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Abstract

In this work we present successor heads: attention heads that increment tokens1

with a natural ordering, such as numbers, months, and days. For example, succes-2

sor heads increment ‘Monday’ into ‘Tuesday’. We explain the successor head be-3

havior with an approach rooted in mechanistic interpretability, the field that aims4

to explain how models complete tasks in human-understandable terms. Existing5

research in this area has found interpretable language model components in small6

toy models. However, results in toy models have not yet led to insights that explain7

the internals of frontier models and little is currently understood about the internal8

operations of large language models. In this paper, we analyze the behavior of9

successor heads in large language models (LLMs) and find that they implement10

abstract representations that are common to different architectures. They form11

in LLMs with as few as 31 million parameters, and at least as many as 12 bil-12

lion parameters, such as GPT-2, Pythia, and Llama-2. We find a set of ‘mod 10’13

features1 that underlie how successor heads increment in LLMs across different14

architectures and sizes. We perform vector arithmetic with these features to edit15

head behavior and provide insights into numeric representations within LLMs.16

Additionally, we study the behavior of successor heads on natural language data,17

identifying interpretable polysemanticity in a Pythia successor head.18

1 Introduction19
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Figure 1: A successor head with OV matrix WOV maps numbered tokens in embedding space
(e.g. ‘Monday’) to their successor values in unembedding space (e.g. ‘Tuesday’). The circuit con-
sists of the embedding matrix, the first MLP block, one attention head, and the unembedding matrix.

Mechanistic interpretability [2] is the process of reverse-engineering the algorithms that trained neu-20

ral networks have learned. Recently, much attention has been paid to interpreting transformer-based21

large language models (LLMs), as while these models have demonstrated impressive capabilities22

[3], there is little understanding of how these models produce their outputs. Existing interpretability23

1Here, following Elhage et al. [1], a ‘feature’ refers to an interpretable (linear) direction in activation space.
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research includes comprehensive reverse-engineering efforts into toy models [4] and small language24

models [5, 6], though few insights have been gained about how frontier LLMs function.25

In mechanistic interpretability, universality [7, 8] is a hypothesis that there are common representa-26

tions in neural networks – specifically, that neural networks with different architectures and scales27

form common internal representations. In this work, we use abstraction to refer to how common28

representations are used for different tasks models perform. Strong evidence for (or against) the29

universality hypothesis and task abstraction could significantly affect research priorities in inter-30

pretability. If common representations form across different language models and tasks, then re-31

search on small or toy language models [1, 9] and narrow tasks [6, 10, 11] may be the best way to32

gain insights into LLM capabilities. Conversely, if the representations used by language models do33

not generalize to different model scales and/or tasks, then developing methods that can be applied to34

larger language models and don’t rely on lessons from small models generalizing (such as Wu et al.35

[12], Bills et al. [13], Conmy et al. [14]) may be the most important direction for interpretability.36

In this work, we find an interpretable set of attention heads we call successor heads in models of37

many different scales and architectures. Successor heads are attention heads that perform incre-38

mentation in language models. The input to a successor head is the representation of a token in an39

ordinal sequence such as ‘Monday’, ‘first’, ‘January’, or ‘one’. The output of a successor head as-40

signs a higher likelihood to the incremented token, such as ‘Tuesday’, ‘second, ‘February’, or ‘two’.41

We find successor heads in the smaller and larger Pythia language models [15] with between 3042

million and 12 billion parameters. We can understand the role of successor heads through a simple,43

end-to-end path through language models (Figure 1) and we identify transferrable features that these44

attention heads use across different tasks (Section 3). In our work, we find evidence for a weak form45

of universality ([16]; points 1. and 2.) as well as abstraction (point 3.) in language models, as46

1. Successor heads use a common representation, such as a linear mod-10 features.47

2. Successor heads form in LLMs with as few as 31M and as many as 12B parameters.48

3. Successor heads perform incrementation across several different tasks.49

Related work is discussed in Appendix P. Our contributions can be summarised as follows:50

1. Introducing and interpreting successor heads (Section 2-3)51

(a) We introduce and explain successor heads, which to the best of our knowledge are the most52

closely studied components in LLMs that occur in both small and large models.53

(b) Using findings from 3., we edit successor heads’ numeric inputs with vector arithmetic.54

2. Showing that the succession mechanism is important in the wild (Appendix J)55

(c) We show that successor heads play an important role in incrementation-based tasks in natural56

language datasets – for instance, predicting the next number in a numbered list of items.57

3. Finding abstract numeric representations in language models (Section 3)58

(d) We isolate a common numeric subspace within embedding space, that for any given token59

(e.g. ‘February’) encodes the index of that token within its ordinal sequence (e.g. months).60

(e) Moreover, we find that this numeric subspace has interpretable features, as an unsupervised de-61

composition of token representations yields a crucial set of features we call the mod-10 features62

{f0, ..., f9}. fn is present in all tokens whose numerical index ≡ n (mod 10), e.g. f2 is present63

in the model’s representations of ‘2’, ‘32’, ‘172’, ‘February’, ‘second’ and ‘twelve’.64

