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ABSTRACT

Forecasting is a critical task in decision making across various domains. While
numerical data provides a foundation, it often lacks crucial context necessary for
accurate predictions. Human forecasters frequently rely on additional information,
such as background knowledge or constraints, which can be efficiently commu-
nicated through natural language. However, the ability of existing forecasting
models to effectively integrate this textual information remains an open question.
To address this, we introduce “Context is Key” (CiK), a time series forecasting
benchmark that pairs numerical data with diverse types of carefully crafted textual
context, requiring models to integrate both modalities. We evaluate a range of
approaches, including statistical models, time series foundation models, and LLM-
based forecasters, and propose a simple yet effective LLM prompting method that
outperforms all other tested methods on our benchmark. Our experiments highlight
the importance of incorporating contextual information, demonstrate surprising
performance when using LLM-based forecasting models, and also reveal some
of their critical shortcomings. By presenting this benchmark, we aim to advance
multimodal forecasting, promoting models that are both accurate and accessible to
decision-makers with varied technical expertise. The benchmark can be visualized
at https://anon-forecast.github.io/benchmark report dev/.

1 INTRODUCTION

The estimation of future conditions is the foundation of decision making (Hyndman & Athana-
sopoulos, 2018) and intelligence (Wang, 2019). Articulated as time-series forecasting, this problem
pervades many domains of science and commerce. Accurate forecasting relies on several crucial
decisions up to the practitioner (Hyndman & Athanasopoulos, 2018), in particular on: 1. Model
selection: Choosing the appropriate forecasting model for a given problem, and 2. Incorporating
prior information: Determining what relevant information should be included in the model and how
to effectively integrate it. This involves decisions about statistical priors, inductive biases in the
model architecture, and other forms of domain knowledge integration. Traditionally, these decisions
have heavily relied on expert knowledge and manual intervention. However, recent advancements
in machine learning have shown particular promise in democratizing time-series forecasting by
automating both model selection and the integration of prior information.

In the wake of the foundation model paradigm shift (Bommasani et al., 2021), several works (e.g.,
Liang et al. (2024); Chen et al. (2023); Lim & Zohren (2021)) have addressed automatic model
selection by learning flexible, adaptable models that can be applied across various problem scenarios.
Unfortunately, when compared to traditional statistical methods, current approaches provide debatable
performance improvements while requiring significantly more resources (Garza & Mergenthaler-
Canseco, 2024). Moreover, these models typically cast inputs and outputs as purely numerical time
series, which leaves no room for the context that human experts typically rely on to focus their
modelling efforts.

An alternative class of recent approaches (Jin et al., 2024; Liu et al., 2024c; Requeima et al., 2024)
adapt large language models (LLMs) for forecasting and leverage natural language as an intuitive
interface to integrate side information. These methods overcome a significant limitation of traditional
forecasting techniques by eliminating the need to manually encode priors or design specialized
models. They further hold the promise to capture a broader range of prior knowledge and context,
potentially leading to more comprehensive and accurate forecasts. Unfortunately, there are as of yet
no systematic evaluations of these models’ abilities to jointly leverage historical observations and
natural language for forecasting. While several benchmarks for context-aided forecasting have been
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Context: “This series contains the power production of a photovoltaic power plant in the state of Alabama. 
Over the previous 90 days, the maximum power production happened on average at 11:22:13.”

Context-unaware Context-aware
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Figure 1: An example task from the proposed Context is Key (CiK) benchmark with forecasts produced by a
context-aware model. Left: Using the numerical history alone leads to poor forecasts, as nothing indicates a
reversion to zero. Right: Awareness of the context significantly improves the forecasts as it reveals that no power
will be produced during the night (via deductive reasoning) and enables estimating the peak hour of production.

recently released (Zhang et al., 2023; Liu et al., 2024a; Xu et al., 2024; Emami et al., 2024; Merrill
et al., 2024), their contexts are not guaranteed to be useful for improving performance. Hence, it is
still an open question as to what extent existing methods can improve their predictions by leveraging
crucially-relevant information provided in textual form.

To this end, we propose the Context Is Key (CiK, pronounced kick) benchmark of forecasting tasks
with numerical input-output pairs and essential textual context. The benchmark is designed to assess
a forecaster’s ability to utilize both the numerical data and key information contained within the
accompanying text, as the accuracy of the forecasts relies heavily on effectively leveraging both;
see Fig. 1 for an example where context is imperative to forecast accuracy.

Our contributions are:

• We carefully design 71 forecasting tasks (Sec. 3) spanning 7 domains, which cover various kinds
of contextual information (Sec. 3.2), and in addition to basic natural language-processing and
time-series analysis, require various capabilities (Sec. 3.3).

• We introduce the Region of Interest CRPS metric (RCRPS) to evaluate context-aided forecasting
performance (Sec. 4), which prioritizes context-sensitive windows in the prediction and accounts
for constraint satisfaction.

• We evaluate various methods on CiK (Sec. 5), including statistical models, time series foundation
models using only numerical data, and LLM-based forecasters capable of incorporating context.
We introduce Direct Prompt, a simple prompting method that achieves the best results on CiK. Our
analysis explores key factors such as the impact of context conditioning, prompting techniques,
model capabilities, and discusses failure modes of models.

2 PROBLEM SETTING

Context-Aided Forecasting This work addresses the problem of context-aided forecasting, where
the goal is to produce statistical forecasts by incorporating relevant side information (i.e., context). Let
XH = [X1, . . . , Xt] represent a series of random variables corresponding to historical observations,
where each Xτ ∈ X ⊆ R, and let XF = [Xt+1, . . . , XT ] represent future observations. In the
classical statistical forecasting problem, the objective is to estimate the joint distribution of the future
observations given the historical data:

P (XF | XH).

We further assume access to context, denoted C ∈ C, which is additional data of arbitrary nature (C)
that contains information relevant for predicting XF and complementary to the history XH . The task
then becomes estimating the distribution:

P (XF | XH ,C).

Crucially, we restrict our focus to relevant context, which we define as context that does not degrade
the prediction of future time steps. Formally, for xF ∼ XF | XH ,C, given some loss function L
assessing a predictive distribution over XF against a realization xF , L : P (XF )× xF → R, we are

2
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Figure 2: Overview: The tasks in the CiK benchmark rely on real-world numerical data, from 7 domains, as
well as synthetic data (left), coupled with natural language context capturing up to 5 different aspects of the
dynamical process (center), and require up to 7 non-trivial capabilities to unlock accurate forecasts (right).

interested in systems where, in expectation, forecasts that leverage context perform better:1

E
xF

L(P (XF | XH ,C),xF ) ≤ E
xF

L(P (XF | XH),xF ).

Furthermore, although the nature of the context C can vary widely, we specifically concentrate on
context communicated through natural language.

3 CONTEXT IS KEY: A NATURAL LANGUAGE CONTEXT-AIDED
FORECASTING BENCHMARK

We present the Context is Key (CiK) benchmark, a collection of probabilistic forecasting tasks that
cannot be solved without integrating natural language contextual information with numerical data.
CiK consists of 71 distinct tasks spanning seven application domains (Sec. 3.1) and that can be
instantiated in different ways, e.g., by changing target time series or by selecting different time
windows. These tasks encompass diverse types of contextual information (e.g., past events and known
causal relationships; Sec. 3.2), and are designed such that various capabilities (e.g., causal reasoning;
Sec. 3.3) are required to fully leverage the context and unlock accurate forecasts (see Fig. 2 for an
overview). One key particularity of CiK is that all tasks are carefully designed to ensure quality,
avoiding reliance on automation (e.g., via LLMs) or crowdsourcing (see Appendix A.2 for details). An
example task is illustrated in Fig. 1 and others are given in Appendix B. The complete set of tasks can
be explored at https://anon-forecast.github.io/benchmark report dev/ and the source code is
available at https://anonymous.4open.science/r/context-is-key-forecasting-E391.

3.1 DOMAINS AND NUMERICAL DATA SOURCES

The vast majority (95%) of tasks in CiK draw numerical data from 2,644 real-world time series
acquired from public sources. These series cover a range of domains: Climatology (solar irradiance
and cloud coverage (Sengupta et al., 2018)); Economics (unemployment rates across states and
counties (U.S. Bureau of Labor Statistics, 2024)); Energy (electricity consumption and produc-
tion (Godahewa et al., 2021)); Mechanics (experimental properties of physical systems (Gamella
et al., 2024)); Public Safety (fire department intervention counts (Ville de Montréal, 2020)); Trans-
portation (highway segment occupancy rates and average speeds (Chen et al., 2001)); and Retail (cash
withdrawals from various ATMs (Godahewa et al., 2021)). The remaining 5% of tasks use simulated
data from dynamical systems crafted specifically for the tasks. Overall, the time series in CiK exhibit
diverse sampling frequencies, with observations ranging from every 10 minutes to monthly intervals.
Additional details on data sources can be found in Appendix A.1.

Memorization mitigation: Using publicly available real-world data introduces the risk that
pretrained LLMs and time-series foundation models may have memorized portions of the data,

1Using the negative log-probability as the loss function would make this statement equivalent to: the entropy
of P (XF | XH ,C) must be lower than the cross entropy of P (XF | XH ,C) and P (XF | XH).
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1

This is the number of trash fire incidents responded to by Montreal firefighters 
in the Mercier-Hochelaga-Maisonneuve borough2

This series tends to co-occur with field fires responded to 
by firefighters in the same borough4

In other years, the yearly average 
number of incidents was 99 and 

the month with the most incidents 
was August.

3

z

Trash 
fires

Field 
fires

However, field fires do 
not cause trash fires

6

A policy will be implemented 
from July to August 

this year that is expected to 
prevent all field fires

5

Figure 3: Illustration of a CiK task annotated with types of natural language context: 1⃝ The short numerical
history is misleading, suggesting an increasing trend. However, contextual information compensates and enables
accurate forecasts: 2⃝ The intemporal information (cI ) reveals the nature of the series, implying a seasonal
pattern with greater prevalence in the summer months due to weather. 3⃝ The historical information (cH )
complements the short history by providing high-level statistics on past values. 4⃝ The covariate information
(ccov) reveals an association with another quantity: field fires, reinforcing potential seasonal behavior. 5⃝ In
addition, the future information (cF ) reveals a future effort to reduce field fires. Could this impact future values
of the target series? 6⃝ No, the causal information (ccausal) provides the answer.

potentially inflating evaluation performance. To mitigate this, we employ several strategies. First,
we prioritize live data sources that are continuously updated, such as Chen et al. (2001) and Ville de
Montréal (2020), ensuring the data is collected after the training cut-off dates of the models being
evaluated. Second, where applicable, we use derived series that are not directly available in the raw
data, such as converting an incident log into time series (Ville de Montréal, 2020). Finally, as a last
resort, we apply minor transformations, such as adding noise or shifting timestamps, but use these
sparingly to avoid misalignment between common-sense knowledge (e.g., holiday dates) and the
numerical data. We provide details on the mitigation methods used in Appendix A.1.

3.2 NATURAL LANGUAGE CONTEXT

For each task in the benchmark, we jointly sample numerical data from one of the series described in
Sec. 3.1 and then manually craft the natural language context necessary to unlock accurate forecasts.
In some cases, this context is purely descriptive, providing information about the general nature of
the target variable and its historical behavior, as seen in the task illustrated in Fig. 1. In other cases,
the raw numerical data is adjusted to reflect the influence of the context. For example, in one task
based on data from Godahewa et al. (2021), an ATM is expected to be inaccessible during a specific
period, leading to zero withdrawals (visualized in Appendix B.3). In another task, electricity demand
is projected to surge due to an incoming weather event (visualized in Appendix B.2). In such cases,
we modify the series to incorporate patterns included in the context.

Overall, we include diverse forms of natural language context, capturing various aspects of the
process underlying the time series and revealing complementary knowledge that could be provided
by a human expert or an external information source. The types of context are described below and
exemplified in the task illustrated in Fig. 3. Several additional examples are given in Appendix B.

Intemporal information (cI ) Information about the process that remains invariant in time. For
example, a description of the process and the nature of the target variable, as in Fig. 3 (point 2⃝),
patterns that cannot be inferred from the available numerical data (e.g., long-period seasonalities), or
constraints on values (e.g., positivity).

Historical information (cH ) Information about the past behavior of the series that is not reflected in
the available numerical history. For example, statistics on past values of the series, as in Fig. 3 (point
3⃝), or an explanation for spurious patterns to be disregarded at inference (e.g., periodic anomalies

due to sensor maintenance).

4
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Covariate information (ccov) Information about any additional variables that are statistically
associated with the variable of interest and that may help prediction. For instance, a variable
correlated with the target values (as in Fig. 3 point 4⃝).

Future information (cF ) Information relevant to the future behavior of the time series. For example,
a scenario to be simulated (as in Fig. 3 point 5⃝) or expected events along with any entailed constraints
(e.g., an inventory shortage restricting future sales amounts).

Causal information (ccausal) Information about causal relationships between covariates and the
target variable. For example, if the covariates are known to cause or are confounded with the target
variable (as in Fig. 3 point 6⃝).

Finally, we note that, in contrast with the work of Zhang et al. (2023); Merrill et al. (2024); Liu
et al. (2024a); Emami et al. (2024) which rely on LLM-created context or scraped news articles, all
contextual information and data transformations in the CiK benchmark are manually crafted, using
the procedure described in Appendix A.2, to ensure both quality and relevance. The quality of the
natural language context in CiK is further demonstrated in Appendix A.3.

3.3 MODEL CAPABILITIES

In addition to forecasting and natural language understanding, all tasks are designed such that fully
utilizing the contextual information requires a range of capabilities, including instruction following,
various forms of reasoning, and retrieval.

For example, to solve the task in Fig. 3 , the model could retrieve from memory that Montreal
experiences snowfall and cold weather during the winter months. It could then infer that trash fires
are less likely to occur during this period through deductive reasoning. This chain of thought reveals
a seasonal pattern that is not apparent in the short numerical history. Additionally, through causal
reasoning, it is apparent that, despite a strong association between field fires and trash fires, the
intervention described in 5⃝ is unlikely to reduce the frequency of the latter. Failure to recognize this
distinction would lead to inaccurate forecasts.

A list of all capabilities with definitions is available in Appendix A.6 and the capabilities required
to solve each task are documented at https://anon-forecast.github.io/benchmark report dev.
The distributions of tasks per capability and context type are shown in Fig. 2, while the distribution
of lengths of the numerical historical data, prediction horizons and natural language context are
provided in Appendix A.7. Multiple example tasks from CiK are given in Appendix B, along with an
explanation of their sources of natural language context and the capabilities required to solve them.

4 REGION OF INTEREST CONTINUOUS RANKED PROBABILITY SCORE

Alongside the tasks, we introduce the Region of Interest CRPS (RCRPS), a novel proper scoring
rule designed specifically for context-aided probabilistic forecasting. This new scoring rule is an
extension of the Continuous Ranked Probability Score (CRPS; Gneiting & Raftery (2007)), a proper
scoring rule that provides a comprehensive assessment of forecast quality by evaluating the entire
predictive distribution rather than focusing solely on summary statistics. Importantly, since it is based
on the CRPS, the RCRPS can be calculated using only samples from the predictive distribution, and
so can be used even in cases where closed-form distributions are unavailable. The RCRPS extends
the CRPS via two key components: a region of interest and a measure of constraint satisfaction. This
allows assessing both forecast accuracy and the integration of contextual information.

