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Abstract

Sparse and low-rank matrix composite approximation has emerged as a promising
paradigm for compressing large language models (LLMs), offering a more flexible
pruning structure than conventional methods based solely on sparse matrices. The
significant variation in weight redundancy across layers, along with the differing
rank and sparsity structures of weight matrices, makes identifying the globally op-
timal pruning structure extremely challenging. Existing methods often depend on
uniform or manually designed heuristic rules to allocate weight sparsity across lay-
ers, subsequently compressing each matrix using matrix approximation techniques.
Given the above theoretical difficulty in global compression of LLMs and the lim-
ited computational and data resources available compared to the training phase, we
argue that a collaboration between learning and matrix approximation is essential
for effective compression. In this paper, we propose a novel LLM compression
framework based on generalized bilevel optimization that naturally formulates an
effective collaborative mechanism. Specifically, the outer loop frames the weight
allocation task as a probabilistic optimization problem, enabling the automatic
learning of both layer-wise sparsities and matrix-wise retained ranks, while the
inner loop solves the corresponding sparsity and rank-constrained model compres-
sion problem via matrix approximation. Our main technical contributions include
two key innovations for efficiently solving this bilevel optimization problem. First,
we introduce a truncated Gaussian prior-based probabilistic parameterization inte-
grated with a policy gradient estimator, which avoids expensive backpropagation
and stabilizes the optimization process. Second, we design an adapted QR-based
matrix approximation algorithm that significantly accelerates inner loop computa-
tions. Extensive experiments on Phi-3 and the LLama-2/3 family demonstrate the
effectiveness of our method. Notably, it maintains over 95% zero-shot accuracy
under 50% sparsity and achieves up to 2× inference speedup.

1 Introduction

Model compression [8, 22, 29, 31] is a widely adopted paradigm for improving the inference effi-
ciency of large language models (LLMs). Its core principle is to reduce model size by removing
redundant parameters or approximating the model weights with low-rank matrices [37] while pre-
serving the performance. Although promising results have been repeatedly reported in the literature,

∗Equal Contribution.
†Corresponding Author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



🔥

Xi  Yi

Policy Gradient

QR based 
RPCA

2

: Layer Sparsity :  Matrix Rank Ratio :  Layer Sequence

1

3

4

Sampling

{Xi,Yi} : Training Data : Loss: Output

inner loop

outer loop

: Trainable🔥

Figure 1: Process diagram of our bilevel framework. ❶: sample s and κ from Nγ(µ, σ
2I) to assign

sparsity allocation for each layer; ❷: compress matrix Wi,j ∈ W via adapted QR-based RPCA
under the sparsity allocation si and κi,j ; ❸: forwardpass the compressed modelW(s, κ) and get the
loss; ❹: update the distribution Nγ(µ, σ

2I) based on policy gradient estimator.

challenges remain due to the complex model architecture, vast optimization space, and limited data
and computational resources compared to those available during the training stage.

In this paper, we focus on the emerging compression paradigm based on sparse and low-rank
matrix composite approximation [17, 20, 44], referred to as robust principal component analysis
(RPCA) [4] in the field of classical matrix analysis, which adopts a more flexible pruning structure
than conventional methods based solely on sparse matrices. Existing methods [17, 44] typically adopt
a uniform sparsity allocation over layers, i.e., setting an equal pruning proportion for each layer and
subsequently compressing each matrix using matrix approximation techniques. Recognizing the
heterogeneous redundancy across layers, recent works [18, 19, 40, 41] have introduced manually
designed heuristic rules to allocate varying sparsity levels to different layers.

However, the performance of these methods is often less effective than expected. The main reason is
the significant variation in weight redundancy across layers, along with differing rank and sparsity
structures of weight matrices. These factors make finding the globally optimal pruning structure ex-
tremely challenging. This highlights the need for layer-wise sparsity and matrix-wise rank allocation
in RPCA-based compression methods. Given the theoretical difficulty of global compression for
LLMs and the limited computational resources and data compared to the training phase, we argue
that collaboration between learning and matrix approximation is essential for effective compression.

