
Statistical Test for Feature Selection Pipelines by Selective Inference

Tomohiro Shiraishi * 1 2 Tatsuya Matsukawa * 1 Shuichi Nishino 1 2 Ichiro Takeuchi 1 2

Abstract
A data analysis pipeline is a structured sequence
of steps that transforms raw data into meaning-
ful insights by integrating various analysis algo-
rithms. In this paper, we propose a novel statis-
tical test to assess the significance of data analy-
sis pipelines. Our approach enables the system-
atic development of valid statistical tests applica-
ble to any feature selection pipeline composed of
predefined components. We develop this frame-
work based on selective inference, a statistical
technique that has recently gained attention for
data-driven hypotheses. As a proof of concept,
we focus on feature selection pipelines for linear
models, composed of three missing value imputa-
tion algorithms, three outlier detection algorithms,
and three feature selection algorithms. We theoret-
ically prove that our statistical test can control the
probability of false positive feature selection at
any desired level, and demonstrate its validity and
effectiveness through experiments on synthetic
and real data. Additionally, we present an im-
plementation framework that facilitates testing
across any configuration of these feature selection
pipelines without extra implementation costs.

1. Introduction
In practical data-driven decision-making tasks, integrating
various types of data analysis steps is crucial for address-
ing diverse challenges. For instance, in genetic research
aimed at identifying genes linked to a specific disease, the
process often begins with preprocessing tasks such as filling
in missing values and detecting outliers. This is followed
by screening for potentially related genes using simple de-
scriptive statistics and then applying more complex machine
learning-based feature selection algorithms. Such a system-
atic sequence of steps designed to analyze data and derive

*Equal contribution 1Nagoya University, Aichi, Japan
2RIKEN, Tokyo, Japan. Correspondence to: Ichiro Takeuchi
<takeuchi.ichiro.n6@f.mail.nagoya-u.ac.jp>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

useful insights is known as a data analysis pipeline, which
plays a key role in ensuring the reproducibility and reliabil-
ity of data-driven decision-making.

In this study, as an example of data analysis pipelines, we
consider a class of feature selection pipelines that integrates
various missing-value imputations (MVI) algorithms, out-
lier detection (OD) algorithms, and feature selection (FS)
algorithms. Figure 1 shows examples of two such pipelines.
The pipeline on the left starts with a mean value imputation
algorithm, followed by L1 regression based OD algorithm,
proceeds with marginal screening to refine feature candi-
dates, and concludes by using two FS algorithms—stepwise
feature selection and Lasso—selecting their union as the
final features. The pipeline on the right initiates with re-
gression imputation, continues with marginal screening to
narrow down feature candidates, uses Cook’s distance for
OD, and applies both stepwise FS and Lasso, ultimately
choosing the intersection of their results as the final features.

When a data-driven approach is used for high-stakes
decision-making tasks such as medical diagnosis, it is cru-
cial to quantify the reliability of the final results by con-
sidering all steps in the pipeline. The goal of this study is
to develop a statistical test for a specific class of feature
selection pipelines in linear models, allowing the statistical
significance of features obtained through the pipeline to be
properly quantified in the form of p-values. The first techni-
cal challenge in achieving this is the need to appropriately
account for the complex interrelations between pipeline
components to determine the overall statistical significance.
The second challenge is to develop a universal framework
capable of performing statistical tests on arbitrary pipelines
(within a given class) rather than creating individual tests
for each pipeline.

To address these challenges, we introduce the concept of
selective inference (SI) (Taylor & Tibshirani, 2015; Fithian
et al., 2015; Lee & Taylor, 2014), a novel statistical infer-
ence approach that has gained significant attention over the
past decade. The core idea of SI is to characterize the pro-
cess of selecting hypotheses from the data and calculate the
corresponding p-values using the sampling distribution, con-
ditional on this selection process. We propose an approach
based on SI that provides valid p-values for any feature selec-

1

Statistical Test for Feature Selection Pipelines by Selective Inference

1:MVI

regression

2:FS

marginal
screening

5:FS

lasso

4:OD

cook
distance

4:FS

stepwise

6:I-F

intersection
of features

1:MVI

mean value

2:OD

l1 regression
(soft-ipod)

5:FS

lasso

4:FS

marginal
screening

4:FS

stepwise

6:U-F

union
of features

Example 1 Example 2

Figure 1. Two examples of pipelines within the class considered in this study.

tion pipeline configuration within the aforementioned class.
We also introduce a modular implementation framework
that supports SI for any pipeline configuration within this
class without requiring additional implementation efforts.
Specifically, with our framework, the statistical significance
of features from any pipeline in this class can be quantified
as valid p-values when used in a linear model, with no extra
implementation required beyond specifying the pipeline.

We note that our long-term goal beyond this current study is
to ensure the reproducibility of data-driven decision-making
by accounting for the entire pipeline from raw data to the
final results, with the current study on a class of feature
selection pipelines in linear models serving as a proof of
concept for that goal.

Related Work. Most research on data analysis pipelines
is concentrated in the field of software engineering rather
than machine learning (Sugimura & Hartl, 2018; Hapke &
Nelson, 2020; Drori et al., 2021), with a primary focus on
the design, implementation, testing, and maintenance of
pipeline systems to ensure efficiency, scalability, and robust-
ness. Meanwhile, AutoML has emerged as a related area
where researchers are automating the construction of these
pipelines, and many companies have developed tools for this
purpose (Microsoft, 2018; Amazon, 2019; Google, 2021).
However, to the best of our knowledge, there is no existing
studies that systematically discusses the reliability of data
analysis pipelines. Resampling techniques, such as cross-
validation (CV), are commonly used to evaluate the entire
data analysis process. However, practical data analysis often
includes unsupervised learning tasks like MVIs and ODs,
where resampling cannot be used to accurately evaluate the
reliability of the entire pipeline. Additionally, dividing the
data reduces the sample size, leading to decreased accuracy
in hypothesis selection and statistical power.

SI has gained attention as a statistical inference method
for feature selection in linear models (Taylor & Tibshirani,
2015; Fithian et al., 2015). It has been applied to various
feature selection algorithms such as marginal screening (Lee
& Taylor, 2014), stepwise FS (Tibshirani et al., 2016), and
Lasso (Lee et al., 2016), and extended to more complex
methods (Yang et al., 2016; Suzumura et al., 2017; Hyun
et al., 2018; Rügamer & Greven, 2020; Das et al., 2022;

Rügamer et al., 2022). SI is valuable not only for FS in
linear models but also for inference across various data-
driven hypotheses, including tasks like OD (Chen & Bien,
2020; Tsukurimichi et al., 2022), segmentation (Tanizaki
et al., 2020; Duy et al., 2022; Le Duy et al., 2024), cluster-
ing (Lee et al., 2015; Gao et al., 2022), and change-point
detection (Duy et al., 2020; Jewell et al., 2022). The core
idea of SI is to perform statistical inference using a distri-
bution conditioned on events of hypothesis selection, with
the technical challenge being the characterization of various
event selections for different tasks. While studies on SI
for various tasks are being conducted, existing research is
limited to single tasks, and how to perform inference when
integrating multiple tasks into a pipeline remains an open
question. Furthermore, existing implementations of SI are
developed individually for each task, and there is no unified
framework for implementing SI.

Contributions. Our contributions in this study are
threefold. First, we develop a statistical test for feature
selection pipelines composed of various configurations of
missing value imputation (MVI), outlier detection (OD),
and feature selection (FS) components, based on the SI
framework. Second, this study represents the first applica-
tion of SI to inference on a combination of multiple analysis
components in a unified, systematic manner. Finally, we
provide a practical computational framework implemented
as the Python package1, which facilitates the construction
of statistical tests across any pipeline configuration
without additional implementation costs. For repro-
ducibility, our experimental code is available at https:
//github.com/shirara1016/statistical_
test_for_feature_selection_pipelines.

2. Preliminaries
Given a set of algorithm components, a pipeline is defined
by selecting some components from the set and connecting
the selected components in an appropriate way. A pipeline
can be represented as a directed acyclic graph (DAG) with
components as nodes, and the connections as edges. In this
study, as an example class of pipelines, we consider a set of

1https://pypi.org/project/si4pipeline/

2

https://github.com/shirara1016/statistical_test_for_feature_selection_pipelines
https://github.com/shirara1016/statistical_test_for_feature_selection_pipelines
https://github.com/shirara1016/statistical_test_for_feature_selection_pipelines
https://pypi.org/project/si4pipeline/

Statistical Test for Feature Selection Pipelines by Selective Inference

algorithms consisting of three MVI algorithms, three OD
algorithms, three FS algorithms, as well as Intersection and
Union operations (specific three algorithms each for MVI,
OD, and FS are described later in this section). Figure 1
shows two examples of pipelines within this class. Note that
each FS algorithm corresponds to a single node in the DAG,
and the FS algorithms are not described as DAGs.

