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ABSTRACT

Language models (LMs) hallucinate. We inquire: Can we detect and mitigate
hallucinations before they happen? This work answers this research question in the
positive, by showing that the internal representations of LMs provide rich signals
that can be used for this purpose. We introduce FACTCHECKMATE, which preemp-
tively detects hallucinations by learning a classifier that predicts whether the LM
will hallucinate, based on the model’s hidden states produced over the inputs, before
decoding begins. If a hallucination is detected, FACTCHECKMATE then intervenes,
by adjusting the LM’s hidden states such that the model will produce more factual
outputs. FACTCHECKMATE provides fresh insights that the inner workings of LMs
can be revealed by their hidden states. Practically, both the detection and mitigation
models in FACTCHECKMATE are lightweight, adding little inference overhead;
FACTCHECKMATE proves a more efficient approach for mitigating hallucinations
compared to many post-hoc alternatives. We evaluate FACTCHECKMATE over LMs
of different scales and model families (including Llama, Mistral, and Gemma),
across a variety of QA datasets from different domains. Our results demonstrate the
effectiveness of leveraging internal representations for early hallucination detection
and mitigation, achieving over 70% preemptive detection accuracy. On average,
outputs generated by LMs with intervention are 34.4% more factual compared to
those without intervention. The average overhead difference in the inference time
introduced by FACTCHECKMATE is around 3.16 seconds.

1 INTRODUCTION

Language models (LMs) hallucinate, a phenomenon where they produce nonfactual or even mislead-
ing outputs that often appear plausible (Ji et al., 2023a; Bang et al., 2023; Xu et al., 2024; Zhang
et al., 2023; Li et al., 2024; Huang et al., 2023; Ye et al., 2023). Extensive efforts have been devoted
to mitigating their hallucination issues (Rawte et al., 2023; Zhou et al., 2021). These approaches
are mostly reactive, addressing hallucinations after they occur, and often require resampling new
outputs (Li et al., 2023; Manakul et al., 2023), substantially increasing the inference overhead. In
addition, these approaches treat the LM as a black box, while relying on external LMs for detecting
hallucinations, missing the opportunity to gain deeper insights into the internal workings of these
models.

Recent findings by Azaria & Mitchell (2023) and Burns et al. (2022) show that probing the LMs’
representaions can effectively determine the factuality of their outputs. Marks & Tegmark (2023)
observe that the hidden states produced by the middle layers of LMs over complete statements exhibit
linear separability in binary factuality classification tasks. However, these studies have a relatively
narrow focus, primarily addressing hallucination detection in a reactive manner. A more thorough
investigation is needed.

The key hypothesis of this paper is that, the LMs’ hidden states reveals valuable information about
their internal working mechanisms, and provide signals that can be used to predict whether it is
likely to hallucinate before it happens. More formally, we propose FACTCHECKMATE to answer the
following research question (RQ): Can we preemptively predict and mitigate hallucinations with LMs’
internal representations? FACTCHECKMATE learns a classifier that, taking the models’ hidden states
over the inputs, predicts whether the model is about to hallucinate. If a hallucination is detected,
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Figure 1: FACTCHECKMATE Pipeline. A demonstration of how preemptive detection and subsequent
mitigation work. As shown, at a layer l, the hidden states of only the prefix are aggregated and passed
to the classifier fθ. Once hallucination is detected with classification probability < α, gϕ intervenes
and adjusts the last token h

(l)
N . This leads to a more factual output than before.

FACTCHECKMATE intervenes, by adjusting the LM’s hidden states with a learned invervention model,
and steering them towards producing more factual outputs (Figure 1).