2 Successor Heads65

LLMs are able to increment elements in an ordinal sequence. For instance, Pythia-1.4B will com-66

plete the prompt “If this is 1, the next is” with “ 2”, and the prompt “If this is January, the next is”67

with “ February”. Given this observation, we find evidence for attention heads within LLMs (which68

we refer to as successor heads) responsible for performing this type of incrementation. To get evi-69

dence for successor heads we require three definitions: i) the succession dataset of tasks involving70

abstract numeric representations, ii) an effective OV circuit to measure how attention heads affect71

model outputs, and finally iii) successor score.72

The succession dataset consists of tokens from eight different ordinal sequences such as numbers,73

days and months (see Appendix Q for more details). We also include different forms of the tokens,74
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as language model tokenizers often have several tokens corresponding to the same word, such as75

words with/without a space at the start being different tokens.76

We determine whether attention heads perform succession by studying their effective OV circuit,77

which measures how the direct effect of input tokens when multiplied by an OV matrix WOV . The78

(non-effective) OV circuit WUWOV WE (1) from Elhage et al. [9] is the inspiration for our effective79

OV circuit WUWOV MLP0(WE) (2). Intuitively, (2)’s columns represent input tokens to the head80

and the rows represent the logits on each possible output token. We then operationalize successor81

heads by considering an input token T from our succession dataset (e.g. ‘Monday’). If the effective82

OV circuit column for input T has a larger output on the successor to T (‘Tuesday’) than on any other83

of the tokens in that task (‘Monday’ or ‘Wednesday’ or ‘Thursday’ ...) then we consider the head84

to have performed succession in this case. Successor Heads are then defined as the attention heads85

that pass this test for more than half of the tokens in the succession dataset. We call the proportion86

of succession dataset tokens on which an attention head performs succession the succession score.87

We plot successor scores across models of varying size in Figure 2.88

To better understand the role successor heads fulfill in real datasets, we perform a case study of89

the successor head L12H0 in Pythia-1.4B (see Appendix J): we find the head displays interpretable90

polysemanticity, performing incrementation but also copying, acronym, and greater-than behaviour.91
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Figure 2: Plots of successor scores (proportion of tokens where succession occurs) for each model
tested. A plot of the highest successor score observed across all attention heads for each model
tested (left) and successor scores of the best successor heads in models (Pythia-1.4B, GPT-2 XL,
Llama-2 7B) across different tasks (right).

3 Decomposing Numeric Representations92

In the rest of this work, we perform a case study on the attention head (L12H0) with the maximal93

successor score in Pythia-1.4B. (Note that we also observe similar results across other models too –94

see Appendix C.3.) In Section 3.1, we find evidence for the existence of a shared numeric subspace95

within MLP0 representation-space. In Section 3.2, we find ‘mod-10 features’ in a decomposition of96

these representations, and we use these features to steer model behavior across different tasks.97

3.1 Ordinal sequences are represented compositionally98

We find evidence that ordinal sequences share a numeric subspace encoding the index of a token99

within its ordinal sequence. These findings are described in Appendix A.100

3.2 Exploring mod-10 features101

Finding mod-10 features. Now, given this evidence for a shared numeric subspace, a natural ques-102

tion to ask is whether these numeric embeddings themselves have any structure. To answer this103

question, we train a Sparse Autoencoder (SAE) (Ng [17], Elhage et al. [1], and Cunningham et al.104
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[18]) to recover the significant features across all tasks using reconstruction loss on the MLP0 out-105

puts (see Appendix C for more details).Given a number token T and trained SAE, we define T ’s106

most important feature as the SAE feature that, when ablated from the MLP0 output reconstruc-107

tion, causes the biggest decrease in the probability of the successor of T (by calculating probabilities108

from the logits obtained by multiplying by WUWOV ).109

We find that the most important feature for a number is usually a common feature across other num-110

bers in the same mod-10 class (on average, the most common feature in a mod class is shared by 5.85111

numbers out of the 10). For example, most numbers amongst 3, 13, ..., 93 share the same important112

feature. This property gives rise to a mod-10 pattern in feature activations across the numbers, when113

we visualize the components of each most important feature across all the input prompts (Figure 3).114

We also verify that these mod-10 features have causal importance for the successor head’s incre-115

mentation: multiplying these features by WUWOV (in Figure 4) shows strong modulo 10 bands that116

are shifted by one to show that the successor head increments these features.117

To define the mod-10 features we take the modal most important SAE feature for tokens within a118

particular mod class, and average this feature over 100 training runs, denoting the resulting features119

f0, . . . , f9. We can then multiply these features by WUWOV to study their effect on logits, as shown120

in Figure 5. We find unsurprisingly that fi increases the logits on fi+1 (mod 10). Further, the increase121

on logits for single-digit numbers is larger than the increase in logits for double-digit numbers.122

Transferability of mod-10 features. Are our mod-10 features simply an artifact of the SAE tech-123

nique? We provide evidence that the mod-10 features are natural, causally important features by124

using two independent methods to recover them; (1) linear probing and (2) identifying MLP0 neu-125

rons. We also show that the features transfer to other tasks in the succession dataset (Section 2).126