Region of interest (RoI): The score reweighs a strict subset of time steps, denoted by I ⊆
[t+1, . . . , T ], whose values are heavily informed by the context. For example, in the ATM task
described in Sec. 3.2 (visualized in Appendix B.3), this would correspond to the time intervals during
which the ATM is expected to be unavailable. In other tasks, such as those in Figs. 1 and 3, where
the context informs the value of all future time points, we set the RoI to an empty set, essentially
weighting all time steps equally (for readability, we report the definition of RCRPS for this special
case in Appendix E).

Constraint satisfaction: The score penalizes violations of constraints, whether explicitly or im-
plicitly included in the context, by measuring a task-specific function, denoted by vC, whose value
is zero for any trajectory that satisfies the constraints and > 0 for any trajectory that violates them.
Concrete examples are given in Appendix E.4. For tasks whose context does not imply constraints,
we use vC(·) ≡ 0.

5

https://anon-forecast.github.io/benchmark_report_dev


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Given an inferred forecast distribution X̃F and a ground truth xF , the scoring rule is defined as:

RCRPS(X̃F ,xF ) := α ·

[
1

2|I|
·
∑
i∈I

CRPS
(
X̃i, xi

)
+

1

2|¬I|
·
∑
i∈¬I

CRPS
(
X̃i, xi

)
+ β · CRPS

(
vC(X̃F ), 0

)]
,

where the terms respectively account for CRPS inside the RoI, CRPS outside of the RoI, and constraint
satisfaction. We note that the last term is inspired by the threshold-weighted CRPS of Gneiting &
Ranjan (2011) and that it vanishes when all constraints are satisfied. The α term is a task-dependent
scaling factor that is used to ensure that score values for tasks with numerical data of various scales
can be aggregated; its calculation is described in Appendix E.1. Finally, β is a scaling factor that
controls the impact of constraint violation on the score; we use β = 10 in our experiments. For
additional details and discussion on the RCRPS properness, we refer the reader to Appendix E.

5 EXPERIMENTS AND RESULTS

In this section, we define our evaluation protocol (Sec. 5.1) and outline the baseline models evaluated
on CiK (Sec. 5.2). We then present results on the benchmark (Sec. 5.3), along with an analysis
of factors affecting model performance. Finally, we look at areas for improvement by analyzing
forecasting errors (Sec. 5.4) and inference cost (Sec. 5.4).

5.1 EVALUATION PROTOCOL

Each task in CiK has many unique specifications, i.e. instances arising from the various time series
and windows in the associated numerical data, as well as minor variations in natural language context.
In order to make the evaluation reproducible and affordable, we deterministically select 5 instances
of each task for evaluation. For each instance, we generate 25 independent samples from each model
for evaluation. Since many of the tasks in the benchmark share similarities due to having been
created from the same data sources or using variants of the same context, we identify these clusters
of similar tasks, and design a weighting scheme such that each cluster has equal total weight in our
aggregate score (see Appendix A.4 for more details). Finally, to prevent the aggregate scores from
being dominated by rare instances where some models give forecasts which are orders of magnitudes
away from the ground truth, we introduce an upper bound of 5 to the RCPRS value for each instance,
which intuitively represents the value a forecast would get if the distance between the forecast and
the ground-truth was 5 times bigger than the range of the ground-truth of the instance.
5.2 BASELINES

We evaluate a wide variety of models ranging from methods based on language models to state-of-
the-art numerical time series foundation models and classical statistical forecasting methods. Since
CiK is meant to be an evaluation benchmark and hence does not have a corresponding training set,
we only directly evaluate models that support zero-shot inference (such as LLMs and time series
foundation models), and those which can be fit directly to the few historical data points of each task
instance evaluated, such as traditional statistical models. We outline these methods below and refer
the reader to Appendix D for additional details.
LLM-based Forecasters: We consider two prompt-based approaches: LLM-processes (LLMP;
Requeima et al. (2024)) and a simple approach which we propose, called “Direct Prompt”, where we
instruct the model to directly output a forecast as a structured output, rather than prompting it multiple
times as in (Requeima et al., 2024) (described in detail in Appendix D.1). For each of these, we
evaluate a variety of LLMs with diverse architectures and sizes, such as GPT-4o (Achiam et al., 2023),
Mixtral-8x7B (Jiang et al., 2024)), Qwen-2.5-7B (Yang et al., 2024), Llama-3-8B (Dubey et al.,
2024), Llama-3.1-405B (Dubey et al., 2024). 2 Next, we evaluate multimodal forecasting models,
UniTime (Liu et al., 2024c) and Time-LLM (ETTh1) Jin et al. (2024) each trained according to their
respective authors’ guidelines (detailed in Appendix D.3). For all of these approaches, inference
is performed zero-shot on the benchmark and we compare their performance with and without the
natural language context.
Quantitative Forecasting Models: To contrast the performance of LLM-based forecasters, we
also evaluate a number of models that are only capable of processing numerical data (no natural
language). This includes exponential smoothing (Gardner Jr., 1985), ETS (Hyndman et al., 2008),
and ARIMA (Box et al., 2015), three simple, but time-tested statistical approaches, as well as four

2For LLMP, we do not consider Llama-3.1-405b and GPT models as LLMP requires loading model weights
into memory, which is infeasible due to resource limitations and confidentiality, respectively.

6
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Table 1: Results on the CiK benchmark. Starting from the left, the first column shows the RCRPS averaged
over all tasks. The second column shows the rank of each method w.r.t. other baselines, averaged over all tasks.
The remaining columns show the average RCRPS stratified by model capabilities (Sec. 3.3). All averages are
weighted according to the scheme described in Sec. 5.1 and accompanied by standard errors. Lower is better
and the best averages are in bold. An asterisk (*) denotes models that do not use natural language context.

Average
RCRPS

Average
Rank

Instruction
Following

Retrieval Reasoning

Model From Context From Memory Deductive Analogical Mathematical Causal

Direct Prompt (ours)
Llama-3.1-405B-Inst 0.159 ± 0.008 4.677 ± 0.205 0.140 ± 0.013 0.109 ± 0.002 0.191 ± 0.006 0.133 ± 0.001 0.167 ± 0.008 0.316 ± 0.028 0.376 ± 0.039
Llama-3-70B-Inst 0.518 ± 0.030 10.878 ± 0.205 0.504 ± 0.038 0.371 ± 0.071 0.523 ± 0.048 0.461 ± 0.048 0.694 ± 0.117 0.573 ± 0.044 0.643 ± 0.049
Llama-3-8B-Inst 1.647 ± 0.069 15.884 ± 0.182 1.604 ± 0.131 0.199 ± 0.010 1.568 ± 0.067 2.133 ± 0.082 1.555 ± 0.008 1.589 ± 0.177 1.840 ± 0.238
Mixtral-8x7B-Inst 1.061 ± 0.058 14.035 ± 0.253 0.857 ± 0.077 0.296 ± 0.049 1.077 ± 0.078 1.352 ± 0.117 1.145 ± 0.144 1.000 ± 0.086 1.096 ± 0.106
GPT-4o 0.276 ± 0.010 4.596 ± 0.155 0.180 ± 0.004 0.087 ± 0.003 0.519 ± 0.029 0.113 ± 0.006 0.447 ± 0.029 0.590 ± 0.033 0.769 ± 0.046
GPT-4o-mini 0.353 ± 0.022 9.394 ± 0.192 0.296 ± 0.043 0.419 ± 0.014 0.471 ± 0.012 0.218 ± 0.005 1.024 ± 0.033 0.475 ± 0.080 0.578 ± 0.112
Qwen-2.5-7B-Inst 0.292 ± 0.032 10.802 ± 0.815 0.353 ± 0.062 0.141 ± 0.021 0.307 ± 0.019 0.206 ± 0.016 0.248 ± 0.032 0.399 ± 0.053 0.471 ± 0.073

LLMP
Llama-3-70B-Inst 0.550 ± 0.013 8.443 ± 0.214 0.645 ± 0.018 0.284 ± 0.015 0.392 ± 0.014 0.519 ± 0.026 0.312 ± 0.019 0.453 ± 0.020 0.495 ± 0.028
Llama-3-70B 0.237 ± 0.006 6.875 ± 0.272 0.310 ± 0.011 0.126 ± 0.009 0.217 ± 0.007 0.134 ± 0.003 0.241 ± 0.019 0.294 ± 0.008 0.329 ± 0.010
Llama-3-8B-Inst 0.484 ± 0.010 9.935 ± 0.178 0.345 ± 0.002 0.138 ± 0.004 0.910 ± 0.030 0.242 ± 0.008 1.278 ± 0.069 0.617 ± 0.022 0.787 ± 0.030
Llama-3-8B 0.313 ± 0.023 9.966 ± 0.347 0.404 ± 0.043 0.124 ± 0.003 0.280 ± 0.026 0.179 ± 0.014 0.267 ± 0.015 0.530 ± 0.084 0.661 ± 0.117
Mixtral-8x7B-Inst 0.264 ± 0.004 8.898 ± 0.276 0.344 ± 0.004 0.127 ± 0.003 0.224 ± 0.005 0.179 ± 0.010 0.173 ± 0.009 0.348 ± 0.005 0.405 ± 0.007
Mixtral-8x7B 0.262 ± 0.008 9.013 ± 0.225 0.348 ± 0.012 0.146 ± 0.022 0.230 ± 0.016 0.153 ± 0.002 0.230 ± 0.041 0.354 ± 0.007 0.414 ± 0.009

Multimodal Models
UniTime 0.371 ± 0.002 14.132 ± 0.109 0.271 ± 0.003 0.179 ± 0.001 0.318 ± 0.001 0.510 ± 0.003 0.333 ± 0.001 0.332 ± 0.001 0.384 ± 0.001
Time-LLM (ETTh1) 0.476 ± 0.001 17.443 ± 0.089 0.448 ± 0.002 0.192 ± 0.000 0.373 ± 0.000 0.538 ± 0.003 0.397 ± 0.001 0.382 ± 0.001 0.440 ± 0.001

TS Foundation Models*
Lag-Llama 0.329 ± 0.004 13.770 ± 0.245 0.355 ± 0.007 0.181 ± 0.003 0.324 ± 0.003 0.272 ± 0.006 0.342 ± 0.006 0.386 ± 0.009 0.449 ± 0.012
Chronos 0.326 ± 0.002 12.548 ± 0.156 0.385 ± 0.002 0.138 ± 0.002 0.288 ± 0.002 0.249 ± 0.002 0.295 ± 0.003 0.362 ± 0.003 0.417 ± 0.004
TimeGEN 0.354 ± 0.000 15.026 ± 0.107 0.402 ± 0.000 0.176 ± 0.000 0.308 ± 0.000 0.279 ± 0.000 0.324 ± 0.000 0.377 ± 0.000 0.431 ± 0.000
Moirai 0.520 ± 0.006 13.038 ± 0.273 0.414 ± 0.004 0.155 ± 0.004 0.260 ± 0.003 0.751 ± 0.015 0.276 ± 0.008 0.337 ± 0.007 0.397 ± 0.010

Statistical Models*
ARIMA 0.480 ± 0.006 12.925 ± 0.189 0.399 ± 0.006 0.160 ± 0.002 0.517 ± 0.012 0.522 ± 0.013 0.706 ± 0.026 0.354 ± 0.007 0.403 ± 0.010
ETS 0.522 ± 0.009 15.031 ± 0.212 0.407 ± 0.009 0.228 ± 0.010 0.682 ± 0.018 0.571 ± 0.019 0.855 ± 0.035 0.453 ± 0.012 0.479 ± 0.015
Exp-Smoothing 0.603 ± 0.013 15.689 ± 0.146 0.571 ± 0.021 0.334 ± 0.013 0.743 ± 0.018 0.557 ± 0.019 0.899 ± 0.035 0.673 ± 0.038 0.782 ± 0.053

state-of-the-art time series foundation models: Lag-Llama (Rasul et al., 2023), Chronos (Ansari et al.,
2024) 3 , Moirai (Woo et al., 2024), and TimeGEN (Garza et al., 2023). We note that exponential
smoothing, ETS, and ARIMA are fitted to each task instance’s numerical history, while the foundation
models are evaluated zero-shot.

5.3 RESULTS ON THE BENCHMARK

Our main results are shown in Tab. 1. At a high level, we observe that the best-performing baselines
combine pretrained LLMs with prompting strategies like Direct Prompt and LLMP, with a bias
toward the largest models. In terms of RCRPS, Llama-3.1-405B-Inst (Direct Prompt) significantly
outperforms all of its counterparts. As can be seen in Fig. 4, it achieves this only with context.
GPT-4o (Direct Prompt) performs worse with respect to RCRPS, but compares favorably in terms
of average rank, taking the best average rank by a small margin. This discrepancy is due to strong
failures on some of the tasks, which we discuss in Sec. 5.4. Other models like Llama-3-70B (LLMP),
Mixtral-8x7B-Inst (LLMP), Mixtral-8x7B (LLMP), and Llama-3-8B (LLMP) are on par with Qwen-
2.5-7B-Inst (Direct Prompt) and GPT-4o (Direct Prompt) in terms of RCRPS. Interestingly, all of
these baselines outperform UniTime and Time-LLM, which also rely on LLMs (GPT-2 & LLaMA-
7B). We discuss this gap in Appendix D.3. Finally, as emphasized in Fig. 5, we observe that the
best-performing LLM baselines significantly outperform purely quantitative models. In what follows,
we examine various aspects of these results (and refer to Appendix C for additional results).

Explaining the performance of
LLM-based approaches
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Figure 4: Performance with and without context (lower is
better). Full bars show performance with context; striped bars
show performance without. All models improve with context,
except DP Mixtral-8x7B-Inst, LLMP Llama-3-70B-Inst and
Time-LLM. Llama-3.1-405B-Inst improves significantly with
context, exhibiting the best aggregate RCRPS.

