈{−1,1}d p(x)eαx⊤y

, (3)

which is exactly αE[x|y], leading to the following lemma.
Lemma 2.2 (Denoising through score functions). For the
function qα defined in Eq. (2) for all y ∈ Rd that character-
izes the random sign flip model, we have:

E[x|y] = 1

α
∇ log qα(y).

We refer to the function ∇ log qα(y) as the score function.
It allows to obtain the optimal denoiser by taking the sign.
This denoiser has a performance that degrades when α
goes to zero. We consider the Wasserstein distance derived
from the loss ℓ, that is, given two distributions p and q on
{−1, 1}d, we consider W (p, q) as the minimum expectation
E[ℓ(x, y)] over all distributions on (x, y) with marginals p
on x and q on y (Peyré & Cuturi, 2019). The following
lemma provides an upper-bound that extends the Gaussian
result from Saremi et al. (2024).
Lemma 2.3 (Denoising performance). For the noise model
defined in Eq. (2), we have:

W (law of x, law of sign(E[x|y])) ⩽ de−2α.

Proof. We consider the natural coupling with y = x ◦ ε
where ε is independent of x and ε has independent com-
ponents, and simply use the fact that E

[
ℓ(x, f(y))

]
is min-

imized exactly by f(y) = sign(E[x|y]), and thus is less
than the loss of the naive denoiser that simply outputs
y, for which E

[
ℓ(x, y)

]
= dσ(−2α), which is less than

de−2α.

Like for the Gaussian case, this bound is true regardless of
the strength of the prior on x. If p(x) is uniform, it cannot
really be improved. However, when the prior is strong,
better bounds could be derived.

Note that as opposed to Gaussian noise, the denoising per-
formance goes exponentially to zero when α grows.

2.3. Learning the score function

In order to learn the denoiser, it is natural to consider
observations x(1), . . . , x(n) ∈ {−1, 1}d, generate inde-
pendent noise variables ε(1), . . . , ε(n) ∈ {−1, 1}d (with
P(ε(i)j = 1) = σ(2α)), and parameterize a denoiser

E[x|y] = 2σ(fθ(y)) − 1 = tanh fθ(y)
2 ∈ Rd, with thus

fθ(y) of the form 2atanh
[
1
α∇ log qα(y)

]
.

We can learn it through the following denoising criterion
(which is exactly logistic regression):

1

n

n∑
i=1

d∑
j=1

log
(
1 + exp

(
− x

(i)
j fθ(x

(i) ◦ ε(i))j
))
.

We could also use a least-squares objective,
1
n

∑n
i=1

∑d
j=1

∣∣x(i)
j − gθ(x

(i) ◦ ε(i))j
∣∣2, where the

optimal g(y) is E[x|y].

2.4. Multiple measurements

Following Saremi et al. (2024), if we assume that we have m
measurements y1, . . . , ym ∈ {−1, 1}d obtained by adding
independent noises to the same x, then we have from Eq. (3):

E[x|y1, . . . , ym] =
1

mα
∇ log qmα(ȳ1:m), (4)

with ȳ1:m = 1
m (y1 + · · ·+ ym) ∈ [−1, 1]d. Note that this

requires to know the function ∇ log qmα beyond {−1, 1}d.

Since the denoiser has to “work” for y /∈ {−1, 1}d, and
for noise levels mα, to learn the score function, we can
simply generate multiple measurements and average the
corresponding y’s (in the Gaussian case, this was possible
directly by adding a noise with variance divided by m), and
use the same denoising objective as Section 2.3 (we can
also directly sample multinomial random variables to avoid
generating m measurements).

Denoising performance. We can extend the denoising
performance result when given m measurements by study-
ing the sign of y1 + · · ·+ ym. This is uniquely defined as
soon as m is odd, and when m is even, and y1 + · · ·+ ym
is equal to zero, we output −1 or 1 with equal probabilities.
We can then extend Lemma 2.3 (see the proof based on
Chernoff’s bound in Appendix A).

Lemma 2.4 (Denoising performance, multiple measure-
ments). For the noise model defined in Eq. (2) and m mea-
surements, we have:

W (law of x, law of sign(E[x|y1, . . . , ym])) ⩽ de−mH(α),

with H(α) = 1
2 log

1+cosh 2α
2 > 0 for α > 0, is equivalent

to α2/2 for α tends to zero, and to α− log 2 when α tends
to infinity.
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Score functions for sequential sampling. Extending the
Gaussian case, multiple measurement can be efficiently
sampled sequentially. If we want to sample ym given
y1, . . . , ym−1 using score functions, we have the joint prob-
ability mass function:

p(y1, . . . , ym) =
∑

x∈{−1,1}d

p(x)
eαx

⊤(y1+···+ym)

(2 coshα)dm
,

with ∇ym
log p(y1, . . . , ym)

= α

∑
x∈{−1,1}d p(x)xeαx

⊤(y1+···+ym)∑
x∈{−1,1}d p(x)eαx

⊤(y1+···+ym)

= 1
m∇ log qmα(ȳ1:m),

which depends on the score function with parameter mα,
taken at ȳ1:m ∈ [−1, 1]d (as mentioned earlier we are able
to learn a score functions for elements in the interior of the
hypercube).

3. Sampling with Discrete Langevin
We need to sample from the model in Eq. (2), for a prob-
ability mass function q which is defined not only on all
y ∈ {−1, 1}d but on Rd, for which we only know s(y) =
∇ log q(y). This is the same for conditional sampling from
Section 2.4.

Assumptions. Note that the density q is uniquely defined
up to a constant for vertices of the hypercube, but that there
are multiple versions on the whole hypercube. In particular,
one can add to the score s any linear function (and there are
additional invariances).

We will use the following regularity conditions on s that are
satisfied by q defined in Eq. (2), that is, for all y, y′ ∈ Rd,

∥s(y)∥∞ ⩽ β1, and ∥s(y)−s(y′)∥∞ ⩽ β2∥y−y′∥1. (5)

These assumptions are akin to regularity assumptions made
in optimization on the gradient functions, here adapted to
the binary case. For the function q defined in Eq. (2) and
the associated s = ∇ log q, we have β1 = α and β2 = α2

(this is a direct consequence of taking another derivative in
Eq. (3), leading to ∇2 log qα(y) = α2cov(x|y)). The same
bounds hold for sequential sampling from Section 2.4 (thus
benefiting from the same speed as a small α while denoising
has the same performance as mα).

3.1. One-stage discrete Langevin sampler

In order to obtain an approximate sample from q, we
consider the following Markov transition kernel proposed

Algorithm 1 The single-measurement one-stage discrete
Langevin algorithm.