These findings are described in Appendix F.127

Arithmetic with mod-10 features. The generalization of the linear probe to unseen numeric tasks128

provides us with evidence that there is a shared mod 10 structure across tasks. In this section, we129

stress test our understanding of this shared structure by trying to alter the index of ordinal sequence130
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tokens via vector arithmetic with the mod 10 features. For example, we expect MLP0(WE(‘fifth’))−131

f5 + f7 (3) to be causally used by the model in a similar way to how the model would use a132

representation of the token ‘seventh’. We use the successor head to test this hypothesis. If (3)133

behaves like MLP0(WE(‘seventh’)), we would expect that multiplying (3) by WUWOV attributes134

more logits on ‘eighth’ than any of the other tokens from task 2 in the succession dataset (Section 2).135

Indeed, this is correct as indicated by the circled checkmark ✓ in Figure 6. We can perform a similar136

experiment with all tokens in the succession dataset and with features other than f7 added. The cases137

where the max logits are on the successor token are check-marked in Figure 6. We describe the138

experiment in more detail in Appendix G. We find that when the mod 10 addition feature is larger139

than the source value (modulo 10), vector arithmetic works on 53% (for months) and 89% (for digits140

20-29) of cases. Below the diagonal, we see mostly failures, and we find that this is due to successor141

heads possessing a greater-than bias, described in Appendix H.142

0 1 2 3 4 5 6 7 8 9
20 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

21 ✓ ✓ ✓ ✓ ✓ ✓ ✓

22 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

23 ✓ ✓ ✓ ✓ ✓ ✓

24 ✓ ✓ ✓ ✓ ✓ ✓

25 ✓ ✓ ✓ ✓ ✓

26 ✓ ✓ ✓

27 ✓

28 ✓ ✓

29 ✓

ten ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

eleven ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

twelve ✓ ✓ ✓ ✓ ✓ ✓

thirteen ✓ ✓ ✓ ✓ ✓ ✓ ✓

fourteen ✓ ✓ ✓ ✓ ✓

fifteen ✓ ✓ ✓ ✓ ✓

sixteen ✓ ✓ ✓ ✓ ✓

seventeen ✓ ✓ ✓ ✓

eighteen ✓ ✓ ✓

nineteen ✓ ✓ ✓

twenty ✓ ✓

1 2 3 4 5 6 7 8 9 0
January ✓ ✓ ✓

February ✓ ✓ ✓

March ✓ ✓ ✓

April ✓ ✓ ✓

May ✓ ✓ ✓

June ✓ ✓ ✓ ✓ ✓ ✓

July ✓ ✓ ✓

August ✓ ✓

September ✓ ✓ ✓

first ✓ ✓ ✓ ✓

second ✓ ✓ ✓ ✓

third ✓ ✓ ✓ ✓ ✓

fourth ✓ ✓ ✓ ✓

fifth ✓ ✓ ✓ ✓

sixth ✓ ✓ ✓ ✓

seventh ✓ ✓ ✓

eighth ✓ ✓ ✓

ninth ✓

Figure 6: Table displaying in which cases where vector arithmetic such as (3) are successful. Rows:
source tokens. Columns: target residues modulo 10.

4 Conclusion143

In this work, we discovered and interpreted a class of attention heads we call successor heads. We144

showed these heads increment tokens like numbers, months, and days partly by mapping them to145

an abstract mod-10 numeric representation. We provided evidence that successor heads exhibit a146

weak form of universality, arising in models across different architectures and scales, and using147

similar underlying mod-10 features in all cases. Additionally, we validated our understanding by148

demonstrating that a successor head reduced the loss on training data by predicting successor tokens.149

Additional findings that stemmed from our work include:150

1. Finding a greater-than bias, where a language model was much more likely to predict nu-151

meric answers larger than the values in the prompt, compared to smaller values than tokens152

present in the prompt, that was observable by a weights-level analysis.153

2. Surprisingly interpretable individual MLP0 neurons on this narrow task.154

3. A novel example of attention head polysemanticity (successor heads predicting acronyms).155

Findings 1-3 could prompt further future work into how language models represent numeric con-156

cepts, particularly as 2 and 3 were surprising given existing evidence from existing work. Our work157

in finding a language model component that arises in models of many different scales (and uses158

abstract underlying numeric representations) may be a valuable contribution toward understanding159

the inner workings of frontier LLMs.160
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A Factoring ordinal sequences253

Let is denote the ith token in ordinal sequence s (such that e.g. 2Month corresponds to the token254

‘February’), and let JisK = MLP0(WE(is)) denote the model’s internal representation of token is255

(the output of MLP0 in Figure 1). Given successor heads S = WOV can increment tokens si from a256

range of ordinal sequences s (e.g. numbers, months, days of the week), one might hypothesise that257

numeric representations have compositional structure – i.e. that information about a token’s position258

i in its ordinal sequence is encoded independently from information about which ordinal sequence259

s it comes from. More precisely, we claim that we can decompose representations JisK into features260

vi living in some ‘index space’ and vs living in some ‘domain space’, such that JisK = vi + vs.261

Method. To test this compositionality hypothesis, we wish to learn two linear maps – an index-space262

projection πN : Rdmodel → Rdmodel and a domain-space projection πD : Rdmodel → Rdmodel – such that,263

for all pairs of tokens is and jt (with it a valid token), ˆJitK := πN(JisK) + πD(JjtK) ≈ JitK. To do264

so, we enforce that πN + πD = I , and ensure predicted representations ˆJitK ‘behave like’ ground265

truth representations JitK for randomly sampled pairs of tokens is and jt – in other words, that there266

is low L2-distance between ˆJitK and JitK, that ˆJitK decodes to it (output-space decoding), and that267

S(JitK) decodes to (i+ 1)t (successor decoding). For full experimental details see Appendix B.268
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Table 1: A table presenting top-1 predicted tokens (under output-space projection and successor
decoding) from representations πD(1s) + πN(iRom). Green cells denote predictions which match
their target exactly; yellow cells denote predictions which match their target modulo formatting (e.g.
‘six’ rather than ‘6’); red cells denote incorrect predictions.