The stronger performance of LLM base-
lines could be due to two factors: (i) prop-
erly leveraging the natural language con-
text and (ii) being more proficient at nu-
merical forecasting. We thus attempt to
disentangle their contributions. On the one
hand, Fig. 4 shows clear evidence that most
baselines make use of the context to im-
prove their forecasts. For example, Llama-
3.1-405B-Inst (Direct Prompt) improves by
67.1% with context. This is reflected in the
quality of the forecasts, where we observe
clear improvements especially in regions

3Results reported here are on Chronos-Large and Moirai-Large. Results on all versions are in App. C.3.
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0% 25% 50% 75% 100%
TimeLLM (ETTh1)

UniTime
DP Llama-8B-Inst

DP Mixtral-8x7B-Inst
DP Qwen-2.5-7B-Inst

LLMP Mixtral-8x7B
LLMP Llama3-8B
DP GPT-4o-mini

DP Llama-70B-Inst
LLMP Mixtral-8x7B-Inst

LLMP Llama3-8B-Inst
LLMP Llama3-70B-Inst

LLMP Llama3-70B
DP GPT-4o

DP Llama-3.1-405B-Inst
With context

0% 25% 50% 75% 100%

Without context
Beats all Beats 5 or 6 Beats 3 or 4 Beats 1 or 2 Beats none

Figure 5: Proportion of tasks for which LLM-based baselines outperform the 7 quantitative forecasting baselines
(see Sec. 5.2). A baseline is considered to outperform another on a task if its mean RCPRS is lower on said task.
Results are shown for variants that use (left) and do not use (right) the natural language context. A full green
bar would indicate that the baseline is better on all tasks, whereas a full red bar would indicate that it is worse
everywhere. Averages are weighted according to Sec. 5.1.

of interest and improved satisfaction of constraints (see Appendix C.5 for examples). Other models
show much slighter improvements and, in three cases, even a degradation in performance. These
can be explained either by the context being ignored, or by significant failures in using context,
impoverishing overall performance (see Sec. 5.4).

On the other hand, Fig. 5 (right) shows that some LLM baselines are surprisingly good forecasters
when compared to quantitative forecasting models in a no-context setting. For instance, multiple
Llama-3-based models used with the LLMP strategy outperform at least 5 of the quantitative baselines
on the majority of tasks. This is further substantiated by results in Appendix C.3. In contrast, other
baselines, including the best models Llama-3.1-405B-Inst (Direct Prompt) and GPT-4o (Direct
Prompt), show much weaker numerical forecasting abilities without context, suggesting that their
performance is mostly due to leveraging the context.

Comparing the LLMP and Direct Prompting Strategies

Clear patterns emerge when comparing these strategies. First, as shown in Fig. 5 (right), LLMP
baselines exhibit stronger numerical forecasting performance without context than Direct Prompt
baselines. This advantage likely stems from LLMP’s closer alignment with the forecasting task:
LLMP simply prompts the LLM to autoregressively predict the next value in the time series – a task
well suited for non-instruction tuned LLMs. This contrasts with Direct Prompting which requires
output forecasts to be structured, complicating the overall task.

This line of reasoning leads us to our second observation; as reflected in Tab. 1 and Fig. 5, instruction
tuning appears to generally degrade LLMP performance, with Llama-3 models showing a twofold
decrease in performance after tuning—a behavior previously observed by Gruver et al. (2024). Inter-
estingly, instruction tuning does not degrade Mixtral-8x7B performance. Finally, while instruction
tuning generally harms LLMP, it is essential for models used with the Direct Prompt strategy. Again,
Direct Prompt requires forecasts to be produced in a specific structure, a skill that base models
typically hone during post-training (see Appendix D.1.1 for details).

No Baseline Excels Across All Capabilities

Based on the results in Tab. 1, it is evident that some models possess the necessary capabilities to
effectively utilize the contextual information provided. However, no single model is the best across all
capabilities. Llama-3.1-405B-Inst (Direct Prompt), our overall top-performing baseline, outperforms
its counterparts in only 4 out of 7 capabilities. This finding indicates that the benchmark remains
unsolved, leaving significant room for advancements from the research community.

5.4 ERROR ANALYSIS

We find that models occasionally return forecasts that miss the ground truth by a large margin. A
significant failure denotes a forecast that over or undershoots by at least five times the range of the
ground truth; at that point, we clip the RCRPS to 5 as explained in Sec. 5.1. Despite this cap, such
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Figure 6: Overview of inference costs. (Left) Comparison of average RCRPS (per Tab. 1), vs. the parameter
count of each baseline model (lower is better for both). The GPT family, as well as TimeGEN, are left out as there
is no information on them about parameter count. The dashed line illustrates the Pareto front: models above
and to the right of this front are dominated. Quantitative forecasters dominate the low-parameter regime, while
LLM-based methods such as DP Qwen-2.5-7B-Inst or LLMP Llama-3-70B and DP 3.1-405B-Inst offer superior
performance for a higher parameter count. (Right) Inference time in seconds, for all baselines, averaged over
all tasks. Several quantitative methods are much faster on average than LLM-based methods. However, there
are significant differences in inference time between the LLM-based forecasters: for the Llama models, LLM
Process takes about an order of magnitude more time to run on average than Direct Prompt.

unpredictable behaviour impacts the results of Tab. 1: GPT-4o with Direct Prompt, while emerging as
a top-performer in most tasks (as reflected in its average rank), provides significantly higher aggregate
RCRPS than models ranked worse, such as Mixtral-8x7B with LLMP. As an example, Direct Prompt
with GPT-4o fails significantly in a task with a context involving scientific notation (see Fig. 17; more
examples can be found in Appendix C.6). Notably, while a model may generally achieve a high win
rate, a few significant failures can dominate its aggregate performance, as observed for Mixtral-8x7B.
We analyse this in detail in Appendix C.10. These findings underscore the need for future work to
develop more robust models that can handle context effectively while avoiding significant failures.
5.5 INFERENCE COST

A key practical aspect for forecasting applications is the inference time of models and their associated
cost. Fig. 6 (left) shows that, while Llama-3.1-405B-Instruct has the best RCRPS, it comes at the
cost of a significantly higher parameter count than the quantitative forecasters. This emphasizes that,
while LLMs can be powerful context-aware forecasters, they come with a steep computational cost,
highlighting the need for efficient models that balance both accuracy and resource demands. Of note
is also that many LLM baselines are Pareto dominated by quantitative forecasters such as Lag-Llama
and Chronos. This suggests that the ability to ingest text is not enough and that a careful choice of
LLM and prompting strategy is crucial for Pareto efficiency.

Fig. 6 (right) emphasizes the disparity in inference time between LLMs and quantitative models.
LLMs take significantly longer to make predictions, with the most accurate LLMs having inference
times that are orders of magnitude higher than their quantitative counterparts. Quantitative models,
in contrast, maintain much lower inference times, making them far more efficient for practical
use. The high computational demands of context-aware LLMs hinder their practical use in real-
world forecasting, especially where speed and cost matter. The clear benefits of incorporating
context warrants research into making them more efficient, aiming to match the cost-effectiveness of
traditional models and enabling their deployment in large-scale forecasting.

6 RELATED WORK

We review two streams of related work: (i) work that introduce related benchmarks and datasets, and
(ii) work that repurpose LLMs to obtain foundation models for context-aided forecasting.

Benchmarks and Datasets Merrill et al. (2024) present a benchmark designed to evaluate LLMs’
ability to reason about time series, with context-aided forecasting as one assessed capability. Their
approach differs from ours in several important ways. First, they focus on purely synthetic time series,
which may not accurately reflect real-world dynamics, whereas our benchmark is based primarily on
real-world data. Second, their evaluation is limited to point forecasting metrics, which do not measure
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the quality of the full forecast distribution. In contrast, we adopt probabilistic forecasting metrics, e.g.,
the continuous ranked probability score (CRPS; c.f. Gneiting & Raftery, 2007), to assess the quality
of entire forecast distributions. Other related datasets include Time-MMD (Liu et al., 2024a), which
integrates text extracted from reports and web searches, TGTSF (Xu et al., 2024), which incorporates
information such as weather reports and news articles, SysCaps (Emami et al., 2024), which includes
LLM-generated descriptions of building energy consumption systems, TS-Insights (Zhang et al.,
2023), which includes LLM-generated descriptions of trends and seasonalities, and the works of
Sawhney et al. (2021); Liu et al. (2024b) who propose automated filtering methods to construct
datasets of paired textual and numerical information. The key distinction between these works and
ours lies in the role of textual information: while in these works, the text is not essential to generating
high-quality forecasts, in our benchmark, all tasks are handcrafted to ensure that accurate forecasts
cannot be achieved without using the provided textual information.

Repurposing LLMs for Forecasting A natural approach to this problem is to build forecasting
methods based on LLMs. Xue & Salim (2023) showed that forecasting could be framed as a question-
answering problem. Subsequently, Gruver et al. (2024) and Requeima et al. (2024) showed that
zero-shot sequence completion could generate accurate forecasts and that textual side-information
could be used to influence forecasts. However, their analysis is limited to illustrative examples rather
than a comprehensive evaluation. Other approaches incorporate time series into pretrained LLMs (Jin
et al., 2024; Liu et al., 2024c; Zhang et al., 2024) by introducing special tokens used to represent
patched time series patterns; or modifying their encoders to account for time series data (Jia et al.,
2024). While these methods show promising results, their evaluations primarily rely on datasets
where the contextual information is not guaranteed to improve forecasts over numerical data alone.
As a result, it remains unclear whether their success is driven by accurate numerical forecasting or by
effectively incorporating context; this shortcoming motivates our investigation into this question.

7 DISCUSSION

In this work, we propose the Context is Key (CiK) benchmark: a collection of forecasting tasks
that require combining historical data with critical natural language context. We evaluate a range
of models on CiK, including our proposed LLM prompting method, Direct Prompt, which achieves
the best performance. We analyse and discuss the failure modes of these models, and our findings
underscore the critical role of contextual information in improving forecasts, while also revealing
both the unexpected strengths and notable limitations of the investigated LLM-based forecasters.

Limitations: While our benchmark provides valuable insights into the integration of contextual
information in time series forecasting, it is important to acknowledge its limitations. Our study
excludes modalities other than time series data and text, and excludes multivariate time series
scenarios. Although we carefully and deliberately designed the tasks to assess how well time series
forecasters can integrate contextual information, our focus was on relationships between context and
forecasts that are discernible to humans. Hence, our benchmark does not explicitly evaluate a models’
capacity to leverage latent relationships that might elude human observation. Moreover, while tasks
are designed to require certain capabilities, we do not guarantee that alternative approaches to solving
them do not exist. Our collection of capabilities and context types was not intended to be exhaustive
but rather to serve as tools for analyzing forecasters’ performance on the benchmark. While we have
taken steps to mitigate memorization concerns, as discussed in Sec. 3.1, achieving absolute certainty
in this regard is challenging without strictly held-out data.

Future work: There are several promising avenues for future work. All tasks in the proposed
benchmark are univariate forecasting tasks with textual context. Enhancements to the benchmark
could include tasks that require multivariate forecasting or incorporate additional modalities, such
as images, structured databases, or spatiotemporal data. Tasks that deliberately challenge context
length limitations or probe specific weaknesses of language models would also be valuable additions.
Methods to automate the generation of large, high-quality datasets for context-aided forecasting
are also a valuable direction of investigation. Furthermore, this benchmark strongly motivates
research into developing more accurate and efficient multimodal forecasting models, which it is
well-positioned to support. Lastly, as models become more robust, they could be integrated into
agentic systems with conversational interfaces, allowing forecasts to be augmented with human
expertise and automatically retrieved facts (e.g., via search engines). Such advancements would
represent a significant step toward automating and democratizing access to powerful forecasting
tools.
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A ADDITIONAL DETAILS ON THE BENCHMARK

A.1 DATA SOURCES

We list here the domains and the respective sources of time series data we use in the various tasks
in the CiK benchmark. We also show the number of tasks that use each source’s data and list any
memorization mitigation strategies used for each dataset.

• Traffic (11 tasks):

– Traffic occupancy rate: We use traffic occupancy rate (%) data from the California
Performance Measurement System (PeMS) (Chen et al., 2001), with frequency hourly.
This dataset contains a total of 446 series.

* As this is a live dataset (updated frequently), we use data from 2024 (i.e. data
after the cutoff dates of LLMs used) and do not apply any memorization mitigation
strategy.

• Climatology (12 tasks):

– Solar irradiance and cloud cover data (9 tasks): We use solar irradiance and cloud
cover data for the Americas in 2022 (Sengupta et al., 2018), with frequency either 10
minutes or hourly. We extract a subset of 45 series from this dataset for the benchmark.

* To mitigate memorization, we shift the dates by one day ahead.
– Solar photovoltaic power production (3 tasks): Time series reflecting solar power

production in Alabama during 2006 (Godahewa et al., 2021), with a frequency 10
minutes. This dataset contains a total of 137 series, but our tasks only use a single
aggregated series generated from them.

* To mitigate memorization, we add gaussian noise to the data with a standard
deviation of 3% of the standard deviation of the data in each respective sampled
window.

• Public Safety (26 tasks):

– Fire Department Intervention Logs: Logs of number of interventions carried out by
the Montreal Fire Department due to the occurence of various kinds of incidents (such
as trash fires, field fires, nautical accidents, bike accidents) (Ville de Montréal, 2020).
The data was processed from a raw log and aggregated to monthly frequency. This
dataset contains a total of 48 series.

* Due to it being processed, we do not apply any special memorization mitigation
strategy on top.

• Mechanics (3 tasks):

– Causal Chambers: Experimental data collected from the wind tunnel physical system
from Gamella et al. (2024), released in April 2024. We make use of the load in,
pressure downwind, pressure ambient and speed in series (downsampling them to
1s frequency) to build out-of-distribution forecasting tasks where the target values can
be inferred from the driver variate provided as covariate and the description of the
physical system given in the context. We select a subset of 17 series from this dataset
for the benchmark.

* Since the data is released in 2024 and after the cutoff dates of the LLMs used, we
do not apply any memorization mitigation technique to transform the data.

• Economics (3 tasks):

– FRED: American unemployment data at the state and county levels, from the Federal
Reserve Bank of St. Louis (U.S. Bureau of Labor Statistics, 2024), with frequency
monthly. We extract a subset of 1769 series from this dataset for the benchmark.

* As this is a live dataset (updated frequently), we use data from 2024 (i.e. data
after the cutoff dates of LLMs used) and do not apply any memorization mitigation
strategy.

• Retail (6 tasks):
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– NN5 ATM cash withdrawals: The NN5 dataset of ATM cash withdrawals in the UK
from the Monash Time Series Forecasting Repository (Godahewa et al., 2021), with
frequency daily. This dataset contains a total of 111 series.

* To mitigate memorization, we add gaussian noise to the data with a standard
deviation of 3% of the standard deviation of the data in each respective sampled
window.

• Energy (7 tasks):
– Electricity consumption: Electricity usage from 2012 to 2014 from the Monash Time

Series Forecasting Repository (Godahewa et al., 2021), with frequency daily. This
dataset contains a total of 321 series.

* To mitigate memorization, we add gaussian noise to the data with a standard
deviation of 3% of the standard deviation of the data in each respective sampled
window.

• Synthetic Data (3 tasks): We employ a bivariate setup where the parent variable is drawn
from a categorical distribution, and the child variable is generated using a continuous linear
Structural Vector Autoregressive (SVAR) model with Gaussian noise, with a lag of 3 and a
noise scale of 0.1.

– Since this data is synthetic, we do not apply any mitigation technique on top of data
to mitigate memorization. Since our models assume a timestamp, we use dates from
2025, and a frequency of daily when we input this data to our models.

Depending on the task and the context used in the task, appropriate history and prediction lengths are
used in the task.