In this paper, we propose a novel bilevel optimization framework [15, 30] that naturally formulates
an effective collaborative mechanism. In line with recent perspectives [19, 40, 41], we adopt the view
that once a global sparsity allocation is provided, the compression task can be reduced to a matrix
approximation problem. Instead of metric-based heuristics [19, 41], we model the weight allocation
task of outer loop as a probabilistic optimization problem, enabling the automatic learning of both
layer-wise sparsities and matrix-wise retained ranks, while the inner loop solves the corresponding
RPCA subproblem to obtain the sparse and low-rank decomposition under the current allocation
scheme. The bilevel framework poses difficulties due to the implicit differentiation through the
inner loop solutions and the substantial computational overhead of the inner RPCA problem. To
address these challenges, we introduce the following two key technical innovations. First, for the
outer loop, we use a truncated Gaussian prior to enable continuous probabilistic modeling within
bounded support. The truncation helps stabilize training by preventing gradient explosion in low-
density regions. Through this reparameterization, we apply policy gradient [32] to update the prior
parameters without backpropagating through the compressed model, reducing memory overhead.
Second, instead of costly SVD-based solvers [21, 49], we use an adapted QR-based matrix fitting
scheme [42], which significantly accelerates inner loop computations. Our method is intuitively
visualized in Figure 1. Empirical results on the Phi-3 and Llama family model show that our method
consistently learns better compression configurations and achieves superior performance under
various sparsities. For the LLama2-13B model, our method preserves over 95% MMLU accuracy
under a 50% sparsity setting, with a practical speedup of 2×.

Our main contributions are summarized as follows:

• We propose a bilevel optimization framework that enables effective collaboration between
learning and matrix approximation for LLM compression.
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• We introduce two main technical contributions: a policy gradient method based on truncated
Gaussian modeling, and a QR-based RPCA algorithm for efficient matrix approximation.

• Extensive experiments demonstrate that our method consistently outperforms existing model
compression methods, even under high prune rates.

2 Related Works

LLM Pruning. LLM pruning methods can be broadly categorized into structured [12, 13, 22, 39]
and unstructured [8, 9, 34, 38, 45, 46] approaches. Structured pruning removes entire components
(e.g., layers, neurons, channels), with methods like LLM-Pruner [22] using gradient-based importance
scores. Unstructured pruning, such as Wanda [31] and SparseGPT [8], prunes individual weights
and can remove up to 30% with little accuracy drop. Wanda uses activation-aware scoring, while
SparseGPT estimates Hessians for efficient weight reconstruction. However, both approaches face
trade-offs between speedup and performance. Hybrid methods that combine sparsity and low-rank
decomposition can better balance these aspects by integrating the strengths of both.

Sparsity and Low Rank. Compression methods combining sparsity and low-rank decomposition
are increasingly used for LLM compression. LoRAP [17] applies low-rank approximation to Attention
matrices and enforces sparsity on MLP blocks, reflecting their distinct structures. LoSparse [20]
decomposes weight matrices into low-rank factors U,V and a sparse component S, updating all
parts while pruning S to meet a sparsity budget. OATS [44] and HASSLE-free [23] alternate between
low-rank approximation and sparsification using fixed sparsity allocations. We focus on this class of
RPCA-based compression methods as our base framework to achieve stronger performance.

Sparsity Allocation. Many LLM pruning methods minimize layer-wise reconstruction loss
∥WlXl − W̃lXl∥2F and assume uniform sparsity across layers, often yielding suboptimal re-
sults.Several recent methods explore sparsity allocation strategies[26, 40]. FLAP [2] allocates
sparsity based on fluctuation scores, OWL [41] leverages activation outliers, DSA [18] searches for
optimal allocation functions, and ALS [19] formulates the problem as linear programming. However,
these methods depend on fixed validation sets and lack joint optimization with training. In contrast,
we formulate sparsity allocation as a learnable optimization problem driven by training data, while
treating pruning as a matrix approximation task solvable by existing frameworks.