Results. On our held-out dataset of token pairs, we obtained a top-1 output-space decoding accuracy269

of 1.00, and a top-1 successor decoding accuracy of 0.90.2 To explore out-of-distribution perfor-270

mance, we also test whether πN can project out the numeric component of Roman numerals (which271

weren’t in the successor dataset), by taking Roman numerals iRom ∈ {‘I’, ..., ‘XII’} and tokens 1s272

from sequences s in the successor dataset, and testing whether πD(1s) + πN(iRom) decodes to is.273

We present the top-1 predicted tokens (under both output-space and successor decoding) in Table 1.274

Observe that, while output-space decoding yields perfect top-1 accuracy (apart from i ∈ {1, 5, 10},275

which we can attribute to the Roman numerals I, V and X being single-letter and impossible to dis-276

ambiguate from 9Letter, 22Letter and 24Letter), successor decoding achieves an accuracy of 0.125 (or277

0.29 if we allow for incorrectly formatted predictions).278

These results – in particular, our ability to project the numeric component out of tokens from unseen279

sequences and transfer indices across domains – suggest that there is a shared numeric subspace280

storing the index of a token within its ordinal sequence. Indeed, informal testing suggests that this281

numeric subspace may be interpretable even for tokens not part of an ordinal sequence: for instance,282

d(πN(J‘ triangle’K) + πD(1Num)) yields 3Num, and d(πN(J‘ week’K) + πD(1Num)) yields 7Num.283

Despite this, the drop in performance when applying the successor head to our constructed repre-284

sentations (and in particular, the leakage of Roman-numeral information into πD(1s) + πN(iRom) –285

notice the VII and VIII in Table 1) suggests our numeric projection πN might be capturing slightly286

more than just the numeric subspace. Specifically, there may be some components of domain-space287

which are ignored by output-space decoding, but which our successor head lifts into output-space.288

B Training details for compositionality experiments289

Remark: obtaining a decoding function. Recall that we wish to learn two linear maps – an index-290

space projection πN : Rdmodel → Rdmodel and a domain-space projection πD : Rdmodel → Rdmodel – such291

that, for all pairs of tokens is and jt (with it a valid token), ˆJitK := πN(JisK) + πD(JjtK) ≈ JitK.292

To evaluate the above identity, we want a decoding function d : Rdmodel → Logits, such that293

d(JisK) = is. Given the informal observation that directly unembedding JisK yields next-token294

predictions for is, whereas unembedding S(is) yields (i+1)s, we hypothesise that the unembedding295

matrix WU reads from some ‘output space’ O and the embedding transform J·K writes to some ‘input296

space’ I – and that the successor head reads from I and writes to O. Indeed, when training an297

output-space projection πO : I → O over tokens in the vocabulary such that WU (πO(JisK)) = is,298

2Note that, as our successor dataset contains 1041 tokens, a random classifier (even when restricted to tokens
in the successor dataset) would achieve an accuracy of 0.001.
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we obtain 97.4% top-1 accuracy on a set of 1000 held-out tokens – which both confirms the output-299

space hypothesis, and gives us a decoding function d(x) = WU (πO(x)).300

Method. With our decoding function in hand, we can train πN and πD to satisfy our identity.301

Specifically, we define πN and πD to be matrices such that πN + πD = I . For valid token pairs is302

and jt, we obtain predicted representations ˆJitK = πN(JisK)+πD(JjtK), and minimise a combination303

of ‘closeness metrics’:304

|| ˆJitK − JitK||2 + L(WU (πO( ˆJitK)), it) + L(WU (S( ˆJitK)),WU (S(JitK)))

for L the cross-entropy loss. Specifically, we ensure that predicted and ground truth representations305

‘behave in the same way’ – in other words, that they are close together, that predicted representations306

ˆJitK decode to tokens it (output-space decoding), and that the logit distribution when decoding in-307

cremented predicted representations S(JitK) matches that when decoding incremented ground truth308

representations S(JitK) (successor decoding).309

More succinctly, we can frame the training procedure as learning πN, πD such that the following310

diagram commutes:311

RN ×RD I

I × I Logits[N×D] N×D I

(N×D)× (N×D) N×D
⟨π1◦π1,π2◦π2⟩

J·K×J·K

πN×πD

(+)

