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Abstract

Matrix manifolds play a fundamental role in machine learning, underpinning data represen-
tations (e.g., linear subspaces and covariance matrices) and optimization procedures. These
manifolds adhere to Riemannian geometry, where intrinsic curvature significantly impacts
the performance of geometric learning algorithms. However, traditional visualization meth-
ods based on Euclidean assumptions disregard curvature information, leading to distortions
of the underlying non-Euclidean structure. To address this limitation, we generalize the
popular t-SNE paradigm to the context of Riemannian manifolds and apply it to three
types of matrix manifolds, which are the Grassmann manifolds, Correlation manifolds, and
Symmetric Positive Semi-Definite (SPSD) manifolds, respectively. By constructing a prob-
ability distribution mapping between the original and target spaces, our method transforms
high-dimensional manifold-valued data points into low-dimensional ones, preserving curva-
ture information and avoiding distortion caused by Euclidean flattening. This work pro-
vides a foundation for general-purpose dimensionality reduction of high-dimensional matrix
manifolds. Extensive experimental comparisons with existing visualization methods across
synthetic and benchmarking datasets demonstrate the efficacy of our proposal in preserving
geometric properties of the data.

1 Introduction

Matrix-valued data, such as linear subspaces, correlation matrices, and covariance matrices, naturally reside
on non-Euclidean manifolds. While these descriptors can capture rich geometric and statistical informa-
tion, their curved geometry fundamentally challenges standard visualization tools built upon Euclidean
assumptions. In consequence, there is a growing need for geometry-aware visualization methods capable of
faithfully preserving the intrinsic structure of manifold-valued data, thereby facilitating the development of
non-Euclidean representation learning.

Grassmann manifolds. The Grassmann manifold Gr(d, q) is the set of all q-dimensional linear subspaces
in Rd, which can be represented by d × q orthonormal basis matrix. As a fundamental subspace descriptor,
it frequently appears in algorithms such as linear regression, principal component analysis Knudsen (2001);
Jansson & Wahlberg (1996), low-rank matrix completion Vidal & Favaro (2014), and image set classification
Wang et al. (2020), image fusion Kang et al. (2025). In addition, it demonstrates good performance in
several downstream vision applications, such as action recognition Nguyen & Yang (2023); Chen et al.
(2024), EEG decoding Ingolfsson et al. (2020); Wang et al. (2024), facial recognition Ingolfsson et al. (2020);
Wang et al. (2021), and recommender systems Cao et al. (2016). Nevertheless, visualizing high-dimensional
Grassmannian points remains a key challenge.

Correlation matrices. A correlation matrix is a symmetric matrix that encodes linear dependencies among
variables, with each entry typically representing a Pearson correlation coefficient. Its key property is scale
invariance, making it suitable for settings where absolute magnitudes are irrelevant Thanwerdas & Pennec
(2022); Thanwerdas (2024). Taking the Electroencephalogram (EEG) analysis as an example, two electrodes
may show a strong correlation despite differing signal amplitudes. Since the correlation matrix has the
ability to capture intrinsic geometric relationships independent of scale, it has been widely used in fields
such as brain connectivity analysis Varoquaux et al. (2010), finance Rebonato & Jäckel (2011); Marti et al.
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from grass_imp import Grass_SNE
from cor_imp import Cor_SNE
from spsd_imp import SPSD_SNE
# Visualization : Correlation matrices , Grassmann suspaces , and SPSD matrices
embedding_h , labels , size = get_data ()
# Correlation matrices implemented metrics : ECM , LEM , PHC , OLM
# Grassmannian implemented metrics : Geodesic , Asimov , Binet Cauchy , Chordal , Fubini

Study , Martin , Procrustes , Projection , Spectral
# SPSD matrices implemented metrics : Wasserstein
sne_embedding = run_SNE ( embedding_h , manifold =’Grassmannian ’, metric =’Asimov ’, shape =

size , t_gamma =1, learning_rate =0.05 , max_iter =10000)
plot_low_dim ( sne_embedding , labels )

Figure 1: A concise demo of using our proposed method

(2021), and Gaussian graphical models Lauritzen (1996); Epskamp & Fried (2018). Currently, research on
the visualization of correlation matrices is still in its infancy.

SPSD matrices. An SPSD matrix is a natural superset of SPD matrices, offering greater flexibility when
dealing with low-rank or degenerate structures. SPSD matrices are prevalent in machine learning and statis-
tics, where they commonly appear as kernel matrices and covariance matrices Lanckriet et al. (2004); Huber &
Ronchetti (1981). They are also widely encountered in practical domains such as medical imaging Bonnabel
et al. (2013) and image set classification Faraki et al. (2016). By encoding both geometric and statistical
information, SPSD matrices provide expressive yet compact representations. This applicability makes SPSD
matrices a powerful modeling tool in scenarios where strict positive definiteness of high-dimensional data
cannot be guaranteed. However, this also raises the question of how to visualize the SPSD data points.

It is well known that visualization plays a central role in analyzing learned representations, evaluating model
performance, and characterizing the structure of complex data. Although the aforementioned structured ma-
trices are widely used across artificial intelligence and data science, their inherently non-Euclidean geometry
poses substantial challenges for conventional analytical and visualization techniques. Classical methods like
t-SNE van der Maaten & Hinton (2008), while highly effective for Euclidean data, assume a flat geometric
structure and therefore introduce distortions when applied to curved manifolds. In particular, a point cloud
sampled from a Riemannian manifold cannot be faithfully embedded into Euclidean space without geometric
distortion. This phenomenon is analogous to the well-known impossibility of projecting the Earth, a curved
2D surface, onto a flat map without altering its geometry Mulcahy & Clarke (2001).

To this end, several geometry-aware extensions of t-SNE have been proposed. In hyperbolic settings, CO-SNE
Guo et al. (2022) generalizes t-SNE to the Poincaré disk model to account for negative curvature. Recently,
GrassCaré Li & Pimentel-Alarcón (2024) embeds high-dimensional subspace data into a 2D Poincaré disk,
enabling curvature-aware visualization of Grassmannian representations. However, GrassCaré suffers from a
fundamental curvature mismatch: the Poincaré disk has constant negative curvature, whereas the Grassmann
manifold exhibits non-negative or mixed curvature. As a result, hyperbolic embeddings cannot faithfully
preserve the intrinsic geometry or relational structure of the Grassmannian data.