1: Parameter: noise level α
2: Input: steps count n, step size η, score function sα
3: Output: X̂
4: Initialize Y0 ∈ {−1, 1}d
5: for i = 1 to n do
6: Z ← Yi−1

7: ε← Bernoulli(σ(2/η + Z ◦ sα(Z))) ∈ {−1, 1}d
8: Yi ← Z ◦ ε
9: end for

10: return X̂ = sign
(
sα(Yn)/α

)
by Zhang et al. (2022), which is adapted to log-probability-
mass functions that are defined on Rd:

t(y′|y) ∝ exp
(
1
2s(y)

⊤(y′ − y)− 1
2η∥y

′ − y∥22
)

∝ exp
((

1
2s(y) +

1
ηy

)⊤
y′
)
, (6)

which given y, has independent components for y′. Note
that without the constraint that y′ ∈ {−1, 1}d, the first
expression above becomes y′ = y+ η

2s(y)+N(0, ηI), i.e.,
exactly (Gaussian) Langevin MCMC.

As opposed to Gaussian Langevin, even with a vanishing
step-size η, the stationary distribution of this Markov chain
may not approach q. We can however prove convergence
results that are adapted to our situation.

Convergence results. We now provide two propositions
characterizing the convergence of the Markov chain defined
in Eq. (6); see Algorithm 1. The first proposition below
implies an exponential convergence of the Markov chain
(which is not studied by Zhang et al. (2022)). See the proof
in Appendix B, based on standard contraction arguments.

Proposition 3.1 (Contractivity). Assume regularity condi-
tions in Eq. (5) with 4β2de

2β1 ⩽ 1. Given y, z ∈ {−1, 1}d,
we have, for the transition kernel defined in Eq. (6):

W (t(·|y), t(·|z)) ⩽
(
1− 1

2e
− 2

η−β1
)
ℓ(y, z).

We note that when β1 = α and β2 = α2, the constraint
becomes 4α2de2α ⩽ 1 and is satisfied as soon as α ⩽ 1

4
√
d

(since then we have e2α ⩽ 2), without any assumption about
the distribution we want to sample from.

From the previous proposition, we deduce that for each
η > 0, the Markov chain always converge exponentially
fast to the unique stationary distribution for the Wasserstein
distance (Levin & Peres, 2017). Given the exponential
rate in 1− 1

2e
−2/η−α, we can choose a step-size η = 1/α

without losing too much in mixing time (this extends the
strategy of Saremi & Hyvärinen (2019) in the Gaussian case,
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Algorithm 2 The single-measurement two-stage discrete
Langevin algorithm.

1: Parameter: noise level α
2: Input: steps count n, step size η, score function sα
3: Output: X̂
4: Initialize Y0 ∈ {−1, 1}d
5: for i = 1 to n do
6: ε← Bernoulli(σ(2/η)) ∈ {−1, 1}d
7: Z ← Yi−1 ◦ ε
8: ε← Bernoulli(σ(2/η + 2Z ◦ sα(Z))) ∈ {−1, 1}d
9: Yi ← Z ◦ ε

10: end for
11: return X̂ = sign

(
sα(Yn)/α

)

where the step-size for the Langevin algorithm is taken to
be the noise variance).

We now show that the stationary distribution of the Markov
chain defined by the transition kernel t cannot be too far
from the one of y. See the proof based on comparing to
Metropolis-Hasting steps in Appendix C. Note that Zhang
et al. (2022) only study the situations where the log-density
is quadratic (or close to quadratic) without explicit constants,
and without results on mixing time.

Proposition 3.2 (Distance to stationary distribution). As-
sume regularity conditions in Eq. (5) with 4β2de

2β1 ⩽ 1.
Let q′ be the stationary distribution of the transition kernel
defined in Eq. (6). Then,

W (q′, q) ⩽ 2d
(
2dβ1e

2β1 +
√
dβ1e2β1

)
. (7)

In our situation where β1 = α and β2 = α2, this is small
compared to the diameter d of the hypercube (its maximal
value) only when α is small compared to 1/d. Note that the
step-size η does not appear directly in the bound in Eq. (7),
but if it is too small, because of Prop. 3.1 the mixing time
will be large (this also applies to Prop. 3.4).

3.2. Two-stage Langevin sampler

The default Langevin sampler does not have the nice prop-
erty that if q(y) ∝ es

⊤y for some s ∈ Rd (i.e., independent
components), then the stationary distribution is exact.

Following the continuous-space algorithms from Lee et al.
(2021); Chewi (2024), we consider instead the idealized
two-stage sampler defined below, which is Gibbs sampling
for the joint model on (y, z) in {−1, 1}d × {−1, 1}d:

q(y, z) = q(y)
1

(2 cosh 1
η )

d
e

1
η y⊤z ∝ q(y)e

1
η y⊤z,

for which the conditional distributions can be computed as

q(z|y) = 1
(2 cosh 1

η )d
e

1
η y⊤z

q(y|z) ∝ q(y)e
−1
2η ∥y−z∥2

2 ,

which we approximate by expanding log q(y) ≈ log q(z) +
s(z)⊤(y − z), leading to:

u(z|y) = q(z|y) = 1
(2 cosh 1

η )d
e

1
η y⊤z (8)

u(y|z) ∝ q(z)e∇ log q(z)⊤(y−z)e
−1
2η ∥y−z∥2

2

∝ ey
⊤( z

η+s(z)). (9)

Thus the Markov chain (with transition kernel v) defined by
Gibbs sampling to go from y to y′ is defined as follows: take
z with a random flip with probability 1− σ(2/η), and then
perform independent (non-uniform) flips with probability
1− σ(2/η + 2zis(z)i) to obtain z′; see Algorithm 2.

Note that without the constraint that y′ ∈ {−1, 1}d, the
overal update becomes y′ = y+ ηs(y)+N(0, 2ηI), i.e.,
exactly (Gaussian) Langevin MCMC with a step-size twice
bigger than the single-stage sampler.

Convergence results. When log q(y) is linear in y, then
the proposals defined by u are equal to the ones defined by q
(and thus the stationary distribution is exact). Otherwise, we
can show the following contractivity result (see the proof
based on contraction arguments in Appendix D).
Proposition 3.3 (Contractivity, two-stage sampler). Assume
regularity conditions in Eq. (5) with 8dβ2e

4β1 ⩽ 1. Given
y(1), y(2) ∈ {−1, 1}d, we have, for the transition kernel v
defined in Eq. (8) and Eq. (9):

W (v(·|y(2)), v(·|y(1))) ⩽
(
1− 1

2e
− 2

η−2β1
)
ℓ(y(1), y(2)).