Our experiments answer the RQ in the positive. We evaluate FACTCHECKMATE across three QA
datasets from domains: NQ-open (Wikipedia; Lee et al., 2019), MMLU (STEM exam; Hendrycks
et al., 2020), and MedMCQA (medical; Pal et al., 2022). For all, FACTCHECKMATE successfully
predicts whether or not the LMs will hallucinate over 70% of the time, significantly outperforming a
50% random baseline. This is achieved when the LMs have only seen the input questions and before
decoding starts. We observe consistent trends across LMs of different scales and familities, including
Llama2 (7B and 13B; Touvron et al., 2023a), Llama3/3.1-8B (Dubey et al., 2024) Mistral-7B (Jiang
et al., 2023), and Gemma-7B (Team et al., 2024). Furthermore, FACTCHECKMATE’s intervention
model can effectively improve the LMs’ outputs. Using GPT-4o as a judge, which shows high
agreement with human evaluations in our experiments, we find that on average, outputs generated
by LMs with intervention are 34.4% more factual than those produced without intervention. We
also calculate the overhead in the inference time introduced by FACTCHECKMATE, with an average
increase of approximately 3.16 seconds, showing minimal impact on inference performance.

FACTCHECKMATE reveals surprising insights into existing LMs, and can potentially lead to more
profound understanding of their internal working. All code, data, and checkpoints for reproducing
our findings will be released.

We start by presenting the FACTCHECKMATE’s hallucination detection model and results in §2,
followed by the intervention model and results in §3. Additional experiments and analysis are
presented in §4.

2 FACTCHECKMATE HALLUCINATION DETECTION

This section focuses on FACTCHECKMATE’s preemptive hallucination classifier (§2.1) and experi-
mental results (§2.2).

2.1 PREEMPTIVE HALLUCINATION DETECTION WITH A LIGHTWEIGHT CLASSIFIER OVER
HIDDEN STATES

Classifier. FACTCHECKMATE learns a binary classifier fθ to preemptively detect hallucinations.
Parameterized by a learned two-layer ReLU-MLP followed by a sigmoid function, fθ takes as input
the LM’s hidden states and outputs the probability that the LM will hallucinate. More specifically,
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let {h(l)
i }Ni=1 be a sequence of N hidden states that the LM produces over the input of length N . A

d-dimensional vector h(l)
i denotes the output of the feedforward network (FFN) of the l-th transformer

layer, at the i-th token. The classifier fθ takes as input the average over {h(l)
i } and produces a scalar

between 0 and 1 indicating the probability that the LM will hallucinate in its response to the input:

fθ

(
{h(l)

i }Ni=1

)
= σ

(
ReLU-MLP

( 1

N

N∑
i=1

h
(l)
i

))
(1)

l is empirically determined based on validation performance, and can vary by the LMs and datasets.
In general, l tends to be the middle layers. More details about the best empirical layer for each LM
can be found in Appendix B.1

We train a separate classifier tailored to each LM.1 We consider LMs from different families of
different scales, including Llama2 (7B and 13B; Touvron et al., 2023a), Llama3/3.1-8B (Dubey et al.,
2024) Mistral-7B (Jiang et al., 2023), and Gemma-7B (Team et al., 2024).

Data collection. In order to train fθ, we need to collect a LM’s hidden states over the inputs,
and the corresponding binary label indicating whether the LM will produce factual outputs. We
construct the training data on three datasets from different domains: NQ-open (Wikipedia; Lee et al.,
2019), MMLU (STEM; Hendrycks et al., 2020), and MedMCQA (medical entrance exam; Pal et al.,
2022). NQ-open is a QA dataset and contains question and answer pairs. MMLU and MedMCQA
are multiple choice datasets, pairing each question with multiple options. We convert MMLU and
MedMCQA into a QA dataset by pairing each input question with the gold answer.

To collect the training data for LM M , we prompt M with few-shot demonstrations followed by a
question, and then collect its hidden states over the inputs. M ’s output answers are checked against
gold ones with the exact match (EM), following standard practice (Gao et al., 2023). If the model’s
output is wrong, we consider its associated hidden states will lead to a hallucination, and vice versa.
After producing hidden state and label pairs, we subsample the data to obtain balanced training data
containing roughly the same amount of positive (will not hallucinate) and negative (will hallucinate)
pairs. In order to compare across different LMs, we create a shared test split across all LMs. Each
LM have different training/validation splits. Table 1 summarizes the statistics of the datasets.

fθ is trained with a cross-entropy loss on hidden state and label pairs. Early stopping based on the
validation accuracy is used.