To address these limitations, our method extends t-SNE into the Riemannian setting, enabling curvature-
aware dimensionality reduction that preserves intrinsic manifold geometry. Specifically, our method produces
interpretable low-dimensional embeddings that respect the structural properties of the Grassmann, Corre-
lation, and SPSD manifolds. For the low-dimensional case of the Grassmann manifold Gr(3, 1), each point
represents a one-dimensional subspace through the origin in R3, which admits a natural visualization as a
unit direction vector on the Grassmann hemisphere. On the Correlation manifold, the fixed-unit diagonal
and degrees of freedom concentrated in the upper triangular part allow meaningful low-dimensional embed-
dings with 3×3 correlation matrices. Similarly, for SPSD matrices, we use 2×2 matrices, whose three degrees
of freedom yield compact yet informative representations. Figure 1 briefly illustrates how our approach is
used.

Our main contributions are summarized as follows:
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• Riemannian t-SNE framework: We propose a principled Riemannian extension of t-SNE tailored
for matrix-valued data residing on three representative matrix manifolds. This method enables
geometry-aware dimensionality reduction and faithful visualization of non-Euclidean data.

• Visualization on the Grassmann manifold: We incorporate four different metrics to capture
diverse geometric properties of subspaces. Our method yields more interpretable and informative
visualizations compared to existing methods that often overlook manifold curvature.

• Visualization on the Correlation and SPSD manifolds: For the correlation and SPSD matrices
(two important yet underexplored subspaces of symmetric matrices), we design multiple metric-based
strategies within our manifold-aware visualization framework. To the best of our knowledge, no prior
work has explicitly explored the visualization problem on these two manifolds.

• Comprehensive Empirical Evaluation: Our proposed method is evaluated across synthetic
data, image sets, EEG signals, and network features. Extensive experimental results demonstrate
its effectiveness in preserving the intrinsic geometric structure of different data manifolds.

2 Related Work

Dimensionality Reduction (DR) is a core task in machine learning, aiming to reveal low-dimensional struc-
tures in high-dimensional data. DR methods are broadly categorized as linear, nonlinear, or Riemannian.

Linear DR methods. These methods project data onto subspaces that preserve key variance or discrim-
inative information. Principal Component Analysis (PCA) Hastie (2009) identifies directions of maximum
variance, while Independent Component Analysis (ICA) Hastie (2009) extracts statistically independent
components. Additionally, Linear Discriminant Analysis (LDA) Izenman (2008), a supervised approach,
seeks projections that maximize class separability.

Nonlinear DR methods. These approaches assume that data lies on a nonlinear manifold and aim to
preserve its intrinsic geometry in the embedding. Representative methods include Multidimensional Scaling
(MDS) Borg & Groenen (2007), Kernel PCA Schölkopf et al. (1997), Locally Linear Embedding (LLE)
Roweis & Saul (2000), Isometric Feature Mapping (ISOMAP) Tenenbaum et al. (2000), Diffusion Maps
(DMaps) Coifman & Lafon (2006), and Uniform Manifold Approximation and Projection (UMAP) McInnes
et al. (2018). These methods seek to preserve the neighborhood or topological relationships during the
embedding.

Riemannian DR methods. These methods generalize DR to data residing on curved manifolds by in-
corporating Riemannian geometry. Principal Geodesic Analysis (PGA) Fletcher et al. (2004) extends PCA
by modeling variance along geodesics. Hessian LLE Goh & Vidal (2008) has also been applied to curved
spaces. In hyperbolic space, HoroPCA Chami et al. (2021) captures hierarchical structure by identifying
informative directions in negatively curved spaces, while CO-SNE Guo et al. (2022) develops t-SNE to the
Poincaré disk for visualizing hierarchical data. For SPD matrices, de Surrel et al. (2025) extends t-SNE and
MDS by introducing Riemannian geometry, such as the Affine-Invariant Riemannian Metric (AIRM) and the
Log-Euclidean Metric (LEM) associated with the SPD manifolds. On the Grassmann manifolds, GrassCaré
Li & Pimentel-Alarcón (2024) embeds subspace data into a 2D Poincaré disk, while GDMaps dos Santos
et al. (2022) generalizes DMaps to the Grassmannian setting by defining appropriate distance measures and
projection kernels.

However, these methods typically map curved manifold-valued data into Euclidean or fixed non-Euclidean
spaces, without explicitly enforcing the preservation of the source manifold’s intrinsic Riemannian structure.
Consequently, geometric properties specific to different curved manifolds may not be fully retained in the
resulting embeddings. Motivated by these limitations, the goal of this paper is to develop a geometry-aware
visualization framework for curved manifolds, enabling geometry-preserved manifold-to-manifold embedding
mapping.
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3 Preliminary

In this section, we briefly introduce these three manifolds.

Grassmann Manifolds. The Grassmann manifold Gr(d, q) is the set of all q-dimensional subspaces of Rd.
It is a smooth, compact manifold of dimension q(d − q) Bendokat et al. (2024). Each subspace on Gr(d, q)
can be represented by a matrix U ∈ Rd×q with orthonormal columns, i.e., U⊤U = Iq, where Iq is the q × q
identity matrix. Different bases of the same subspace are associated by an orthogonal matrix, forming an
equivalence class shown below:

[U ] =
{

Ũ | Ũ = UO, O ∈ O(q)
}

. (1)
We refer to this as the orthonormal basis (ONB) representation and use U and [U ] interchangeably by abuse
of notation.

Correlation Manifolds. A correlation matrix is obtained by normalizing a covariance matrix by its
variances. Given covariance matrix Σ = (Cov(Xi, Xj))1≤i,j≤d, the corresponding correlation matrix has
entries

Cij = Σij√
Σii

√
Σjj

= (Υ−1/2)iiΣij(Υ−1/2)jj , (2)

where Υ = Diag(Σ). This defines a mapping from SPD matrices to full-rank correlation matrices: Σ ∈
Sym+(d) 7−→ Υ−1/2ΣΥ−1/2 ∈ Cor+(d).