A.2 TASK CREATION PROCESS

All tasks were manually designed, from scratch, by the authors of this work without resorting to
external annotators, crowdsourcing, or LLMs. We use the following procedure to create the tasks in
the benchmark.

First, we identified high-quality sources of public time series data from various application domains
(listed in Appendix A.1). Special care was taken to find data sources that are continuously updated to
facilitate future benchmark updates. Second, we established the categorization for sources of context
(Sec. 3.2) and capabilities (Sec. 3.3) as a framework to guide the creation of new tasks and ensure
their diversity. Third, team members created the tasks, each time

1. Selecting a data source
2. Implementing a time series window selection strategy (e.g., short or long history)
3. Brainstorming about context types and capabilities required to solve the forecasting problem
4. Writing a code to generate the context (e.g., calculating statistics of the series beyond the

observed numerical history), and
5. Finally, if required, writing code to modify the time series data to reflect the context (e.g.,

introducing some spikes in future values).

Then, the tasks were peer-reviewed by a committee composed of all other authors (each with time
series research experience). The creator of each task was not allowed to participate in the review. The
review ensured that the text was of high quality, that it undoubtedly enabled a better forecast, and that
the context source and capability tags were well-assigned. If a task was deemed of not high enough
quality, it was either returned for revisions, or rejected.

The code for all tasks is available here: https://anonymous.4open.science/r/
context-is-key-forecasting-E391/. An example task can be found here: https:
//anonymous.4open.science/r/context-is-key-forecasting-E391/cik benchmark/tasks/
montreal fire/short history.py, where the time series window selection occurs from L94-112
and the context generation occurs from L114-158.

After the benchmark was developed, we further assessed the quality of the context using an LLM-
based critique to validate that all the tasks are high-quality context aided forecasting tasks. This
procedure is detailed in Appendix A.3.
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A.3 AN LLM-BASED CRITIQUE OF THE RELEVANCE OF CONTEXT

To further assess the quality of the tasks, we build an LLM-based critique by prompting GPT-4o with
the historical and future numerical data, as well as the context, and asking it to assess whether its
estimation of future values would be “significantly better”, “slightly better”, “unchanged”, or “worse”
when the context is provided compared to when it is not provided. Note that this experiment was ran
after the benchmark was created, as an analysis tool to further validate the quality of the tasks.

We run this critique on 5 instances of each of the 71 tasks and report results in Fig. 7. All
tasks are assessed as enabling better forecasts when given context, with the majority of tasks
assessed as having contexts that enable “significantly better” forecasts. The code linked to this ex-
periment is provided at https://github.com/anon-forecast/benchmark report dev/blob/main/
iclr rebuttal resources/llm validation.py. The prompt used in the critique is below:

”

You are a critic whose role is to evaluate the quality of tasks in the ”context is key” time
series forecasting benchmark.

”Context is Key” (CiK) is a time series forecasting benchmark that pairs numerical data with
diverse types of carefully crafted textual context, requiring models to integrate both
modalities to arrive at accurate predictions.

Here is a task to evaluate.

<history>
((history))
</history>

<context>
<background>

((background))
</background>
<scenario>

((scenario))
</scenario>
<constraints>

((constraints))
</constraints>

</context>
<future>
((future))
</future>

Assume the following two scenarios:
1) You are given only the numerical data in <history> and have no additional information

about the nature of the time series. You must ignore the <context> section completely.

2) You are given the <context> section in addition to the numerical data in <history>.

Now, assume you had to estimate the probability distribution of the <future> values given
the information available in each scenario. How would the quality of your estimation
change in scenario 2 compared to scenario 1?

First show your reasoning in <reason></reason> tags, then answer in <answer></answer> tags
with either ”significantly better”, ”slightly better”, ”unchanged”, ”worse” (no other
reponses are allowed).

A.4 WEIGHTING SCHEME FOR TASKS

To take full advantage of the available data, we create multiple tasks using each data source, by
varying the specific contextual information we provide to the models. Since we do not want our
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Figure 7: A histogram of results from the LLM-based critique of the relevance of context. Given the historical
data, the future data and the associated context of tasks, GPT-4o is asked to assess whether its predictions would
be “significantly better”, “slightly better”, “unchanged”, or “worse” (see Appendix A.3 for the details). The
context in all tasks is considered as enabling better forecasts, with the majority of tasks having context that
enable “significantly better” forecasts.

aggregate results to be dominated by the few datasets for which there are a larger number of tasks,
we weight the contribution of each task to the various aggregated results.

To define the weight of each task, we first group the tasks in clusters. These clusters are primarily
defined based on the original data source used to create the tasks. However, when tasks are funda-
mentally different, due to not testing the same capabilities, we put them in different clusters despite
them using the same data source. For example, for tasks created using the Solar irradiance and cloud
cover data, all of which ask models to forecast the irradiance, the tasks form three distinct clusters:
one for tasks asking models to do forecast with very short history (less than a day), one for tasks
giving the cloud cover as covariate, and the final one for tasks where the models are given a tight
upper bound on the possible irradiance. Once we define these clusters, we simply equal weight to
each cluster, and equal weight to each task inside each cluster.

A.5 STANDARD ERRORS AND AVERAGE RANKS

To get the standard errors shown in Tab. 1, we first compute the standard error for tasks using
the method described in Appendix E.5. We then aggregate them according to each task weight,
by assuming that errors for each are independent and thus using the formula for the variance of a
weighted sum of independent variables.

To take into consideration the uncertainty we have for the scores, we compute average ranks through
a simple simulation. In this simulation, we replace the RCRPS for each task and model pair by an
independent Gaussian variable of mean equals to the one we measured, and of standard deviation
equals to the standard error. We then draw from this distribution and compute the weighted average
ranks for each model. The results shown in Tab. 1 are the mean and standard deviation measured
from 10,000 repetitions of this simulation.

A.6 MODEL CAPABILITIES

We provide a detailed explanation of each model capability here. Note that tasks in the CiK benchmark
need not be mutually exclusive with the model capabilities they require; tasks are tagged with one or
more model capabilities.
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Instruction following (24 Tasks): Using direct instructions available in the context. Instructions
could express constraints to be satisfied, or the expected effect of an event, for example.
Retrieval: Retrieving facts from memory or context.
• Retrieval from memory (35 Tasks): Retrieving from memory facts that enable interpretation of

the context, such as relevant physical constants or quantitative laws.
• Retrieval from context (25 Tasks): Retrieving relevant information from context and distinguishing

it from irrelevant information.
Reasoning: Reasoning about information in context or memory.
• Analogical Reasoning (6 tasks): Making analogies between entities or events, for instance,

applying knowledge from a past event that is similar to an upcoming one.
• Mathematical Reasoning (32 tasks): Performing calculations over the context, e.g. solving an

equation.
• Deductive Reasoning (39 tasks): Inferring new facts not explicitly mentioned in the context, e.g.

inferring from the context that certain values are logically impossible to occur.
• Causal Reasoning (22 tasks): Deriving or using causal information from the context to reason

about actions (such as interventions).

A.7 TASK LENGTHS

Fig. 8 provides an overview of the distribution of the lengths of the natural language context, numerical
history and target (prediction horizon) for a set of five instances for each task in the CiK benchmark.

Figure 8: Histograms depicting the distribution of lengths for the context, numerical history and target length of
a set of five instances for each task in CiK. We measure the length of the natural language context in characters,
and the numerical sequences in floats.

B EXAMPLES OF TASKS FROM THE BENCHMARK

In this section, we feature multiple examples from the benchmark to exemplify exactly what a task
is, what context sources represent (Sec. 3.2), and how these tasks encourage the use of capabilities
(Sec. 3.3). To visualize all tasks in the benchmark, we refer the reader to https://anon-forecast.
github.io/benchmark report dev.
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B.1 TASK: CONSTRAINED PREDICTIONS

Domain: Traffic
Context sources: Future information
Capabilities: Instruction Following

Context: “Suppose that in the forecast, the values are bounded above by 11.88, the values are bounded
below by 7.06.”

This task, which we refer to as “Bounded Prediction Constraint Based On Prediction Quantiles”, is a
forecasting task where we modify the forecast horizon (in green in the plot) by bounding one or both
of its extremes according to its unmodified ground truth’s quantile values. We verbalize these bounds
in the context, and the model is expected to interpret and respect them.

Since we draw this series from the PeMS dataset (Chen et al., 2001), we tag its domain as “Traffic”.
The context directly refers to the future, hence the context source is tagged as “Future information”.
Finally, since the model is expected to obey the constraints in the context, we tag the evaluated
capability as “Instruction following”.

Since the context contains constraints, the Region of Interest CRPS metric that we introduce (Sec. 4)
heavily penalizes forecasts that exceed these constraints: models that do not incorporate the infor-
mation about bounds in the context, such as quantitative forecasting models, would not be able to
predict the ground truth (orange line) because its lower bound is much higher than that of the history.
In this case, the region of interest for the metric is the entire forecast horizon because the context
applies everywhere. Although statistical forecasters may pick up on the seasonality present in the
history (black line), they would obtain worse scores than models capable of processing the context
and adjusting the lower bound of their predictions.
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B.2 TASK: ELECTRICAL CONSUMPTION INCREASE

Domain: Energy
Context sources: Future information, Covariate information
Capabilities: Instruction following, Retrieval from context

Context: “This is the electricity consumption recorded in Kilowatt (kW) in city A. A heatwave struck
the city, which began on 2012-10-09 18:00:00 and lasted for approximately 3 hours, saw temperatures
soar to unprecedented levels. According to the city’s electricity provider, power consumption during
the peak of the heatwave reached approximately 5 times the typical usage for this time of year.”
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The “Short News Electricity Increase” task introduces a large shock in the forecast horizon that is
only referred to in the context. Hence, the model must interpret the context appropriately to forecast
the spike.

Since this series represents electricity consumption (Sec. 3.1), we tag it a coming from the “Energy”
domain. The context sources for this task are twofold: the first context source is “Future information”,
which represents knowledge of the five-fold increase in typical usage during the shock. The second
source of context, “Covariate information”, represents the occurrence of a heatwave, which coincides
with the timing and duration of the shock. The model must therefore interpret both the information
on the magnitude of the shock from the future information, as well as the timing and duration of
the sock from the covariate information. Together, these pieces of information enable an accurate
forecast despite the lack of information about the shock in the task’s numerical history.

The skills for this task are tagged as “Instruction following” and “Retrieval from context”. While
instruction following involves interpreting the context to include the shock in the prediction, the
model must also retrieve from the context the relevant information, as there is unneeded information
in the context as well: an accurate forecast does not require knowing that the temperature has reached
unprecedented levels.

In this task, we also see a “Region of Interest” (RoI), characterized by a darker region of the forecast
horizon. This RoI represents the region of the forecast horizon for which the context is relevant, i.e.
the period during which the increased power consumption occurred. As detailed in Sec. 4, this region
of interest is taking into account in the RCRPS metric.
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B.3 TASK: ATM MAINTENANCE

Domain: Retail
Context sources: Intemporal information, Covariate information
Capabilities: Instruction following, Deductive reasoning

Context: “This is the number of cash withdrawals from an automated teller machine (ATM) in an
arbitrary location in England. The ATM was under maintenance for 7 days, periodically every 14
days, starting from 1996-11-30 00:00:00. Assume that the ATM will not be in maintenance in the
future.”
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The “Automated Teller Machine (ATM) Under Period Maintenance“ task represents the history
of withdrawals from an ATM that undergoes regular maintenance. This maintenance introduces
a periodic, easily forecastable signal into the history. However, the context explicitly states that
the forecast should assume the ATM will not be in maintenance during the forecast. Therefore,
forecasting models are expected to ignore this signal.

Since this series represents ATM withdrawals, we tag it as “Retail”. The context includes information
such as the location of the ATM, and therefore provides “Intemporal information”. As the maintenance
frequency and duration is also described, the context sources include “Covariate information”.

This task is tagged with two capabilities. “Instruction following” is necessary because the model
must assume that the ATM will not be in maintenance in the future. However, the model must use
“Deductive reasoning” to determine what and when the impact of the maintenance was – reducing the
number of withdrawals to 0 every 14 days –, and avoid including that pattern in the forecast. The
RoI represents when the maintenance periods would have occurred in the forecast horizon, which is
likely where forecasting models that do not leverage the context will forecast 0. While a quantitative
forecasting model would find such a signal irresistible, context-aware models should avoid repeating
the pattern in the forecast.

We also note that the series is not quite 0 during the maintenance periods. This is a consequence
of using one of our memorization mitigation schemes (Appendix A.1, paragraph “Memorization
mitigation”).
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B.4 TASK: MONTREAL FIRE HIGH SEASON

Domain: Public Safety
Context sources: Intemporal information, Historical information
Capabilities: Deductive reasoning, Mathematical reasoning, Retrieval from memory

Context: “The Montreal Fire Department is in charge of responding to various kind of public safety
incidents. This is the number of field fire incidents responded to by Montreal firefighters in the
borough of Rivière-des-Prairies-Pointe-aux-Trembles. In other years, the yearly average number of
incidents was 106 with the busiest month being June.”

The “Montreal Field Fire With Explicit Short History” task requires predicting the number of field
fire incidents during the summer, so we tag it as being part of the “Public Safety” domain.

The context contains information from two different sources: it contains “Intemporal information”,
such as the location and nature of the incidents. However, it also contains “Historical information”,
which verbalizes statistics about past values of the series, beyond the numerical data. That is, the
yearly average number of incidents, along with the knowledge that June is the month with the most
incidents.

This task is tagged with many skills and involves several steps of interpretation to arrive at a
reasonable forecast. We first note that the task requires “Retrieval from memory”: an important
piece of information for this prediction is that winters in Montreal, a city in the northern hemisphere,
are long and harsh, with temperatures reaching −40◦C. Secondly, the task requires the model to
use “Deductive reasoning” to deduce that, since temperatures are so cold during the winter months,
fields are likely covered in snow and are rather unlikely to catch fire. Finally, the model can employ
“Mathematical reasoning” to determine how many field fires are likely to occur on average in the
forecast horizon, given the total number of field fires that have already blazed during the history.

Note that “Retrieval from memory” tasks do not explicitly ask the model to return information
retrieved from memory; rather, we tag tasks as such because they cannot be solved without key
information that is not present in the history or the context.
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B.5 TASK: SOLAR PREDICTION

Domain: Climatology
Context sources: Intemporal information
Capabilities: Analogical reasoning, Deductive reasoning, Retrieval from memory

Context: “This series estimates the power production for a given day of a new solar power plant
located in the state of Georgia, which has a climate similar to Alabama’s.”
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The “Explicit Similar Location and Day Solar Forecast” task requires forecasting the power production
of a solar power plant based on a very short history and information about the similarity between its
climate and that of an adjacent location. We therefore tag the domain of this series as “Climatology”.

Without the “Intemporal information” that the context provides, it is quite possibly impossible to
accurately forecast the parabola-like shape of the ground truth: the history contains very few defining
characteristics, which makes it interchangeable with that of many potential processes and therefore
many possible forecasts. The model must use “Deductive reasoning” to foresee this reversion to zero
based on the fact that solar panels do not produce electricity at night.