Dataset Total Size Train (70%) Validation (15%) Test (15%)
NQ-Open (Lee et al., 2019) 12,000 8,400 1,800 1,800
MMLU (Hendrycks et al., 2020) 3,182 2,228 477 477
MedMCQA (Pal et al., 2022) 3,953 2,767 593 593

Table 1: Dataset splits and sizes for training the hallucination classifier fθ over the LMs’ hidden
states (§2.1).

2.2 RESULTS

Table 2 shows the hallucination detection test accuracy results. We evaluate the hallucination detection
performance using the same classifier fθ on different inputs. I indicates our preemptive classifier,
that takes the LMs’ hidden states produced over the input questions only. I+O indicates a reactive
baseline, which sees the hidden states produced over a concatenation of the input questions and
the LMs’ output answers. It is, therefore, expected that I+O achieves better performance, as it has
access to more information.

Throughout all I settings across all LMs and datasets, fθ achieves well above the 50% random
guess baselines. This confirms that LMs’ hidden states provide useful signal for predicting their
hallucinations preemptively.

1Our preliminary experiments show that the hallucination classifier underperforms when applied to hidden
states produced by a model different than that it is trained for.
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Figure 2: An illustration of different settings used in the experiment. (Input + Output) are the hidden
states of both the input and output. The subsequent hidden states in the experiment are taken by using
only the input or by dropping the last n tokens from the prefix.

NQ MMLU MedMCQA
Prefix Prefix Prefix

LM I+O I -1 -2 -3 I+O I -1 -2 -3 I+O I -1 -2 -3
Llama2-7B 78.2 70.0 64.5 64.3 65.1 80.0 66.3 66.1 65.3 65.0 76.0 70.9 68.3 67.8 70.1
Llama2-13B 81.6 76.4 74.3 74.5 73.3 84.0 68.8 69.0 68.8 68.8 77.5 70.8 68.3 67.8 70.1

Llama3-8B 79.4 75.9 73.4 72.2 71.6 79.0 71.1 70.8 70.3 70.3 70.8 73.0 71.8 70.7 70.7
Llama3.1-8B 79.2 74.9 69.1 67.7 67.6 82.5 71.5 70.5 71.3 69.5 67.5 72.9 72.3 70.0 65.8

Mistral-7B 80.2 76.7 75.7 75.2 75.8 - - - - - 69.8 70.4 69.4 69.0 69.4

Gemma-7B 80.2 74.5 74.4 74.2 73.9 78.1 68.8 67.2 67.2 66.1 74.7 71.6 69.5 67.9 66.8

Table 2: Hallucination detection test accuracy. I+O indicates a “reactive” baseline that classifies the
LMs’ hidden states produced over both input questions and output answers, while I preemptively
classifies hallucinations based on the hidden states over only the inputs. A prefix of −n indicates that
the classifier only sees a prefix of the input dropping the last n tokens.

We further make the task more challenging for fθ, by feeding it with a prefix of the input questions.
The results are summarized in the Prefix columns. Here, −n indicates that fθ sees the hidden states
produced over a prefix not including the last n tokens. Illustration of the different input settings for
hallucination classification is shown in Figure 2.

In some cases, using a prefix of −n underperforms I, while for others their performance is comparable.
These results suggest that fθ can often predict whether the LM is likely to hallucinate before it even
finishes processing the input questions.

On MMLU, Mistral-7B behaves differently than others, and we are not able to produce a sufficiently
large test split that is shared between it and others. Therefore, these results are excluded.

3 FACTCHECKMATE PREEMPTIVE HALLUCINATION MITIGATION

This section focuses on using FACTCHECKMATE to preemptively mitigate hallucinations, including
its intervention model (§3.1) and the experimental results (§3.2).
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3.1 TRAINING AN INTERVENTION MODEL

When fθ detects that LM M is about to hallucinate, FACTCHECKMATE relies on an intervention
model gϕ to mitigate hallucinations preemptively. Conditioning on h

(l)
N , the LM’s last hidden state

over the input, gϕ generates a d-dimensional vector and adds it to h
(l)
N , before the LM generates any

output.

h̃
(l)
N = h

(l)
N + gϕ

(
h
(l)
N

)
(2)

h̃
(l)
N is then used in place of h(l)

N for onward LM decoding. The intervention is applied at the last
hidden state of the input, as it aligns with the natural progression of decoding and targets the point
where hallucinations are most likely to arise.