3 Preliminary

RPCA Framework for Matrix Approximation. As we adopt RPCA [44] as a base solver in our
proposed compression method, we present its basics as follows. Given a weight matrix W ∈ Rm×n,
the target sparsity K and rank r, RPCA approximates W as the sum of a low-rank matrix L and a
sparse matrix S by solving the following optimization problem:

min
L,S
∥W − L− S∥2F s.t. rank(L) ≤ r, ∥S∥0 ≤ K. (1)

Problem 1 is usually solved via alternating optimization, with the following update rules:{
Lt+1 = TruncatedSVD(W − St, r),

St+1 = Pω(W − Lt+1),
(2)

where TruncatedSVD(W − S, r) denotes the rank-r approximation of matrix W − S obtained by
retaining only the top-r singular values and their corresponding singular vectors. The operator Pω(·)
denotes the projection into the feasible set ω of the sparse matrix S, i.e., ω ≜ {S : ∥S∥0 ≤ K,S ∈
Rm×n}. Typically, this projection enforces a sparsity constraint by retaining only the top-K largest-
magnitude entries and setting the rest to zero. Following Wanda and OATS, we apply a diagonal
scaling matrix D =

√
diag(X⊤X) ∈ Rn×n to the weight matrix and perform approximation on

WD, where Xdenotes the input activation. This is used by default unless otherwise specified.

Discussion. It is important to note that the above solver is not efficient enough due to the expensive
SVD process and cannot be directly adapted to develop our compression method. Therefore, in this
paper, we introduce an efficient RPCA algorithm based on QR decomposition, detailed in Section 4.3.
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4 Method

In this section, we present the details of our method. Section 4.1 introduces the overall design of the
bilevel optimization framework. Section 4.2 describes our first technical contribution: we propose a
truncated Gaussian prior and integrate it with policy gradient estimator to stabilize the training process
and avoid expensive implict differentiation. Section 4.3 presents our second technical contribution:
an efficient RPCA algorithm adapted from QR decomposition.

4.1 Bilevel Framework

We introduce our bilevel optimization framework for LLM compression, which formulates an effective
collaborative mechanism between learning and matrix approximation. The inner loop performs model
compression by solving an RPCA problem under a specific sparsity allocation scheme given by the
outer loop. The outer loop formulates the learning problem of sparsity allocation into a probabilistic
optimization task, enabling the automatic learning of both layer-wise sparsities and matrix-wise
retained ranks based on the model compressed by the inner loop. The workflow is shown in Figure 1.

Inner Loop. We first describe how a given allocation scheme determines the sparsity structure of
each matrix in the model. To capture differences in parameter redundancy across layers, we allocate
a sparsity ratio si to each layer, indicating the proportion of parameters to be pruned. For all matrices
{Wi,j}Mj=1 in layer i that lie in Rm×n , the total number of retained parameters after compression is
mn(1− si). We let κi,j be the proportion of parameters allocated to Wi,j for the low rank matrix
Li,j , i.e., we assign mn(1− si)κi,j parameters to Li,j . This yields the target rank and sparsity:

ri,j =
mn(1− si)κi,j

m+ n
, Ki,j = mn(1− si)(1− κi,j). (3)

We group all si and κi,j into two vectors (s,κ) and compress each matrix accordingly by solving a
series of RPCA problems described in Section 3. That is, we can obtain a set of RPCA problems
presented in the definition below.

Definition 1. The RPCA decomposition of the full parameter setW ≜ {Wi,j |i ∈ [1, L], j ∈ [1,M ]}
under sparsity allocation scheme (s,κ) is denoted as

RPCA(W, s,κ) =

W̃i,j = argmin
∥Si,j∥0≤Ki,j

rank(Li,j)≤ri,j

∥Wi,j − Li,j − Si,j∥2F
∣∣∣∣ Wi,j ∈ W

 ,

where each matrix Wi,j is decomposed into a low-rank component Li,j and a sparse component
Si,j with target rank ri,j and sparsity budget Ki,j computed from Eqn. (3).

Outer Loop. In the outer loop, we begin by modeling the allocation scheme (s,κ) using a
suitable probabilistic distribution p(·|θ) parameterized by θ. A sparsity allocation is sampled from
this distribution and passed into the inner loop to generate a compressed model W(s,κ). The
performance of the resulting model is then evaluated using a loss function. The overall objective is to
minimize the expected loss over sampled allocation schemes. To this end, we optimize the probability
parameters θ via gradient-based methods, enabling the framework to adaptively explore and refine
sparsity patterns that lead to improved model performance.