WU◦S◦J·K

idIWU◦S

J·K

WU◦πO

idN×D

We trained for 10 epochs over valid token pairs sampled from the succession dataset, and evaluated312

on a held-out dataset of 500 randomly-sampled token pairs.313

C Sparse auto-encoders314

C.1 Definition315

We refer to a single-layer autoencoder with a sparsity regularization term in its loss as a sparse316

auto-encoder.317

For a dataset generated from a set of underlying vectors (each dataset example is a sparse linear318

combination of such vectors), it has been empirically observed [19, 18] that sparse auto-encoders are319

capable of retrieving the underlying set of vectors. We hope to obtain a set of sparse, interpretable320

features from the SAEs that decompose some of the structure of MLP0 space that we can use to321

analyze the way numeric operations are performed.322

C.2 Training process for mod 10 features323

Training a sparse auto-encoder with D features and regularization coefficient λ on a dataset of tokens324

in MLP0 space results in a map F : str → (Rd × R+)
D, with F (x) = {(f1, a1), . . . , (fD, aD)},325

mapping a token to a set of feature and feature-activation pairs, with reconstruction R(x) =326 ∑D
i=1 aifi.327

We train the SAE using number tokens from 0 to 500, both with and without a space (‘123’ and328

‘ 123’), alongside other tasks, such as number words, cardinal words, days, months, etc. 90% of329

these tokens go into the train set, and the remaining 10% to the validation set. Even with the other330

tasks, the dataset is dominated by numbers, but creating a more balanced dataset would give us less331

data to work with, and without enough data, the SAE fails to generalize to the validation set. Hence,332

we only concern ourselves with the features that the SAE learns for number tokens, and we then333
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Figure 7: SAE plots for Pythia-2.8b analogous to Figure 3, Figure 4, and Figure 5

separately check whether these features generalize to the other tasks on the basis of logits, rather334

than SAE activations.335

We used the hyperparameters D = 512 and λ = 0.3, with a batch size of 64, and trained for 100336

epochs. To find these hyperparameters, we used the metric of mean max cosine similarity between337

two trained SAEs, as described in Sharkey, Braun, and Millidge [19] and Cunningham et al. [18].338

C.3 Universality of mod-10 results339

We also observe the mod 10 structure via SAEs across models other than Pythia-1.4B, without any340

finetuning of SAE parameters to these models. We reproduce the SAE figures seen in Section 3.2 for341

other models, with Appendix C.3 for Pythia-2.8B, and Appendix C.3 for celebrimbor-gpt2-medium-342

x81.343

D Linear probing344

We train a linear probe to predict the mod 10 value of tokens. Specifically, we train on number345

tokens from ‘0’ to ‘500’, both with and without a space, assigning 90% of tokens to a train set, and346

the remaining 10% to a valid set. We use a learning rate of 0.001, and a batch size of 32, for 100347

epochs.348

We then evaluate on a dataset of unseen tasks, including number words (from ’one’ to ’nineteen’),349

placements, numerals, months, days, and any valid spaced and capitalized variants. Out of the total350

102 such examples, 94/102 are correct, and the 8 failures are: [‘January’, ‘December’, ‘Friday’,351

‘Saturday’, ‘Sunday’, ‘ V’, ‘ X’, ‘ XV’].352
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Figure 8: SAE plots for celebrimbor-gpt2-medium-x81 analogous to Figure 3, Figure 4, and Figure 5

The failures of 3 out of 7 days are consistent with our inability to interpret the day task well with353

our mod 10 features. Additionally, we see ‘January’ and ‘December’ as failure cases, which is also354

consistent with our finding that there does not seem to be a mod 10 feature that corresponds to any355

of them: f1 behaves as ‘November’ rather than ‘January’, and f2 as ‘February’.356

E MLP0 neurons357

In our MLP0 neuron experiments, we do the following: for each T ∈ {‘0’, ‘1’, . . . , ‘99’}, we ablate358

each neuron from the final activation in MLP0 (the final activation is just before the final linear layer359

of MLP0), and store the probability attributed to the successor of T after passing the modified (due360

to ablation) MLP0 output through the successor.361

Averaging the correct probabilities across all 100 prompts then gives an averaged correct probability362

for each neuron after ablation. We then look at the intensities and logits (across number tokens) for363

neurons with the lowest correct probability after ablation, meaning they have the most impact on364

successorship when ablated. This gives us the plots seen in Figure 9.365

F Transferability of mod-10 features366

(1) Linear probing: we train a linear probe to predict the mod-10 value across numbers from367

their MLP0 representations. We find that the ith row of the linear probe matrix has a high cosine368

similarity (on average 0.70764) to the corresponding mod-10 feature fi obtained with the SAE. This369

suggests that the features fi are likely to be directly finding the mod-10 value of input tokens rather370

than picking up on a property that is correlated with mod classes. Further, the probe generalizes,371
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Figure 9: Some examples of neurons firing strongly in modulo 10 patterns out of the top 16 most
important MLP0 neurons for successorship.

correctly predicting the mod-10 value for 94/102 examples from the succession dataset tasks 2-8372

(Section 2). Appendix D describes our full experimental setup.373

(2) MLP0 neurons: we perform ablative experiments on individual MLP0 neurons to find the most374

important neurons for successorship across numbers, as measured by probability decrease as in the375