Intuitively, gϕ is supposed to steer the LM’s hidden state towards a “target hidden state” h∗(l), which
is more likely to lead to a factual output. When the LM answers the question correctly, no further
modification is needed and h∗(l) = h

(l)
N . When the model answers the question incorrectly, we set

the h∗(l) to the model’s final hidden state over the input prompt followed by the gold answer. These
target hidden states are paired with their corresponding inputs h(l)

N to train gϕ. We explore both a
deterministic and a stochastic gϕ:

• The deterministic gϕ is a three-layer ReLU-MLP. It trains by minimizing the mean squared
error (MSE) between the adjusted hidden state h̃

(l)
N and the target one h∗(l).

• The stochastic gϕ treats the adjustment vector as a random variable of multivariate Gaussian.
It applies a reparameterization trick: gϕ(h

(l)
N ) = µ(h

(l)
N ) + ϵ⊙ σ(h

(l)
N ) for training. Two

three-layer ReLU-MLPs are used to for µ and σ, with the first two layer shared. Its training
objective remains the same MSE loss. One benefit of the stochastic gϕ is allowing for
sampling the adjustment vectors during inference, which we explore in the experiments.

3.2 RESULTS

Figure 3 summarizes the performance of FACTCHECKMATE’s intervention model on on the NQ-open
dataset, including both the deterministic and stochastic variants. All LMs use the greedy decoding.
Following recent works (Raju et al., 2024; Chen et al., 2024b), we employ GPT-4o (OpenAI et al.,
2024) as the evaluator to assess for factuality. Human evaluation performed by the authors indicate
that there is a substantial agreement between GPT-4o and human judgement, with a Cohen’s Kappa
of 0.6, justifying our choice of using GPT-4o as an automatic evaluation metric. The specific prompt
is provided in Appendix A.

For the stochastic gϕ, we sample 1, 10, 20, and 30 different ϵ, and apply the interventions with gϕ;
we then use fθ to select the intervened hidden state that leads to the highest probability by fθ, which
is then used for onward decoding.2

We apply the adjustment only to the first decoding step, modifying h
(l)
N to h̃

(l)
N when the classifier’s

confidence α is less than or equal to 0.3. As shown in Figure 3, the intervened LMs consistently
outperform the base LMs, with a higher proportion of wins favoring the adjusted outputs, with the
results varying depending on LM’s architecture. The deterministic intervention consistently achieves
a win rate of at least 60% in all cases, while without interventions (Base), the LMs show significantly
lower performance, with wins as low as 34%. On average, the winning rate of LMs with intervention
across all models is 34.4% higher than that of the base LMs.

The results demonstrate that both deterministic and stochastic intervention models improve the
factuality of LM’s outputs. These finding suggest that, we can mitigate the hallucination even before
it shows up in the generation of the language model.

2A higher probability by fθ indicates the hidden state is more likely to lead to a factual output.
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Intervened wins Ties Base wins

(a) Deterministic gϕ

(b) Stochastic gϕ (1 trial)

(c) Stochastic gϕ (10 trials)

(d) Stochastic gϕ (20 trials)

(e) Stochastic gϕ (30 trials)

Figure 3: Comparison of FACTCHECKMATE’s intervention models. The stochastic model resamples
ϵ for 1, 10, 20, and 30 times, fθ used to select the intervened hidden state that leads to the highest
probability by fθ. Green color indicates tie, orange for the intervened LM, and blue for the base LM.
(§3.2). 6
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We further compare to Duan et al. (2024), a baseline that applies a Principal Component Analysis
(PCA) based approach to engineer the hidden states to mitigate hallucinations in LMs, we refer to
this baseline as PCA. Figure 4 compares the baseline methods, including PCA and a sampling-based
decoding approach, which utilizes the hallucination classifier component of FACTCHECKMATE
(referred to as Sample-FACTCHECKMATE-CLS).