Therefore, the overall bilevel optimization framework can be formulated as follows:

min
θ∈C

E(s,κ)∼p(·|θ) L(W(s, κ)) =
1

N

N∑
i=1

ℓ(f(xi,W(s, κ)),yi),

s.t. W(s, κ) = RPCA(W, s, κ), (4)

where C is the feasible region for θ to control the sparsity, which will be specified in Section 4.2.
{(xi,yi)}Ni=1 represents the training dataset, f(·,W(s, κ)) is the compressed model under allocation
scheme (s, κ), and ℓ(·, ·) denotes the loss function.
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Challenges. This bilevel optimization framework presents two main challenges. First, the outer
objective is hard to optimize due to the implicit differentiation through the inner loop, requiring
appropriate gradient estimators and a well-designed probabilistic model p(· | θ). Second, repeatedly
solving RPCA problems in the inner loop is computationally expensive. In the following sections, we
introduce our proposed techniques to address these challenges.

4.2 Outer Optimization

Policy Gradient. To address the difficulty of computing gradients with respect to the parameter
θ, we adopt a policy gradient estimator. This approach avoids implicit differentiation by directly
computing gradients based on the loss function. The derivation is as follows:

∇θ Ep(s,κ|θ) [L(W(s, κ))] = Ep(s,κ|θ) [L(W(s, κ)) · ∇θ log p(s, κ|θ)] . (5)

In practice, we sample a mini-batch B, evaluate the loss of the compressed model under each sampled
allocation (s, κ), and compute the policy gradient of the parameters θ as: gθ = LB(W(s, κ)) ·
∇θ log p(s, κ|θ). This yields an unbiased estimator; the proof is provided in Appendix D.1.

Remark 1. Policy gradient methods are known to suffer from high variance due to the stochastic
nature of the sampling process, which can lead to instability during training. To mitigate this issue,
we subtract a control variate LB(W(s′,κ′)) · ∇θ log p(s, κ|θ), which has zero mean but is highly
correlated with the original gradient. Here, (s′,κ′) is an independent sample drawn from the same
distribution as (s,κ). This variance-reduction technique leads to the final gradient estimator:

gvr
θ = [LB(W(s, κ))− LB(W(s′,κ′))] · ∇θ log p(s, κ|θ). (6)

Truncated Gaussian Distribution. Computing policy gradients requires∇θ log p(s,κ|θ). Gaus-
sian distributions are often used for convenience, but their support is unbounded, conflicting with
the constraints (e.g., sparsity ratio in [0, 1]). Moreover, shrinking variance for convergence can
cause gradient explosion. To address these issues, we employ a truncated Gaussian distribution
Nγ(µ, σ

2) for probabilistic modeling, which restricts the Gaussian distribution N (µ, σ2) to the
interval [µ − γ, µ + γ]. This truncation limits the sampling range and provides bounded support,
thereby stabilizing training and facilitating policy gradient computation. For a random variable
x ∼ Nγ(µ, σ

2), its probability density function (PDF) is given by:

p(x;µ, σ2, γ) =


1

σ
·

ϕ
(
x−µ
σ

)
Φ
(
γ
σ

)
− Φ

(−γ
σ

) , for x ∈ [µ− γ, µ+ γ],

0, otherwise,

where ϕ and Φ denote the PDF and CDF of the standard Gaussian distribution N (0, 1), respectively.
The detailed sampling method for the truncated Gaussian is described in Appendix C.2.

Remark 2. For the p(x;µ, σ2, γ), its parameter vector is [µ, σ2, γ]. To avoid the gradient explosion
during training, we fix the variance σ2. In addtion, to control the range of x and ensure convergence,
we manually reduce γ according to the annealing schedule [50]. More details are provided in
Appendix A.2. Therefore, the only trainable parameter of p(·) is µ, i.e., θ = µ. For simplicity, we do
not distinguish between µ and θ in the remainder of this section.

Each element in gradient∇µ log p(s, κ|µ, σ2, γ) can be computed using the lemma below.

Lemma 1. Let a random variable x follow the truncated Gaussian distribution x ∼ Nγ(µ, σ
2). The

gradient of the log-density with respect to the mean parameter µ is given by:

∇µ log p(x|µ, σ2, γ) = ∇µ log

(
1

σ
·

ϕ
(
x−µ
σ

)
Φ
(
γ
σ

)
− Φ

(−γ
σ

)) = ∇µ log
(
ϕ
(x− µ

σ

))
=

x− µ

σ2
. (7)

Combining Eqn. (6) and Eqn. (7), we compute the gradient gvr
µ with µ = (µs,µκ). Recall that µ is

the mean of (s,κ), its feasible region can be defined as C ≜
{
µ : ∥µs∥1 ≥ ρL, µ ∈ [0, 1]L+LM

}
.