SPSD Manifolds. The SPSD manifold S+(p, d) is the set of SPSD matrices of size d × d and rank p ≤ d:

S+(p, d) =
{

S ∈ Rd×d
∣∣S = S⊤, S ⪰ 0, rank(S) = p

}
. (3)

When p = d, it reduces to the SPD manifold. This space admits a quotient structure: S+(p, d) ∼= Rd×p
∗ /Op,

where Rd×p
∗ denotes full-rank matrices. Given any F ∈ Rd×p

∗ , the mapping Φ : FOp 7→ FF ⊤ is well-defined
and induces a smooth bijection between the quotient space and S+(p, d).

4 Riemannian Dimensionality Reduction

t-SNE is a widely used method for nonlinear dimensionality reduction in Euclidean space. It transforms
pairwise distances into conditional probabilities that reflect pointwise similarities. Given a high-dimensional
point xi, the probability of choosing xj as its neighbor is computed by:

pj|i =
exp

(
−∥xi − xj∥2/2σ2

i

)∑
k ̸=i exp (−∥xi − xk∥2/2σ2

i ) , (4)

where σi is the Gaussian variance centered at xi. The symmetric joint probability is then defined as pij =
pi|j+pj|i

2N , where N signifies the number of data points.

To mitigate the “crowding problem" inherent in previous visualization methods such as SNE Hinton & Roweis
(2002), t-SNE introduces a heavy-tailed t-distribution in the low-dimensional data space. This modification
enhances repulsion between dissimilar points and prevents overcrowding in the embedding process. The
low-dimensional similarity between yi and yj is quantified as:

qij =
exp

(
−∥yi − yj∥2)∑

k ̸=i exp (−∥yi − yk∥2) , (5)

where yi denotes the low-dimensional representation of xi.

Finally, t-SNE minimizes the Kullback-Leibler (KL) divergence between the high-dimensional joint distribu-
tion and the low-dimensional distribution:

Considering that t-SNE is unable to be directly used in non-Euclidean space, we propose a Riemannian
extension of t-SNE tailored for structured matrices residing on curved manifolds. Specifically, our proposed
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Figure 2: An example of modeling EEG data onto different matrix manifolds. For simplicity, we omit some
of the preprocessing steps required for EEG data in this figure.

method comprises four key components: (1) manifold-aware data modeling, which embeds the input data
onto their corresponding Riemannian manifolds (e.g., Grassmann, Correlation, and SPSD manifolds); (2)
intrinsic similarity measurement, where Riemannian distances are employed to faithfully quantify pair-
wise relationships; (3) data distribution construction on both the high-dimensional and low-dimensional
manifolds; and (4) geometry-aware optimization for low-dimensional embedding. The following sections
elaborate on each component and describe how they are integrated to form our proposed Riemannian t-SNE
framework.

4.1 Manifold-aware Data Modeling

To leverage our proposed method, the data need to be transformed onto their corresponding matrix manifolds,
firstly. A key observation is that many matrix manifolds used for modeling time-series data or image sets
naturally arise from second-order statistics. In particular, the covariance representation provides a unified,
canonical, and widely adopted way to capture the spatiotemporal dependencies among different data regions,
serving as a common bridge for constructing Grassmannian, Correlation, and SPSD elements Wang et al.
(2024); Hu et al. (2025); Wang et al. For clarity, we illustrate this modeling process using EEG signals
as a typical example. Let X ∈ Rd×T be an EEG trial, in which d and T signify the number of channels
(e.g., electrodes) and the length of time dimension per trial, respectively. Then, the corresponding sample
covariance matrix can be computed by Σ = 1

T −1 X̄X̄⊤, where X̄ denotes the matrix obtained by centering
X along the time dimension.

Accordingly, different manifold embeddings can be utilized to obtain the corresponding manifold-valued data:

• Grassmann Manifold: The column space spanned by the dominant q eigenvectors of Σ defines
a point on Gr(d, q). This is realized by Eigenvalue Decomposition, i.e., Σ = UΛU⊤, where Λ =
diag(σ1, . . . , σd) with σ1 ≥ · · · ≥ σd ≥ 0 and U = [u1, . . . , ud] ∈ Rd×d signify the eigenvalue and the
corresponding eigenvector matrices, respectively. The truncated matrix Uq = [u1, . . . , uq] ∈ Rd×q

spans a q-dimensional linear subspace, represented as [Uq] ∈ Gr(d, q).
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(a) Grassmannian (b) correlation matrices (c) SPSD matrices

Figure 3: Comparison of geodesic and Euclidean distances on different manifolds. (a) Different distances of
a Grassmann manifold. (b) Different distances of a Correlation manifold. (c) Different distances of an SPSD
manifold. Wherein, the red curve denotes the intrinsic geodesic, while the green line indicates the ambient
Euclidean straight line.

• Correlation Manifold: Normalizing Σ by its diagonal yields C = Υ−1/2ΣΥ−1/2, where Υ =
Diag(Σ) is a diagonal matrix consisting of the main diagonal elements of Σ. At this time, C resides
on the Correlation manifold, a submanifold of SPD matrices with unit diagonal entries.

• SPSD Manifold: The covariance matrix Σ is inherently SPSD, encoding either full-rank or low-rank
structure depending on the relationship between d and T . Its rank satisfies rank(Σ) ≤ min(d, T −1).
When T − 1 ≥ d, Σ is typically full-rank and lies in the interior of the SPSD cone Sd

+, i.e., the SPD
manifold Sd

++. When T −1 < d, Σ is rank-deficient and resides on the boundary of Sd
+. In the latter

case, Σ lies on a fixed-rank SPSD manifold.

For an intuitive understanding, please refer to the modeling process in Fig. 2.

4.2 Intrinsic Similarity Measurement

Unlike Euclidean spaces, where distances are computed along straight lines, Riemannian manifolds require
intrinsic geodesic distances that reflect their underlying curvature. As a consequence, Euclidean metrics
cannot be used in the proposed Riemannian t-SNE framework, as they disregard manifold geometry and will
produce distorted similarity measurements (see Fig. 3). To ensure that pairwise relationships are faithfully
reflected, we employ intrinsic Riemannian geodesic distances as the basis for similarity computation.