For PCA, adjustments are applied at every generation step, following Duan et al. (2024) with greedy
decoding and evaluated against greedy-based decoding version of the non-intervened LM, this to
eliminate any effects that sampling might cause. Sample-FACTCHECKMATE-CLS is evaluated against
sample-based decoding version of the non-intervened LM, with the same random seed maintained for
consistent comparison. As shown, for most models, both baselines result in lower intervened win
rates and constantly higher base wins, compared to FACTCHECKMATE in Figure 3.

Intervened wins Ties Base wins

(a) PCA

(b) Sample-FACTCHECKMATE-CLS

Figure 4: Baseline Comparison: The figure shows the winning rate of the intervened LM (Orange),
the base LM (Blue), and ties across two different baselines (Green) (§3.2).

4 ADDITIONAL EXPERIMENTS

In the following section, we first evaluate the inference time overhead (§4.1). Next, we conduct
classification experiments to analyze performance across different modes of aggregation (§4.3) and
investigate the role of word embedding layers (§4.2).

4.1 EVALUATING FACTCHECKMATE TIME OVERHEADS

Both fθ and gϕ are lightweight and should incur minimal inference overhead. We confirm this across
three models: Llama-2-7B, Llama-3-8B, and Llama-3.1-8B. For each model, the average inference
time was measured both with and without FACTCHECKMATE over three runs, each processing 400
few-shot prompts.

LM LM Intervention State Average Inference Time (s) ∆ (s)

Llama-2-7B Base 235.69 -
Llama-2-7B FACTCHECKMATE 237.91 +2.22

Llama3-8B Base 272.02 -
Llama3-8B FACTCHECKMATE 276.67 +4.65

Llama3.1-8B Base 272.84 -
Llama3.1-8B FACTCHECKMATE 275.46 +2.62

Table 3: Comparison of LMs inference time overheads over three runs per LM. The average difference
in inference time is approximately 3.16 seconds, showing minimal impact on inference performance.

7
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Prefix
LM I+O I -1 -2 -3
Llama-2-7b 63.9 52.3 55.3 54.9 55.6

Table 4: Results for the word embedding layer of Llama-2-7b on MedMCQA dataset. (§4.2). The
figure shows classification accuracy of approximately 50%, indicating no influence of the question
difficulty or type on the preemptive hallucination results shown in Table 2.

Mean Pooling Last token Max pooling
Prefix Prefix Prefix

LM I+O I -1 -2 -3 I+O I -1 -2 -3 I+O I -1 -2 -3
Llama3-8B 79.4 75.9 73.4 72.2 71.6 81.7 71.0 63.3 51.8 51.3 73.1 70.5 69.9 68.8 68.9

Table 5: Comparison of hallucination classification across different modes of aggregation for the same
layer and LM. Here we show the results for the Llama3-8B on layer 15. We see that the difference
between I+O and I is the least when the mean is the mode of aggregation.

The results are summarized in Table 3. The table shows that FACTCHECKMATE introduces a
negligible overhead to the inference process, preserving performance close to that of the baseline.
We see that the result is consistent over models. This negligible overhead is a promising factor for
scaling the experiments or integrating it into the existing LMs’ pipelines.

4.2 fθ CLASSIFIES THE HIDDEN STATES RATHER THAN THE QUESTIONS

One possible explanation for fθ’s strong preemptive hallucination detection performance is that it
might be classifying the input questions rather than the LMs’ hidden states. It is true that more
difficult questions could lead to a higher chances of hallucinations by the LMs. However, our results
indicate that it is the LMs’ hidden states, rather than the questions themselves, that drive the success
of fθ.

Table 4 summarizes the test accuracies for an fθ trained and tested on the word embedding layer of
Llama-2-7B, before any contextualization by the LM. Across the board, the accuracies are close to
50% random guess. This confirms that, the model is not skewed towards favoring a certain type of
question over another while doing the classification. The difficulty of the question is hence, not a
contributing factor to the accuracy calculated by classifying the hidden states.