Like in Section 3.1, this leads to exponential convergence
to a unique stationary distribution. We can now look at the
distance between the stationary distribution of the Markov
chain and q. We make the assumption that the score s
that we use satisfies the usual inequality of convex smooth
functions (Bach, 2024, Section 5.2), that is, for all y, z ∈
{−1, 1}d,

0⩽ log q(y)−log q(z)−s(z)⊤(y−z)⩽ β2

2
∥y−z∥21, (10)

which is satisfied by s(y) = ∇ log q(y) in Eq. (2). See
the proof of Prop. 3.4 based on comparing to Metropolis-
Hasting steps in Appendix E.
Proposition 3.4 (Distance to stationary distribution). As-
sume regularity conditions in Eq. (5) and Eq. (10) with
8β2de

4β1 ⩽ 1. Assume e−2/η+2β1 ⩽ 1
d . Let q′ be the

stationary distribution of the two-stage sampler. Then,

W (q′, q) ⩽ 12d
√
β2d.
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Algorithm 3 Multi-measurement binary sampling via single-
stage discrete Langevin algorithm (Alg. 1) in the inner loop.

1: Parameter: noise level α
2: Input: number of measurements m, number of steps

per measurement n, score functions {sα, . . . , smα}.
3: Output: X̂
4: Initialize Y ← 0
5: for t = 1 to m do
6: Initialize Y0 ∈ {−1, 1}d
7: for i = 1 to n do
8: Z ← Y + (Yi−1 − Y )/t
9: ε← Bernoulli(σ(2/η + Yi−1 ◦ stα(Z)/t))

10: Yi ← Yi−1 ◦ ε
11: end for
12: Y ← Y + (Yn − Y )/t
13: end for
14: return X̂ = sign

(
smα(Y )/(mα)

)
Moreover, as shown in Appendix E, if the step-size η is
small enough, we get a dependence in d · dβ2.

For our problem where β1 = α and β2 = α2, the constraint
in η leads to a mixing time proportional to d, but to a dis-
tance to the true distribution q proportional to d · α2d or
d·α
√
d as opposed to d·

√
αd for the one-stage sampler, thus

an advantage for small α (high noise), where we only need
α≪ 1/

√
d instead of α≪ 1/d for one-stage sampling.

For completeness, we also provide the multi-measurement
binary sampling algorithm in Alg. 3.

4. Comparison with Gaussian Noise
An alternative is to add Gaussian noise and define

yG = x+ ε, ε ∼ N(0, 1
αI).

We then have E[x|yG] = yG + 1
α∇ log qGα (yG), from the

classical Tweedie-Miyasawa formula, with qGα the density
of yG:

qGα (yG) ∝
∑

x∈{−1,1}d

p(x)eαx
⊤ye−

α
2 ∥y∥2

2e−
α
2 ∥x∥2

2

∝
∑

x∈{−1,1}d

p(x)eαx
⊤ye−

α
2 ∥y∥2

2 ∝ qα(yG)e
−α

2 ∥y∥2
2 ,

where qα is the density of the binary case defined in Eq. (2).
Thus,

E[x|yG] = 1
α∇ log qα(yG),

that is, the exact same denoiser function (now applied to an
element of Rd and not {−1, 1}d).

In terms of denoising performance, for the same α, we see
in our experiments that they behave similarly. However, in

terms of mixing time of Langevin, for the Gaussian case
(e.g., when sampling by adding Gaussian noise), the known
upperbounds based on log-concavity obtained for Gaussian
mixtures by Saremi et al. (2024) is α ⩽ 1

d , which is signifi-
cantly worse than our two-stage sampler.

5. Experiments
We now study how our new sampling scheme operates,
first on synthetic data to understand the role of the noise
parameter α and step-size η, then on binarized MNIST
digits.

5.1. Synthetic data

We consider in this section mixtures of two independent
binary vectors, that is, we consider, for β > 0,

p(x) =
1

(2 coshβ)d

[1
2
eβ1

⊤
n x +

1

2
e−β1⊤n x

]
,

for which all score functions can be computed (see Ap-
pendix F). When β is small, p is close to the uniform distri-
bution (a “weak” prior), while when β is large, p is close to
a sum of two Diracs at opposite points in the hypercube (a
“strong” prior).

For d small (d = 8 below), it is possible to perform all com-
putations in closed form (e.g., with infinitely many repli-
cations), by computing transition matrices of size 2d × 2d.
This allows to analyze precisely the denoising performance.

Denoising performance with exact samples from y. In
Fig. 1, we consider three values of β and vary α. As ex-
pected, when α decreases, the noise increases, and the de-
noising performance degrades. When β is large, the prior
has a strong effect, so denoising helps. When β is small, the
prior is not strong, denoising has little effect. Note also that
when α is large, denoising simply outputs y (the threshold
where it happens depend on the strength of the prior).

Moreover, since the upper bound in Lemma 2.3 is obtained
from the mean-square-error, it shows that the denoising
performance is significantly better than the bound suggests.

Figure 1. Optimal denoising from strong priors (large β) to weak
priors (small β): comparison between Wasserstein distance and
mean-square-error of denoising performance.
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Denoising performance with multiple measurements.
In Fig. 2, we assess the benefits of multiple measurements
by showing how the Wasserstein distance between our de-
sired (noiseless) distribution on x is estimated more closely
by optimal denoising from m measurements when m is
increasing, in particular for small α (high noise).

Figure 2. Optimal denoising from multiple measurements, for
m = 1, 3, 5 (one curve per m), for d = 6, and three values
of β, from strong priors (large β) to weak priors (small β).

Comparisons of mixing times and distance to station-
ary distribution. We compare our two sampling schemes
(one-stage from Section 3.1, and two-stage from Sec-
tion 3.2), and study the associated step sizes in terms of
distance between the stationary distribution of the Markov
chain and the desired distribution, and mixing time, which
is here characterized by 1/(1 − λ2), where λ2 is the sec-
ond largest eigenvalues of the transition matrix, a classical
characterization of mixing time (Levin & Peres, 2017).

We see in Fig. 3 that when the step-size η is too small,
the mixing time explodes for all schemes (as predicted by
Props. 3.1 and 3.3), and that for η = 1/α we obtain reason-
able mixing times.

Figure 3. Comparison of 1-stage and 2-stage Langevin sampling.
Top: distance to desired distribution W (y, ystat), bottom: mixing
time (in log scale).

Denoising performance with samples obtained by dis-
crete Langevin. We consider in Fig. 4 a learning rate

equal to 1/α, and plot the Wasserstein distance to the dis-
tribution of x for our two samplers. When α is large, the
stationary distribution is far from the one of y, with bad per-
formance. With α small, then the denoising performance is
not great because too much noise is added. When β is large
(right plot), there is a clear sweet spot. Moreover, the two-
stage sampler only provides improvements for small α’s.

Figure 4. Comparison of 1-stage and 2-stage Langevin sampling.
Top: distance to desired distribution W (y, ystat), bottom: de-
noising performance of the stationary distributions, measured in
Wasserstein distance.