For the Grassmann manifold, the geodesic distance between two subspaces U1 ∈ Rd×q and U2 ∈ Rd×q is
defined as Ye & Lim (2016):

dgrass(U1, U2) =
(

q∑
i=1

θ2
i

)1/2

, (6)

where θi (i = 1 → q) are the principal angles between two subspaces. These angles are obtained from
the singular value decomposition (SVD) of U⊤

1 U2. Let σi denote the i-th singular value, the corresponding
principal angle is then given by θi = arccos(σi). This distance captures the minimal rotational discrepancy
between subspaces. As it is computed from the principal angles, it respects the underlying Riemannian
geometry of the Grassmann manifold and provides a natural measure of subspace similarity.

For the Correlation manifolds, we adopt the Poly-Hyperbolic-Cholesky (PHC) metric Thanwerdas & Pennec
(2022) to characterize the similarity between any two full-rank correlation matrices:
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dcor(C1, C2) =
(

n∑
i=2

[
arccos

(
−Q

(
L⊤

1i, L′
2i

⊤
))]2

)1/2

, (7)

where L1 = Chol(C1) and L2 = Chol(C2) denote the Cholesky factors of C1 and C2, respectively. Here,
L1i and L2i represent the i-th rows of the lower triangular matrices, and Q(x, y) =

∑k
j=1 xjyj − xk+1yk+1

signifies the Lorentzian inner product.

The PHC metric is derived from the geodesic structure of hyperbolic geometry. To be specific, each correla-
tion matrix is mapped (via its Cholesky decomposition) into a product space of hyperbolic manifolds Hi−1,
where L⊤

1i and L⊤
2i ∈ Ri are interpreted as points in hyperbolic space. Geodesic distances are computed

in this hyperbolic product space and subsequently pulled back to the Correlation manifold via a smooth
diffeomorphism, yielding an intrinsic and geometry-consistent similarity measure.

For the SPSD manifolds, we follow Massart & Absil (2020) and exploit the quotient-geometric distance for
similarity measurement:

dspsd (S1, S2) = [tr (S1) + tr (S2) − 2 tr (S∗)]1/2
, (8)

where S∗ =
(

S
1/2
1 S2S

1/2
1

)1/2
and tr(·) represents the matrix trace. This metric arises from the quotient

geometry of the SPSD matrices, obtained by projecting the horizontal components of the equivalence-class
representatives onto the quotient space. Importantly, the resulting geodesic distance preserves their intrinsic
low-rank structure. In other words, the geodesic curve connecting S1 and S2 remains within the same
fixed-rank stratum, ensuring that the manifold geometry does not artificially increase the rank or alter the
underlying subspace structure.

In addition, several alternative Riemannian metrics are available on both the Grassmann and Correlation
manifolds. Detailed descriptions of them are provided in Appendix A.1 and Appendix A.2. The metrics
introduced above are the primary choices in the proposed framework. In the experiments, we further compare
multiple metrics to assess their influence and to validate the rationale behind our selected benchmark.

4.3 Data Distribution Construction.

A core component of the proposed Riemannian t-SNE framework is the construction of probability distri-
butions that characterize pairwise similarities on curved manifolds. In Euclidean t-SNE, these probabilities
are derived from Gaussian and Student t-distributions. However, they are defined with respect to Euclidean
distance and therefore cannot be directly applied to manifold-valued data. To tackle this limitation, we
replace Euclidean distances with intrinsic geodesic distances and generalize the corresponding probability
distributions accordingly.

We first introduce the Riemannian normal distribution, a natural analogue of the Euclidean Gaussian that
maximizes entropy subject to prescribed expectation and variance Pennec (2006). Given a Fréchet mean µ
and dispersion parameter σ, the distribution takes the following form

N (X|µ, σ2) = 1
Z

exp
(

−δ(X, µ)2

2σ2

)
, (9)

where δ(X, µ) denotes the geodesic distance on the manifold and Z is the normalization constant. This
construction ensures that probability mass is assigned according to the intrinsic geometry of the manifold,
rather than a Euclidean approximation.

To define similarities in the low-dimensional manifold, we extend the Student t-distribution with one degree
of freedom using the same geodesic principle. The resulting distribution is given by

qij = (1 + δ(Yi, Yj)2)−1∑
k ̸=l(1 + δ(Yk, Yl)2)−1 , (10)

where Yi represents the learned low-dimensional embedding of the i-th data point. This heavy-tailed dis-
tribution preserves the desirable separation properties of the original t-SNE, while respecting the manifold
geometry through δ(·, ·).

7



Under review as submission to TMLR

Finally, to align similarities between the high-dimensional and low-dimensional manifolds, we minimize the
KL divergence between the high-dimensional distribution P and the low-dimensional distribution Q.

L =
∑

i

KL(P ∥ Q) =
∑

i

∑
j

pij log pij

qij
. (11)

This objective encourages points that are close in the original manifold to remain close after embedding,
while allowing distant points to be placed more flexibly. In other words, it retains the key behaviors of
Euclidean t-SNE, but reformulated in a manner that is consistent with Riemannian geometry.

4.4 Geometry-aware Optimization.

To obtain the low-dimensional manifold embeddings, we minimize the KL divergence loss L through Rie-
mannian gradient descent. The gradient of L with respect to an embedding Yi is given by

∇Yi
L = 2

∑
j

∂L
∂δij

∇Yi
δij = 4

∑
j

δij(pij − qij)(1 + δ2
ij)−1∇Yi

δij , (12)

where δij denotes the Riemannian distance between Yi and Yj , and ∇Yiδij is the Riemannian gradient of the
distance function.

To illustrate the computation of ∇Yiδij , we consider the Grassmann manifold case using the geodesic distance
in eq. (6). For two subspaces Yi and Yj , let {σℓ} and {uℓ, vℓ} denote the singular values and singular vectors
of Yi

⊤Yj . The Riemannian gradient takes the following form

∇Yi
δij = (I − YiY

⊤
i )
(

q∑
k=1

−θk√
1 − σ2

k

ukv⊤
k Y ⊤

j

)
, (13)

where θk = arccos(σk) are the principal angles, and (I −YiY
⊤

i ) is the orthogonal projection onto the tangent
space TYi

Gr(d, q).