4.3 PREEMPTIVE HALLUCINATION DETECTION ACROSS VARIOUS MODES OF AGGREGATION

We explore three modes for aggregating the hidden states before passing them to the classifier: mean
pooling, max pooling, and taking the last token. We see that the mean pooling gives us the best
accuracy as shown in Fig 5a. To test how different modes of aggregation work for the preemptive
experiments, we compare all the three modes. This is done across the same layer for a the same
model. As shown in Table 5, we see that the accuracy of the entire sentence (I+O) is similar for last
token and mean pooling. However, the drop in the subsequent accuracies is the maximum when last
token is used. The maximum accuracy for I is when mean pooling is used. Therefore, we use mean
pooling as our mode of aggregation in all our experiments.

5 RELATED WORK

Definitions. In this work, we investigate the phenomenon of hallucinations in language models that
generate responses based solely on their parametric knowledge, similar to Azaria & Mitchell (2023).
This contrasts with in-context generation scenarios where external knowledge sources are explicitly
incorporated within the prompt. We adopt the refined taxonomy proposed by Huang et al. (2023),
categorizing hallucinations into Factuality or Faithfulness. FACTCHECKMATE focuses its study on
addressing Factuality hallucinations, which are further divided into factual inconsistencies and factual
fabrications.

8
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Hallucination Detection. Hallucination remains a significant issue undermining the language
model’s usefulness. Existing research on hallucination detection has primarily focused on post-
processing methods applied after the inference process is completed and often utilizing external
knowledge sources for verification, as in (Manakul et al., 2023; Li et al., 2023; Chern et al., 2023).
For instance, Gou et al. (2024) introduce CRITIC, a framework that validates model outputs through
tool interaction, and FACTSCORE proposed by Min et al. (2023), is a fine-grained factual accuracy
metric that breaks down generated content into atomic facts, assessing their accuracy by comparing
them against reliable sources.

A recent promising line of research leverages the internal mechanics of language models to detect
hallucinations. Works such as (Burns et al., 2024; Azaria & Mitchell, 2023; Marks & Tegmark, 2023)
are pioneering efforts to assess the truthfulness of outputs by examining the hidden states of language
models. The work by Meng et al. (2022) locates where factual associations are stored in GPT models.
These studies have spurred further research into using LLMs’ internal representations in hallucination
detection (Chen et al., 2024a; CH-Wang et al., 2024). For instance, the MIND framework, introduced
by Su et al. (2024), generates training data in unsupervised approach for training hidden states based
hallucination detectors. Duan et al. (2024) conducts an experimental examination of the hidden
states of LLMs when processing factual versus nonfactual responses. Following this line of research,
FACTCHECKMATE showcases the effectiveness of preemptive hallucination detection, i.e. identifying
warning signals several tokens before the hallucinations actually occur, via solely exploiting the
language model’s hidden states.

Hallucination Mitigation. In the realm of hallucination mitigation at inference time, existing
work has explored self-correction and automated feedback approaches, where the language model is
prompted to fix its generation flaws, with or without leveraging feedback from the model itself or some
external knowledge source, as detailed in (Pan et al., 2023; Dhuliawala et al., 2023; Ji et al., 2023b).
A recent approach to mitigating hallucinations involves utilizing activation engineering (Subramani
et al., 2022), first applied to hallucination mitigation by Duan et al. (2024). FACTCHECKMATE builds
on these findings and explores additional activation engineering techniques to intervene and mitigate
hallucinations during inference time.

6 CONCLUSION

In conclusion, FACTCHECKMATE demonstrates that the hidden states of language models encode
rich information that can be used to predict hallucination preemptively, even before they appear in
the generated output. In FACTCHECKMATE, leveraging this insight, we develop an intervention
mechanism that steers the LM’s generation towards more factual outputs, once the hallucination
is detected. We achieve a preemptive hallucination detection accuracy of more than 70%, and an
average of 34.4% more factual output by LMs supported by FACTCHECKMATE, compared to the
base LMs. FACTCHECKMATE empirically proves the significant potential of utilizing the internal
working of LMs, through learning lightweight models for hallucination detection and mitigation,
introducing only a negligible average overhead of 3.16 seconds to the inference time.