Since C can be rewriten as C =
{
µ : 1⊤µs ≥ ρL, µ ∈ [0, 1]L+LM

}
, which is convex, we can

project µ onto C using projection projC(·) after gradient descent. See Appendix C.1 for details.
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Algorithm 1 Bilevel Optimization Framework

Input: Model weightsW , over all prune rate ρ, rank ratio κ0, parameter σ2 and γ, learning rate η
1: Initialize parameters µ = (µs,µκ)

3

2: for each iteration do
3: Sample a mini batch B
4: Reduce γ according to annealing schedule
5: Sample (s(i),κ(i)) from p(s,κ|µ, σ2, γ), i = 1, 2
6: Apply RPCA, i.e., Algorithm 2, to obtain the compressed weightsW(s(i),κ(i)), i = 1, 2
7: Compute LB(W (s(i),κ(i))), i = 1, 2, and the gradient:

gvr
µ =

[
LB(W(s(1),κ(1)))− LB(W(s(2),κ(2)))

]
· ∇µ log p(s(1),κ(1)|µ, σ2, γ)

8: Update: µ← projC(µ− ηgvr
µ )

9: end for
Output: Compressed weightsW(µs,µκ)

4.3 Inner Optimization

QR-based RPCA algorithm. Conventional RPCA algorithms repeatedly perform costly SVD
computations, resulting in high computational overhead. In the inner loop, we follow and adapt the
method proposed in [42], replacing SVD with a more efficient QR-based algorithm. Specifically,
noting that the low-rank matrix L in Problem 1 can be factorized as the product of two matrices
U ∈ Rm×r and V ∈ Rr×n, where r is the target rank, we obtain the following reformulation:

min
U,V,S

∥W −UV − S∥2F s.t. rank(UV) ≤ r, ∥S∥0 ≤ K (8)

This problem can be solved by alternating minimization over U, V, and S, yielding the update rules:
Ut+1 = (W − St)V

⊤
t (VtV

T
t )

†,

Vt+1 = (U⊤
t+1Ut+1)

†U⊤
t+1(W − St),

St+1 = Pω(W −Ut+1Vt+1).

(9)

The optimization objective only depends on the product UV, rather than the specific factorization.
Therefore, we aim to find any pair (U′,V′) such that U′V′ = UV. This insight allows us to
reinterpret the optimization as a projection problem.

Ut+1Vt+1 = Ut+1

(
U⊤

t+1Ut+1

)†
U⊤

t+1(W − St) = ΠC(Ut+1)(W − St), (10)

where ΠC(Ut+1) denotes the orthogonal projection onto the column space of Ut+1.

Since
(
VtV

⊤
t

)†
is full-rank, the column space of Ut+1 is equivalent to that of (W − St)V

⊤
t . Thus,

we perform a QR decomposition on this matrix:

(W − St)V
⊤
t = QtRt, (11)

where Qt ∈ Rm×r is orthonormal and spans the column space of Ut+1, leading to the expression:

Ut+1Vt+1 = QtQ
⊤
t (W − St), (12)

and we accordingly set the update rules as:

Ut+1 := Qt, Vt+1 := Q⊤
t (W − St). (13)

We present the RPCA algorithm based on QR decomposition in Appendix C.3 Algorithm 2.
Remark 3. The QR-based method reduces the per-iteration complexity to O(mr2), much lower than
the O(mnmin(m,n)) cost of SVD when r ≪ min(m,n), while maintaining approximation quality.
Remark 4. Rather than reinitializing the inner RPCA subroutine from scratch at each iteration,
we warm-start the optimization using the previous solution and adjust the low-rank factors U,V
incrementally according to the rank update ∆r, thereby improving efficiency and stability.
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Figure 2: (a) the variation of the truncated Gaussian distribution as training progresses reflects how
the structure gradually learns to approach the optimum. (b) due to r ≪ min(m,n), QR has a lower
complexity. (c) QR decomposition provides significant acceleration in practical implementation.

By integrating the truncated Gaussion prior with policy gradient estimator and the QR-based RPCA
solver, we obtain the complete bilevel optimization framework presented in Algorithm 1. For the last
step, since the range of (s, κ) is vanished, we compress the model under (µs,µκ) without sampling.
We present the convergence analysis of the bilevel optimization framework in Appendix D.4.