Problem Setting. In this study, we consider the problem
of feature selection for linear models from a dataset contain-
ing missing values and/or outliers using the aforementioned
class of feature selection pipelines. Let us consider a linear
regression problem with n instances and d features. We de-
note the observed dataset as (X,y), where X ∈ Rn×d is the
fixed design matrix, while y ∈ Rn′

is the response vector
which contains outlying values but excludes missing values
(i.e., n′ ≤ n). We assume that y is a random realization of
the following random response vector

Y = µ(X) + ε, ε ∼ N (0, σ2In′), (1)

where µ(X) ∈ Rn′
is the unknown true value function,

while ε ∈ Rn′
is independently normally distributed with

variance σ2 which is known or estimable from an indepen-
dent dataset2. Although we do not pose any functional form
on the true value function µ(X) for theoretical justifica-
tion, we consider a case where the true values µ(X) are
reasonably approximated by a linear model as long as they
are non-outliers. This is a common setting in the field of
SI, referred to as the saturated model setting. Furthermore,
we denote the response vector with imputed missing values
as y(+) ∈ Rn. Using the above notations, a feature selec-
tion pipeline comprising of MVI, OD, and FS algorithm
components is represented as a mapping:

P : Rn×d×Rn′
∋ (X,y) 7→ (y(+),O,M) ∈ Rn×2[n]×2[d],

(2)
where y(+) ∈ Rn is the response vector with missing values
imputed, O ⊂ [n] is the set of detected outliers, and M ⊂
[d] is the set of selected features.

Statistical Test for Pipelines. Given the output of a
pipeline in (2), the statistical significance of the finally se-
lected features can be quantified based on the coefficients
of the linear model fitted only with the selected features
from a dataset with missing values imputed and outliers re-
moved. To formalize this, we denote the design matrix after
removing outliers and composed only of the selected fea-
tures as X−O,M ∈ Rn−|O|×|M|, and denote the response
vector with outliers removed and missing values imputed
as y(+)

−O. Using these notations, the least squares solution of

2We discuss the robustness of the proposed method when the
variance is unknown and the noise deviates from the Gaussian
distribution in Appendix E.

the linear model after imputation of missing values, removal
of outliers, and feature selection is expressed as

β̂ =
(
X⊤

−O,MX−O,M
)−

X⊤
−O,My

(+)
−O.

Similarly, we consider the population least-square solution
for the unobservable true value vector µ(X) in (1), which
is defined as

β∗ =
(
X⊤

−O,MX−O,M
)−

X⊤
−O,Mµ

(+)
−O(X−O,M),

where µ(+)
−O(X−O,M) ∈ Rn−|O| is an n− |O|-dimensional

vector obtained by providing X−O,M to the unknown true
function µ with the missing values imputed with the same
MVI algorithm. To quantify the statistical significance of the
selected features, we consider the following null hypothesis
H0 and the alternative hypothesis H1:

H0 : β∗
j = 0 v.s. H1 : β∗

j ̸= 0, j ∈ M, (3)

where, with a slight abuse of notation, β∗
j and β̂j respec-

tively indicates the element of β∗ and β̂ corresponding to
the selected feature j ∈ M.

Missing-Value Imputation (MVI) Algorithm Compo-
nents. In this paper, as three examples of MVI algorithms,
we consider mean value imputation, nearest-neighbor im-
putation, and regression imputation algorithms (see Ap-
pendix A.1). A MVI algorithm component is represented
as

fMVI : {X,y,O,M} 7→ {X,y+,O,M},
where, among the four variables, only y is updated to y(+),
but note that this notation is used to uniformly handle all
components in the pipeline. It is important to note that these
three MVI algorithms are linear algorithm in the sense
that, using a matrix DX ∈ Rn×n′

that depends on X , the
imputed values are written as y(+) = DXy.

Outlier Detection (OD) Algorithm Components. In this
paper, as three examples of OD algorithms, we consider
Cook’s distance-based OD, DFFITS OD, and L1 regression
based OD algorithms (see Appendix A.2). A OD algorithm
component is represented as

fOD : {X,y(+),O,M} 7→ {X,y(+),O′,M},

where, O′ is the updated set of outliers. Note that, if outlier
removal and feature selection have not yet been performed,
the sets O and M are initialized as O = ∅ and M = [d].

Feature Selection (FS) Algorithm Components. In this
paper, as three examples of FS algorithms, we consider
marginal screening, stepwise feature selection, and Lasso
algorithms (see Appendix A.3). A FS algorithm component
is represented as

fFS : {X,y(+),O,M} 7→ {X,y(+),O,M′},

where, M′ is the updated set of features.

3

Statistical Test for Feature Selection Pipelines by Selective Inference

Union and Intersection Components. When using multi-
ple OD/FS algorithms, it is necessary to include components
in the pipeline that perform the union/intersection of the de-
tected outliers or selected features. Such union/intersection
components for OD/FS are respectively written as

fO
Σ : {X,y(+), {Oe}e∈[E],M} 7→ {X,y(+),Σe∈[E]Oe,M},

fM
Σ : {X,y(+),O, {Me}e∈[E]} 7→ {X,y(+),O,Σe∈[E]Me},

where E is the number of OD/FS algorithms and an operator
Σ indicates either union or intersection of multiple sets.

Automatic Pipeline Construction. In this study, we con-
sider two cases for pipeline configuration: an option spec-
ified by the user and an option determined based on the
data. In the first option, the user can select some of the
aforementioned data analysis components and specify their
own configuration. On the other hand, the second option
allows for the selection of the optimal configuration from
among multiple pre-defined pipeline configurations based
on CV. An important point in the second option is that our
statistical test is designed by properly considering the fact
that the optimal pipeline configuration has been selected
based on the data3. For more details on the second option,
see §6 and Appendix F.

Selective Inference. For the statistical test in (3), it is rea-
sonable to use β̂j , j ∈ M as the test statistic. An important
point when addressing this statistical test within the SI ap-
proach is that the test statistic is represented as a linear func-
tion of the observed response vector as β̂j = η⊤

j y, j ∈ M,
where ηj ∈ Rn′

, j ∈ M is a vector that depends on y only
through the detected outlier set O and the selected feature
set M 4. In SI, this property is utilized to perform statisti-
cal inference based on the sampling distribution of the test
statistic conditional on O and M. More specifically, since
y follows a normal distribution, it can be derived that the
sampling distribution of the test statistic β̂j = η⊤

j y, j ∈ M
conditional on O, M, and the sufficient statistic of the nui-
sance parameters follows a truncated normal distribution.
By computing p-values based on this conditional sampling
distribution represented as a truncated normal distribution,
it is ensured that the type I error can be controlled even in
finite samples. For more details on SI, please refer to the
following sections or literatures such as Taylor & Tibshirani
(2015); Fithian et al. (2015); Lee & Taylor (2014).

3As stated in §1, CV cannot be used for an accurate evaluation
of a pipeline when it includes unsupervised learning components
such as MVI or OD. However, it is possible to compute a valid
p-value for a pipeline selected by CV if we properly consider the
CV-based pipeline selection as part of the selection event for SI.

4Note that the MVI algorithms considered in this paper depend
only on X , not on y.

3. Selective Inference for Feature Selection
Pipelines

To perform statistical test for pipelines, it is necessary to
consider how the data influenced the final result through the
calculations of each algorithm component of the pipeline
and in operations where they are combined with a specified
configuration. We address this challenge using the SI frame-
work. In the SI, statistical inference is performed based
on the sampling distribution conditional on the process by
which the data selects the final result, thereby incorporating
the influence of how data is processed in the pipeline.

Selective Inference. In SI, p-values are computed based
on the null distribution conditional on an event that a certain
hypothesis is selected. The goal of SI is to compute a p-
value such that

PH0 (p ≤ α | MY = M,OY = O) = α, ∀α ∈ (0, 1),
(4)

where MY and OY respectively indicate the random set
of selected features and detected outliers given the random
response vector Y , thereby making the p-value is a random
variable. Here, the condition part MY = M and OY = O
in (4) indicates that we only consider response vectors Y
yielding a certain feature set M and a certain outlier set O.
If the conditional type I error rate can be controlled as in (4)
for any possible hypotheses (M,O) ∈ 2[d] × 2[n], then, by
the law of total probability, the marginal type I error rate
can also be controlled for any α ∈ (0, 1) because

PH0
(p ≤ α)

=
∑

M∈2[d]

∑
O∈2[n]

PH0
(M,O)

PH0
(p ≤ α | MY = M,OY = O)

= α.

Therefore, in order to perform valid statistical test, we can
employ p-values conditional on the hypothesis selection
event. To compute a p-value that satisfies (4), we need to
derive the sampling distribution of the test-statistic

T (Y) | {MY = My,OY = Oy}. (5)

Selective p-value. To conduct statistical hypothesis test-
ing based on the conditional sampling distribution in (5), we
introduce an additional condition on the sufficient statistic
of the nuisance parameter QY , defined as

QY =

(
In′ − ηη⊤

∥η∥2

)
Y . (6)

This additional conditioning on QY is a standard practice
in the SI literature required for computational tractability5.