5.2. Binarized MNIST

In this section we present our experiments on MNIST (Le-
Cun et al., 1998). The clean binary data were prepared by
scaling the pixel values be in [0, 1] which we set as the prob-
ability of the Bernoulli distribution. The denoising is set up
using logistic regression as outlined in Section 2.3, where we
parametrize fθ using the U-Net architecture (Ronneberger
et al., 2015) with the modifications by Dhariwal & Nichol
(2021). For optimization, we used AdamW (Loshchilov &
Hutter, 2019) with the constant learning rate of 10−4 and
the weight decay of 10−2. We present our experiments for
α ∈ {0.25, 0.5, 1, 2} in Figs. 5 and 6.

Denoising performance. Fig. 5(a) shows 20 random bi-
narized samples from the test set. Fig. 5 (b-d) shows the
denoising performance of a trained model for very high
noise, α = 0.25, where we show both E[x|y], parametrized
as tanh(fθ(y)/2) (see Section 2.3) and sign(E[x|y]) which
is optimal under the Hamming loss. In Fig. 5 (e-g) we re-
peat this experiment for a trained model at lower noise level
α = 0.5. Qualitatively, this is a sweet spot as the noise is
high, yet the denoising performance is acceptable. Note
the “5” flipping to “3”, and “3” flipping to “8” by the de-
noiser due to the high noise. This already anticipates the
fast mixing that could be achieved at this level of noise.
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(a) x from the test set

(b) y = x ◦ ε, α = 0.25

(c) E[x|y], α = 0.25

(d) sign(E[x|y]), α = 0.25

(e) y = x ◦ ε, α = 0.5

(f) E[x|y], α = 0.5

(g) sign(E[x|y]), α = 0.5

Figure 5. The denoising performance on binarized MNIST at two
high Bernoulli noise levels (α = 0.25, and α = 0.5).

Sampling performance. Fig. 6 (a-f) illustrates the mixing
performance of our algorithm for various noise levels. The
step-size η is set to 1/α in all experiments. All panels show
100 steps of the algorithm, where the sampler is initialized
at random bits. In Fig. 6 (a-c) we see the performance of
the algorithm in “real time”, where all the steps are shown
(∆k= 1). These results show the remarkable mixing our
algorithm can achieve. Fig. 6 (d-e) shows the typical perfor-
mance of the algorithm for smaller noise α = 1, where the
samples are sharper but there is less mixing; here the results
are shown by skipping 5 steps (∆k=5). Finally, in Fig. 6(f)
we see the sampling performance for smaller noise (α = 2),
where the sampling algorithm simply breaks down.

6. Conclusion
This study was motivated by whether we can reproduce the
success of sampling through denoising while staying within
the binary world. This required to reproduce the three key
factors: (i) denoising through score functions, (ii) sampling
noisy data via “smoothed” score functions, (iii) benefiting
from multiple Bernoulli measurements. We achieved all
three in an algorithmically simple framework, which comes
with few hyperparameters (noise level α and number m
of measurements) and an arguably simpler formalism than
discrete diffusions.

There are several avenues for future research: (1) our frame-
work relies on using a noise process from an exponential
family (here, Bernoulli) and can readily be extended to more

(a) two-stage discrete Langevin (∆k = 1), α = 0.5, η = (2α)−1

(b) denoised samples, α = 0.5

(c) single-stage discrete Langevin (∆k = 1), α = 0.5, η = 1/α

(d) single-stage discrete Langevin (∆k = 5), α = 1

(e) single-stage discrete Langevin (∆k = 5), α = 1, denoised

(f) single-stage discrete Langevin (∆k = 5), α = 2

Figure 6. The sampling performance of our algorithm for binarized
MNIST at three Bernoulli noise levels, visualized on single Markov
chains (viewed left to right, top to bottom). (a) Two-stage discrete
Langevin at α = 0.5, (b) the denoised samples are shown, (c) due
to space only denoised samples are shown for the vanilla (single-
stage) algorithm, (d,e) here, α = 1, and we skip every 5 steps, (f)
α = 2, denoised samples are not shown as the noise is small.

complex ones; (2) sharper denoising results for strong priors
could also be examined; finally, (3) faster sampling could
be achieved through the proper use of Metropolis-Hasting’s
step (Robert & Casella, 2004).
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Durmus, A. and Moulines, É. Nonasymptotic convergence
analysis for the unadjusted Langevin algorithm. The
Annals of Applied Probability, 27(3):1551 – 1587, 2017.

Frey, N. C., Berenberg, D., Kleinhenz, J., Hotzel, I.,
Lafrance-Vanasse, J., Kelly, R. L., Wu, Y., Rajpal, A.,
Ra, S., Bonneau, R., Cho, K., Loukas, A., Gligorijevic,
V., and Saremi, S. Protein discovery with discrete walk-
jump sampling. In International Conference on Learning
Representations, 2024.

Grathwohl, W., Swersky, K., Hashemi, M., Duvenaud, D.,
and Maddison, C. Oops I took a gradient: Scalable sam-
pling for discrete distributions. In International Confer-
ence on Machine Learning, 2021.

Hoogeboom, E., Nielsen, D., Jaini, P., Forré, P., and Welling,
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A. Proof of Lemma 2.4
We denote ε1, . . . , εm ∈ {−1, 1}d the m independent noise variables defined in Eq. (1). We assume that m is odd for
simplicity. The case m even can be done similarly by splitting the case where

∑m
i=1 εi = 0.

Following the same reasoning that in the proof of Lemma 2.3, the Wasserstein distance is less than d times the probability
that

∑m
i=1(εi)1 ⩽ 0. Since (εi)1 = 2ui − 1 where ui is a Bernoulli random variable with parameter σ(2α) ∈ [1/2, 1]. We

need to upper bound, using the Chernoff bound,1 the following probability as:

P
( 1

m

m∑
i=1

ui ⩽
1

2

)
⩽ exp(−m ·D

(1
2
∥σ(2α)

))
,

where, for α ⩾ 0, the Kullback-Leibler divergence between the uniform distribution and the Bernoulli distribution with
parameter σ(2α) is equal to:

D
(1
2
∥σ(2α)

)
=

1

2
log

1

2σ(2α)
+

1

2
log

1

2σ(−2α)

=
1

2
log

1 + e−2α

2
+

1

2
log

1 + e2α

2
=

1

2
log

1 + cosh(2α)

2
,

which is always strictly greater than zero for α > 0, equivalent to α− log 2 for large α, and to 1
2α

2 for small α.