5 Experiments

In Section 5.1, we introduce the overall experimental setup and the baselines used for comparison.
Section 5.2 presents the pruning performance across multiple LLMs. In Section 5.3, we explores
the effectiveness of our method under high sparsity settings. Finally, Section 5.4 conducts ablation
studies to validate the effectiveness of each component in our framework.

5.1 Experimental Setups

Models. For our main experiments, we select representative models from two prominent open-source
architectures: the Phi family (specifically Phi-3-mini [1]) and the Llama family (including Llama2-7B,
Llama2-13B [33], and Llama3-8B [7]).

Baseline. We select SOTA compression methods as baselines, including unstructured pruning
methods such as SparseGPT [8] and Wanda [31], as well as RPCA based approaches like OATS and
QR, where QR refers to using only the inner QR-based algorithm in Section 4.3, without the bilevel
optimization framework.[44]. Our experiments compare these compression methods at low prune
rates (≤ 50%) and validate the effectiveness of sparsity allocation at higher prune rates (≥ 60%).

Configurations. We use C4 [27] as the training dataset, with batch size set to 32, and length set to
256. In addition, the inner-level optimization employs the fixed 32 samples as the calibration dataset.
Gamma is set from 0.05 to 0.005. In training, we use the Adam optimizer [16] and set the learning
rate to 1e-2. The experiments are all completed with one single 80GB NVIDIA A100.

Evaluation. We use LM-evaluation-harness [10] to evaluate the performance after pruning. The
main benchmarks include: 1) WikiText2 [24] perplexity, 2) zero-shot tasks (including PIQA [3],
HellaSwag [43], Winogrande [28], OpenBookQA [25], RTE [35], BoolQ [5], ARC-e and ARC-c
[6]), and 3) few shot tasks, like MMLU [14]. In addition, we test the CPU inference speedup of the
pruned model on Intel(R) Xeon(R) Platinum 8369B CPU @ 2. 90GHz with 32 cpu cores.

5.2 Comparison of Compression Methods

Table 1 presents the main results, comparing the performance of different models using various
compression methods across multiple prune rates. Our approach achieves top performance across all
three task types. Notably, on the WikiText2 benchmark, it reduces Phi-3-mini’s perplexity by about
5% over the SOTA OATS at 50% sparsity. Results on MMLU and zero-shot accuracy further show
that RPCA-based methods (OATS, QR, and ours) outperform methods relying solely on sparse matrix

3The initialization details of µs and µκ are provided in Appendix A.2.
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Table 1: Performance comparison across various methods and models with different prune rates. The
best performance for each prune rate is in bold.

Prune rate Method Phi-3-mini Llama2-7B Llama2-13B Llama3-8B
↓WikiText2 ↑MMLU ↑ zero-shot WikiText2 MMLU zero-shot WikiText2 MMLU zero-shot WikiText2 MMLU zero-shot

0% Dense 9.50 70.34 71.99 8.79 50.12 66.27 7.91 56.41 68.72 10.18 64.97 69.71

30%

SparseGPT 11.19 68.31 70.36 9.29 49.10 64.99 8.29 54.48 68.35 9.71 64.25 69.08
Wanda 10.71 67.63 70.66 9.23 47.56 65.31 8.29 55.1 68.23 9.71 63.67 68.63
OATS 10.27 68.84 71.48 9.06 49.98 65.11 8.11 55.97 68.76 9.59 65.22 69.34

QR 10.34 68.35 71.06 9.10 50.02 65.89 8.17 53.99 68.36 8.00 63.28 70.00
Ours 9.98 69.60 71.51 8.83 50.10 66.19 8.02 56.13 68.74 8.06 65.37 69.82

40%

SparseGPT 13.03 63.47 69.18 9.94 45.52 64.13 8.85 54.48 68.35 10.01 60.91 67.58
Wanda 12.59 64.15 68.80 9.86 44.8 64.70 8.77 53.65 68.06 9.74 60.33 67.04
OATS 11.53 65.75 70.04 9.53 47.21 65.63 8.45 55.25 68.16 9.24 62.46 68.68

QR 11.67 64.28 69.98 9.56 46.64 64.53 8.56 54.96 68.6 8.70 61.94 68.29
Ours 11.03 65.92 70.56 9.14 47.62 65.86 8.31 55.70 68.64 8.59 62.53 68.62