5The nuisance component QY corresponds to the component
z in the seminal paper (Lee et al., 2016) (see Sec. 5, Eq. (5.2), and

4

Statistical Test for Feature Selection Pipelines by Selective Inference

Based on the additional conditioning on QY , the following
theorem tells that the conditional p-value that satisfies (4)
can be derived by using a truncated normal distribution.

Theorem 3.1. Consider a constant design matrix X , a ran-
dom response vector Y ∼ N (µ, σ2In′) and an observed
response vector y. Let (MY ,OY) and (My,Oy) be the
pairs of selected features and detected outliers, obtained by
applying a pipeline process P in the form of (2) to (X,Y)
and (X,y), respectively. Let η ∈ Rn′

be a vector depend-
ing on (My,Oy), and consider a test-statistic in the form
of T (Y) = η⊤Y . Furthermore, define the nuisance param-
eter QY as in (6).

Then, the conditional distribution

T (Y) | {MY = My,OY = Oy,QY = Qy}

is a truncated normal distribution TN(η⊤µ, σ2∥η∥2,Z)
with mean η⊤µ, variance σ2∥η∥2, and truncation intervals
Z , where Z is defined as

Z = {z ∈ R | Ma+bz = My,Oa+bz = Oy} , (7)

a = Qy, b = η/∥η∥2.

The proof of Theorem 3.1 is deferred to Appendix B.1. By
using the sampling distribution of the test statistic T (Y)
conditional on MY = My, OY = Oy, and QY = Qy in
Theorem 3.1, we can define the selective p-value as

pselective = PH0

|T (Y)| ≥ |T (y)|

∣∣∣∣∣∣∣
MY = My,

OY = Oy,

QY = Qy

 .

(8)

Theorem 3.2. The selective p-value defined in (8) satisfies
the property in (4), i.e.,

PH0

(
pselective ≤ α

∣∣∣∣∣MY = My,

OY = Oy

)
= α, ∀α ∈ (0, 1).

Then, the selective p-value also satisfies the following prop-
erty of a valid p-value:

PH0
(pselective ≤ α) = α, ∀α ∈ (0, 1).

The proof of Theorem 3.2 is deferred to Appendix B.2. This
theorem guarantees that the selective p-value is uniformly
distributed under the null hypothesis H0, and thus can be
used to conduct the valid statistical inference in (3). Once
the truncation intervals Z is identified, the selective p-value
in (8) can be easily computed using Theorem 3.1. Thus,
the remaining task is reduced to identifying the truncation
intervals Z .

Theorem 5.2) and is used in almost all the SI-related works that
we cited.

4. Computations: Line Search Interpretation
From the discussion in §3, it is suffice to identify the one-
dimensional subset Z in (7) to conduct the inference. In this
section, we propose a novel line search method to efficiently
identify the Z .

4.1. Overview of the Line Search

The difficulty in identifying the Z arises from the fact
that the multiple FS/OD algorithms are applied in an ar-
bitrary complex order. To surmount this difficulty, we pro-
pose an efficient search method that leverages parametric-
programming and the fact that our pipeline can be concep-
tualized as a directed acyclic graph (DAG) whose nodes
represent the operations. In a standard analysis pipeline,
M and O are computed and updated along the DAG. How-
ever, in our framework, intervals for which M and O are
constant can also be computed and updated, allowing the
computation of the truncation intervals Z .

In the following, we first discuss how, given a certain compu-
tational procedure (combining update rules as discussed in
later), the Z can be identified by parametric-programming.
Then, we summarize the overall procedure to compute the
selective p-value from the Z . Finally, we describe the up-
date rules for each node based on the existing methods of
SI for each FS and OD algorithm. Note that DAGs can
topologically sortable, so that update rules can be applied in
sequence. The overview of the proposed line search method
is illustrated in Figure 2.

4.2. Parametric-Programming

To identify the truncation intervals Z , we assume that we
have a procedure to compute the interval [Lz, Uz] for any
z ∈ R, which satisfies

∀r ∈ [Lz, Uz], Ma+br = Ma+bz,Oa+br = Oa+bz.

Then, the truncation intervals Z can be obtained by the
union of the intervals [Lz, Uz] as

Z =
⋃

z∈R|Ma+bz=My,Oa+bz=Oy

[Lz, Uz]. (9)

The procedure in (9) is commonly referred to as parametric-
programming. We discuss the details of the procedure to
compute the interval [Lz, Uz] by defining the update rules
for each node in the next subsection.

4.3. Update Rules

In this subsection, we discuss the computation procedure to
obtain the interval [Lz, Uz] for any z ∈ R just mentioned
in §4.2. To compute the interval [Lz, Uz], we consider
extending the input of each node in a DAG and denote it

5

Statistical Test for Feature Selection Pipelines by Selective Inference

1:MVI

mean
value

2:OD

l1 regression
(soft-ipod)

5:FS

lasso

3:FS

marginal
screening

4:FS

stepwise

6:U-F

union
of features

parametrized line

update update

{1, 2 }

union of

{1 }

{1, 2, 3, 4 }

{2, 3,4}

{2, 3}

{1, 2 } {2, 3}{2, 3}

{2, 3, 5}

{1, 2, 3}

{1, 2, 3, 5}

{3, 5}

{2, 3}

{2, 3}

{1, 2, 3}

{3}

{3, 4}

update

update
update

tru
n
cated

regio
n

(i)

(ii) (iii)

Figure 2. Schematic illustration of the proposed line search method to identify the truncation intervals Z . The upper part shows the
DAG representation of the pipeline and its topological sorting (i). The lower left part shows the operations performed by update rules in
sequence (ii). The lower right part shows the identification of the truncation intervals Z by taking the union of some intervals based on
parametric-programming (iii).

as a pair of (X,a, b, z,M,O, l, u), where X is the design
matrix, a, b and z are the currently linear expression of
the response vector a + bz, M and O are the currently
selected features and detected outliers, and l and u are the
currently interval. The input of the first node is initialized
to (X,a, b, z, [d], ∅,−∞,∞), where d is the number of
features. We details the update rules for this pair at each
node of a DAG in Appendix C.

The overall procedure for computing the interval [Lz, Uz]
by applying the update rules in the order of the topological
sorting of the DAG is summarized in Algorithm 1, where
the operation pa receives the index of the target node and
returns the indexes of its parent nodes, and pa(1) is set to
0. Algorithm 1 satisfies the specifications described in §4.2,
i.e., the following theorem holds.

Theorem 4.1. Consider a pipeline P , a design matrix X ,
and vectors a and b representing the linear expression of
the response vector as fixed. For any z ∈ R, let [Lz, Uz],
Ma+bz and Oa+bz be the output of Algorithm 1 with P , X ,
a, b and z as input.

Then, for any r ∈ [Lz, Uz], the output of Algorithm 1 does

not change by changing the input z to r:

UpdateInterval(P, X,a, b, r)

= ([Lz, Uz],Ma+bz,Oa+bz).

The proof of Theorem 4.1 is deferred to Appendix B.3.

Algorithm 1 Apply Update Rules in Order of Topological
Sorting of DAG (Update Interval)

Require: P , X , a, b and z
1: Converts the pipeline P to a topologically sorted graph

(V,E)
2: Initialize the input of the first node B0 as

(X,a, b, z, [p], ∅,−∞,∞) (see §4.3)
3: for each index of node i ∈ {1, . . . , |V |} do
4: Apply the update rule of the node vi to its input

Bpa(i) to obtain the output Bi (see §4.3)
5: end for
6: Let the last four components of B|V | be Ma+bz ,

Oa+bz , Lz and Uz , respectively
Ensure: [Lz, Uz], Ma+bz and Oa+bz

6

Statistical Test for Feature Selection Pipelines by Selective Inference

5. Implementations: Auto-Conditioning
All of the update rules defined in §4.3 are node-specific
operations and do not depend on the type of node corre-
sponding to the input/output. Then, we can modularize
the update rules and apply them sequentially as in Algo-
rithm 1, which implementation we call auto-conditioning.
The auto-conditioning allows one to simply define an arbi-
trary pipeline and perform hypothesis testing on it without
additional implementation costs. In this section, we show
some examples of defining pipelines and performing hy-
pothesis testing using the auto-conditioning. The implemen-
tation we developed can be interactively executed using the
provided Jupyter Notebook (ipynb) file, which is available
in the our package repository.

As an example, Listing 1 shows a code example that defines
two pipeline shown in Figure 2 and performs hypothesis
testing, based on our package. A similarly simple UI al-
lows for easy implementation of other pipeline structures
as well as automatic pipeline construction based on the
cross-validation. For more examples, please refer to the
Appendix G and the our package repository.