However, the information in the context alone is not sufficient to provide an accurate forecast: nothing
indicates the time at which production should peak. It must therefore rely on “Retrieval from memory”
to retrieve information about Alabama’s climate and then “Analogical reasoning” to apply it to the
present problem.
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B.6 TASK: SPEED FROM LOAD

Domain: Mechanics
Context sources: Causal information, Intemporal information, Covariate information
Capabilities: Causal reasoning, Mathematical reasoning, Instruction following

Context: “The wind tunnel is a chamber with one controllable fan that pushes air through it. We can
control the load of the fan (corresponding to the duty cycle of the pulse-width-modulation signal) and
measure its speed (in revolutions per minute). The fan is designed so its steady-state speed scales
broadly linearly with the load. Unless completely powered off, the fan never operates below a certain
speed, corresponding to a minimum effective load between 0.1 and 0.2. The task is to forecast the
speed of the fan. The load is between 0 and 1. At full load (=1), the fan turns at a maximum speed
of 3000 rpm. The load is set to: 0.0 until 05:47:09, 0.1 from 05:47:09 until 05:47:29, 0.0 from
05:47:29 until 05:48:01, 0.2 from 05:48:01 until 05:48:27, 0.1 from 05:48:27 until 05:48:49, 0.0
from 05:48:49 until 05:49:00.”
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The “Speed From Load” task combines many different context sources and capabilities to produce
a forecast of the revolutions per minute (RPM) of a fan in a wind tunnel based on its load. This
task, based on the Causal Chambers dataset (Gamella et al., 2024), is therefore tagged as part of the
“Mechanics” domain.

As the plot shows, producing an accurate forecast of the ground truth (orange line) from the numerical
history alone (black line) is essentially impossible. However, the context of the task is quite rich: it
provides “Intemporal information” on the nature of the task, such as the limits of the load and of the
fan, “Covariate information” that describes the load during the history and future, as well as “Causal
information” on the control that the load exerts on the fan, as well as the proportionality of their
relationship.

To leverage the context requires multiple skills: firstly, “Instruction following” is necessary to
understand that the task is to forecast the speed of the fan (as opposed to e.g. the load) and to
apply the correct loads at the right moments. Secondly, the model must use “Causal reasoning” to
understand that the changes in the load will directly impact the speed of the fan. Finally, the model
must leverage “Mathematical reasoning” to calculate the speed of the fan as a function of the load.
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C ADDITIONAL RESULTS

C.1 FULL RESULTS PARTITIONED BY MODEL CAPABILITIES

Tab. 2 provides the results of all tested models, partitioned by model capabilities.

Table 2: Results on the CiK benchmark. Starting from the left, the first column shows the RCRPS averaged
over all tasks. The second column shows the rank of each method w.r.t. other baselines, averaged over all tasks.
The remaining columns show the average RCRPS stratified by model capabilities (Sec. 3.3). All averages are
weighted according to the scheme described in Sec. 5.1 and accompanied by standard errors. Lower is better
and the best averages are in bold. An asterisk (*) denotes models that do not use natural language context.

Average
RCRPS

Average
Rank

Instruction
Following

Retrieval Reasoning

Model From Context From Memory Deductive Analogical Mathematical Causal

Direct Prompt (ours)
Llama-3.1-405B-Inst 0.159 ± 0.008 4.905 ± 0.254 0.140 ± 0.013 0.109 ± 0.002 0.191 ± 0.006 0.133 ± 0.001 0.167 ± 0.008 0.316 ± 0.028 0.376 ± 0.039
Llama-3-70B-Inst 0.518 ± 0.030 12.030 ± 0.246 0.504 ± 0.038 0.371 ± 0.071 0.523 ± 0.048 0.461 ± 0.048 0.694 ± 0.117 0.573 ± 0.044 0.643 ± 0.049
Llama-3-8B-Inst 1.647 ± 0.069 18.786 ± 0.235 1.604 ± 0.131 0.199 ± 0.010 1.568 ± 0.067 2.133 ± 0.082 1.555 ± 0.008 1.589 ± 0.177 1.840 ± 0.238
Mixtral-8x7B-Inst 1.061 ± 0.058 15.813 ± 0.296 0.857 ± 0.077 0.296 ± 0.049 1.077 ± 0.078 1.352 ± 0.117 1.145 ± 0.144 1.000 ± 0.086 1.096 ± 0.106
GPT-4o 0.276 ± 0.010 5.021 ± 0.180 0.180 ± 0.004 0.087 ± 0.003 0.519 ± 0.029 0.113 ± 0.006 0.447 ± 0.029 0.590 ± 0.033 0.769 ± 0.046
GPT-4o-mini 0.353 ± 0.022 9.792 ± 0.243 0.296 ± 0.043 0.419 ± 0.014 0.471 ± 0.012 0.218 ± 0.005 1.024 ± 0.033 0.475 ± 0.080 0.578 ± 0.112
Qwen-2.5-7B-Inst 0.292 ± 0.032 11.810 ± 0.985 0.353 ± 0.062 0.141 ± 0.021 0.307 ± 0.019 0.206 ± 0.016 0.248 ± 0.032 0.399 ± 0.053 0.471 ± 0.073
Mistral-7B-Inst 1.943 ± 0.117 19.691 ± 0.843 2.255 ± 0.203 1.766 ± 0.174 1.171 ± 0.155 1.992 ± 0.142 0.874 ± 0.248 1.275 ± 0.223 0.952 ± 0.283

LLMP
Llama-3-70B-Inst 0.550 ± 0.013 9.207 ± 0.254 0.645 ± 0.018 0.284 ± 0.015 0.392 ± 0.014 0.519 ± 0.026 0.312 ± 0.019 0.453 ± 0.020 0.495 ± 0.028
Llama-3-70B 0.237 ± 0.006 7.344 ± 0.290 0.310 ± 0.011 0.126 ± 0.009 0.217 ± 0.007 0.134 ± 0.003 0.241 ± 0.019 0.294 ± 0.008 0.329 ± 0.010
Llama-3-8B-Inst 0.484 ± 0.010 10.875 ± 0.204 0.345 ± 0.002 0.138 ± 0.004 0.910 ± 0.030 0.242 ± 0.008 1.278 ± 0.069 0.617 ± 0.022 0.787 ± 0.030
Llama-3-8B 0.313 ± 0.023 10.924 ± 0.393 0.404 ± 0.043 0.124 ± 0.003 0.280 ± 0.026 0.179 ± 0.014 0.267 ± 0.015 0.530 ± 0.084 0.661 ± 0.117
Mixtral-8x7B-Inst 0.264 ± 0.004 9.453 ± 0.289 0.344 ± 0.004 0.127 ± 0.003 0.224 ± 0.005 0.179 ± 0.010 0.173 ± 0.009 0.348 ± 0.005 0.405 ± 0.007
Mixtral-8x7B 0.262 ± 0.008 9.785 ± 0.239 0.348 ± 0.012 0.146 ± 0.022 0.230 ± 0.016 0.153 ± 0.002 0.230 ± 0.041 0.354 ± 0.007 0.414 ± 0.009
Qwen-2.5-3B-Inst 0.978 ± 0.042 23.506 ± 0.294 1.782 ± 0.045 1.791 ± 0.069 2.978 ± 0.054 2.863 ± 0.033 3.239 ± 0.120 2.795 ± 0.086 2.654 ± 0.115
Qwen-2.5-3B 1.351 ± 0.036 23.357 ± 0.325 1.947 ± 0.045 1.864 ± 0.080 3.007 ± 0.061 2.997 ± 0.023 2.999 ± 0.145 2.604 ± 0.085 2.234 ± 0.114
Qwen-2.5-1.5B-Inst 2.153 ± 0.027 22.767 ± 0.365 2.052 ± 0.046 1.566 ± 0.033 2.671 ± 0.038 2.156 ± 0.035 3.635 ± 0.053 2.480 ± 0.085 2.323 ± 0.113
Qwen-2.5-1.5B 1.731 ± 0.036 20.358 ± 0.247 1.343 ± 0.061 1.737 ± 0.074 2.594 ± 0.042 2.256 ± 0.042 3.275 ± 0.132 2.036 ± 0.083 1.526 ± 0.114
Qwen-2.5-0.5B-Inst 1.938 ± 0.024 22.739 ± 0.244 1.743 ± 0.043 1.800 ± 0.021 2.193 ± 0.025 2.303 ± 0.028 3.439 ± 0.004 1.685 ± 0.084 1.398 ± 0.114
Qwen-2.5-0.5B 1.991 ± 0.024 22.311 ± 0.335 1.827 ± 0.045 0.950 ± 0.025 1.967 ± 0.020 2.799 ± 0.022 1.804 ± 0.036 1.695 ± 0.085 1.443 ± 0.113

Multimodal Models
UniTime 0.371 ± 0.002 16.002 ± 0.121 0.271 ± 0.003 0.179 ± 0.001 0.318 ± 0.001 0.510 ± 0.003 0.333 ± 0.001 0.332 ± 0.001 0.384 ± 0.001
Time-LLM (ETTh1) 0.476 ± 0.001 19.636 ± 0.101 0.448 ± 0.002 0.192 ± 0.000 0.373 ± 0.000 0.538 ± 0.003 0.397 ± 0.001 0.382 ± 0.001 0.440 ± 0.001

TS Foundation Models*
Lag-Llama 0.329 ± 0.004 15.222 ± 0.288 0.355 ± 0.007 0.181 ± 0.003 0.324 ± 0.003 0.272 ± 0.006 0.342 ± 0.006 0.386 ± 0.009 0.449 ± 0.012
Chronos 0.326 ± 0.002 13.789 ± 0.179 0.385 ± 0.002 0.138 ± 0.002 0.288 ± 0.002 0.249 ± 0.002 0.295 ± 0.003 0.362 ± 0.003 0.417 ± 0.004
TimeGEN 0.354 ± 0.000 16.624 ± 0.127 0.402 ± 0.000 0.176 ± 0.000 0.308 ± 0.000 0.279 ± 0.000 0.324 ± 0.000 0.377 ± 0.000 0.431 ± 0.000
Moirai 0.520 ± 0.006 14.551 ± 0.321 0.414 ± 0.004 0.155 ± 0.004 0.260 ± 0.003 0.751 ± 0.015 0.276 ± 0.008 0.337 ± 0.007 0.397 ± 0.010

Statistical Models*
ARIMA 0.480 ± 0.006 14.502 ± 0.213 0.399 ± 0.006 0.160 ± 0.002 0.517 ± 0.012 0.522 ± 0.013 0.706 ± 0.026 0.354 ± 0.007 0.403 ± 0.010
ETS 0.522 ± 0.009 16.760 ± 0.238 0.407 ± 0.009 0.228 ± 0.010 0.682 ± 0.018 0.571 ± 0.019 0.855 ± 0.035 0.453 ± 0.012 0.479 ± 0.015
Exp-Smoothing 0.603 ± 0.013 17.440 ± 0.182 0.571 ± 0.021 0.334 ± 0.013 0.743 ± 0.018 0.557 ± 0.019 0.899 ± 0.035 0.673 ± 0.038 0.782 ± 0.053

C.2 RESULTS PARTITIONED BY TYPES OF CONTEXT

Table Tab. 3 provides a view of the results partitioned by the types of context. One can observe
that Direct Prompt - Llama-3.1-405B-Instruct achieves the best performance at tasks where the
context involves intemporal, future or covariate information, while GPT-4o has an upper hand
at tasks involving historical context information. LLMP with Llama-3-70B-Instruct achieves the
best performance in tasks that involve causal information in the context. This provides a view
complementary to that of partitioning by model capabilities (as in Tab. 1), and emphasizes that no
single model is the best at processing all types of context, leaving room for advancements in models
in the future.
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Table 3: Results on the CiK benchmark aggregated over all tasks and kinds of context. The first column shows
the RCRPS averaged over all tasks. The second column shows the rank of each method w.r.t. other baselines,
averaged over all tasks. The remaining columns show the average RCRPS stratified by context source. All
averages are weighted according to the scheme described in Sec. 5.1 and accompanied by standard errors.
Lower is better and the best means are in bold. * denotes models that do not use natural language context.

Model Average RCRPS Average Rank cI cH cF ccov ccausal

Direct Prompt (ours)
Llama-3.1-405B-Inst 0.159 ± 0.008 4.905 ± 0.254 0.174 ± 0.010 0.146 ± 0.001 0.085 ± 0.003 0.169 ± 0.010 0.398 ± 0.045
Llama-3-70B-Inst 0.518 ± 0.030 12.030 ± 0.246 0.621 ± 0.042 0.308 ± 0.064 0.301 ± 0.033 0.452 ± 0.032 0.704 ± 0.056
Llama-3-8B-Inst 1.647 ± 0.069 18.786 ± 0.235 2.355 ± 0.100 0.813 ± 0.115 1.332 ± 0.094 1.185 ± 0.087 2.041 ± 0.271
Mixtral-8x7B-Inst 1.061 ± 0.058 15.813 ± 0.296 1.263 ± 0.082 0.561 ± 0.111 0.691 ± 0.094 0.724 ± 0.053 1.232 ± 0.121
GPT-4o 0.276 ± 0.010 5.021 ± 0.180 0.220 ± 0.007 0.118 ± 0.001 0.108 ± 0.001 0.265 ± 0.012 0.858 ± 0.053
GPT-4o-mini 0.353 ± 0.022 9.792 ± 0.243 0.474 ± 0.035 0.139 ± 0.002 0.141 ± 0.001 0.345 ± 0.030 0.644 ± 0.128
Qwen-2.5-7B-Inst 0.292 ± 0.032 11.810 ± 0.985 0.295 ± 0.031 0.196 ± 0.029 0.262 ± 0.058 0.252 ± 0.027 0.516 ± 0.083
Mistral-7B-Inst 1.943 ± 0.117 19.691 ± 0.843 1.892 ± 0.128 0.869 ± 0.145 2.576 ± 0.191 1.828 ± 0.155 1.042 ± 0.323