B. Proof of Proposition 3.1
Proof. We consider two random variables y′ and z′ marginally distributed from t(·|y) and t(·|z). We have, by definition of
the Wasserstein distance:

W (t(·|y), t(·|z)) = inf
joint coupling

d∑
i=1

P(y′i ̸= z′i) by definition of W,

⩽
d∑

i=1

inf
marginal coupling

P(y′i ̸= z′i) (11)

because we can construct canonically a joint coupling from marginal couplings,

=

d∑
i=1

∣∣P(y′i = 1)− P(z′i = 1)
∣∣ because of properties of total variation,

=

d∑
i=1

∣∣σ(2
η
yi + s(y)i

)
− σ

(2
η
zi + s(z)i

)∣∣, (12)

by definition of the transition kernel t in Eq. (6). For proprieties of the total variation distance, see https://en.wikipedia.
org/wiki/Total_variation_distance_of_probability_measures. We can then separate i’s according to yi = zi
or yi ̸= zi, to get from Eq. (12):

W (t(·|y), t(·|z)) ⩽
∑

i,yi=zi

∣∣σ(2
η
yi + s(y)i

)
− σ

(2
η
zi + s(z)i

)∣∣
+

∑
i,yi=−zi

∣∣σ(2
η
yi + s(y)i

)
− σ

(2
η
zi + s(z)i

)∣∣.
1See https://en.wikipedia.org/wiki/Chernoff_bound.
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We can now divide in two cases, whether yi = 1 or +1, leading to

W (t(·|y), t(·|z)) ⩽
∑

i,yi=zi=1

∣∣σ(2
η
yi + s(y)i

)
− σ

(2
η
zi + s(z)i

)∣∣
+

∑
i,yi=zi=−1

∣∣σ(2
η
yi + s(y)i

)
− σ

(2
η
zi + s(z)i

)∣∣
+

∑
i,yi=−zi=1

∣∣σ(2
η
yi + s(y)i

)
− σ

(2
η
zi + s(z)i

)∣∣
+

∑
i,yi=−zi=−1

∣∣σ(2
η
yi + s(y)i

)
− σ

(2
η
zi + s(z)i

)∣∣
=

∑
i,yi=zi=1

∣∣σ(2
η
+ s(y)i

)
− σ

(2
η
+ s(z)i

)∣∣
+

∑
i,yi=zi=−1

∣∣σ(− 2

η
+ s(y)i

)
− σ

(
− 2

η
+ s(z)i

)∣∣
+

∑
i,yi=−zi=1

∣∣σ(2
η
+ s(y)i

)
− σ

(
− 2

η
+ s(z)i

)∣∣
+

∑
i,yi=−zi=−1

∣∣σ(− 2

η
+ s(y)i

)
− σ

(2
η
+ s(z)i

)∣∣.
We can now use the facts that σ(−u) = 1− σ(u), and that for v, v′ ⩾ u, σ′(v) = σ(v)σ(−v) = 1

2+e−v+ev ⩽ 1
2+eu , and

thus, by Taylor’s formula, |σ(v)− σ(v′)| ⩽ 1
2+eu |v − v′|, to get

W (t(·|y), t(·|z)) ⩽
∑
yi=zi

1

2 + exp
(
2
η − β1

) ∣∣s(y)i − s(z)i
∣∣

+
∑
i

1yi ̸=zi

∣∣σ(2
η
+ yis(y)i

)
− σ

(
− 2

η
− yis(z)i

)∣∣.
We can now use the monotonicity of σ and the bounds ∥s(y)∥∞, ∥s(z)∥∞ ⩽ β1, and the β2-Lipschitz-continuity of s (all
from Eq. (5)) to get

W (t(·|y), t(·|z)) ⩽
∑
yi=zi

1

2 + exp
(
2
η − β1

)2β2ℓ(y, z)

+
∑
i

1yi ̸=zi

(
σ
(2
η
+ β1

)
− σ

(
− 2

η
− β1

))
⩽

1

2 + exp
(
2
η − β1

)2β2dℓ(y, z) +
∣∣1− 2σ

(
− 2

η
− β1

)∣∣ · ℓ(y, z)
⩽

[ 2β2d

2 + exp
(
2
η − β1

) + 1− 2

1 + exp
(
2
η + β1

)] · ℓ(y, z)
⩽

[
1− exp

(
− 2

η
− β1

)
+ 2β2d exp

(
− 2

η
+ β1

)]
· ℓ(y, z).

If 4β2de
2β1 ⩽ 1, then 2β2d exp

(
− 2

η + β1

)
⩽ 1

2 exp
(
− 2

η − β1

)
, and we get the desired result:

W (t(·|y), t(·|z)) ⩽
(
1− 1

2
exp

(
− 2

η
− β1

))
ℓ(y, z).

13
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C. Proof of Proposition 3.2
Proof. For the purpose of the proof, we consider adding on top of the transition kernel t a Metropolis-Hasting (MH)
step (see, e.g., Robert & Casella, 2004) that keeps the proposal y′ given y unchanged with probability

min
{
1,

q(y′)t(y|y′)
q(y)t(y′|y)

}
, (13)

and go back to y instead. The stationary distribution associated with this transition kernel is then exactly q.

We consider an arbitrary probability distribution r.

We consider two coupled samples y from r and z from q, so that W (r, q) = E[ℓ(y, z)]. We also assume that, given y, z,
the binary vectors y′, z′ are sampled jointly respectively from t(·|y) and t(·|z), so that the Wasserstein distance given
y, z between the distributions t(·|y) and t(·|z) is W (t(·|y), t(·|z)) = E[ℓ(y′, z′)|y, z]. We consider z′′ obtained from z′

by a Metropolis-Hasting step; z′′ is then marginally distributed from q, while y′ is marginally distributed according to∑
u∈{−1,1}d r(u)t(·|u). Thus, by definition of W as the loss for the optimal coupling, we have:

W
(∑

u∈{−1,1}d r(u)t(·|u), q
)

⩽ E[ℓ(y′, z′′)] = E[1accept(z,z′)ℓ(z
′′, y′)] + E[1reject(z,z′)ℓ(z

′′, y′)]

= E[1accept(z,z′)ℓ(z
′, y′)] + E[1reject(z,z′)ℓ(z, y

′)] by definition of the MH step,
⩽ E[1accept(z,z′)ℓ(z

′, y′)] + E[1reject(z,z′)(ℓ(z
′, z) + ℓ(z′, y′))] by the triangular inequality,

= E[ℓ(z′, y′)] + E[1reject(z,z′)ℓ(z
′, z)]

⩽
(
1− 1

2
exp

(
− 2

η
− β1

))
W (r, q) + E[1reject(z,z′)ℓ(z

′, z)],

from the convergence result in Proposition 3.1. We have, by definition of the accept probability in Eq. (13),

E[1reject(z,z′)ℓ(z
′, z)] =

∑
z,z′∈{−1,1}d

q(z)t(z′|z)ℓ(z′, z)
(
1−min

{
1,

q(z′)t(z|z′)
q(z)t(z′|z)

})
(14)

⩽
1

2

∑
z,z′

ℓ(z′, z)
∣∣q(z)t(z′|z)− q(z′)t(z|z′)

∣∣, (15)

with the transition kernel defined in Eq. (6), that is,

t(z′|z) ∝ exp
(
(
1

2
s(z) +

1

η
z)⊤z′

)
.