Once the Riemannian gradient is computed, the parameters can be updated along the geodesic on the
Grassmann manifold under the Retraction operation. This can be expressed as:

R(Yi − η∇Yi
L) = ExpYi

(−η∇Yi
L), (14)

where η is the learning rate and Exp(·) signifies the exponential map. Given a tangent vector ∆, the
exponential map is formulated as:

ExpYi
(∆) = (YiV cos Λ + U sin Λ) V ⊤, (15)

where UΛV ⊤ is the SVD of ∆. This update ensures that the embedding remains on the Grassmann manifold
throughout optimization. Additional implementation details are provided in Appendix A.3.

5 Experiments and Results

For each manifold, three types of experiments are conducted to verify the effectiveness of our method:
1) synthetic datasets sampled from a normal distribution, 2)benchmarking datasets, as well as intermediate
representations (network features) extracted from designated layers, and 3) trustworthiness-based evaluation
to quantify the extent to which global and local structures are preserved during dimensionality reduction.

5.1 Experiments on the Grassmann manifold

Setup. We compare our method against three baselines: GDMaps dos Santos et al. (2022), UMAP McInnes
et al. (2018), and t-SNE van der Maaten & Hinton (2008). Both t-SNE and UMAP are widely used nonlinear
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Figure 4: Visualization results of synthesized data points at different Grassmannian distances.

dimensionality reduction methods that rely on Euclidean distances to preserve data distributions in a low-
dimensional space. GDMaps extends diffusion maps to the Grassmann manifold by incorporating manifold-
specific distances and kernels. We adopt the implementations of t-SNE and UMAP in Pedregosa et al. (2011)
with default parameters. For GDMaps, we take the implementation from Li & Pimentel-Alarcón (2024).
Perplexity is an important parameter in t-SNE. In our method, we set it to 3

4 N , where N denotes the number
of data points, consistent with the settings in de Surrel et al. (2025).

Synthetic experiments. To make an intuitive comparison between different distances on the Grassmann
manifold (see Appendix A.1 for their definitions), we visualize synthesized data points using the proposed
method under varying distance choices. Specifically, we simulate 5 point clusters in a 10-dimensional space.
Each cluster contains 20 samples drawn from a Riemannian normal distribution on the Grassmann manifold
Gr(7, 2), where each point is represented as a 7 × 2 column-orthonormal matrix. The cluster centers are
first sampled from a Riemannian normal distribution with unit variance. Around each center, 20 samples

9



Under review as submission to TMLR

(a) Ours (b) GDMaps

(c) UMAP (d) t-SNE

Figure 5: Visualization results of different methods on subspaces of the MNIST dataset.

are generated by adding small Gaussian noise (variance 0.25), followed by orthogonalization to ensure that
these points reside on the Grassmann manifold. The results are shown in Fig. 4.

It can be observed that different distances lead to distinct embedding patterns across clusters. Specifically, the
results in Fig. 4c and Fig. 4d lead to a severe collapse of high-dimensional data points belonging to the same
category into nearly single points in the low-dimensional space. This phenomenon suggests that the projection
and chordal distances fail to preserve the intra-cluster geometric structure, which is unfavorable for faithful
manifold visualization. In contrast, Fig. 4b excessively stretches the intra-cluster structure, resulting in an
over-dispersed embedding that blurs the boundaries between different categories and hinders discriminability.
As expected, Fig. 4a provides a more balanced and structure-preserving visualization. This is because the
geodesic distance corresponds to the length of geodesic curves induced by the canonical Riemannian metric
on the Grassmann manifold. Unlike the chordal and projection distances, which rely on extrinsic Euclidean
embeddings, the geodesic distance is defined intrinsically on the manifold itself. Consequently, it more
faithfully captures the underlying curvature and geometric relationships of Grassmannian data points. Based
on these observations, the geodesic distance is adopted in all subsequent experiments.
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Benchmarking datasets. We further evaluate the proposed method on the MNIST dataset by visualizing
the image groups represented as linear subspaces. Following the preprocessing procedures in Li & Pimentel-
Alarcón (2024), we randomly sample 60 images from each digit class in the training set and form multiple
groups. Each group is processed via Singular Value Decomposition, and the top 3 singular vectors are
retained to construct a rank-3 subspace representation. Given the original image size of 28 × 28, each group
is thus modeled as a point on the Grassmann manifold Gr(784, 3). We sample 50 such subspaces per class.

For ease of observation, the learned low-dimensional embeddings are displayed from a top-down view of the
Grassmann hemisphere. As shown in Fig. 5, both our method and GDMaps produce well-separated clusters
corresponding to different digit classes, whereas UMAP and t-SNE fail to yield clear class separation. This is
mainly because UMAP and t-SNE operate in a flat Euclidean embedding space, which is not well suited for
preserving the intrinsic Riemannian geometry of Grassmannian data, often leading to geometric distortions
during dimensionality reduction.

Although GDMaps preserves global manifold structure by emphasizing diffusion distances, it exhibits lim-
ited discriminability when separating locally similar clusters, resulting in partial overlap among certain digit
classes. This limitation is mainly attributed to the subspace construction stage rather than the diffusion
process itself. Specifically, GDMaps relies on a truncated q-dimensional subspace representation for each
sample prior to diffusion dos Santos et al. (2022). When q is small, geometrically informative directions may
be irreversibly discarded, leading to a distorted Grassmannian geometry and consequently degenerate diffu-
sion embeddings. In contrast, our method avoids hard spectral truncation and preserves local neighborhood
relationships in a geometrically aligned manner, yielding embeddings that are less sensitive to the choice of
subspace dimensionality and more robust for visualization.

Overall, these results demonstrate the effectiveness of our method in producing compact and well-separated
embeddings, particularly for visually similar digit classes.

5.2 Experiments on the Correlation manifold

Setup. For experiments on the Correlation manifolds, we adopt a similar set of baselines as those used
in the Grassmannian setting, including t-SNE and UMAP. Additionally, MDS Borg & Groenen (2007) is
incorporated as a classical baseline. The implementations and hyperparameter settings of all the involved
comparative methods are kept consistent with those used in the previous experiments.

Synthetic experiments. Following the experimental protocol on the Grassmann manifold, we evaluate
the impact of different Riemannian distances on the visualization of full-rank correlation matrices using a
synthetic dataset. It consists of three clusters, each containing 50 samples represented as 5 × 5 correlation
matrices, which reside on a 10-dimensional Correlation manifold. Specifically, these matrices are generated
by sampling from a Riemannian normal distribution with variance 0.2, followed by normalizing the diagonal
entries to enforce unit variance.