LLMP
Llama-3-70B-Inst 0.550 ± 0.013 9.207 ± 0.254 0.455 ± 0.018 0.516 ± 0.028 0.690 ± 0.018 0.588 ± 0.018 0.392 ± 0.028
Llama-3-70B 0.237 ± 0.006 7.344 ± 0.290 0.213 ± 0.005 0.121 ± 0.008 0.233 ± 0.012 0.198 ± 0.004 0.360 ± 0.011
Llama-3-8B-Inst 0.484 ± 0.010 10.875 ± 0.204 0.477 ± 0.013 0.161 ± 0.006 0.264 ± 0.003 0.316 ± 0.008 0.878 ± 0.035
Llama-3-8B 0.313 ± 0.023 10.924 ± 0.393 0.334 ± 0.035 0.123 ± 0.004 0.232 ± 0.012 0.291 ± 0.031 0.739 ± 0.134
Mixtral-8x7B-Inst 0.264 ± 0.004 9.453 ± 0.289 0.242 ± 0.007 0.173 ± 0.004 0.268 ± 0.009 0.220 ± 0.002 0.437 ± 0.007
Mixtral-8x7B 0.262 ± 0.008 9.785 ± 0.239 0.250 ± 0.008 0.119 ± 0.003 0.254 ± 0.013 0.229 ± 0.007 0.457 ± 0.011
Qwen-2.5-3B-Inst 0.978 ± 0.042 23.506 ± 0.294 2.780 ± 0.046 2.718 ± 0.067 1.865 ± 0.023 2.088 ± 0.038 2.501 ± 0.130
Qwen-2.5-3B 1.351 ± 0.036 23.357 ± 0.325 2.962 ± 0.046 3.488 ± 0.057 2.163 ± 0.018 1.912 ± 0.039 1.897 ± 0.129
Qwen-2.5-1.5B-Inst 2.153 ± 0.027 22.767 ± 0.365 2.605 ± 0.041 1.672 ± 0.055 1.434 ± 0.026 2.024 ± 0.035 2.448 ± 0.128
Qwen-2.5-1.5B 1.731 ± 0.036 20.358 ± 0.247 2.337 ± 0.049 2.982 ± 0.052 1.109 ± 0.052 1.457 ± 0.047 1.304 ± 0.129
Qwen-2.5-0.5B-Inst 1.938 ± 0.024 22.739 ± 0.244 2.445 ± 0.038 1.960 ± 0.063 1.616 ± 0.012 1.715 ± 0.032 1.199 ± 0.129
Qwen-2.5-0.5B 1.991 ± 0.024 22.311 ± 0.335 2.539 ± 0.039 2.083 ± 0.052 1.743 ± 0.012 1.721 ± 0.032 1.225 ± 0.128

Multimodal Models
UniTime 0.371 ± 0.002 16.002 ± 0.121 0.455 ± 0.002 0.154 ± 0.000 0.226 ± 0.003 0.396 ± 0.001 0.422 ± 0.001
TimeLLM (ETTh1) 0.476 ± 0.001 19.636 ± 0.101 0.517 ± 0.002 0.183 ± 0.000 0.376 ± 0.002 0.446 ± 0.001 0.482 ± 0.001

TS Foundation Models*
Lag-Llama 0.329 ± 0.004 15.222 ± 0.288 0.333 ± 0.005 0.167 ± 0.005 0.277 ± 0.006 0.301 ± 0.004 0.495 ± 0.014
Chronos 0.326 ± 0.002 13.789 ± 0.179 0.314 ± 0.002 0.179 ± 0.003 0.316 ± 0.002 0.252 ± 0.002 0.460 ± 0.004
TimeGEN 0.354 ± 0.000 16.624 ± 0.127 0.333 ± 0.000 0.177 ± 0.000 0.348 ± 0.000 0.291 ± 0.000 0.474 ± 0.000
Moirai 0.520 ± 0.006 14.551 ± 0.321 0.596 ± 0.009 0.140 ± 0.001 0.364 ± 0.002 0.510 ± 0.008 0.438 ± 0.011

Statistical Models*
ARIMA 0.480 ± 0.006 14.502 ± 0.213 0.565 ± 0.010 0.200 ± 0.007 0.307 ± 0.003 0.390 ± 0.006 0.440 ± 0.011
ETS 0.522 ± 0.009 16.760 ± 0.238 0.627 ± 0.014 0.362 ± 0.014 0.323 ± 0.008 0.401 ± 0.010 0.508 ± 0.017
Exp-Smoothing 0.603 ± 0.013 17.440 ± 0.182 0.700 ± 0.020 0.493 ± 0.016 0.438 ± 0.009 0.492 ± 0.017 0.827 ± 0.060
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C.3 EXTENDED RESULTS ON ALL MODELS

Table 4: Extended results on the CiK benchmark aggregated over all tasks. The first column shows the RCRPS
averaged over all tasks. The second column shows the rank of each method w.r.t. other baselines, averaged over
all tasks. All averages are weighted according to the scheme described in Sec. 5.1 and accompanied by standard

errors. Lower is better and the best means are in bold.
Model Average RCRPS Average Rank

With Context
Direct Prompt (ours)

Llama-3.1-405B-Inst 0.159 ± 0.008 7.337 ± 0.524
Llama-3-70B-Inst 0.518 ± 0.030 20.916 ± 0.497
Llama-3-8B-Inst 1.647 ± 0.069 35.232 ± 0.497
Mixtral-8x7B-Inst 1.061 ± 0.058 29.273 ± 0.628
GPT-4o 0.276 ± 0.010 8.425 ± 0.377
GPT-4o-mini 0.353 ± 0.022 15.699 ± 0.450
Qwen-2.5-7B-Inst 0.292 ± 0.032 20.167 ± 2.124
Mistral-7B-Inst 1.943 ± 0.117 38.038 ± 1.755

LLMP
Llama-3-70B-Inst 0.550 ± 0.013 16.226 ± 0.484
Llama-3-70B 0.237 ± 0.006 11.473 ± 0.614
Llama-3-8B-Inst 0.484 ± 0.010 17.519 ± 0.431
Llama-3-8B 0.313 ± 0.023 17.529 ± 0.825
Mixtral-8x7B-Inst 0.264 ± 0.004 14.645 ± 0.534
Mixtral-8x7B 0.262 ± 0.008 15.233 ± 0.447
Qwen-2.5-3B-Inst 0.978 ± 0.042 45.344 ± 0.682
Qwen-2.5-3B 1.351 ± 0.036 45.157 ± 0.755
Qwen-2.5-1.5B-Inst 2.153 ± 0.027 44.344 ± 0.791
Qwen-2.5-1.5B 1.731 ± 0.036 38.889 ± 0.487
Qwen-2.5-0.5B-Inst 1.938 ± 0.024 44.018 ± 0.552
Qwen-2.5-0.5B 1.991 ± 0.024 42.701 ± 0.768

Multimodal Models
UniTime 0.371 ± 0.002 30.402 ± 0.181
Time-LLM (ETTh1) 0.476 ± 0.001 38.066 ± 0.162

Without Context
Direct Prompt (ours)

Llama-3.1-405B-Inst 0.473 ± 0.005 30.266 ± 0.286
Llama-3-70B-Inst 0.714 ± 0.035 34.375 ± 0.520
Llama-3-8B-Inst 1.900 ± 0.059 44.040 ± 0.366
Mixtral-8x7B-Inst 0.847 ± 0.045 32.912 ± 0.693
GPT-4o 0.441 ± 0.008 27.886 ± 0.357
GPT-4o-mini 0.423 ± 0.006 31.602 ± 0.265
Qwen-2.5-7B-Inst 0.377 ± 0.034 27.707 ± 2.272
Mistral-7B-Inst 1.752 ± 0.094 38.969 ± 1.923

LLMP
Llama-3-70B-Inst 0.378 ± 0.004 23.404 ± 0.430
Llama-3-70B 0.312 ± 0.006 19.951 ± 0.445
Llama-3-8B-Inst 0.503 ± 0.009 27.800 ± 0.406
Llama-3-8B 0.345 ± 0.003 22.766 ± 0.358
Mixtral-8x7B-Inst 0.383 ± 0.015 22.097 ± 0.424
Mixtral-8x7B 0.306 ± 0.007 20.539 ± 0.456
Qwen-2.5-3B-Inst 2.356 ± 0.029 32.875 ± 0.910
Qwen-2.5-3B 2.315 ± 0.029 36.915 ± 0.887
Qwen-2.5-1.5B-Inst 1.515 ± 0.033 40.771 ± 0.960
Qwen-2.5-1.5B 1.069 ± 0.028 35.309 ± 0.961
Qwen-2.5-0.5B-Inst 1.318 ± 0.037 38.513 ± 0.676
Qwen-2.5-0.5B 1.819 ± 0.027 42.033 ± 0.674

Multimodal Models
UniTime 0.405 ± 0.002 32.199 ± 0.183
Time-LLM (ETTh1) 0.454 ± 0.002 36.339 ± 0.168

TS Foundation Models
Lag-Llama 0.329 ± 0.004 27.480 ± 0.715
Chronos-Tiny 0.328 ± 0.001 24.606 ± 0.411
Chronos-Mini 0.341 ± 0.001 25.776 ± 0.397
Chronos-Small 0.328 ± 0.002 23.594 ± 0.339
Chronos-Base 0.672 ± 0.003 27.366 ± 0.344
Chronos-Large 0.326 ± 0.002 22.871 ± 0.378
TimeGEN 0.354 ± 0.000 31.949 ± 0.183
Moirai-Small 0.565 ± 0.031 31.616 ± 0.399
Moirai-Base 0.624 ± 0.013 31.112 ± 0.329
Moirai-Large 0.520 ± 0.006 25.428 ± 0.824

Statistical Models
ARIMA 0.480 ± 0.006 24.232 ± 0.446
ETS 0.522 ± 0.009 29.589 ± 0.552
Exp-Smoothing 0.603 ± 0.013 31.480 ± 0.323
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C.4 SIGNIFICANT FAILURES PER MODEL

We observe that in a few instances in the benchmark, some models tend to obtain significantly worse
performance when evaluated with context. In our evaluation, we term all instances where the RCRPS
value of a model is greater than 5, as significant failures of the model on those instances. We found 5
as a suitable value for analyzing such failures, as it intuitively represents the value a forecast would
get if the distance between the forecast and the ground-truth was 5 times bigger than the range of
the ground-truth for the task. When we aggregate the RCRPS of instances in the benchmark (such
as in Tab. 1), we cap the RCRPS of such significant failures to 5, to avoid outliers with a much
higher RCRPS affecting the aggregate score. In Tab. 5, we show the number of such instances in our
evaluation of the benchmark where we found models to have significant failures (out of a total of 355
evaluated instances). Interestingly, some models such as Direct Prompt with Llama-3.1-405B-Instruct
and LLMP with Llama-3-70B and Llama-3-8B are more robust to such significant failures, and do
not incur such failures. On the other hand, models such as Qwen family of models (that are notably
significantly smaller than the rest) with LLMP achieve the most significant failures, followed by
Llama-3-70B-Inst and Llama-3-8B-Inst with LLMP. We postulate that this is because of models
misinterpreting context. It is still an open question as to how to increase the robustness of models to
prevent or reduce such significant failures. We visualize such significant failures in Appendix C.6.

Table 5: Number of instances with significant failures in models that support context

Model Number of instances with significant failures

Direct Prompt (ours)
Llama-3.1-405B-Inst 0
Llama-3-70B-Inst 1
Llama-3-8B-Inst 3
Mixtral-8x7B-Inst 5
GPT-4o 5
GPT-4o-mini 2
Qwen-2.5-7B-Inst 1
Mistral-7B-Inst 2

LLMP
Llama-3-70B-Inst 18
Llama-3-70B 0
Llama-3-8B-Inst 12
Llama-3-8B 0
Mixtral-8x7B-Inst 1
Mixtral-8x7B 1
Qwen-2.5-3B-Inst 115
Qwen-2.5-3B 150
Qwen-2.5-1.5B-Inst 95
Qwen-2.5-1.5B 102
Qwen-2.5-0.5B-Inst 102
Qwen-2.5-0.5B 111

Multimodal Models
UniTime 0
Time-LLM (ETTh1) 2
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C.5 VISUALIZATIONS OF SUCCESSFUL CONTEXT-AWARE FORECASTS

Context: “ This series represents the occupancy rate (%) captured by a highway sensor.
Consider that the meter will be offline for maintenance between 2024-04-11 13:00:00 and 2024-04-11
15:00:00, which results in zero readings. ”

20
24

-0
4-

05

20
24

-0
4-

06

20
24

-0
4-

07

20
24

-0
4-

08

20
24

-0
4-

09

20
24

-0
4-

10

20
24

-0
4-

11

20
24

-0
4-

12

0

5

10

15

20

25
SensorMaintenanceInPredictionTask

Forecast
History
Ground Truth
Region of Interest
5%-95%
10%-90%
25%-75%

(a) Without Context

20
24

-0
4-

05

20
24

-0
4-

06

20
24

-0
4-

07

20
24

-0
4-

08

20
24

-0
4-

09

20
24

-0
4-

10

20
24

-0
4-

11

20
24

-0
4-

12

0

5

10

15

20

25
SensorMaintenanceInPredictionTask

Forecast
History
Ground Truth
Region of Interest
5%-95%
10%-90%
25%-75%

(b) With Context

Figure 9: Example of successful context-aware forecasting by Direct Prompt with Llama-3.1-405B-Instruct
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Context: “ This series contains Diffuse Horizontal Irradiance for a location in Sinaloa, Mexico. The
Diffuse Horizontal Irradiance is the total amount of sun energy (in Watts per squared meter) arriving
indirectly on a horizontal surface, ignoring the direct sunlight. Even when there are no clouds to
scatter the sun light, there will still be some Diffuse Horizontal Irradiance, since clouds are not the
only cause of light scattering. When there are no clouds, the Diffuse Horizontal Irradiance is mostly
a function of the position of the sun in the sky, with only small variations from factors such as water
vapour and dust particles levels. If the cloud cover is light, the Diffuse Horizontal Irradiance will
increase due to the increase scattering of sun light, but heavy cloud cover will decrease it due to
some sun light no longer being able to reach the ground.
At the beginning of the series, the weather was cloudy.
At 2022-07-12 11:00:00, the weather became clear.
At 2022-07-12 19:00:00, the weather became cloudy.
At 2022-07-13 12:00:00, the weather became clear.
At 2022-07-13 13:00:00, the weather became cloudy.
At 2022-07-14 06:00:00, we expect that the weather will become clear.
At 2022-07-14 07:00:00, we expect that the weather will become cloudy.
At 2022-07-14 10:00:00, we expect that the weather will become clear.
At 2022-07-14 18:00:00, we expect that the weather will become cloudy. ”
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Figure 10: Example of successful context-aware forecasting by Direct Prompt with Llama-3.1-405B-Instruct
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Context: “ This is the number of cash withdrawals from an automated teller machine (ATM) in an
arbitrary location in England.
Consider that the building which contains the ATM is closed from 1997-09-05 00:00:00, for 8 days. ”
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Figure 11: Example of successful context-aware forecasts by Direct Prompt with GPT-4o
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Context: “ The Montreal Fire Department is in charge of responding to various kind of public
safety incidents. This is the number of field fire incidents responded to by Montreal firefighters in
the Rivière-des-Prairies-Pointe-aux-Trembles borough. In other years, the yearly average number of
incidents was 106 with the busiest month being June.
The Mayor is determined to completely eradicate this kind of incident. Fortunately, the city’s public
safety research group identified that field fires and trash fires tend to co-occur. When the amount
of field fires increases, the amount of trash fires also tends to increase. The same holds when they
decrease.
The Mayor has a plan: they will implement daily spraying of all piles of trash with water starting on
2022-06. ”
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Figure 12: Example of successful context-aware forecasts by Direct Prompt with GPT-4o
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Context: “ This is the Unemployment Rate for Okaloosa County, in Florida.
For reference, here is the Unemployment Rate for a few American states during the same period:
Pennsylvania
——————–
(2023-08-01 00:00:00, 4.2)
(2023-09-01 00:00:00, 3.0)
(2023-10-01 00:00:00, 3.1)
(2023-11-01 00:00:00, 2.9)
(2023-12-01 00:00:00, 2.9)
(2024-01-01 00:00:00, 3.5)
(2024-02-01 00:00:00, 3.7)
(2024-03-01 00:00:00, 3.4)
(2024-04-01 00:00:00, 2.9)
(2024-05-01 00:00:00, 3.2)
(2024-06-01 00:00:00, 3.7)
(2024-07-01 00:00:00, 4.0)