50%

SparseGPT 16.80 53.22 66.36 11.66 41.94 62.69 10.21 48.91 66.68 11.95 53.60 64.66
Wanda 17.23 54.57 65.03 11.43 37.16 62.53 10.05 49.59 66.28 12.36 49.83 63.27
OATS 15.18 59.99 68.41 10.87 44.7 63.49 9.49 52.44 67.77 10.87 56.46 65.71

QR 15.30 58.28 67.48 10.86 42.53 63.09 9.58 53.31 67.65 10.70 55.30 65.54
Ours 14.87 60.57 69.37 10.49 46.10 64.08 9.23 53.79 67.92 10.18 56.97 66.28

compression. Our method further excels by adaptively allocating sparsity. Interestingly, Llama3-8B
even surpasses its unpruned version at low prune rates, suggesting that pruning redundant weights
may be beneficial. Moreover, the QR-based method with uniform allocation achieves performance
close to OATS while requiring only 1/20 of its runtime, highlighting both efficiency and effectiveness,
thereby offering a promising direction for scalable LLM compression.

5.3 Comparison with OWL Sparsity Allocation

We further investigate the effectiveness of different sparsity allocation strategies under high prune
rates. To ensure a fair comparison, we adopt the QR decomposition introduced in Section 4.3 as the
sole compression algorithm. Table 2 compares the results of various sparsity allocation strategies,
where uniform denotes applying the same prune rates to all layers, and OWL leverages outlier
information to allocate sparsity. It can be observed that our method leads to better performance,
providing valuable insights for future research on high sparsity compression.

Table 2: Comparison of sparsity allocation methods under high sparsity.

Prune rate Method Phi-3-mini Llama2-7B Llama3-8B
↓ PPL ↑MMLU ↑zero-shot PPL MMLU zero-shot PPL MMLU zero-shot

60%
Uniform 48.8 38.22 56.01 16.92 32.99 58.61 20.03 34.06 56.62

OWL 35.37 51.43 58.18 15.38 39.33 59.79 17.39 44.07 59.27
Ours 32.46 52.27 59.24 15.07 39.78 60.52 17.03 43.91 59.34

70%
Uniform 1375.75 25.5 40.88 122.9 24.53 42.49 111.37 26.8 41.14

OWL 462.67 28.5 46.33 56.38 26.66 48.05 67.72 26.9 45.81
Ours 208.7 30.27 49.53 47.21 29.38 51.62 58.34 27.6 47.04

5.4 Ablation Study

We conduct ablation studies on the components of the proposed bilevel optimization framework
using Phi-3-mini with 50% sparsity. We first compare the effects of layer-wise sparsity and matrix
rank ratio allocation on the performance of the compressed model, where w/o Rank denotes only
sparsity allocation without rank ratio allocation, w/o Sparsity denotes only rank ratio allocation
without sparsity allocation, and w/o Rank & Sparsity denotes neither allocation being applied. The
results, shown in Table 3, demonstrate that rank ratio allocation has a more significant impact on
performance, a factor that has been overlooked in other sparsity allocation methods. We also compare
the runtime of different RPCA solvers in Table 2c, where QR-based method is significantly faster
than SVD. Additionally, we further compare the performance and runtime of the two decomposition
methods under varying iteration counts, as shown in Figure 3. At 80 iterations, both methods achieve
similar zero-shot accuracy, while the QR-based method completes in just a few minutes.

6 Further Analysis

In this section, we discuss the allocation results and actual acceleration effects of various types
of model compression, as well as the performance of our bilevel optimization framework when
combined with other metric-based compression methods.
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Table 3: Ablation study on layer-wise sparsity and matrix
rank ratio allocation.

Alloc type ↓ Perplexity ↑MMLU ↑ zero-shot
Sparsity & Rank 14.87 60.57 69.37

w/o Rank 14.94 59.94 68.48
w/o Sparsity 14.89 60.04 68.93
w/o Rank & Sparsity 15.30 58.28 67.48

Figure 3: Impact of the number of itera-
tions on accuracy and time cost.
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6.1 Allocation Visualization

Figure 4 illustrates the allocation results of Phi-3-mini obtained by our bilevel framework. The prune
rate gradually increases across layers. This reflects the variation in parameter redundancy across
layers. Regarding rank ratios across matrices, our method accurately captures the heterogeneous
low-rankness. For matrices in MLP, fewer budgets are allocated to the low-rank component, allowing
more flexibility for the sparse component to preserve model fitting capacity. Conversely, for attention
blocks, our method allocates more rank budget to fully exploit the underlying structure.
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Figure 4: Left: Layer-wise sparsity allocation s; Right: Matrix-wise rank ratio allocation κ.