SAE experiments. This reveals neurons that strongly fire in a mod-10 pattern, which is the most376

common frequency amongst the top 16 most important neurons. Some examples of such neurons in377

the top 16 most important neurons can be seen in Figure 9. We also verify that the neurons indeed378

increase probability on successor tokens by multiplying their output values by WUWOV in the same379

figures. Further technical details can be found in Appendix E.380

Our results on the interpretability of individual neurons are surprising given recent research sug-381

gesting that the individual neurons of language models may be inappropriate as the units of un-382

derstanding [1]. However, our results do not contradict previous finding that understanding MLPs383

requires understanding distributed behaviors, since for example the 6 mod 10 feature appears to be384

in superposition across at least two neurons (Figure 9c, 9f).385

G Arithmetic experiments386

For a token T ∈ V (row of arithmetic table) in numeric class V and feature fi (column of arithmetic387

table), we consider how x := MLP0(WE(T )) + k(−ford(T ) + fi) attributes logits to tokens in V ,388

with k ∈ R+ a scaling, and ord(T ) the numeric order of T with respect to V . We denote whether389

x correctly attributes maximal logits to the token U ∈ V with ord(U) = i + 1 by a checkmark,390

giving Figure 6. Since our mod-10 features {fi}i obtained from the SAE are normalized to unit391

norm, hence some scaling is necessary in order to have an effect on the order of the tokens. We pick392

k = MLP0(WE(T )) · ford(T ) everywhere other than months, where we observe that we must use a393

scaling of 2 times this to affect the order while keeping the task identity intact.394
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H Greater-than bias395

The vector arithmetic experiments (Figure 6) mostly fail below the diagonal, when the mod-10396

addition is smaller than the source tokens’s ordinal sequence position mod 10. This is because397

successor heads are biased towards values greater than the successor, compared to values less than398

the successor.399

This effect can be seen in Figure 10a on the tokens ‘first’, ‘second’, ..., ‘tenth’. However, our mod-400

10 features do not exhibit a greater-than bias, as seen in Figure 10b. We survey these effects across401

all tasks in Appendix M. As a result, using the mod-10 features to shift logits towards tokens of a402

lower order than the input token fails, as the changes in logits are not significant compared to the403

large logits on higher-order tokens. In the case of numbers, this leads to the effect that, for example,404

WUWOV (MLP0(WE(‘35’))− f5 + f3) has high logits on ‘44’, rather than ‘34’ (this ’+10’ effect405

occurs for 2/3 of entries below the diagonal in the 20-29 numbers table of Figure 6).406

Limitations: The absence of a strong greater-than bias in our mod 10 features suggests this feature-407

level description is missing some details – specifically that successor heads must use other numeric408

information to produce the greater-than bias we observe. Additionally, while we see a good gener-409

alization of the mod 10 features across various tasks in the table in Figure 6, the mod 10 features are410

not able to steer the Days and Letters tasks from Section 2. We describe this in Appendix I.411
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(b) Multiplying all mod 10 features fi by WUWOV .

Figure 10: The Successor Head OV circuit displays a clear bias against decrementation (Figure 10a),
i.e. the logits on or above the main diagonal are less than the logits below the main diagonal. This
bias isn’t captured in the mod 10 feature (Figure 10b).

I Failure cases of mod 10 features412

For the day and alphabet task, analogously to Figure 10, we look at the logits across the task and the413

mod 10 features. These are displayed in Figure 11, and demonstrate that our mod 10 features are not414

very interpretable in the context of days and the alphabet in terms of logits, with no clear diagonal415

of high logits.416

J Successor Heads in the Wild417

In this section, we analyze the behaviour of successor heads within natural-language datasets, and418

observe that they aren’t simply responsible for incrementation: indeed, we identify four distinct,419

interpretable categories of successor head behavior, highlighting successor heads as an example of420

an interpretably polysemantic attention head ‘in the wild’.421

In order to characterize the behavior of Pythia-1.4B’s successor head on natural-language data, we422

sample 128 length-512 contexts from The Pile, and for each prefix of each context, we assess423
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Figure 11: Logit plots across day and alphabet tasks, where attempting to steer the model with mod
10 features fails.

whether the successor head is important for the model’s ability to predict the correct next token.424

We evaluate prefixes using two different metrics for per-prompt successor head importance:425

Winning cases. We identify prefixes where the head that most decreases the logit for the correct426

next token under direct effect mean ablation is the successor head, denoting them as winning cases.427

Loss-reducing cases. We identify prefixes p where direct effect mean ablation of the successor head428

increases next-token prediction loss (by ∆L(p)), denoting them as loss-reducing cases.429

J.1 Interpretable Polysemanticity in Successor Heads430

On analyzing prefixes where the successor head is particularly important for next-token prediction431

– i.e. loss-reducing and winning cases – we observe four main categories of behavior, which we432

operationalize as follows (denoting a top-n-attended token as a token at one of the top n positions433

to which the successor head attends most strongly):434

Successorship behavior: the successor head pushes for the successor of a token in the context. We435

say this behavior occurs when one of the top-5-attended tokens is in the successorship dataset, and436

the correct next token is the successor of t.437

Acronym behavior: the successor head pushes for an acronym of words in the context. We say this438

behavior occurs when the correct next token is an acronym whose last letter corresponds to the first439

letter of the top-1-attended token. (For example, if the successor head attends most strongly to the440

token ‘Defense’, and the correct next token is ‘OSD’.)441

Copying behavior: the successor head pushes for a previous token in the context. We say this442

behavior occurs when the correct next token t has already occurred in the prompt, and token t is one443

of the top-5-attended tokens.444

Greater-than behavior: the successor head pushes for a token greater than a previous token in the445

context. We say this behavior occurs when we do not observe successorship behavior, but when the446

correct next token is still part of an ordinal sequence and has greater order than some top-5-attended447

token (e.g. if the successor head attends to the token ‘first’ and the model predicts the token ‘third’.)448