In order to prove a convergence result, we have to understand under which condition we obtain an approximate detailed
balance condition (Levin & Peres, 2017). This will be a consequence of s being small (e.g., here,∇ log q(z) small).

We define the two additional transition kernels and distributions

t̂(z′|z) ∝ exp
(
(
1

η
z)⊤z′

)
q̂(z) ∝ 1,

for which we have the detailed balance condition q̂(z)t̂(z′|z) − q̂(z′)t̂(z|z′) = 0. We then get, from Eq. (15) and the
triangular inequality,

E[1reject(z,z′)ℓ(z
′, z)] ⩽

1

2

∑
z,z′

ℓ(z′, z)
∣∣q(z)− q̂(z)| · t̂(z′|z) + 1

2

∑
z,z′

ℓ(z′, z)q(z) · |t̂(z′|z)− t(z′|z)
∣∣,

14
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using detailed balance for q̂ and t̂. For the left term, we can use the symmetry of t̂ and an explicit computation, to get∑
z,z′

ℓ(z′, z)
∣∣q(z)− q̂(z)| · t̂(z′|z) =

∑
z

∣∣q(z)− q̂(z)| ·
∑
z′

t̂(z′|1d)ℓ(z′, 1d)

=
∑
z

∣∣q(z)− q̂(z)| ·
d∑

i=1

t̂(z′i = −1|1d) since t̂(·|1d) has independent components,

⩽ 2dσ(−2/η)TV(q, q̂) ⩽ 2d exp(−2/η)TV(q, q̂),

where TV(q, q̂) = 1
2

∑
z

∣∣q(z)− q̂(z)| is the total variation distance2 between q and q̂. For the second term, we have∑
z,z′

ℓ(z′, z)q(z) · |t̂(z′|z)− t(z′|z)
∣∣ ⩽ max

z

∑
z′

ℓ(z′, z)|t̂(z′|z)− t(z′|z)
∣∣

⩽ d ·max
z

∑
z′

|t̂(z′|z)− t(z′|z)
∣∣ since ℓ(·, ·) ⩽ d,

⩽ d · 4dβ1

2 + e2/η−β1
.

We have used the small lemma for the two probability mass functions on {−1, 1}d proportional to A(y) ∝ ey
⊤a and

B(y) ∝ ey
⊤b:

∑
y |A(y)−B(y)| ⩽ 2

∑d
i=1 |σ(2ai)− σ(2bi)| ⩽ 2

∑d
i=1

2
2+exp(min{2ai,2bi}) |ai − bi|.

Overall, we get

W
(∑

u∈{−1,1}d r(u)t(·|u), q
)

⩽
(
1− 1

2
exp

(
− 2

η
− β1

))
W (r, q) + d exp(−2/η)TV(q, q̂) + d · 2dβ1

e2/η−β1
.

Thus, if q′ denotes the stationary distribution of the Markov kernel t, we get, applying the above inequality to r = q′,

W (q′, q) ⩽
(
1− 1

2
exp

(
− 2

η
− β1

))
W (q′, q) + d exp(−2/η)TV(q, q̂) + d · 2dβ1

e2/η−β1
,

leading to
W (q′, q) ⩽ 2deβ1TV(q, q̂) + 4d2β1e

2β1 .

We can now use Pinsker’s inequality3, to get:

TV(q, q̂) ⩽
(1
2
KL(q∥q̂)

)1/2

=
(1
2
Eq(z)[log q(z)− log

1

2d
]
)1/2

⩽
(1
2
Eq(z)[log q(z0) + β1∥z − z0∥1 − log

1

2d
]
)1/2

using the boundedness of s,

⩽
(1
2
Eq(z)[β1∥z − z0∥1]

)1/2

⩽
√

β1d,

by choosing z0 such that q(z0) ⩽ 1
2d

(there has to be one). We thus get the desired result

W (q′, q) ⩽ 2deβ1
√
β1d+ 4d2β1e

2β1 = 2d
(
2dβ1e

2β1 +
√
dβ1e2β1

)
.

D. Proof of Proposition 3.3
Proof. We can reuse the proof for the one-stage sampler to obtain the contractivity of the second step of the two-stage
sampler (updating the fact that we have no 1/2 factor) to get a contracting rate[

1− exp
(
− 2

η
− 2β1

)
+ 4β2d exp

(
− 2

η
+ 2β1

)]
.

2See https://en.wikipedia.org/wiki/Total_variation_distance_of_probability_measures.
3See https://en.wikipedia.org/wiki/Pinsker%27s_inequality.
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We thus need the condition 8β2de
4β1 ⩽ 1 to get the contraction

(
1− 1

2
exp

(
− 2

η
− 2β1

))
.

We now need to compute the contraction for the first step using simply β1 = β2 = 0 in the same reasoning, leading to a
contraction (

1− exp
(
− 2

η

))
.

Multiplying the two contractions, we get

(
1− 1

2
exp

(
− 2

η
− 2β1

))(
1− exp

(
− 2

η

))
⩽

(
1− 1

2
exp

(
− 2

η
− 2β1

))
,

which leads to the desired result.

E. Proof of Proposition 3.4
Proof. We consider y(1) ∈ {−1, 1}d distributed from an arbitrary distribution r, and y(2) sampled from the distribution q.
We sample z(1) and z(2) from u(·|y(1)) and u(·|y(2)), as well as ȳ(1) and ȳ(2), from u(·|z(1)) and u(·|z(2)) (so that we get a
full approximate Gibbs sampling step, with transition kernel v, from y(1) to ȳ(1) and y(2) to ȳ(2)), all coupled so that the
Wasserstein distance between ∑

y(1)

r(y(1))v(·|y(1))

and ∑
y(2)

q(y(2))v(·|y(2))

(that is, one step of the Markov transition kernel) is less than E[ℓ(ȳ(1), ȳ(2))].

For the purpose of the proof, we can now add a Metropolis Hasting step to the second chain (which leads to ¯̄y(2)) so that,
since it starts from the stationary distribution q of the full Gibbs sampling step, it remains at q. Thus, like in Appendix C,

W
(∑

y(1)

r(y(1))v(·|y(1)), q
)

⩽ E[ℓ(ȳ(1), ¯̄y(2))]

⩽ E[ℓ(ȳ(1), ȳ(2))] + E[ℓ(ȳ(2), ¯̄y(2))]

⩽
(
1− 1

2
exp

(
− 2

η
− 2β1

))
W (r, q) + E[1reject(y(2), ȳ(2))ℓ(ȳ(2), y(2))].