Florida
——————–
(2023-08-01 00:00:00, 3.3)
(2023-09-01 00:00:00, 3.1)
(2023-10-01 00:00:00, 3.1)
(2023-11-01 00:00:00, 3.0)
(2023-12-01 00:00:00, 2.9)
(2024-01-01 00:00:00, 3.1)
(2024-02-01 00:00:00, 3.1)
(2024-03-01 00:00:00, 3.3)
(2024-04-01 00:00:00, 3.1)
(2024-05-01 00:00:00, 2.9)
(2024-06-01 00:00:00, 3.5)
(2024-07-01 00:00:00, 3.8)

Wisconsin
——————–
(2023-08-01 00:00:00, 3.4)
(2023-09-01 00:00:00, 2.9)
(2023-10-01 00:00:00, 2.8)
(2023-11-01 00:00:00, 2.7)
(2023-12-01 00:00:00, 2.9)
(2024-01-01 00:00:00, 2.8)
(2024-02-01 00:00:00, 3.3)
(2024-03-01 00:00:00, 3.5)
(2024-04-01 00:00:00, 3.0)
(2024-05-01 00:00:00, 3.0)
(2024-06-01 00:00:00, 3.3)
(2024-07-01 00:00:00, 3.3) ”
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Figure 13: Example of successful context-aware forecasts by LLMP with Mixtral-8x7B-Instruct
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Context: “ Suppose that in the forecast, the values are bounded below by 0.80. ”
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Figure 14: Example of successful context-aware forecasts by LLMP with Mixtral-8x7B-Instruct
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Context: “ This series contains the amount of sunlight (in Watts per squared meter) arriving on a
horizontal surface, for a location in Alaska, United States. ”
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Figure 15: Example of successful context-aware forecasts by LLMP with Llama-70B
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Context: “ The Montreal Fire Department is in charge of responding to various kind of public safety
incidents. This series contains the number of field fire incidents responded to by the Montreal Fire
Department in the Rosemont-La Petite-Patrie borough. On average, they respond to 58 incidents per
year and the month with the most incidents was June.
The Mayor is determined to completely eradicate this kind of incident. Fortunately, the city’s public
safety research group, a team of highly qualified experts, identified that field fires and gas leaks tend
to co-occur. When the amount of field fires increases, the amount of gas leaks also tends to increase.
The same holds when they decrease.
The Mayor has a plan: they will implement a strict prohibition of using any form of combustible gas
in the city starting on 2023-06. In a recent interview, they claimed, ”This is a bulletproof plan, and I
am certain it will immediately put an end to field fires.” ”
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Figure 16: Example of successful context-aware forecasts by LLMP with Llama-70B
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C.6 VISUALIZATIONS OF SIGNIFICANT FAILURES

Context: “ Given are variables X 0 and X 1, where X 0 is a covariate and X 1 is the variable to
forecast. Variables are generated from a linear Structural Vector Autoregressive (SVAR) model with
additive gauss noise and a noise scale of 1.487e-03, with lag = 3.
The task is to forecast the value of the variable X 1 at time t, given the values of the covariate X 0
and the variable X 1 itself at times t-1, ... t-3. For the first 128 days, the covariate X 0 takes a
value of 8 from 2024-02-21 to 2024-03-11, 12 from 2024-03-12 to 2024-05-06, 12 from 2024-05-07
to 2024-06-27. For the next 32 days, the covariate X 0 takes a value of 30 from 2024-06-28 to
2024-07-13, 60 from 2024-07-14 to 2024-07-14, 60 from 2024-07-15 to 2024-07-29. Each day can be
treated as a timestep for the forecasting task. The causal parents affect the child variables at different
lags.
The causal parents for each variable is given below:
No parents for X 0 at any lag.
Parents for X 1 at lag 1: [’X 0’, ’X 1’] affect the forecast variable as 0.527 * X 0 + -0.895 * X 1.
Parents for X 1 at lag 2: [’X 0’, ’X 1’] affect the forecast variable as 1.380 * X 0 + -0.758 * X 1.
Parents for X 1 at lag 3: [’X 0’, ’X 1’] affect the forecast variable as -0.661 * X 0 + -0.793 * X 1. ”
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Figure 17: Example to show a significant failure case of Direct Prompt with GPT-4o where its performance
worsens with context
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Context: “ This series contains the road occupancy rates on a freeway in the San Francisco Bay area.
The days for which the forecast is required are Thursday 2024-07-04, Friday 2024-07-05, Saturday
2024-07-06. Note that 2024-07-04 is a holiday due to Independence Day. Note that traffic on this
freeway typically reduces on holidays. ”
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Figure 18: Example to show a significant failure case of LLMP with Llama-3-70B where its performance
worsens with context
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Context: “ This series represents the occupancy rate (%) captured by a highway sensor. The sensor
had a calibration problem starting from 2024-04-20 13:00:00 which resulted in an additive trend in
the series that increases by 0.0072 at every hour. At timestep 2024-04-24 13:00:00, the sensor was
repaired and this additive trend will disappear. ”
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Figure 19: Example to show a significant failure case of LLMP with Llama-3-70B where its performance
worsens with context
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Context: “ The Montreal Fire Department is in charge of responding to various kind of public safety
incidents. This series contains the number of field fire incidents responded to by the Montreal Fire
Department in the L’Île-Bizard-Sainte-Geneviève borough. On average, they respond to 19 incidents
per year with the busiest month being June.
The Mayor is determined to completely eradicate this kind of incident. Fortunately, the city’s public
safety research group, a team of highly qualified experts, identified that field fires and trash fires tend
to co-occur. When the amount of field fires increases, the amount of trash fires also tends to increase.
The same holds when they decrease.
The Mayor has a plan: they will implement daily spraying of all piles of trash with fire retardant foam
starting on 2023-06. In a recent interview, they claimed, ”This is a bulletproof plan, and I am certain
it will immediately put an end to field fires.” ”
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Figure 20: Example to show a significant failure case of Direct Prompt with Llama-3-8B-Instruct where it
misinterprets the context
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C.7 COST OF API-BASED MODELS

Tab. 6 provides the cost incurred in evaluating GPT-4o (version gpt-4o-2024-05-13) and GPT-4o-mini
(version gpt-4o-mini-2024-07-18) with the Direct Prompt method on CiK (as per the evaluation
protocol used, described in Sec. 5.1).

Table 6: Costs ($CAD) of evaluating the GPT-4o family of models on CiK. “Total” represents the total cost
of evaluating each model on the CiK benchmark. The “Per-instance average” and the “Per-instance median”
are the average and median cost of running a single instance for a given task, in other words the average and
median cost of generating 25 sample trajectories for a given example of a task. As a reminder, each task in CiK
is evaluated over 5 instances in our evaluation protocol.

Model Total Per-instance average Per-instance median
GPT-4o $143.83 $0.288 $0.170
GPT-4o (no context) $139.50 $0.279 $0.160
GPT-4o-mini $13.79 $0.040 $0.040
GPT-4o-mini (no context) $13.32 $0.038 $0.040

Figure 21: A comparison of RCRPS (lower is better) for two tasks on predicting the Unem-
ployment Rate of a county. Both contain the context needed to solve the task. However, the
UnemploymentCountyUsingSingleStateData task (dark green) is filtered to only contain the relevant context.
Other the other hand, the UnemploymentCountyUsingExpliciteMultipleStateData task (light green) also con-
tains other unrelated context. We visualize three models here, all of which perform better when the context only
includes the most relevant information.

C.8 IMPACT OF RELEVANT AND IRRELEVANT INFORMATION IN CONTEXT

We study here if models perform better on context that has already been filtered to only contain
relevant information. To assess this, we compare two tasks on predicting the Unemployment Rate of
a county.

1. For the UnemploymentCountyUsingSingleStateData task, the context contains the unem-
ployment rate of the state which the county belongs to, tagged with the name of the state. This
task can be visualized at https://anon-forecast.github.io/benchmark report dev/
UnemploymentCountyUsingSingleStateData.html.

2. In the UnemploymentCountyUsingExpliciteMultipleStateData task, in addition to the
unemployment rate of the parent state of the county, the context includes unemployment
rates of 2 other randomly selected states, also tagged with the name of the states. This
task can be visualized at https://anon-forecast.github.io/benchmark report dev/
UnemploymentCountyUsingExplicitMultipleStateData.html.

Results of three randomly picked models from the benchmark is visualized in Fig. 21. We find that
models perform much better when only the relevant state’s data is provided, as opposed to the context
also containing data from other states.
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C.9 IMPACT OF SOLELY IRRELEVANT INFORMATION IN CONTEXT

Many of our tasks include covariates in its context which are highly useful for the models to accurately
predict the target time series. One question is: Do the LLM-based models perform well for such
tasks due to correctly understanding that said covariates are helpful or because they blindly use the
provided data without asking themselves if the data is actually relevant?

As a way to get some insight on this question, we took a task where the models have to forecast the
unemployment data of an American county, given the unemployment data of the state the county
is in (Task UnemploymentCountyUsingSingleStateData). We then modify this task by first trying
to mislead the model by wrongly saying that the state-level data was from another state (without
changing the data itself), then by giving the data from the other state (while explicitly telling the
model that data is from said other state), before finally removing the state-level data altogether. The
result for this experiment with 5 instances per task for Direct Prompt - GPT-4o is shown in Tab. 7,
while the forecasts for a single instances are shown in Fig. 22. From these, we see that the model
aggressively used data which is marked as being from an other state, even though if the data was
actually from said other state, the performance would be closer to not having any state-level data.
This shows that the model is liable to take any information provided as being useful, even though its
usefulness is marginal.

Table 7: Ability of the Direct Prompt - GPT-4o model to accurately predict the unemployement level of an
American county, given various covariates. These results are averaged over 5 instances.

Available data RCPRS

Data from the correct state, accurately tagged 0.0583
Data from the correct state, inaccurately tagged 0.0557
Data from an incorrect state, accurately tagged 0.1966
No state-level data 0.2630

C.10 THE EFFECT OF SIGNIFICANT FAILURES ON THE AGGREGATE PERFORMANCE OF
MODELS

As discussed in Sec. 5.4, in a few instances from the benchmark, some models return forecasts that
miss the ground truth by a large margin, which we term significant failures (detailed in Appendix C.4).
We analyse the effect of such significant failures on the results here. We use the Direct Prompt -
Mixtral 8x7B model as an example here, while the same phenomenon may apply to other models. In
Fig. 4, we can find that the aggregate RCRPS of Direct Prompt - Mixtral 8x7B worsens when it uses
context. However, in Fig. 5 (left), the win rate of the model vs quantitative baselines improves when
it uses context. These two figures show results that seem contradictory, but are in fact compatible:
adding context improves the model’s RCRPS for most tasks, but greatly worsens it for a minority of
tasks where the model achieves significant failures.

To further illustrate this effect, we visualize the task-wise RCRPS of the DP Mixtral-8x7B-Inst model,
both with and without context, in Fig. 23. With context, the model gets an RCRPS close to zero in
a large number of tasks. However, there is also a long tail of tasks with high RCRPS values with
context, dominating and worsening the model’s aggregate RCRPS.
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(a) The task in our benchmark: the context contains the unem-
ployment rate of the state the county is in, correctly tagged with
the state name.
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(b) The context only mentions that this time series is an unem-
ployment rate, and of which county it is. No state-level unem-
ployement data is provided.
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(c) The state-level unemployment rate is incorrectly tagged as
being from another state.
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(d) The context contains the unemployment rate of another state
than the one the county is in, which is correctly tagged.

Figure 22: Forecasts done by Direct Prompt - GPT-4o, with varying information in the context. The task is to
forecast the forecast the unemployment rate of an American county.

Figure 23: Histogram of the RCPRS (lower is better) of the Direct Prompt Mixtral-8x7B-Inst model on each task,
with and without context (with the weighting scheme detailed in Appendix A.4). With context, the model gets
an RCRPS close to zero in a large number of tasks (also achieving a high win rate as seen in Fig. 5). However,
there is also a long tail of tasks with high RCRPS values with context, dominating and worsening the model’s
aggregate RCRPS.
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D IMPLEMENTATION DETAILS OF MODELS

D.1 DIRECT PROMPT

D.1.1 METHOD

For Direct Prompt, we propose to use a simple prompt template that we describe below, where
((context)) is replaced with the context of the respective task, ((history)) is replaced with the
historical values in the given format, and ((pred time)) is replaced with the prediction timesteps.
The prompted model is expected to output predictions in the given template style (i.e. within the
given forecast tags, in the given format) for all prediction timesteps in the prompt. Notably, unlike
LLMP which consists of predicting the single next digit in a loop, Direct Prompt expects models
to forecast in a single pass in a highly structured format, which requires models to understand and
adhere to the template.

”
I have a time series forecasting task for you.

Here is some context about the task. Make sure to factor in any background knowledge,
satisfy any constraints, and respect any scenarios.
<context>
((context))
</context>

Here is a historical time series in (timestamp, value) format:
<history>
((history))
</history>

Now please predict the value at the following timestamps: ((pred time)).

Return the forecast in (timestamp, value) format in between <forecast> and </forecast> tags.
Do not include any other information (e.g., comments) in the forecast.

Example:
<history>
(t1, v1)
(t2, v2)
(t3, v3)
</history>
<forecast>
(t4, v4)
(t5, v5)
</forecast>
”

We observe that models often produce samples that fail to adhere to the structure and are therefore
rejected. When sampling 25 samples from the model, with Direct Prompt, we allow retrying for a
maximum of K times until we obtain 25 valid samples. If we do not have 25 valid samples from the
model at the end of K retries, we record a failure of the model and attribute the model the RCRPS
upper bound of 5 for that task. In practice, we find that larger models (Llama-3.1-405B-Instruct,
GPT-4o and GPT-4o) can produce 25 valid forecasts with 1 to 3 retries. However with the smaller
models (such as Llama-3-70B-Instruct, Llama-3-8B-Instruct and Mixtral-8x7B-Instruct), up to 10
retries can be required to obtain 25 valid forecasts. Further, we found that without an explicit “Do not
include any other information (e.g., comments) in the forecast.”, models often included unwanted
information along with the forecasts.