We plot the proportions of each behavior observed across winning cases in Figure 12, and the frac-449

tion of total reduced loss over all contexts (∆L) attributable to contexts of each behavior in Fig-450

ure 14. We also illustrate a random sample of 5 winning cases in Figure 13, and of 5 loss-reducing451

cases in Figure 15. We observe that, while successorship is the predominant behavior across both452

winning and loss-reducing cases, acronym and greater-than behaviors also form a non-negligible453

fraction of successor head behavior. In other words, the successor head is an example of an attention454

head with interpretable polysemanticity3. While polysemanticity has been observed in both vision455

models [7] and toy models trained to perform simple tasks [1], to the best of our knowledge the456

presence of both successorship and acronym behavior in head L12H0 is the cleanest example of457

polysemantic behavior identified so far in an LLM.458

3A component of a network is said to be interpretably polysemantic if it performs multiple distinct, inter-
pretable functions.
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Figure 15: The top 5 most loss reducing examples.

Note that in this section, while we identified that successor heads are often used in tasks involving459

incrementation, we did not explicitly demonstrate that successor heads are necessary for incremen-460

tation. In Appendix O we describe an experiment that reveals that successor heads are necessary for461

a specific incrementation task (numbered listing).462

K Residual Connections Are Not Important For Succession463

To show that there is no relevant information in the residual stream, i.e. the path WUMLP0(WE)464

is not sufficient to predict successors, we perform an experiment using the Tuned Lens [20], which465

approximates the optimal predictions after a given layer inside a transformer.466

For all tasks in the succession dataset (Section 2), we used prompt formats (where | denotes a gap467

between tokens)468

1. |Here| is| a| list|:| alpha| beta| gamma| and| here| is| another|:|<token1>|469

2. |The|Monday|Tuesday|Wednesday| and| The|<token1>|470

in order to measure how well models were able to predict the successor <token2> (e.g ‘February’)471

given the final token of the prompt was <token1> (e.g ‘January’), as LLMs, predict successors472

given these prompts.473

We then took GPT-2 Small and Pythia-1.4B’s output after MLP0 and used the Tuned Lens to get474

logits on output tokens.4 The resulting successor score was <1% and commonly predicted bigrams,475

such as <token1>=“ first” giving “ time” as a completion and <token1>=‘ Sunday’ giving ‘ morn-476

ing’ as a prediction. This suggests that MLP0 information is insufficient for incrementation and the477

successor head is critical for succession.478

4Note we did run with attention layer 0 to maximise the model’s chances are being able to perform succes-
sion.
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Figure 16: Best successor scores across successor heads throughout training checkpoints for Pythia
and stanford-gpt2 models.
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Figure 17: Plots of logits across various numeric classes, analogous to Figure 10a

L Testing successor score over training steps479

Another line of evidence that Successor Heads are an important model component for low training480

loss can be found by studying successor scores across training points. We study a Pythia model [15]481

as well as a Stanford GPT model [21], as these models have training checkpoints. The emergence482

of Successor Heads throughout training is displayed in Figure 16.483

M Decrementation bias across different tasks484

We show the strength of the decrementation bias in figures Figure 17 and 18.485
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Figure 18: Plots of mod 10 feature logits across various numeric classes, analogous to Figure 10b
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Figure 19: Successor scores for Pythia-1.4B and GPT-2 Large.

Prompt Answer
(...) (A) Colony formation and ( < B
(...) (i) f∗

g (y) equals the factual density f(y) for all g ∈ G; ( ii
(...) [ˆ2]: Conceived and designed the experiments (...) [ˆ 3
(...) 6. Kirovsky Zavod Station – St. Petersburg, Russia (...) you can see a
statue of Lenin here.

7

(...) [9] Minutes, Criminal Law Revision Commission, January 28, 1972,
16.[

10

Figure 20: Some examples of numbered listing prompts from the Pile dataset.

N All successor scores in a model486

In Figure 19 we find that for both Pythia-1.4B (the mainline model in the paper) and GPT-2 Large (a487

randomly selected model without a successor head from Figure 2 on the left), the heads with highest488

successor score are sparse: in Pythia-1.4B L12H0 has eight times as great a successor score to the489

next higher successor score and in GPT-2 Large only three heads have a successor score that’s above490

1/10.491

O Case study: numbered listing492

In Appendix J we demonstrate that when the successor head is contributing usefully, the prompts493

often required some kind of incrementation. However, we want to investigate whether the converse494

holds: are prompts requiring incrementation mostly solved by successor heads?495

Numbered listing is widespread across real datasets and requires incrementation. Additionally, even496

small LLMs are capable of this task in the case of incrementing citations.5 Examples of prompts497

involving numbered listing can be seen in Figure 20.498

We collect 64 such prompts and check for whether the successor head in Pythia-1.4b is the most499

important head for this prompt under direct effect mean ablation, and find that the successor head is500

indeed the most important head across all 64 prompts. Hence this provides some evidence prompts501

requiring incrementation in real datasets are indeed mostly solved by successor heads.502