Listing 1. Code example that defines the pipeline shown in Fig-
ure 2. We can create an instance of manager class which handles
the desired pipeline simply by specifying each operation in turn. To
perform hypothesis testing, we can call the inference method
of the manager instance with the input dataset (X,y) and the
deviation of the noise σ.

import numpy as np
from si4pipeline import *

def option1() -> PipelineManager:
X, y = initialize_dataset()
y = mean_value_imputation(X, y)

O = soft_ipod(X, y, 0.02)
X, y = remove_outliers(X, y, O)

M = marginal_screening(X, y, 5)
X = extract_features(X, M)

M1 = stepwise_feature_selection(X, y, 3)
M2 = lasso(X, y, 0.08)
M = union(M1, M2)
return construct_pipelines(output=M)

def option2() -> PipelineManager:
X, y = initialize_dataset()
y = definite_regression_imputation(X, y)

M = marginal_screening(X, y, 5)
X = extract_features(X, M)

O = cook_distance(X, y, 3.0)
X, y = remove_outliers(X, y, O)

M1 = stepwise_feature_selection(X, y, 3)
M2 = lasso(X, y, 0.08)
M = intersection(M1, M2)
return construct_pipelines(output=M)

pl = option1()
X = np.random.normal(size=(100, 10))
y = np.random.normal(size=100)
M, p_list = pl.inference(X, y, sigma=1.0)

6. Numerical Experiments
Methods for Comparison. In our experiments, we con-
sider the three types of pipelines: op1, op2, and cv. The
op1 and op2 are defined in Figure 2. The cv is a pipeline
selected based on cross-validation from 16 different param-
eters settings each in the op1 and op2 pipelines (i.e., from
32 pipelines in total). For each three types of pipelines,
we compare the proposed method (proposed) in terms of
type I error rate and power with the following three methods:

• w/o-pp: An ablation study that excludes the paramet-
ric programming technique described in §4.2. This is
implemented by replacing the Z in (9) with a interval
[Lz, Uz] that contains the observed test statistic T (y).

• naive: This method uses a classical z-test without
conditioning, i.e., we compute the naive p-value as
pnaive = PH0

(|T (Y)| ≥ |T (y)|).

• bonferroni: This is a method to control the type
I error rate by using the Bonferroni correction, a sim-
ple yet widely used method for multiple testing cor-
rection. The number of all possible pair of selected
features and detected outliers is 2d · 2n, then we com-
pute the Bonferroni corrected p-value as pbonferroni =
min(1, 2d · 2n · pnaive).

Experimental Setup. In all experiments, we set the sig-
nificance level α = 0.05. For the experiments to see
the type I error rate, we change the number of samples
n ∈ {100, 200, 300, 400} and set the number of features d
to 20. See Appendix D.1 for results when the number of fea-
tures d is changed, and for the high-dimensional regression
setting (i.e., where d ≫ n). For each configuration, we gen-
erated 10,000 null datasets (X,y), where Xij ∼ N (0, 1)
for all (i, j) ∈ [n] × [d] and y ∼ N (0, In). Missing val-
ues were introduced by randomly setting each yi to NaN
with a probability of 0.03. To investigate the power, we set
n = 200 and d = 20 and generated dataset (X,y), where
Xij ∼ N (0, 1) for all (i, j) ∈ [n] × [d] and y = Xβ + ϵ.
The error term ϵ followed a normal distribution N (0, In),
and the coefficient vector β ∈ Rd was constructed such
that its first three elements were set to ∆ and the remaining
elements were set to 0. Missing values were introduced by
randomly setting each yi to NaN with a probability of 0.03.
We change the true coefficients ∆ ∈ {0.2, 0.4, 0.6, 0.8}.
For power evaluation, hypothesis testing was conducted
only when the pipeline selected at least one truly relevant
feature (i.e., one of the first three features), resulting in a to-
tal of 10,000 tests. In addition, see Appendix D.2 for results
when the missing value probability increased, Appendix D.3
for the computational time of the proposed method for larger
datasets and more complex pipelines, and Appendix D.4 for
the computer resources used in the experiments.

7

Statistical Test for Feature Selection Pipelines by Selective Inference

Table 1. Power on eight real-world datasets when changing the sample size n. Each cell indicates the power of the proposed method
(proposed) and the ablation study (w/o-pp), separated by a slash, with the higher value in bold. The proposed method demonstrates
significantly higher power than the ablation study method across all datasets and sample sizes. Furthermore, the power of the proposed
method increases with increasing sample size n.

n Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8

100 .57/.07 .48/.06 .57/.07 .51/.07 .68/.10 .55/.04 .30/.05 .25/.06
150 .79/.09 .71/.08 .66/.12 .57/.10 .74/.12 .72/.06 .37/.06 .37/.06
200 .91/.11 .80/.08 .78/.15 .66/.12 .76/.13 .82/.08 .49/.07 .40/.06

Results. The results of type I error rate are shown in
left side of Figure 3. The proposed, w/o-pp, and
bonferroni successfully controlled the type I error rate
under the significance level across all settings and pipeline
types, whereas the naive could not. Because the naive
failed to control the type I error rate, we no longer consider
its power. The results of power are shown in right side of
Figure 3. Among the methods that controlled the type I error
rate, the proposed has the highest power, followed by the
w/o-pp, across all settings and pipeline types. The reduced
power of the w/o-pp compared to the proposed can be
attributed to its inherent conditioning on more information
than those defined in (5). This problem is known as over-
conditioning in the context of SI. The notably low power
of the bonferroni is consistent with the understanding
that such classical methods are often too conservative for
the large-scale problems considered in this study.

Real Data Experiments. We compared the proposed
and w/o-pp in terms of power, for the cv pipeline on eight
real-world datasets from the UCI Machine Learning Repos-
itory (all licensed under the CC BY 4.0; see Appendix D.5
for more details). These experiments were conducted under
the implicit assumption that features selected by the fea-
ture selection pipeline are truly relevant. This assumption
is reasonable because both the proposed and w/o-pp
evaluated in this study have been shown to control the type
I error rate. From each original dataset, we randomly gen-
erated 1,000 sub-sampled datasets with sample sizes of
n ∈ {100, 150, 200}. We then applied both the proposed
and w/o-pp to assess their powers. The results, presented
in Table 1, demonstrate that the proposed method has
much higher power than the w/o-pp across all datasets for
all sample sizes. Furthermore, the power of the proposed
increases with increasing sample size n.

7. Conclusions
In this study, we introduced a novel framework for testing
the statistical significance of feature selection pipelines in
linear models, comprising multiple MVI, OD, and FS al-
gorithms based on the concept of SI. Our long-term goal
extends beyond this current study to ensure the reproducibil-

ity of data-driven decision-making by accounting for the
entire pipeline from raw data to final results, with this study
on a class of feature selection pipelines serving as a proof
of concept. To achieve this future goal, there are still limita-
tions on the applicable data analysis components, presenting
several challenges in extending the proposed framework to
more complex data analysis pipelines. Additionally, it is in-
teresting to consider extending this framework to scenarios
where data analysis pipelines are automatically constructed
using state-of-the-art AutoML approaches.

100 200 300 400
number of samples

0.0

0.5

1.0

Ty
pe

 I
Er

ro
r R

at
e

proposed
w/o-pp
bonferroni
naive
significance level

0.2 0.4 0.6 0.8
true coefficient

0.0

0.5

1.0

Po
we

r

proposed
w/o-pp
bonferroni

(a) Type I Error Rate and Power of op1 pipeline

100 200 300 400
number of samples

0.0

0.5

1.0

Ty
pe

 I
Er

ro
r R

at
e

proposed
w/o-pp
bonferroni
naive
significance level

0.2 0.4 0.6 0.8
true coefficient

0.0

0.5

1.0
Po

we
r

proposed
w/o-pp
bonferroni

(b) Type I Error Rate and Power of op2 pipeline

100 200 300 400
number of samples

0.0

0.5

1.0

Ty
pe

 I
Er

ro
r R

at
e

proposed
w/o-pp
bonferroni
naive
significance level

0.2 0.4 0.6 0.8
true coefficient

0.0

0.5

1.0

Po
we

r

proposed
w/o-pp
bonferroni

(c) Type I Error Rate and Power of cv pipeline

Figure 3. Type I Error Rate when changing the number of samples
(left side) and Power when changing the true coefficient (right side).
The proposed method (proposed), the ablation study (w/o-pp),
and the Bonferroni method (bonferroni) successfully control
the type I error rate across all settings and pipeline types. Among
the methods that control the type I error rate, the proposed method
has the highest power across all settings and pipeline types.

8

Statistical Test for Feature Selection Pipelines by Selective Inference

Acknowledgements
This work was partially supported by JST CREST
(JPMJCR21D3, JPMJCR22N2), JST Moonshot R&D
(JPMJMS2033-05), RIKEN Center for Advanced Intelli-
gence Project, and RIKEN Junior Research Associate Pro-
gram.

Impact Statement
This work, which focuses on statistical tests for feature se-
lection pipelines, aims to enhance the reliability of AI and
has the potential to broadly influence the machine learning
community. On the other hand, it does not present signifi-
cant ethical concerns or foreseeable societal consequences
because this work is theoretical and, as of now, has no direct
applications that might impact society or ethical considera-
tions.

References
Gas Turbine CO and NOx Emission Data Set.

UCI Machine Learning Repository, 2019. DOI:
https://doi.org/10.24432/C5WC95.