7 LIMITATIONS AND FUTURE WORK

We have only looked at the hidden states as an internal component for classification to predict the
factuality of a sentence. Exploring other LM’s internal components presents a potential direction
for future work. With our detection and intervention experiments, we see that different layers in
the LM have varying effects. The classifier fθ and the intervention model gϕ, are sensitive to the
hyperparameters selected. To solve this, we want find out a more robust and consistent approach that
is less sensitive to varying hyperparameters, to steer the generation of the model towards the truth.

Going ahead, we aim to build a pipeline that is more generalizable and is applicable to a variety of do-
mains. Expanding our evaluation to include diverse datasets with different distributions could provide
valuable insights and a potential future direction for improving model generalizability. FACTCHECK-
MATE has shown promising results in question-answering tasks, and it would be interesting to extend
its application to other tasks, including dialogue-based and long-form generation tasks.
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A FACTUAL ASSESSMENT PROMPT

To assess factual accuracy, we use GPT-4o (OpenAI et al., 2024) as the evaluator. To reduce
stochasticity in the prompting process, we set the temperature to 1× 10−14 and top_p to 1× 10−17.
The prompt used for evaluation is as follows:

System: You are an expert evaluator with an access to Google Search. Your task is to evaluate
two responses to a question for factual accuracy. For this task, ’Factual accuracy’ refers to
the correctness and relevance of the information, aligned with facts accepted or verified as
recent as 2021. Ignore stylistic differences, length, opinions, or phrasing unless they change
the factual meaning. Supported by your Google Search results, decide which response, if
any, is correct. Answer ’first’ if the first response is the only correct response, ’second’ if the
second response is the only correct response, ’both’ if both responses are correct, or ’neither’
if neither response is correct or if the information provided is ambiguous or insufficient for
making a decision, You should favor the response that shows uncertainty if the other response
is incorrect. Then, in a new line, briefly explain the reason.
User: Question: who played first game in world cup 2018? First Response: Russia vs Saudi
Arabia Second Response: Brazil vs Germany.

B EXPERIMENTS FOR CLASSIFICATION

B.1 HIDDEN REPRESENTATION CLASSIFICATION ANALYSIS

Given the datasets and models described above, for every layer in a model we train a corresponding
classifier on hidden states of that respective layer. We use three modes for aggregating the hidden
states before passing them to the classifier: mean pooling, max pooling and taking the last token in
the hidden states. Figure 5b illustrates the accuracy of hallucination detection of the classifiers for the
entire sequence, using the mean token representation for aggregation. As shown, the accuracy across
all evaluated models mostly exceeds 0.75, indicating a robust capability to identify hallucinations.
This high level of performance underscores the efficacy of the hidden state representations in
distinguishing factual accuracies within generated content. As seen in the figure, we also see that the
accuracy peaks for the middle layers. The best performing layer per model per dataset is shown in
Table 6 ur experiments also explore taking the elementwise max over hidden states, or taking the last
one as the input to fθ, and find they slightly underperform taking the average.

Therefore, for all models we calculate the test accuracy across all layers and all modes of aggregation.
Quantitative results are shown in the first column of Table 2. Given the three modes of aggregation,
we see that mean pooling gives the best results in most cases. Figure 5a shows the test accuracy per
layer per mode.

Setup: The classifier is trained using an Adam optimizer with a learning rate of 10−4 with a dropout
rate of 0.1. We train all classifiers for 50 epochs.
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(a) Test Accuracy by Layer for all modes for the model Mistral-7b

(b) Accuracies for entire sentence across models and layers.

LM NQ MMLU MedMCQA
Llama-2-7b-hf 14 16 14
Llama-2-13b-hf 22 15 14
Llama-3-8B 15 17 11
Llama3.1-8B 23 14 15
Mistral-7B 13 - 12
Gemma-7B 17 17 18

Table 6: Best Performing layer per model and dataset
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