Moreover, like in Appendix C, we have, now dropping the superscripts (2):

E[1reject(y, ȳ)ℓ(ȳ, y)] =
1

2

∑
y,ȳ

ℓ(ȳ, y)
∣∣q(y)v(ȳ|y)− q(ȳ)v(y|ȳ)

∣∣.
We have, using that q(z|y) = u(z|y), and by definition of v,

q(y)v(ȳ|y) =
∑
z

q(y)u(ȳ|z)u(z|y) =
∑
z

q(y)u(ȳ|z)q(z|y) =
∑
z

q(z)q(y|z)u(ȳ|z),
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because q(y)q(z|y) = q(y, z) = q(z)q(y|z), leading to:

E[1reject(y, ȳ)ℓ(ȳ, y)] =
1

2

∑
y,ȳ

ℓ(ȳ, y)

∣∣∣∣∑
z

q(z)q(y|z)u(ȳ|z)−
∑
z

q(z)q(ȳ|z)u(y|z)
∣∣∣∣

=
1

2

∑
y,ȳ

ℓ(ȳ, y)

∣∣∣∣∑
z

q(z)
(
q(y|z)u(ȳ|z)− q(ȳ|z)u(y|z)

)∣∣∣∣
⩽

1

2

∑
z,y,ȳ

ℓ(ȳ, y)q(z)
∣∣q(y|z)u(ȳ|z)− u(y|z)q(ȳ|z)

∣∣ by the triangular inequality,

⩽
1

2
max

z

∑
y,ȳ

ℓ(ȳ, y)|q(y|z)u(ȳ|z)− u(y|z)q(ȳ|z)| by bounding the expectation by the max,

=
1

2
max

z

∑
y,ȳ

ℓ(ȳ, y)|q(y|z)u(ȳ|z)− u(y|z)u(ȳ|z) + u(y|z)u(ȳ|z)− u(y|z)q(ȳ|z)|

⩽
1

2
max

z

∑
y,ȳ

ℓ(ȳ, y)
{
u(ȳ|z)

∣∣q(y|z)− u(y|z)
∣∣+ u(y|z)

∣∣u(ȳ|z)− q(ȳ|z)
∣∣}

= max
z

∑
y,ȳ

ℓ(ȳ, y)u(y|z)|q(ȳ|z)− u(ȳ|z)| by symmetry,

⩽ max
z

∑
y,ȳ

[
ℓ(ȳ, z) + ℓ(z, y)

]
u(y|z)|q(ȳ|z)− u(ȳ|z)| by the triangular inequality,

⩽ max
z

{∑
y,ȳ

ℓ(ȳ, z)u(y|z)|q(ȳ|z)− u(ȳ|z)|+
∑
y,ȳ

ℓ(z, y)u(y|z)|q(ȳ|z)− u(ȳ|z)|
}

by separating the sum,

= max
z

{∑
ȳ

ℓ(ȳ, z)|q(ȳ|z)− u(ȳ|z)|+
∑
y

ℓ(z, y)u(y|z)
∑
ȳ

|q(ȳ|z)− u(ȳ|z)|
}

by summing out y in the first term,

= max
z

∑
ȳ

[
ℓ(ȳ, z) + dσ(−2

η
+ 2β1)

]
· |q(ȳ|z)− u(ȳ|z)|,

⩽ max
z

∑
ȳ

ℓ(ȳ, z) · |q(ȳ|z)− u(ȳ|z)|+ 2dσ(−2

η
+ 2β1)max

z
TV(q(·|z), u(·|z)), (16)

using that
∑
y

ℓ(z, y)u(y|z) =
d∑

i=1

Pu(yi|zi)(yi ̸= zi|zi) =
d∑

i=1

σ(−2/η − 2s(z)i) ⩽ dσ(−2/η + 2β1) and that u(·|z) has

independent components.

We can now write, because of our assumption in Eq. (10),

q(y|z) = u(y|z) 1

Z(z)
eφ(y,z),

with φ(y, z) = log q(y)− log q(z)− s(z)⊤(y − z), which satisfies

0 ⩽ φ(y, z) ⩽
β2

2
∥y − z∥21,

17
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and

logZ(z) = log
∑
y

u(y|z)eφ(y,z) ⩽ log
∑
y

u(y|z)e
β2
2 ∥y−z∥2

1

⩽ log
∑
y

u(y|z)edβ2∥y−z∥1 =

d∑
i=1

log
∑
yi

u(yi|zi)edβ2|yi−z1| using that ∥y − z∥1 ⩽ 2d,

⩽
d∑

i=1

log
(
σ(2/η + 2s(z)i) + σ(−2/η − 2s(z)i)e

2dβ2

)
by definition of u(·|z),

=

d∑
i=1

log
(
1 + σ(−2/η − 2s(z)i)(e

2dβ2 − 1)
)
⩽ d log

(
1 + σ(−2/η + 2β1)(e

2dβ2 − 1)
)

⩽ d log
(
1 + e−2/η+2β1(e2dβ2 − 1)

)
⩽ de−2/η+2β1(e2dβ2 − 1) using log(1 + c) ⩽ c. (17)

Moreover, we have Z(z) ⩾ 1.

We treat the two terms in Eq. (16) separately. For the second term, we have, using Pinsker’s inequality,

TV(q(·|z), u(·|z)) ⩽
(1
2
KL(u(·|z)∥q(·|z))

)1/2

=
(1
2
Eu(y|z) log

u(y|z)
q(y|z)

)1/2

⩽
(1
2
Eu(y|z) logZ(z)− φ(y, z)

)1/2

⩽
(1
2

logZ(z)
)1/2

,

because φ ⩾ 0. Thus the second term in Eq. (16) can be bounded as follows, using Eq. (17):

2dσ(−2

η
+ 2β1)max

z
TV(q(·|z), u(·|z)) ⩽ 2de−

2
η+2β1

(d
2
e−2/η+2β1(e2dβ2 − 1)

)1/2

=
√
2d3/2e−

3
η+3β1

(
e2dβ2 − 1

)1/2
. (18)

For the first term in Eq. (16), we have:

∑
ȳ

ℓ(ȳ, z) ·
∣∣q(ȳ|z)− u(ȳ|z)

∣∣ =
∑
ȳ

d∑
i=1

1ȳi ̸=ziu(ȳ|z) ·
∣∣∣ 1

Z(z)
eφ(ȳ,z) − 1

∣∣∣ by definition of φ,

=
∑
ȳ

d∑
i=1

1ȳi ̸=ziσ(−2/η − 2s(z)i)
∏
j ̸=i

u(ȳj |zj) ·
∣∣∣ 1

Z(z)
eφ(ȳ,z) − 1

∣∣∣ by definition of u.