Amazon. Amazon sagemaker autopi-
lot, 2019. URL https://docs.aws.
amazon.com/sagemaker/latest/dg/
autopilot-automate-model-development.
html.

Brooks, T., Pope, D., and Marcolini, M. Airfoil Self-
Noise. UCI Machine Learning Repository, 1989. DOI:
https://doi.org/10.24432/C5VW2C.

Chen, S. and Bien, J. Valid inference corrected for out-
lier removal. Journal of Computational and Graphical
Statistics, 29(2):323–334, 2020.

Cortez, P., Cerdeira, A., Almeida, F., Matos, T., and Reis, J.
Wine Quality. UCI Machine Learning Repository, 2009.
DOI: https://doi.org/10.24432/C56S3T.

Das, D., Duy, V. N. L., Hanada, H., Tsuda, K., and
Takeuchi, I. Fast and more powerful selective infer-
ence for sparse high-order interaction model. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 36(9):9999–10007, Jun. 2022. doi: 10.1609/
aaai.v36i9.21238. URL https://ojs.aaai.org/
index.php/AAAI/article/view/21238.

Drori, I., Krishnamurthy, Y., Rampin, R., Lourenco, R.
d. P., Ono, J. P., Cho, K., Silva, C., and Freire, J. Al-
phad3m: Machine learning pipeline synthesis. arXiv
preprint arXiv:2111.02508, 2021.

Duy, V. N. L., Toda, H., Sugiyama, R., and Takeuchi, I.
Computing valid p-value for optimal changepoint by se-
lective inference using dynamic programming. In Ad-
vances in Neural Information Processing Systems, 2020.

Duy, V. N. L., Iwazaki, S., and Takeuchi, I. Quantifying
statistical significance of neural network-based image
segmentation by selective inference. Advances in Neural
Information Processing Systems, 35:31627–31639, 2022.

Fithian, W., Taylor, J., Tibshirani, R., and Tibshirani, R.
Selective sequential model selection. arXiv preprint
arXiv:1512.02565, 2015.

Gao, L. L., Bien, J., and Witten, D. Selective inference for
hierarchical clustering. Journal of the American Statisti-
cal Association, pp. 1–11, 2022.

Google. Vertex ai, 2021. URL https://cloud.
google.com/vertex-ai/.

Hapke, H. and Nelson, C. Building machine learning
pipelines. O’Reilly Media, 2020.

Hyun, S., G’sell, M., and Tibshirani, R. J. Exact post-
selection inference for the generalized lasso path. Elec-
tronic Journal of Statistics, 12(1):1053–1097, 2018.

Jewell, S., Fearnhead, P., and Witten, D. Testing for a change
in mean after changepoint detection. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 84
(4):1082–1104, 2022.

Le Duy, V. N., Lin, H.-T., and Takeuchi, I. Cad-da: Con-
trollable anomaly detection after domain adaptation by
statistical inference. In International Conference on Arti-
ficial Intelligence and Statistics, pp. 1828–1836. PMLR,
2024.

Lee, J. D. and Taylor, J. E. Exact post model selection
inference for marginal screening. Advances in neural
information processing systems, 27, 2014.

Lee, J. D., Sun, Y., and Taylor, J. E. Evaluating the statistical
significance of biclusters. Advances in neural information
processing systems, 28, 2015.

Lee, J. D., Sun, D. L., Sun, Y., and Taylor, J. E. Exact post-
selection inference, with application to the lasso. The
Annals of Statistics, 44(3):907–927, 2016.

Microsoft. Azure automated machine learning,
2018. URL https://azure.microsoft.
com/en-us/products/machine-learning/
automatedml/#overview.

Rügamer, D. and Greven, S. Inference for l 2-boosting.
Statistics and computing, 30(2):279–289, 2020.

9

https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
https://ojs.aaai.org/index.php/AAAI/article/view/21238
https://ojs.aaai.org/index.php/AAAI/article/view/21238
https://cloud.google.com/vertex-ai/
https://cloud.google.com/vertex-ai/
https://azure.microsoft.com/en-us/products/machine-learning/automatedml/#overview
https://azure.microsoft.com/en-us/products/machine-learning/automatedml/#overview
https://azure.microsoft.com/en-us/products/machine-learning/automatedml/#overview

Statistical Test for Feature Selection Pipelines by Selective Inference

Rügamer, D., Baumann, P. F., and Greven, S. Selective
inference for additive and linear mixed models. Compu-
tational Statistics & Data Analysis, 167:107350, 2022.

Sugimura, P. and Hartl, F. Building a reproducible ma-
chine learning pipeline. arXiv preprint arXiv:1810.04570,
2018.

Suzumura, S., Nakagawa, K., Umezu, Y., Tsuda, K., and
Takeuchi, I. Selective inference for sparse high-order
interaction models. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pp.
3338–3347. JMLR. org, 2017.

Tanizaki, K., Hashimoto, N., Inatsu, Y., Hontani, H., and
Takeuchi, I. Computing valid p-values for image seg-
mentation by selective inference. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 9553–9562, 2020.

Taylor, J. and Tibshirani, R. J. Statistical learning and
selective inference. Proceedings of the National Academy
of Sciences, 112(25):7629–7634, 2015.

Tibshirani, R. J., Taylor, J., Lockhart, R., and Tibshirani, R.
Exact post-selection inference for sequential regression
procedures. Journal of the American Statistical Associa-
tion, 111(514):600–620, 2016.

Tsanas, A. and Xifara, A. Energy Efficiency.
UCI Machine Learning Repository, 2012. DOI:
https://doi.org/10.24432/C51307.

Tsukurimichi, T., Inatsu, Y., Duy, V. N. L., and Takeuchi,
I. Conditional selective inference for robust regres-
sion and outlier detection using piecewise-linear homo-
topy continuation. Annals of the Institute of Statistical
Mathematics, 74(6):1197–1228, 2022. doi: 10.1007/
s10463-022-00846-2. URL https://doi.org/10.
1007/s10463-022-00846-2.

Yang, F., Barber, R. F., Jain, P., and Lafferty, J. Selective
inference for group-sparse linear models. In Advances in
Neural Information Processing Systems, pp. 2469–2477,
2016.

Yeh, I.-C. Concrete Compressive Strength. UCI
Machine Learning Repository, 1998. DOI:
https://doi.org/10.24432/C5PK67.

Yeh, I.-C. Real Estate Valuation. UCI Ma-
chine Learning Repository, 2018. DOI:
https://doi.org/10.24432/C5J30W.

10

https://doi.org/10.1007/s10463-022-00846-2
https://doi.org/10.1007/s10463-022-00846-2

Statistical Test for Feature Selection Pipelines by Selective Inference

A. Pipeline Components
A.1. Missing-Value Imputation (MVI) Algorithm Components

A MVI algorithm component is represented as

fMVI : {X,y,O,M} 7→ {X,y(+),O,M},

where y ∈ Rn′
is the response vector which excludes missing values and y(+) ∈ Rn is the vector with imputed missing

values. MVI algorithms in this paper are linear algorithm in the sense that, using a matrix DX ∈ Rn×n′
that depends on X

are written as y(+) = DXy.

Mean Value Imputation. This method replaces missing values with the mean value of observed data and allows for quick
and easy imputation of missing values. An example of DX for y = (y1, y3, y4)

⊤ (i.e., y2 is missing value and n = 4) is:

DX =


1 0 0

1/3 1/3 1/3
0 1 0
0 0 1

 .

Nearest-Neighbor Imputation. This method replaces missing values with the most similar instance in the dataset. In this
method, similarity between instances is measured by some distance between their feature vectors. As distance measures
ℓ(·, ·), for example, Euclidean, Manhattan, or Chebyshev distance can be used. An example of DX for y = (y1, y3, y4)

⊤

(i.e., y2 is missing value and n = 4) is:

DX =


1 0 0

e⊤j
0 1 0
0 0 1

 , j = argmin
i∈{1,3,4}

ℓ(x2,xi),

where ej is the vector constructed by removing the indices of the missing values (i.e., {2}) from the j-th unit vector in R4.

Regression Imputation. This method replaces missing values with estimated values based on a regression model. We use
the observed instances to estimate the regression coefficients, and then use the estimated coefficients to predict the missing
values from its feature vector. We denote the indices of the missing values as NaN, and the indices of the observed values
as −NaN. The regression coefficients can be estimated as β̂ = (XT

−NaN,:X−NaN,:)
−1XT

−NaN,:y and then each imputed

missing value y
(+)
i , i ∈ NaN can be expressed as y

(+)
i = x⊤

i β̂. An example of DX for y = (y1, y3, y4)
⊤ (i.e., y2 is

missing value and n = 4) is:

DX =


1 0 0
X{2},:(X

⊤
{1,3,4},:X{1,3,4},:)

−1X⊤
{1,3,4},:

0 1 0
0 0 1


A.2. Outlier Detection (OD) Algorithm Components

A OD algorithm component is represented as

fOD : {X,y(+),O,M} 7→ {X,y(+),O′,M},

where O′ is the updated set of outliers.