The visualization results are illustrated in Fig. 6. It can be observed that the PHC distance yields clearer
separation among different clusters compared to other Riemannian distances. We argue that it is mainly
attributed to the favorable geometric and computational properties of the PHC metric on the Correlation
manifold. In particular, the PHC distance defines a true geodesic metric and induces a non-positively
curved Riemannian structure. Moreover, it admits unique Riemannian means and well-defined logarithmic
mappings, while remaining numerically stable and computationally efficient Thanwerdas & Pennec (2022);
Thanwerdas (2024). Based on these observations, we designate PHC as the benchmark distance on the
Correlation manifold in all subsequent experiments.

Features from a manifold-valued EEG Network. We further evaluate the proposed method on the
MAMEM-SSVEP-II dataset Georgiadis et al. (2016), which contains EEG recordings from 11 subjects. Direct
visualization of raw EEG signals is often unreliable due to their low signal-to-noise ratio and susceptibility
to various nuisance factors, such as sensor noise, power-line interference, and inter-trial as well as inter-
subject variability. These factors can distort the correlation structure and degrade the fidelity of manifold
embeddings. Therefore, on the correlation manifold, we first employ CorAtt Hu et al. (2025), a correlation-
manifold attention network, to extract more stable and discriminative representations, and then perform
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manifold-aware dimensionality reduction on the resulting intermediate geometric features from Subject 11.
Specifically, we collect 100 feature samples evenly from 5 stimulus classes (20 samples per class), where each
sample is a 15 × 15 correlation matrix.

The visualization results obtained by different dimensionality reduction methods are presented in Fig. 7. It
can be seen that our method yields compact and well-separated clusters across the five classes, indicating that
the class-discriminative structure of the manifold-valued features is effectively preserved. Although UMAP
and MDS also exhibit a certain degree of class separation, they typically treat each correlation matrix as an
ordinary data point in Euclidean space, either by directly vectorizing the matrix or by constructing distances
in the vectorized space. In consequence, they do not explicitly account for intrinsic matrix constraints and
geometry (e.g., symmetry and the manifold properties induced by correlation matrices), which may lead to
distortions of the underlying data structure in the low-dimensional embedding.
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Figure 6: The impact of different Riemannian distances on the visualization of correlation matrices on a
synthetic dataset.

12



Under review as submission to TMLR

1

0

1 1

0

1

1

0

1

(a) Ours

20

0

20
50

25

0

25

20

0

20

(b) MDS

4
3

2
1

0
1

2
3

4 4

2

0

2

4

6

0
1
2
3
4
5
6
7

(c) UMAP

120

60

0

60

120

80

0

80

100

50

0

50

(d) t-SNE

Figure 7: Visualization results of the manifold-valued features from an EEG network under different methods.

5.3 Experiments on the SPSD manifold

Setup. To the best of our knowledge, there currently exist no dedicated visualization methods specifically
designed for the SPSD matrices. Since SPSD matrices and SPD matrices share closely related geometric
structures, the SPD-SNE de Surrel et al. (2025) is adopted as a reasonable surrogate baseline. In this case,
we impose a widely used regularization method on the aforementioned covariance matrix Σ, i.e., Σ + ϵI,
to produce the required SPD data points. In parallel, we generate the corresponding SPSD samples via
Eigenvalue Decomposition by retaining the leading components that preserve 95% of the spectral energy. In
addition, we use the official implementation provided in de Surrel et al. (2025) with default parameter settings.
To ensure a fair comparison, our method is configured identically to that in the previous experiments.

Synthetic experiments. On the SPSD manifold, we also conduct a synthetic experiment in a 10-
dimensional setting, where each data point is represented as a 4 × 4 SPSD matrix. Three clusters are
generated, each containing 50 samples drawn from a Riemannian normal distribution with an intra-class
variance of 0.4. The visualization results are shown in Fig. 8.
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Figure 8: Visualizing a set of synthesized data points using the proposed method and SPD-SNE.
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Figure 9: Visualizing EEG signal data using our method and SPD-SNE.

Both methods produce visually meaningful embeddings. However, they exhibit distinct distribution patterns
due to the different geodesic structures they employ. To be specific, SPD-SNE tends to embed data points
toward the interior of the positive definite cone, enforcing strict SPD constraints and resulting in clusters
concentrated away from the boundary. In contrast, our proposed method distributes data points close to
the cone’s boundary, thereby respecting the intrinsic geometry of SPSD matrices and better preserving the
structural characteristics associated with rank-deficient or nearly singular samples.

EEG signal data. To the best of our knowledge, there are currently no established SPSD manifold neural
architectures for EEG representation learning that can serve as a valid baseline. As a result, we directly apply
the proposed visualization method to the raw EEG data for fair and reproducible evaluation. Specifically,
we visualized the raw EEG data of Subject 8 in the BNCI2014001 dataset Tangermann et al. (2012), which
is consistent with de Surrel et al. (2025). The experimental results are shown in Fig. 9.

It can be seen that both methods achieve a clear separation between the two categories. Note that the
two visualizations are not directly comparable in a strict sense, since SPD-SNE assumes full-rank SPD
inputs, whereas our method operates on low-rank SPSD matrices. This difference in matrix constraints

14



Under review as submission to TMLR

and underlying geometry naturally leads to different embeddings. Importantly, in the low-rank regime, our
method preserves local neighborhoods more faithfully, yielding a higher trustworthiness coefficient (Fig. 12).

This improvement is expected because the low-rank SPSD construction suppresses eigen directions dominated
by noise, which otherwise introduce instability into distance-based neighborhood relations. As a result, the
embeddings better preserve local neighborhood structure, leading to higher trustworthiness scores.

5.4 Trustworthiness coefficient evaluation

10% 20% 30% 40% 50%
Percent of neighbors

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
us

tw
or

th
in

es
s

Ours
GDMaps
t-SNE
UMAP

Figure 10: Trustworthiness evaluation on the Grassmann manifold.
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Figure 11: Trustworthiness evaluation on the Correlation manifold.
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Figure 12: Trustworthiness evaluation on the SPSD manifold.

The trustworthiness coefficient quantifies how well neighborhood relationships are preserved during dimen-
sionality reduction. Given a hyperparameter n ∈ [1, k/2], where k is the number of data points, it compares
the rankings of nearest neighbors in the original and embedded spaces, penalizing discrepancies. The score
ranges from 0 to 1, with higher values indicating better local or global structure preservation.