P Related Work503

Mechanistic Interpretability research aims to reverse engineer trained neural networks analo-504

gously to how software binaries can be reverse-engineered [2]. This research was largely developed505

in vision models [22, 23] though most recent research has studied language models [9, 5] and trans-506

5https://www.lesswrong.com/posts/LkBmAGJgZX2tbwGKg
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formers [4]. Olah et al. [7] introduces the universality hypothesis and we use Chughtai, Chan, and507

Nanda [16]’s ‘weak universality’ notion in this work (Section 1).508

Transformer circuits. More specifically, our work builds from the insights of Elhage et al. [9]’s509

framework for understanding circuits in transformers, including how autoregressive transformers510

have a residual stream. Due to the residual stream, different paths from input to output can bypass511

as many attention heads and MLPs as necessary. This has further been explored in specific case512

studies [6, 24] and generalizes to backwards passes [25]. One related case study to our work is513

Hanna, Liu, and Variengien [11] which studies a Greater-Than circuit in GPT-2 Small, similar to514

how we indirectly found the Greater-Than operation in Section 3. Hanna, Liu, and Variengien [11]515

focus mainly on numbers, not other tasks.516

LLMs and arithmetic. Mikolov et al. [26]’s seminal work on word embedding arithmetic showed517

that latent language model representations had compositionality, e.g. ‘King’ − ‘Man’ + ‘Woman’518

approximated the embedding of ‘Queen’. Recently Merullo, Eickhoff, and Pavlick [27] showed519

some extension of these arithmetic results to LLMs. Additionally Subramani, Suresh, and Peters520

[28] and Turner et al. [29] use residual stream additions to steer models. Our work differs in that it521

considers shallow targeted paths through networks, rather than deep hidden states in networks.522

Q Succession dataset523

We present the full succession dataset in Table 2. Note that the days and months tasks are special524

as the final tokens in these classes (‘Sunday’ and ‘December’) have cyclical successors (‘Monday’525

and ‘January’); we don’t consider the end tokens of the other tasks to have cyclical successors. Full526

details of our dataset can be found in our open-sourced experiments.6527

Task Tokens
Numbers ‘1’, ‘2’, ..., ‘199’, ‘200’
Number words ‘one’, ‘two’, ..., ‘nineteen’, ‘twenty’
Cardinal words ‘first’, ‘second’, ..., ‘tenth’
Days ‘Monday’, ‘Tuesday’, ..., ‘Sunday’
Day prefixes ‘Mon’, ‘Tue’, ..., ‘Sun’
Months ‘January’, ‘February’, ..., ‘December’
Month prefixes ‘Jan’, ‘Feb’, ..., ‘Dec’
Letters ‘A’, ‘B’, ..., ‘Z’

Table 2: Tokens in the succession dataset

Glossary528

WOV The Rdmodel × Rdmodel matrix for an attention head that is the product of its WO and WV529

matrices. See Elhage et al. [9] for motivation.530

Direct effect involves identifying the output attributed to the head irrespective of the behavior of531

other heads. This is different from the indirect effect, where the effects of ablating a head532

are hidden by a backup head..533

Feature is a term we use to refer to an interpretable (linear) direction in activation space, inspired by534

definition 2 from Elhage et al. [1]. Since SAEs can be viewed as learning a set of directions535

which their Win matrix reads in (i.e. their neurons pre-ReLU activations are dot products536

between these directions and the SAE input), we similarly refer to these directions as SAE537

features. SAEs have been found to be interpretable in prior and our paper (Section 3).538

Linear probe is a learnable R10 × Rdmodel matrix that acts on MLP0’s output space to predict the539

mod-10 value of the underlying numeric token.540

Mean ablation involves patching the output of a head with its mean output over a chosen distribu-541

tion.542

6We will release our code upon successful publication.
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Numbered listing is a special case of incrementation where the token being incremented designates543

items in a list, such as ‘A’ and ‘B’ in ‘A) ... B)’ or ‘i’ and ‘ii’ in ‘[i] ... [ii]’. See Figure 20544

for in-the-wild examples.545

Ordinal sequence refers to a series of words arranged in a specific, meaningful order, where the546

position of each item is important.547

Patching replaces part of a model’s forward pass with activations from a different input [6, 30] .548

SAE stands for Sparse Autoencoder [17], see Appendix C.549

19


	Introduction
	Successor Heads
	Decomposing Numeric Representations
	Ordinal sequences are represented compositionally
	Exploring mod-10 features

	Conclusion
	Factoring ordinal sequences
	Training details for compositionality experiments
	Sparse auto-encoders
	Definition
	Training process for mod 10 features
	Universality of mod-10 results

	Linear probing
	MLP0 neurons
	Transferability of mod-10 features
	Arithmetic experiments
	Greater-than bias
	Failure cases of mod 10 features
	Successor Heads in the Wild
	Interpretable Polysemanticity in Successor Heads

	Residual Connections Are Not Important For Succession
	Testing successor score over training steps
	Decrementation bias across different tasks
	All successor scores in a model
	Case study: numbered listing
	Related Work
	Succession dataset
	Glossary