Cook’s Distance-based OD. This method identifies instances as outliers when Cook’s distance, a measure of the influence
of a particular instance on the entire regression model, exceeds a predefined threshold value. Cook’s distance of the i-th
instance is defined as

Di =

∑n
j=1

(
ŷj − ŷj(i)

)2
dMSE

,

11

Statistical Test for Feature Selection Pipelines by Selective Inference

where ŷj and ŷj(i) are the predicted value of j-th instance from the regression model with and without i-th instance,
respectively, and MSE is the mean squared error of the full model. This Di represents the standardized value of the change
in predictions for all other instances due to the removal of i-th instance, and the larger Di is, the more it affects the model.
By utilizing the leverage value, it can also be represented as

Di =
ε̂2i

dMSE

hii

(1− hii)2
,

where ε̂i is the i-th residual, hii is the i-th leverage value (i.e., the diagonal component of the matrix X(X⊤X)−1X⊤). We
identify the i-th instance as an outlier if Di > λ where λ is a predefined threshold value.

DFFITS OD This method has the same concept as Cook’s distance-based OD but uses DFFITS instead of Cook’s distance
as the measure of influence. DFFITS of the i-th instance is defined as

DFFITSi =
ŷi − ŷi(i)√
MSE(i)hii

,

where ŷi and ŷi(i) are the predicted value of the i-th instance from the regression model with and without the i-th instance,
respectively, MSE(i) is the mean squared error of the regression model without the i-th instance, and hii is the i-th leverage
value. Thus, DFFITS is a value that standardizes the difference between the predicted value when excluding and including a
specific instance, and the larger DFFITSi is, the more it affects the model. By utilizing the external Studentized residual
ri,ext, it can also be represented as

DFFITSi =

√
hii

1− hii
ri,ext.

We identify the i-th instance as an outlier if DFFITS2i > λd/(n− d) where λ is a predefined threshold value and usually
set to 4.

L1 Regression based OD This method identifies instances as outliers by using L1 regularization for the mean-shift model.
In this method, we assume that the unknown true value function µ(X) follows the following mean-shift model:

µ(X) = Xβ + u,

where u ∈ Rn is an outlier term and ui ̸= 0 if the i-th instance is an outlier, otherwise ui = 0. We estimate (β̂λ, ûλ) by
solving the following optimization problem:

(β̂λ, ûλ) = argmin
β∈Rd,u∈Rn

1

2n
∥y(+) −Xβ − u∥22 + λ∥u∥1,

where λ is a predefined regularization parameter. We identify the i-th instance as an outlier if ûλ,i ̸= 0.

A.3. Feature Selection (FS) Algorithm Components

A FS algorithm component is represented as

fFS : {X,y(+),O,M} 7→ {X,y(+),O,M′},

where, M′ is the updated set of features.

Marginal Screening This method selects the k features that are most correlated with the response variable, where k is a
predefined number. The correlation is computed as the absolute value of the inner product |x⊤

j y
(+)| between the normalized

feature vector xj and the response vector y(+).

Stepwise Feature Selection This method selects features by iterating through the steps of adding or deleting the features
that best improve the goodness of fit of the regression model. In this paper, we deal with forward stepwise feature selection,
which only adds features. The residual sum of squares (RSS) of the least squares regression model constructed using the
features selected up to the previous step is used as the goodness of fit of the model. First, a null model (a model consisting

12

Statistical Test for Feature Selection Pipelines by Selective Inference

of an intercept term) is used as an initial state, and in each step, RSS is calculated from the least squares regression model
constructed with the features selected in the previous step and the residual of y(+). After that, select the feature that
minimize RSS and update the model. The algorithm terminates if the RSS is not improved by adding any feature, or if the
number of selected features reaches a predefined upper limit.

Lasso This method selects features by using a linear regression model with L1 regularization. We estimate the regression
coefficient β̂ by solving the following optimization problem:

β̂ = argmin
β∈Rd

1

2n
∥y(+) −Xβ∥22 + λ∥β∥1,

where λ is a predefined regularization parameter. We select the features for which β̂i ̸= 0.

B. Proofs
B.1. Proof of Theorem 3.1

According to the conditioning on QY = Qy , we have

QY = Qy ⇔
(
In′ − η⊤η

∥η∥2

)
Y = Qy ⇔ Y = a+ bz,

where z = T (Y) ∈ R. Then, we have

{Y ∈ Rn′
| MY = My,OY = Oy,QY = Qy}

={Y ∈ Rn′
| MY = My,OY = Oy,Y = a+ bz, z ∈ R}

={a+ bz ∈ Rn′
| Ma+bz = My,Oa+bz = Oy, z ∈ R}

={a+ bz ∈ Rn′
| z ∈ Z}.

Therefore, we obtain

T (Y) | {MY = My,OY = Oy,QY = Qy} ∼ TN(η⊤µ, σ2∥η∥2,Z).

B.2. Proof of Theorem 3.2

By probability integral transformation, under the null hypothesis, we have

pselective | {MY = My,OY = Oy,QY = Qy} ∼ Unif(0, 1),

which leads to
PH0

(pselective ≤ α | MY = My,OY = Oy,QY = Qy) = α, ∀α ∈ (0, 1).

For any α ∈ (0, 1), by marginalizing over all the values of the nuisance parameters, we obtain

PH0
(pselective ≤ α | MY = My,OY = Oy)

=

∫
Rn′

PH0
(pselective ≤ α | MY = My,OY = Oy,QY = Qy)

PH0 (QY = Qy | MY = My,OY = Oy) dQy

=α

∫
Rn′

PH0 (QY = Qy | MY = My,OY = Oy) dQy = α.

Therefore, we also obtain

PH0(pselective ≤ α)

=
∑

My∈2[p]

∑
Oy∈2[n]

PH0
(My,Oy)PH0

(pselective ≤ α | MY = My,OY = Oy)

=α
∑

My∈2[p]

∑
Oy∈2[n]

PH0
(My,Oy) = α.

13

Statistical Test for Feature Selection Pipelines by Selective Inference

B.3. Proof of Theorem 4.1

It is sufficient to consider only z as input to Algorithm 1. In addition, as a notation, we define Gi as the mapping that returns
the last four components of Bi for i ∈ {0, 1, . . . , |V |}, i.e.,

Gi : R ∋ z 7→ (Mi
a+bz,Oi

a+bz, l
i
z, u

i
z) ∈ 2[p] × 2[n] × R2, i ∈ {0, 1, . . . , |V |}

According to the above notation, all we have to show is that G|V |(z) = G|V |(r) for any z ∈ R and any r ∈ [l
|V |
z , u

|V |
z]. We

show this by mathematical induction.

In the case i = 0, it is obvious from the definition of B0 in Algorithm 1 that G0(z) = G0(r) = ([p], ∅,−∞,∞) for any
z ∈ R and any r ∈ [l0z , u

0
z] = [−∞,∞].

Next, we assume that for any fixed i ∈ {0, . . . , |V | − 1}, Gj(z) = Gj(r) for any j ∈ {0, . . . , i}, any z ∈ R and any
r ∈ [ljz, u

j
z]. Under this assumption, noting that pa(i+1) ⊂ {0, . . . , i} from a property of topological sort, it is obvious that

Gi+1(z) = Gi+1(r) for any z ∈ R and any r ∈ [li+1
z , ui+1

z] from the update rule of vi+1 described in §4.3.

C. Details of the Update Rules
Update Rulu for the Node of MVI. The node of MVI imputes the missing values in the response vector a+ bz. All MVI
algorithms considered in this study are expressed as linear transformations determined on the basis of X . Thus, let DX be
the linear transformation matrix, the update rule should be as follows:

(X,a, b, z,M,O, l, u) 7→ (X,DXa, DXb, z,M,O, l, u).

Update Rule for the Node of FS. The node of FS selects the features M′(z) from the dataset (X−O,M,a−O + b−Oz),
which means that feature selection is performed on the dataset extracted from (X,a+ bz) based on M and O. For all FS
algorithms considered in this study, the computation procedure to obtain the interval [lz, uz] ∋ z, which satisfies

∀r ∈ [lz, uz], M′(r) = M′(z),

have been proposed in previous studies (Lee & Taylor, 2014; Tibshirani et al., 2016; Lee et al., 2016). Utilizing this, the
update rule should be as follows:

(X,a, b, z,M,O, l, u) 7→ (X,a, b, z,M∩M′(z),O,max(l, lz),min(u, uz)).

Update Rule for the Node of OD. The node of OD detects the outliers O′(z) from the dataset (X−O,M,aM + bMz),
which means that outlier detection is performed on the dataset extracted from (X,a+ bz) based on M and O. For all OD
algorithms considered in this study, the computation procedure to obtain the interval [lz, uz] ∋ z, which satisfies

∀r ∈ [lz, uz], O′(r) = O′(z),

have been proposed in previous studies (Chen & Bien, 2020). Utilizing this, the update rule should be as follows:

(X,a, b, z,M,O, l, u) 7→ (X,a, b, z,M,O ∩O′(z),max(l, lz),min(u, uz)).