We evaluate the visualization performance by measuring the trustworthiness in previous experiments. Specif-
ically, we assess the benchmarking datasets on the Grassmann manifold, manifold-valued EEG network fea-
tures on the Correlation manifold, and raw EEG signals on the SPSD manifold. Results are shown in Fig. 10,
Fig. 11, and Fig. 12. It can be found that t-SNE and UMAP are not as good as their competitors. The
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basic reason is that both methods are primarily designed for Euclidean data and typically rely on Euclidean
distances. Hence, this will induce a metric mismatch and does not explicitly respect the intrinsic mani-
fold geometry and constraints when applied to manifold data. In consequence, the original local geometric
structure will be distorted during data embedding, leading to reduced trustworthiness.

As discussed in Sec. 5.1, GDMaps relies on a hard truncation of the fixed subspace dimension prior to the
diffusion process, whereas our method preserves local subspace neighborhoods through geometric probability
model alignment. As a result, our approach is less sensitive to the choice of subspace dimensionality and
is more faithful to fine-scale geometric variations. This makes the proposed method more reliable than
GDMaps in evaluating the trustworthiness across different neighborhood sizes.

Moreover, by minimizing global pairwise distance distortion Borg & Groenen (2007), MDS inherently priori-
tizes the preservation of global structure over local neighborhood relationships. This design enables MDS to
achieve relatively high trustworthiness when the neighborhood size n is large. In contrast, our approach can
be regarded as a manifold-valued t-SNE, which explicitly emphasizes the local neighborhood structure on
the underlying manifold. This objective leads to superior trustworthiness performance in the small n regime,
where faithful local neighborhood preservation is most critical. Notably, even for larger neighborhood sizes
(e.g., n approaching k/2), our method remains competitive with MDS, demonstrating a favorable balance
between local fidelity and global consistency.

6 Conclusion

In this paper, we introduce a visualization framework for high-dimensional matrix-valued data defined on
Riemannian manifolds, with particular emphasis on the Grassmannian subspaces, correlation matrices, and
SPSD matrices. By explicitly incorporating intrinsic geodesic distances and curvature-aware probability
distributions, the proposed method effectively preserves both local and global geometric structures during
dimensionality reduction. Extensive experimental results on synthetic data points, benchmarking datasets,
and manifold network features verify that our method consistently outperforms Euclidean geometry-based
baselines as well as existing manifold-specific methods in capturing geometric relationships of manifold data.
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A Appendix

A.1 Distance metrics on Grassmannian manifolds

Metric Riemannian distance
Chordal

(∑k
i=1 sin2 θi

)1/2

Martin
(

log
∏k

i=1 1/ cos2 θi

)1/2

Projection sin θmax

Table 1: Distances on the Grassmann manifold Ye & Lim (2016).

Principal angles are a set of angles that measure the angle between two subspaces. They are calculated
starting from the “closest" direction and can fully describe the relative position of the two subspaces. It can
be defined as follows. Let U1, U2 ⊂ Rd be two subspaces with dimensions dim(U1) = k and dim(U2) = l,
respectively. Define r = min(k, l). The principal angles between U1 and U2 are denoted by

0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θr ≤ π

2 ,

and are defined recursively as follows.

For each i = 1, . . . , r, the i-th principal angle θi is defined via the optimization problem:

cos θi = max
p∈U1, ∥p∥=1, p⊥p1,...,pi−1
q∈U2, ∥q∥=1, q⊥q1,...,qi−1

p⊤q, (16)

where (pj , qj) are the principal vectors associated with the j-th principal angle θj for j < i.

Geometrically, each θi represents the smallest possible angle between directions in U1 and U2 that are
orthogonal to the previously identified principal vectors. Collectively, the principal angles fully characterize
the relative positions of the two subspaces up to rotation, and they can be computed via SVD.

Let U1 ∈ Rd×k and U2 ∈ Rd×l be matrices whose columns form orthonormal bases for U1 and U2, respec-
tively. The principal angles θ1, . . . , θr can be efficiently computed from SVD of the matrix U⊤

1 U2 ∈ Rk×l.
Specifically, let

U⊤
1 U2 = WΣZ⊤,

where Σ = diag(σ1, . . . , σr), with singular values σ1 ≥ · · · ≥ σr ∈ [0, 1]. Then the principal angles are given
by:

θi = cos−1(σi), i = 1, . . . , r. (17)

The associated principal vectors are given by the columns of U1W and U2Z, corresponding to the left and
right singular vectors of U⊤

1 U2, respectively.

Table 1 shows different distance metrics based on principal angles on the Grassmann manifold.

On Grassmann manifolds, common subspace distances include Chordal distance, Martin distance, and Pro-
jection distance. All three can characterize the relative positions between subspaces using principal angles,
but they differ in the geometric features they focus on. Chordal distance considers all principal angles, equiv-
alent to comparing the overall difference between the projection matrices of two subspaces; it is numerically
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stable and insensitive to noise. Projection distance is determined only by the largest principal angle, charac-
terizing the degree of deviation between two subspaces in the direction of greatest inconsistency, suitable for
worst-case scenarios or scenes requiring strong discriminative power. In contrast, Martin distance, through
a nonlinear transformation of the principal angles, emphasizes the differences when subspaces are nearly
orthogonal, is more sensitive to geometric changes, but is relatively complex in numerical computation.

For more details, please refer to Ye & Lim (2016).

A.2 Distance metrics on Correlation manifolds

Metric Riemannian Distance
ECM ∥ϕ(C2) − ϕ(C1)∥F

LEM ∥log(ϕ(C2)) − log(ϕ(C1))∥F

OLM ∥Off (log(C2) − log(C1))∥F

Table 2: Distances on the correlation manifold Thanwerdas & Pennec (2022); Thanwerdas (2024).