We now use the inequality

∣∣∣ 1

Z(z)
eφ(ȳ,z) − 1

∣∣∣ =
( 1

Z(z)
eφ(ȳ,z) − 1

)
+
+

(
1− eφ(ȳ,z)−logZ(z)

)
+

⩽
(
eφ(ȳ,z) − 1

)
+
+
(
logZ(z)− φ(ȳ, z)

)
+
⩽ eφ(ȳ,z) − 1 + logZ(z),

18
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which is the result of φ ⩾ 0 and Z ⩾ 1, to get, using φ(ȳ, z) ⩽ dβ2∥ȳ − z∥1,∑
ȳ

ℓ(ȳ, z) ·
∣∣q(ȳ|z)− u(ȳ|z)

∣∣
⩽

∑
ȳ

d∑
i=1

1ȳi ̸=ziσ(−2/η − 2s(z)i)
∏
j ̸=i

u(ȳj |zj) ·
∣∣∣edβ2∥ȳ−z∥1 − 1 + logZ(z)

∣∣∣
⩽

d∑
i=1

∑
ȳj ,j ̸=i

σ(−2/η + 2β1)
∏
j ̸=i

u(ȳj |zj) ·
(
e2dβ2edβ2

∑
j ̸=i |ȳj−zj | − 1 + logZ(z)

)

= σ(−2/η + 2β1)

d∑
i=1

(
e2dβ2

∏
j ̸=i

{
σ(2/η + 2s(z)j) + σ(−2/η − 2s(z)j)e

2dβ2

}
− 1 + logZ(z)

)

= σ(−2/η + 2β1)

d∑
i=1

(
e2dβ2

∏
j ̸=i

{
1 + σ(−2/η + 2s(z)j)(e

2dβ2 − 1)
}
− 1 + logZ(z)

)

⩽ e−2/η+2β1

d∑
i=1

(
e2dβ2

∏
j ̸=i

{
1 + σ(−2/η + 2β1)(e

2dβ2 − 1)
}
− 1 + logZ(z)

)
= de−2/η+2β1

(
e2dβ2

(
1 + σ(−2/η + 2β1)(e

2dβ2 − 1)
)d−1

− 1 + logZ(z)
)
.

From the constraint 8dβ2e
4β1 ⩽ 1, we have β2d ⩽ 1

8 , which implies that e2dβ2 − 1 ⩽ 5
2dβ2. Moreover, we assume that

e−2/η+2β1 ⩽ 1
d . This leads to, using Eq. (17),

∑
ȳ

ℓ(ȳ, z) ·
∣∣q(ȳ|z)− u(ȳ|z)

∣∣ ⩽ de−2/η+2β1

(
e2dβ2

(
1 +

1

d

5

2
dβ2

)d

− 1 + de−2/η+2β1(e2dβ2 − 1)
)

⩽ de−2/η+2β1

(
e2dβ2e

5
2dβ2 − 1 + de−2/η+2β1

5

2
dβ2

)
⩽ de−2/η+2β16dβ2 +

5

2
d3β2e

−4/η+4β1 , (19)

using 1 + c ⩽ ec.

Thus, assembling the terms in Eq. (18) and Eq. (19),

E[1reject(y, ȳ)ℓ(ȳ, y)] ⩽ de−2/η+2β16dβ2 +
5

2
d3β2e

−4/η+4β1 +
√
2d3/2e−

3
η+3β1

(5
2
dβ2

)1/2
.

Thus, using the same reasoning as in Appendix C, and using that β2d ⩽ 1
8 ,

W (q′, q) ⩽ 2e
2
η+2β1E[1reject(y, ȳ)ℓ(ȳ, y)]

⩽ 2de4β16dβ2 + 5d3β2e
−2/η+6β1 + 2

√
2d3/2e−

1
η+5β1

(5
2
dβ2

)1/2
⩽ 17d2e4β1β2 + 2

√
5d2e−

1
η+5β1

√
β2 using e−2/η+2β1 ⩽

1

d
, (20)

= 17d2e4β1β2 + 2
√
5d2e−

1
η+β1e4β1

√
β2

⩽ 17d2e4β1β2 + 2
√
5d2

1√
d
e4β1

√
β2 = de4β1 [17dβ2 +

√
20dβ2] ⩽ de4β1 [17

1√
8

√
dβ2 +

√
20dβ2]

⩽ 12de4β1
√

dβ2.

Overall, we get a bound in d times
√
β2d2 and d times β2d

2 if η is small enough, by Eq. (20).

19



Sampling Binary Data by Denoising through Score Functions

F. Mixtures of independent variables
In this section, we provide details on score functions for mixtures of two independent variables. We start with a few facts
about independent variables.

A few facts about independent variables. If p(x) ∝ eβ
⊤x, then

p(x) =
eβ

⊤x∏d
i=1 2 coshβi

and ∑
x∈{−1,1}d

p(x)x = tanh(βx)

(taken componentwise).

If q(y) ∝
∑

x∈{−1,1}d p(x)eαy
⊤x, then y = x ◦ z, where p(z) ∝ eα1

⊤
n x is independent from x. Since for independent

variables, the first moment characterizes the distributions, we have

q(y) ∝ eγ
⊤x,

with tanh γi = tanhα · tanhβi. We then have two different formulas for q(y):

q(y) =
eγ

⊤x∏d
i=1 2 cosh γi

=
1

(2 coshα)d

∏d
i=1 cosh(βi + αyi)∏d

i=1 coshβi

,

the second being obtained by computing the sum with respect to x. Note that these two formulas are equal for y ∈ {−1, 1}d,
not for generic y’s. Moreover, one can check that α = 0 or β = 0 lead to a constant q.

We can compute E[x|y] as

E[x|y] = 1

α
∇ log q(x).

Using the first formula for q leads to E[X|Y = y] = γ
α , which is incorrect. With the second formula, we get:

1

α
∇ log q(y) = tanh(β + αy).

Mixtures of two independent variables. We consider

p(x) =
1

(2 coshβ)d

[1
2
eβ1

⊤
n x +

1

2
e−β1⊤n x

]
.

With tanh γ = tanhα · tanhβ, then q is a mixture of 1
(2 cosh γ)d

eγ1
⊤
n y and 1

(2 cosh γ)d
e−γ1⊤n y , with

q(y) =
1

(2 coshα)d(coshβ)d

[
1

2

d∏
i=1

cosh(β + αyi) +
1

2

d∏
i=1

cosh(β − αyi)

]
,

and

1

α
∇ log q(y) =

∏d
i=1 cosh(β + αyi) · tanh(β + αy)−

∏d
i=1 cosh(β − αyi) · tanh(β − αy)∏d

i=1 cosh(β + αyi) +
∏d

i=1 cosh(β − αyi)

=
eγ1

⊤
n x tanh(β + αy)− e−γ1⊤n x tanh(β − αy)

eγ1
⊤
n x + e−γ1⊤n x

.

Above, the first formula is valid for all y ∈ Rd, while the second formula is only true for y ∈ {−1, 1}d.
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