Update Rule for the Node of Union/Intersection of Features/Outliers. The node computes the union or intersection of
selected features or detected outliers. With E being the number of input edges, for each selected feature and detected outlier,
the update rules should be as follows:

{(X,a, b, z,Me,O, le, ue)}e∈[E] 7→ (X,a, b, z,
∑
e∈[E]

Me,O,max
e∈[E]

le, min
e∈[E]

ue),

{(X,a, b, z,M,Oe, le, ue)}e∈[E] 7→ (X,a, b, z,M,
∑
e∈[E]

Oe,max
e∈[E]

le, min
e∈[E]

ue),

where
∑

represents the union or intersection depending on the type of the node.

14

Statistical Test for Feature Selection Pipelines by Selective Inference

D. Details of the Experiments
D.1. Additional Type I Error Rate Results

We also conducted experiments to investigate the type I error rate when the number of features d is changed, and for
the high-dimensional regression setting (i.e., where d ≫ n). For the former case, we changed the number of features
d ∈ {10, 20, 30, 40} and set the number of samples n to 200. For the latter case, we set the number of samples n to 100
and changed the number of features d ∈ {400, 800, 1200, 1600}. It should be noted that, within this experimental setting,
the op2 and op3 pipelines are used, to handle the high-dimensional regression setting. The op3 pipeline is defined by
reversing the order of the L1 regression-based outlier detection (OD) node and the marginal screening feature selection (FS)
node in the op1 pipeline. In both cases, we generated the null datasets in the same way as in the main experiments (§6), and
the results are shown in Figure 4 and Figure 5, respectively.

10 20 30 40
number of features

0.0

0.5

1.0

Ty
pe

 I
Er

ro
r R

at
e

proposed
w/o-pp
bonferroni
naive
significance level

(a) op1

10 20 30 40
number of features

0.0

0.5

1.0
Ty

pe
 I

Er
ro

r R
at

e
proposed
w/o-pp
bonferroni
naive
significance level

(b) op2

10 20 30 40
number of features

0.0

0.5

1.0

Ty
pe

 I
Er

ro
r R

at
e

proposed
w/o-pp
bonferroni
naive
significance level

(c) cv

Figure 4. Type I Error Rate when changing the number of features d. Our proposed method (proposed), the ablation study (w/o-pp),
and the Bonferroni method (bonferroni) successfully control the type I error rate across all settings and pipeline types.

400 800 1200 1600
number of features

0.0

0.5

1.0

Ty
pe

 I
Er

ro
r R

at
e

proposed
w/o-pp
bonferroni
naive
significance level

(a) op2

400 800 1200 1600
number of features

0.0

0.5

1.0

Ty
pe

 I
Er

ro
r R

at
e

proposed
w/o-pp
bonferroni
naive
significance level

(b) op3

400 800 1200 1600
number of features

0.0

0.5

1.0

Ty
pe

 I
Er

ro
r R

at
e

proposed
w/o-pp
bonferroni
naive
significance level

(c) cv

Figure 5. Type I Error Rate for the high-dimensional regression setting. Our proposed method (proposed), the ablation study (w/o-pp),
and the Bonferroni method (bonferroni) successfully control the type I error rate across all settings and pipeline types.

D.2. Effect of Missing Value Probability

We also conducted experiments to investigate the effect of the missing value probability on the type I error rate and power of
the proposed method. In the experiments, we change the missing value probability ρ ∈ {0.03, 0.12, 0.21, 0.30}. For the
type I error rate, we set the number of samples n = 200 and the number of features d = 20. For the power, we set the
number of samples n = 200, the number of features d = 20, and the true coefficients ∆ = 0.4. In both cases, we generated
the datasets in the same way as in the main experiments (§6), and the results are shown in Figure 6.

D.3. Computational Time of the Proposed Method

We also conducted experiments to investigate the computational time of our proposed method by applying it to three types of
pipeline structures (Default, Parallel, and Serial) with large-scale datasets. Default pipeline correspond to the op1 pipeline

15

Statistical Test for Feature Selection Pipelines by Selective Inference

in §6. Parallel and Serial pipelines are defined as in Figure 8, which clarifies the difference from the Default with components
colored in pink. In the experiments, we change the number of samples n ∈ {400, 800, 1200, 1600} with the number of
features d = 80 and the number of features d ∈ {40, 80, 120, 160} with the number of samples n = 800 to generate the null
datasets in the same way as in the main experiments (§6). Note that in this experiment, we recorded the computational time
for a single hypothesis testing (i.e., calculate one p-value) on a single CPU core. The results are shown in Figure 7.

0.03 0.12 0.21 0.30
missing value probability

0.0

0.5

1.0

Ty
pe

 I
Er

ro
r R

at
e

proposed
w/o-pp
bonferroni
naive
significance level

(a) Type I Error Rate

0.03 0.12 0.21 0.30
missing value probability

0.0

0.5

1.0

Po
we

r

proposed
w/o-pp
bonferroni

(b) Power

Figure 6. Type I Error Rate and Power when changing the missing value probability. The proposed method (proposed), the ablation
study (w/o-pp), and the Bonferroni method (bonferroni) successfully control the type I error rate across all settings. Among the
methods that control the type I error rate, the proposed method has the highest power across all settings.

400 800 1200 1600
number of samples

0

100

200

300

400

Co
m

pu
ta

tio
na

l T
im

e
(s

) op1
op1_parallel
op1_serial

(a) Number of Samples

40 80 120 160
number of features

0

25

50

75

100

125
Co

m
pu

ta
tio

na
l T

im
e

(s
) op1

op1_parallel
op1_serial

(b) Number of Features

Figure 7. Computational Time when changing the number of samples and features. The results show that computational time is
exponentially increased as the number of samples increases while the number of features has no obvious effect. Moreover, it seems that
increasing the number of nodes in the pipeline increases the computational time, but how much it increases also depends on the structure.

D.4. Computer Resources

All numerical experiments were conducted on a computer with a 96-core 3.60GHz CPU and 512GB of memory.

D.5. Details of the Real Datasets

We used the following eight real datasets from the UCI Machine Learning Repository. All datasets are licensed under the
CC BY 4.0 license.

• Airfoil Self-Noise (Brooks et al., 1989) for Data1

• Concrete Compressive Strength (Yeh, 1998) for Data2

• Energy Efficiency (Tsanas & Xifara, 2012) for Data3 (heating load) and Data4 (cooling load)

• Gas Turbine CO and NOx Emission Data Set (gas, 2019) for Data5

• Real Estate Valuation (Yeh, 2018) for Data6

• Wine Quality (Cortez et al., 2009) for Data7 (red wine) and Data8 (white wine)

16

Statistical Test for Feature Selection Pipelines by Selective Inference

1:MVI

mean value

2:OD

l1 regression
(soft-ipod)

4:FS

lasso

3:FS

marginal
screening

5:FS

stepwise

6:U-F

union
of features

Parallel 7:FS

lasso

8:FS

stepwise

9:U-F

union
of features

1:MVI

mean value

2:OD

l1 regression
(soft-ipod)

3:FS

marginal
screening

4:FS

stepwise

5:FS

lasso

Serial 6:FS

lasso

7:FS

stepwise

8:U-F

union
of features

Figure 8. Definition of Parallel and Serial pipelines used in Figure 7.

E. Robustness of Type I Error Rate Control
In this experiment, we confirmed the robustness of the proposed method for cv pipeline in terms of type I error rate control
by applying our method to the two cases: the case where the variance is estimated from the same data and the case where
the noise is non-Gaussian.

E.1. Estimated Variance

In the case where the variance is estimated from the same data, we considered the same two options as in type I error rate
experiments in §6 and Appendix D.1; number of samples and number of features. For each setting, we generated 10,000
null datasets (X,y), where Xij ∼ N (0, 1), ∀(i, j) ∈ [n]× [d] and y ∼ N (0, In) and estimated the variance σ̂2 as

σ̂2 =
1

n− d
∥y −X(X⊤X)−1X⊤y∥22.

We considered the three significance levels α = 0.05, 0.01, 0.10. The results are shown in Figure 9 and our proposed method
can properly control the type I error rate.

100 200 300 400
number of samples

0.000.01

0.05

0.10

0.15

0.20

Ty
pe

 I
Er

ro
r R

at
e

alpha=0.05
alpha=0.01
alpha=0.10
significance levels

(a) Number of Samples

10 20 30 40
number of features

0.000.01

0.05

0.10

0.15

0.20

Ty
pe

 I
Er

ro
r R

at
e

alpha=0.05
alpha=0.01
alpha=0.10
significance levels

(b) Number of Features

Figure 9. Robustness of Type I Error Rate Control. Our proposed method can robustly control the type I error rate even when the variance
is estimated from the same data.

E.2. Non-Gaussian Noise

In the case where the noise is non-Gaussian, we set n = 200 and d = 20. As non-Gaussian noise, we considered the
following five distribution families:

17

Statistical Test for Feature Selection Pipelines by Selective Inference

• skewnorm: Skew normal distribution family.

• exponnorm: Exponentially modified normal distribution family.