6.2 CPU SpeedUp

Following the settings in OATS and OWL, we use the DeepSparse engine to evaluate the actual
CPU acceleration achieved by various compression methods on the Llama2-13B model. As shown
in Table 4, RPCA-based methods yield greater speedups (up to 1.99× at 50% sparsity) thanks to
structured low-rank components, and also outperform purely sparse methods in accuracy.

Table 4: Throughput and speedup comparison among different prune types.
Prune rate Prune type Method ↑ Throughput (B/s) ↑ Speedup (×) ↓ Perplexity
0% Dense – 2.38 1.00 7.91

40% Unstructured Wanda 2.93 1.23 8.77
Low rank & Sparsity Ours 3.92 1.64 8.31

50%
Unstructured Wanda 3.99 1.68 10.05
Semi-unstructured (2:4) Wanda 4.38 1.84 16.53
Low rank & Sparsity Ours 4.75 1.99 9.23

6.3 Integration with Other Compression Methods

To extend our framework beyond low-rank and sparse decomposition, we apply it to metric-based
pruning methods like Wanda and SparseGPT. Table 5 shows results on Phi-3-mini at 50% sparsity.
Compared to uniform and OWL-based allocations, our method consistently outperforms both. This
demonstrates our approach’s potential as a general sparsity allocation mechanism across compression
methods, providing new insights for model compression. The performance improvement brought
by our method is less pronounced compared to the RPCA-based approach, suggesting that the latter
presents a more challenging problem that requires accurate sparsity allocation optimization.
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Table 5: Integration with other compression methods.
Base method Alloc method ↓ Perplexity ↑MMLU ↑ zero-shot

Wanda
Uniform 17.23 54.57 65.03

OWL 16.22 55.27 65.97
Ours 16.01 55.78 66.14

SparseGPT
Uniform 16.80 53.22 66.36

OWL 17.39 56.35 65.95
Ours 16.18 56.86 66.63

7 Conclusion

In this work, we propose a bilevel optimization framework that unifies learning and matrix approxima-
tion for LLM compression. By formulating sparsity and rank allocation as a probabilistic optimization
problem and solving the matrix approximation subtask via RPCA, our method effectively captures
weight redundancy structures. We introduce a truncated Gaussian prior for probabilistic parameteri-
zation, combined with a policy gradient estimator, which avoids impilicit differentiation through the
inner loop and stabilizes training. Additionally, we design a QR-based RPCA solver that significantly
accelerates the inner loop computation. Our collaborative mechanism offers a new perspective and
practical methodology for advancing efficient and effective model compression.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main contributions of this paper lie in the proposed bilevel optimization
framework that jointly integrates learning and matrix approximation, along with a series of
technical innovations, which are elaborated in detail in the method section. Furthermore,
comprehensive experiments are conducted to validate the effectiveness of our approach and
demonstrate its advantages.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discussed the limitations of our work in Appendix Section E
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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and proofs, in the appendix Section D.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed descriptions of all experimental configurations, and we
believe the results can be reproduced regardless of whether the code and data are provided.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we will make our experimental code available in the supplementary
materials. The data used in our experiments is open source.
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public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental configuration has been described throughout the manuscript
and supplementary materials.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Standard metrics and statistical summaries are reported consistently.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Details of the computing platform and training resources are provided in
Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This work was carried out in strict accordance with the ethical guidelines set
forth by NeurIPS.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed the broader impacts in Appendix Section F.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our study does not involve any such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We used publicly available datasets and models in accordance with their
licenses and terms, and provided proper citations.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We did not release any new assets in this work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No part of our experiments involved crowdsourcing or the use of human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No part of our experiments involved crowdsourcing or the use of human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Large language models (LLMs) serve as the primary subjects of our study.
As detailed in Section 5, we provide comprehensive documentation on: (1) the pruning
methodology applied to LLMs; (2) evaluation protocols used to assess the pruned models.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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