The Euclidean-Cholesky metric (ECM) and the log-Euclidean-Cholesky metric (LEM) are both constructed
by mapping correlation matrices to a lower triangular matrix space via the Cholesky decomposition, equip-
ping this space with a Euclidean structure, and pulling the metric back to the original manifold. Both
metrics are flat and geodesically complete, ensuring the uniqueness of the Fréchet mean. ECM directly uses
a Euclidean metric on the Cholesky factors, leading to simple and efficient computations, whereas LEM
applies a logarithmic transform in the Cholesky domain, yielding a scale-adaptive geometry at a slightly
higher computational cost. In contrast, off-log metrics (OLM) rely on a log-Euclidean-type parametriza-
tion that separates diagonal and off-diagonal components without using a triangular factorization. OLMs
preserve permutation invariance and also induce a flat geometry, but differ from ECM and LEM in both
interpretation and numerical behavior. The definitions of these three distances are as follows:

The ECM distance. Let C ∈ Cor+(n) be a full-rank correlation matrix, and denote its normalized
Cholesky factor by

ϕ(C) = Diag(Chol(C))−1Chol(C) ∈ LT1(n), (18)

where Chol(C) ∈ LT+(n) is the unique lower triangular matrix with positive diagonal such that C =
Chol(C) · Chol(C)⊤, and LT1(n) denotes the set of unit-diagonal lower triangular matrices.

The ECM distance between two correlation matrices C1, C2 ∈ Cor+(n) is defined as

dEC(C1, C2) = ∥ϕ(C1) − ϕ(C2)∥F , (19)

where ∥ · ∥F denotes the Frobenius norm. This distance corresponds to the Euclidean norm in the space
LT1(n).

The LEM distance. Let log : LT1(n) → LT0(n) denote the matrix logarithm, which is a diffeomorphism
from the Lie group of unit-diagonal lower triangular matrices LT1(n) to its Lie algebra LT0(n), the space of
strictly lower triangular matrices. The LEM distance between two correlation matrices C1, C2 ∈ Cor+(n) is
defined by

dLE(C1, C2) = ∥log (ϕ(C1)) − log (ϕ(C2))∥F , (20)

where the logarithm is computed in the matrix sense. This metric corresponds to the Euclidean distance in
the logarithmic coordinates of the Lie algebra LT0(n).

Next, we define the off-log distance as the geodesic distance induced by the off-log metric (OLM) on the
manifold of full-rank correlation matrices Cor+(n).
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The OLM distance. Let Log : Cor+(n) → Hol(n) be the off-log diffeomorphism, given by

Log(C) := Off(log(C)), (21)

where Hol(n) denotes the space of symmetric matrices with vanishing diagonal:

Hol(n) := {X ∈ Sym(n) | Diag(X) = 0}. (22)

Given two correlation matrices C1, C2 ∈ Cor+(n), the off-log distance between them is defined by

dOL(C1, C2) := ∥Log(C2) − Log(C1)∥Hol , (23)

where ∥ · ∥Hol is the norm induced by a permutation-invariant inner product on Hol(n). A commonly used
instance is the Frobenius norm:

∥X∥2
Hol = tr(X2), ∀X ∈ Hol(n),

which leads to the following closed-form expression:

dOL(C1, C2) = ∥Off (log(C2) − log(C1))∥F . (24)

This distance is smooth, flat, and invariant under permutations of variables.

These three distance metrics are shown in Table 2. For more details, please refer to Thanwerdas & Pennec
(2022); Thanwerdas (2024)

A.3 Derivation of gradients

We now compute the gradient of the loss function with respect to each embedded point on the Grass-
mann manifold. Recall that the objective function is the Kullback–Leibler divergence between the pairwise
similarities in the high-dimensional and low-dimensional spaces:

C =
∑

i

KL(P ∥ Q) =
∑

i

∑
j ̸=i

pij log pij

qij
,

To compute the gradient with respect to the embedding Yi, we first apply the chain rule:

∇Yi
C = 2

∑
j ̸=i

∂C

∂δij
∇Yi

δij ,

Computing ∂C
∂δij

Let the normalization factor Z be defined as:

Z =
∑
k ̸=l

(
1 + δ2

kl

)−1
,

so that the low-dimensional similarity qij becomes:

qij =
(1 + δ2

ij)−1

Z .
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Rewriting the cost function C, we have:

C =
∑

i

∑
j ̸=i

pij log pij −
∑

i

∑
j ̸=i

pij log
(

(1 + δ2
ij)−1

Z

)
.

The first term is constant with respect to Yi and thus can be ignored in the gradient. Taking derivatives
yields:

∂C

∂δij
= ∂

∂δij

[
pij log(1 + δ2

ij)
]

+ ∂

∂δij

∑
k ̸=l

pkl log Z

 .

The first term evaluates to:

∂

∂δij

[
pij log(1 + δ2

ij)
]

= pij · 2δij

1 + δ2
ij

.

For the second term, since
∑

k ̸=l pkl = 1, and noting:

∂Z
∂δij

= ∂

∂δij

∑
k ̸=l

(1 + δ2
kl)−1

 = − 2δij

(1 + δ2
ij)2 ,

we obtain:

∂

∂δij

∑
k ̸=l

pkl log Z

 = 1
Z ·

(
− 2δij

(1 + δ2
ij)2

)
= − 2δijqij

1 + δ2
ij

.

Therefore, the full derivative becomes:

∂C

∂δij
= 2δij · pij − qij

1 + δ2
ij

.

Computing ∇Yi
δij

Recall that the geodesic distance on the Grassmann manifold is:

δij = d(Yi, Yj) =
(

q∑
k=1

θ2
k

)1/2

,

Then:

∇Yiδ
2
ij = 2

q∑
k=1

θ·
k∇Yiθk.

Since θk = arccos(σk), where σk is the k-th singular value of Y ⊤
i Yj , we obtain:

∇Yi
θk = − 1√

1 − σ2
k

· ∇Yi
σk,
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and from matrix calculus:

∇Yi
σk = ukv⊤

k Y ⊤
j ,

where uk and vk are the k-th left and right singular vectors of Y ⊤
i Yj , respectively.

Combining these results and projecting onto the tangent space of the Grassmann manifold, we obtain:

∇Yiδij = (I − YiY
⊤

i )
(

q∑
k=1

−θk√
1 − σ2

k

ukv⊤
k Y ⊤

j

)
.

Final Expression

Substituting the expressions of ∂C
∂δij

and ∇Yi
δij , we obtain the final gradient of the cost function:

∇YiC = 4
∑
j ̸=i

δij · pij − qij

1 + δ2
ij

· ∇Yiδij .
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