• gennormsteep: Generalized normal distribution family (limit the shape parameter β to be steeper than the normal
distribution, i.e., β < 2).

• gennormflat: Generalized normal distribution family (limit the shape parameter β to be flatter than the normal
distribution, i.e., β > 2).

• t: Student’s t distribution family.

Note that all of these distribution families include the Gaussian distribution and are standardized in the experiment.

To conduct the experiment, we first obtained a distribution such that the 1-Wasserstein distance from N (0, 1) is l in
each distribution family, for l ∈ {0.01, 0.02, 0.03, 0.04}. We then generated 10,000 null datasets (X,y), where Xij ∼
N (0, 1), ∀(i, j) ∈ [n]× [d] and yi, ∀i ∈ [n] follows the obtained distribution. We considered the two significance levels
α = 0.05, 0.01. The results are shown in Figure 10 and our proposed method can properly control the type I error rate.

0.01 0.02 0.03 0.04
Wasserstein Distance

0.00

0.05

0.10

0.15

0.20

Ty
pe

 I
Er

ro
r R

at
e

skewnorm
exponnorm
gennormsteep
gennormflat
t
significance level

(a) Significance Level 0.05

0.01 0.02 0.03 0.04
Wasserstein Distance

0.00

0.01

0.02

0.03

0.04

Ty
pe

 I
Er

ro
r R

at
e

skewnorm
exponnorm
gennormsteep
gennormflat
t
significance level

(b) Significance Level 0.01

Figure 10. Robustness of Type I Error Rate Control. Our proposed method can robustly control the type I error rate even when the noise
follows non-Gaussian distributions.

F. Automatic Pipeline Construction based on Cross-Validation
In this section, we discuss cross-validation for pipelines. We consider selecting the pipeline P from a given set of candidates
{P1, . . . ,PS} where S is the number of candidates. Note that this formulation is general enough to handle many cross-
validation targets in a unified form. For examples, (i) the case where only changing the regularization strength of lasso node,
(ii) the case where changing the method of missing value imputation, and (iii) the case where changing the all structure of
the pipeline (i.e., type and order of nodes).

Thereafter, we discuss how statistical inference changes when cross-validation is performed and how cross-validation can be
formulated. Then, based on above discussion, Algorithm 1 is extended to be applicable to the case of cross-validation.

F.1. Statistical Inference after Cross-Validation

Changes in Statistical Inference As a formulation of statistical inference after cross-validation, the discussion in §2 and
§3 can be done in exactly the same way, except with two changes: (i) the procedure for computing M and O (in §2 and
§3, M and O are simply the outputs of a given mapping P representing a target pipeline), and (ii) the dependence on the
response vector y of which method to use for missing value imputation. This implies that the procedure for computing the
truncation intervals Z in §4 can not be directly applied to the case of cross-validation.

Formulation of Cross-Validation Procedure We consider the case where K-fold cross-validation is performed. Let
(X,y) be the observed data set and {(Tk, Vk)}k∈[K] be the K types of partition of training and validation sets, which

18

Statistical Test for Feature Selection Pipelines by Selective Inference

satisfies Tk, Vk ∈ 2[n], Tk ∩ Vk = ∅, and Tk ∪ Vk = [n] for any k ∈ [K]. Then, the cross-validation error Es(X,y) for the
pipeline Ps is defined as

Es(X,y) =
∑

k∈[K]

1

|Vk|
∥(Ds

Xy)Vk
−XVk,Ms,k

β̂s,k(y)∥22,

where Ds
X is the linear transformation matrix in the missing value imputation of the pipeline Ps, β̂s,k(y) =(

X⊤
Tk\Os,k,Ms,k

XTk\Os,k,Ms,k

)−1

X⊤
Tk\Os,k,Ms,k

(Ds
Xy)Tk\Os,k

, and (Ms,k,Os,k) is the output of the pipeline Ps with
input (XTk

, (Ds
Xy)Tk

). In K-fold cross-validation, the pipeline Ps∗ is selected to minimize the cross-validation error
Es(X,y), i.e., s∗ = argmins∈[S] Es(X, y).

F.2. Auto-Conditioning for Cross-Validation

To conduct the statistical inference after cross-validation, it is suffice to have the procedure to compute the interval [Lz, Uz]
for any z ∈ R which satisfy

∀r ∈ [Lz, Uz],

argmin
s∈[S]

Es(X,a+ br) = argmin
s∈[S]

Es(X,a+ bz)(:= s(z)),

Ps(z)(X,a+ br) = Ps(z)(X,a+ bz).

If we have this procedure, for any r ∈ [Lz, Uz], the selected features and the detected outliers after selecting the pipeline
by cross-validation from the data set (X,a + br) are invariant. Therefore, the pselective can be computed in exactly the
same way as in §4 only by adding the condition D

s(z)
X = Ds∗

X as well as the condition Ma+bz = My and Oa+bz = Oy.
Hereafter, we provide the above procedure by extending Algorithm 1.

For implementation of the above procedure, we compute two intervals [Lcv
z , U cv

z] and [Lsel
z , U sel

z] for any z ∈ R which
satisfy

∀r ∈ [Lcv
z , U cv

z], argmin
s∈[S]

Es(X,a+ br) = argmin
s∈[S]

Es(X,a+ bz)(:= s(z)),

∀r ∈ [Lsel
z , U sel

z], Ps(z)(X,a+ br) = Ps(z)(X,a+ bz),

respectively, and let Lz = max(Lcv
z , Lsel

z) and Uz = min(U cv
z , U sel

z).

To compute the interval [Lcv
z , U cv

z], we use Algorithm 1 repeatedly. For any (s, k) ∈ [S]× [K] and any z ∈ R, we compute
the interval [L(s,k)

z , U
(s,k)
z] which satisfy

∀r ∈ [L(s,k)
z , U (s,k)

z], Ps(XTk
, (Ds

Xa+Ds
Xbr)Tk

) = Ps(XTk
, (Ds

Xa+Ds
Xbz)Tk

),

by using Algorithm 1 with input (Ps, XTk
, (Ds

Xa + Ds
Xbz)Tk

, z). Thus, if we consider the k-th term of the sum in
Es(X,a+ br) as a function of r, then it becomes quadratic in r on the interval [L(s,k)

z , U
(s,k)
z]. Therefore, on the interval

∩s∈[S] ∩k∈[K] [L
(s,k)
z , U

(s,k)
z], the cross-validation errors {Es(X,a + br)}s∈[S] are all quadratic in r. On this interval

∩s∈[S] ∩k∈[K] [L
(s,k)
z , U

(s,k)
z], the simultaneous inequalities for r

Es(z)(X,a+ br) ≤ Es(X,a+ br),∀s ∈ [S],

with s(z) = argmins∈[S] Es(X,a+ bz) become simultaneous quadratic inequalities, which can be solved analytically to
finally obtain the interval [Lcv

z , U cv
z].

To compute the interval [Lsel
z , U sel

z], we simply use Algorithm 1 with input (Ps(z), X,a, b, z).

G. Examples of Implementations
We show an example of how the pipeline is implemented in our experiments. Listing 2 shows the implementation of the
automatic pipeline construction scheme referred to as cv in the experiments (§6). Note that we can specify the candidates of
the parameters for each operation and perform cross-validation to determine the optimal pipeline by using fit method.

19

Statistical Test for Feature Selection Pipelines by Selective Inference

Listing 2. Code example that defines the automatic pipeline construction scheme referred to as cv in the experiments. We can create an
instance of manager class which handles identically structured pipelines, each with a different hyperparameter set, simply by specifying
each operation and its candidates of parameters in turn (corresponding to option1 multi and option2 multi). Manager instances
can use the OR operator | to create new manager instance which handles all of the pipelines that each instance handles. To perform
hypothesis testing after cross-validation, we can call the fit and inference method of the manager instance sequentially.
import numpy as np
from si4pipeline import *

def option1_multi() -> PipelineManager:
X, y = initialize_dataset()
y = mean_value_imputation(X, y)

O = soft_ipod(X, y, [0.02, 0.018])
X, y = remove_outliers(X, y, O)

M = marginal_screening(X, y, [3, 5])
X = extract_features(X, M)

M1 = stepwise_feature_selection(X, y, [2, 3])
M2 = lasso(X, y, [0.08, 0.12])
M = union(M1, M2)
return construct_pipelines(output=M)

def option2_multi() -> PipelineManager:
X, y = initialize_dataset()
y = definite_regression_imputation(X, y)

M = marginal_screening(X, y, [3, 5])
X = extract_features(X, M)

O = cook_distance(X, y, [2.0, 3.0])
X, y = remove_outliers(X, y, O)

M1 = stepwise_feature_selection(X, y, [2, 3])
M2 = lasso(X, y, [0.08, 0.12])
M = intersection(M1, M2)
return construct_pipelines(output=M)

manager = option1_multi() | option2_multi()
X, y = np.random.normal(size=(100, 10)), np.random.normal(size=100)

manager.tune(X, y, num_folds=2)
M, p_list = manager.inference(X, y, sigma=1.0)

20