Instruction-tuning is necessary for models to work with Direct Prompt Direct Prompting
requires forecasts to be produced in a specific structure. To generate structured outputs, models need
to be steerable (Dubey et al., 2024), a capability that is typically elicited from base models with
post-training methods such as instruction tuning (Wei et al., 2021). We observe this in our evaluations
as we find that several base models, including Llama-3-8B, Llama-3-70B, Mixtral-8x7B, and even
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the biggest base model we tried, Llama-3.1-405B, are incapable of generating outputs adhering to the
structure required for Direct Prompt, despite increasing the number of retries to as high as 50 retries.
With Direct Prompt, these models often output irrelevant information, sometimes completing solely
the context as a text completion task, and in other cases regurgitating forecasting datasets that they
have memorized.

Extensions of Direct Prompt While very simple, such prompt templates can be powerful tools
to understand how LLMs perform context-aided forecasting: as the prompt gives control over the
structure and content of the output (particularly for instruction-tuned models), one may construct
other, more involved template structures in the prompt. For instance, a prompt template could ask
LLMs to explain the reasoning behind their (context-aided) forecasts, and more. We leave it to future
work to understand how such prompt-based techniques can lead to more detailed evaluations and
give us better insights into what the models are capable of.

D.1.2 IMPLEMENTATION DETAILS

We used a single H100 GPU to run the Direct Prompt approach for Llama-3-8B-Instruct, and 2 H100
GPUs for Qwen-2.5-7B-Instruct, Mistral-7B-Inst, Llama-3-70B-Instruct and Mixtral-8x7B-Instruct.
We queried Llama-3.1-405b-Instruct from an externally-hosted server running on 8 H100s. We use the
OpenAI API to perform inference on the proprietary GPT-4o and GPT-4o-mini models. We provide
the cost incurred in the inference of these models with the Direct Prompt method in Appendix C.7.

D.1.3 EXAMPLE PROMPT

A prompt used in an example task from the benchmark is given below.
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”
I have a time series forecasting task for you.

Here is some context about the task. Make sure to factor in any background knowledge,satisfy
any constraints, and respect any scenarios.

<context>
Background: This is hourly traffic data.
Scenario: Suppose that there is an accident on the road and there is 40.0% of the usual

traffic from 2024-04-24 17:00:00 for 6 hours.
</context>

Here is a historical time series in (timestamp, value) format:
<history>
(2024-04-23 00:00:00, 0.1)(2024-04-23 01:00:00, 0)(2024-04-23 02:00:00, 0)(2024-04-23

03:00:00, 0)(2024-04-23 04:00:00, 0.1)(2024-04-23 05:00:00, 0.2)(2024-04-23 06:00:00,
0.3)(2024-04-23 07:00:00, 0.5)(2024-04-23 08:00:00, 0.5)(2024-04-23 09:00:00, 0.4)
(2024-04-23 10:00:00, 0.5)(2024-04-23 11:00:00, 0.5)(2024-04-23 12:00:00, 0.4)
(2024-04-23 13:00:00, 0.6)(2024-04-23 14:00:00, 0.8)(2024-04-23 15:00:00, 1.2)
(2024-04-23 16:00:00, 1.2)(2024-04-23 17:00:00, 1.3)(2024-04-23 18:00:00, 0.6)
(2024-04-23 19:00:00, 0.3)(2024-04-23 20:00:00, 0.3)(2024-04-23 21:00:00, 0.3)
(2024-04-23 22:00:00, 0.1)(2024-04-23 23:00:00, 0.1)(2024-04-24 00:00:00, 0.1)
(2024-04-24 01:00:00, 0)(2024-04-24 02:00:00, 0)(2024-04-24 03:00:00, 0.1)(2024-04-24
04:00:00, 0.1)(2024-04-24 05:00:00, 0.2)(2024-04-24 06:00:00, 0.3)(2024-04-24 07:00:00,
0.5)(2024-04-24 08:00:00, 0.6)(2024-04-24 09:00:00, 0.5)(2024-04-24 10:00:00, 0.4)

(2024-04-24 11:00:00, 0.5)(2024-04-24 12:00:00, 0.6)
</history>

Now please predict the value at the following timestamps: [’2024-04-24 13:00:00’ ’2024-04-24
14:00:00’ ’2024-04-24 15:00:00’ ’2024-04-24 16:00:00’ ’2024-04-24 17:00:00’

’2024-04-24 18:00:00’ ’2024-04-24 19:00:00’ ’2024-04-24 20:00:00’ ’2024-04-24 21:00:00’
’2024-04-24 22:00:00’ ’2024-04-24 23:00:00’ ’2024-04-25 00:00:00’ ’2024-04-25

01:00:00’ ’2024-04-25 02:00:00’ ’2024-04-25 03:00:00’ ’2024-04-25 04:00:00’ ’2024-04-25
05:00:00’ ’2024-04-25 06:00:00’ ’2024-04-25 07:00:00’ ’2024-04-25 08:00:00’

’2024-04-25 09:00:00’ ’2024-04-25 10:00:00’ ’2024-04-25 11:00:00’ ’2024-04-25
12:00:00’].

Return the forecast in (timestamp, value) format in between <forecast> and </forecast> tags.
Do not include any other information (e.g., comments) in the forecast.

Example:
<history>
(t1, v1)
(t2, v2)
(t3, v3)
</history>
<forecast>
(t4, v4)
(t5, v5)
</forecast>
”

D.2 LLMP

In this section we outline LLM-processes (LLMP; Requeima et al. (2024)), one of the prompt-based
baselines evaluated in Sec. 5.3. Prompts are constructed by first providing textual information
followed by the numerical history. The context may include background knowledge, a scenario
description and task constraints, replaced by ((background)), ((scenario)) and ((constraints)),
respectively, in the prompt template below. The numerical history (((history))) is provided by
converting the numerical data to text where values are separated by commas (,) and tuples by newline
characters (\n). The LLM then outputs the continuation of the string prompt, forecasing the the value
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for the next time index (((next index))). This forecast and the next time index is appended to the
prompt allowing the LLM to autoregressively complete the entire forecast. Numerical samples are
rejected if they do not adhere to a decimal representation format. See Requeima et al. (2024)) for full
details.

The following is the prompt template used to construct prompts for the LLMP baseline:

”
Forecast the future values of this time series, while considering the following background

knowledge, scenario, and constraints.

Background knowledge:
((background))

Scenario:
((scenario))

Constraints:
((constraints))

((history))
((next index))
”

A prompt used in an example task from the benchmark is given below:

”
Forecast the future values of this time series, while considering the following background

knowledge, scenario, and constraints.

Background knowledge:
This is hourly traffic data.

Scenario:
Suppose that there is an accident on the road and there is 40.0% of the usual traffic from

2024-04-24 17:00:00 for 6 hours.

Constraints:

2024-04-23 00:00:00,0.1\n2024-04-23 01:00:00,0\n2024-04-23 02:00:00,0\n2024-04-23 03:00:00,0
\n2024-04-23 04:00:00,0.1\n2024-04-23 05:00:00,0.2\n2024-04-23 06:00:00,0.3\n2024-04-23
07:00:00,0.5\n2024-04-23 08:00:00,0.5\n2024-04-23 09:00:00,0.4\n2024-04-23

10:00:00,0.5\n2024-04-23 11:00:00,0.5\n2024-04-23 12:00:00,0.4\n2024-04-23 13:00:00,0.6
\n2024-04-23 14:00:00,0.8\n2024-04-23 15:00:00,1.2\n2024-04-23 16:00:00,1.2\n2024-04-23
17:00:00,1.3\n2024-04-23 18:00:00,0.6\n2024-04-23 19:00:00,0.3\n2024-04-23

20:00:00,0.3\n2024-04-23 21:00:00,0.3\n2024-04-23 22:00:00,0.1\n2024-04-23 23:00:00,0.1
\n2024-04-24 00:00:00,0.1\n2024-04-24 01:00:00,0\n2024-04-24 02:00:00,0\n2024-04-24
03:00:00,0.1\n2024-04-24 04:00:00,0.1\n2024-04-24 05:00:00,0.2\n2024-04-24 06:00:00,0.3
\n2024-04-24 07:00:00,0.5\n2024-04-24 08:00:00,0.6\n2024-04-24 09:00:00,0.5\n2024-04-24
10:00:00,0.4\n2024-04-24 11:00:00,0.5\n2024-04-24 12:00:00,0.6\n2024-04-24 13:00:00,

”

We used a single H100 GPU to run the LLMP approach for the following models: Llama-3-8B, and
Llama-3-8B-Instruct. We used 2 H100 GPUs for the Qwen-2.5 family of models, Mixtral-8x7B, and
Mixtral-8x7B-Instruct, and used used 8 H100 GPUs for the following models: Llama-3-70B, and
Llama-3-70B-Instruct.

D.3 UNITIME AND TIME-LLM

For multimodal models, we jointly train UniTime (Liu et al., 2024c) on its ensemble of datasets:
ETTm1, ETTm2, ETTh1, ETTh2, Electricity, Weather, Exchange and Illness.
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We also evaluate Time-LLM (Jin et al., 2024), another multimodal model built on top of the Llama
architecture. We train Time-LLM on ETTh1 according to the authors’ suggested specifications, and
we compare the performance of both models with and without context.

UniTime: We train UniTime (Liu et al., 2024c) using a single seed on one AMD Instinct MI200
GPU for approximately 14 hours. It features a lightweight transformer with maximum context length
of 210 and a pre-trained GPT2 language model as backbone, of which only the first half of the
transformer layers are used. The time series baseline employs non-overlapping patch embeddings
generated with a kernel size and stride of 16, and a maximum input sequence length of 96. When the
total tokenized length exceeds the architecture’s capacity, we truncate the context.

Unlike Time-LLM, UniTime is jointly trained on all datasets simultaneously. Batches were generated
by first choosing a dataset uniformly at random then returning a batch from the associated data loader.
To account for domain convergence speed imbalance, a mask rate of 0.5 is used and the training batch
size is varied according to the dataset (details in the data config directory of the UniTime GitHub
repository). Training was conducted for 10 epochs of the mixed dataset, with cosine decay from an
initial learning rate of 1e-4 to a minimum of 1e-6 over a maximum period of 20 epochs. The results
of our training on the original datasets are given in Tab. 8.

Finally, in order to accelerate training, we added BF16 automatic mixed precision training and
gradient accumulation to the original training procedure.

Time-LLM: We train Time-LLM (Jin et al., 2024) on the ETTh1 dataset (Zhou et al., 2021) with a
prediction length of 96. We train using a single seed on four AMD Instinct MI200 GPUs, with an
average training time per run of approximately 13 hours. Training was conducted using a batch size
of 8 per device and 4 gradient accumulation steps, along with a 1Cycle learning rate schedule with a
maximum learning rate of 1e-3. In addition, runs were accelerated using DeepSpeed Stage 2 and
BF16 automatic mixed precision.

Training was conducted over a maximum of 50 epochs with early stopping, and a time-based split
of 70% for training, 10% for validation, and 20% for testing, where the most recent windows were
reserved for the test set. All runs were trained with an input sequence length of 512, with overlapping
patch embeddings generated with a kernel size of 16 and a stride of 8. The results on the ETTh1 test
set are given in Tab. 9.

When evaluating on CiK tasks which do not conform to Time-LLM’s requirements, we make the
following modifications to the method:

• For short history tasks where the history length |XH| is less than 5, we change the topk
operator’s k value from 5 to |XH| in the calculate lags() function.

• For tasks where the length of the prediction window |XF|exceeds the trained projection
head’s output dimension (in our case, 96), we repeat the last predicted value |XF|−96 times.
This occurs for very few tasks (3 tasks) with prediction windows of 97 or 98 steps depending
on the sampled instance, which we assume leads to a negligible impact on evaluated results.

Table 8: Evaluation results for UniTime on their test splits. Results are comparable to the original paper,
although MSE on Illness is approximately 20% higher for prediction lengths 36,48,60.

Dataset Mean Squared Error (MSE)
Prediction Length 96 192 336 720

ETTh1 0.395 0.435 0.469 0.468
ETTh2 0.291 0.368 0.413 0.422
ETTm1 0.336 0.377 0.409 0.465
ETTm2 0.181 0.248 0.315 0.417
Exchange 0.090 0.180 0.322 0.862
Weather 0.179 0.224 0.278 0.354
Electricity 0.198 0.202 0.217 0.257

24 36 48 60

Illness 2.284 2.515 2.572 2.455

49



2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

Table 9: ETTh1 test set results for Time-LLM trained on ETTh1.

Time-LLM MSE MAE
ETTh1-pl96 0.3846123 0.4149854

Why Do Time-LLM and UniTime Not Benefit (More) From Context? Looking at table Ap-
pendix C.3, we see that context actually harms the performance of Time-LLM’s forecasts. Two
possible reasons for this are: 1) Time-LLM’s adaptation procedure is unlikely to retain the backbone
LLM’s language-processing capabilities, and 2) Time-LLM’s single-dataset training procedure is
unlikely to generalize to unseen time series patterns. Part of Time-LLM’s model adaptation involves
training linear layers at the input and output of the language model. Although the backbone LLM
remains frozen, these linear layers must be trained, and Time-LLM opts for a highly structured
prompting format which involves domain knowledge, task instructions and input statistics. Since the
training data for the linear layers consists of output representations based on these highly structured
prompts, it is not evident that the resulting architecture will generalize to more diverse contextual
descriptions such as those found in CiK. Furthermore, although we have not conducted a formal
analysis of the diversity of the ETTh1 dataset, it is not a priori obvious that such a dataset would have
a sufficient diversity of patterns to train a time series foundation model.

Interestingly, UniTime’s performance does benefit from context for some tasks (see Fig. 24). However,
the aggregate RCRPS and rank of UniTime with respect to other models indicate that it still struggles
to produce forecasts competitive with even quantitative forecasting methods.

Context: “Suppose that in the forecast, the values are bounded above by 6.29.”

Figure 24: A comparison of forecasts from UniTime without context (left) and with context (right). On average
across 5 instances, UniTime’s RCRPS is 64% better with context than without on the “Bounded Prediction
Constraint Based On Prediction Quantiles” task.

D.4 LAG-LLAMA

We use the publicly available implementation of Lag-Llama (Rasul et al., 2023) located at https:
//github.com/time-series-foundation-models/, and its associated pre-trained weights. The
model inference was done on a single H100 GPU.

D.5 CHRONOS

We use the publicly available implementation of Chronos (Ansari et al., 2024) located at https:
//github.com/amazon-science/chronos-forecasting. We evaluated (see Appendix C.3) our tasks
on all 5 available models: chronos-tiny, chronos-mini, chronos-small, chronos-base and chronos-large,
and reported the results of the best performing model, chronos-large in Tab. 1. The model inference
was done on a single H100 GPU.

50

https://github.com/time-series-foundation-models/
https://github.com/time-series-foundation-models/
https://github.com/amazon-science/chronos-forecasting
https://github.com/amazon-science/chronos-forecasting


2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

D.6 MOIRAI

We use the publicly available implementation of Moirai (Woo et al., 2024) located at https:
//github.com/SalesforceAIResearch/uni2ts. We evaluated (see Appendix C.3) our tasks on
the 3 following models: moirai-1.0-R-small (located at https://huggingface.co/Salesforce/
moirai-1.0-R-small), moirai-1.0-R-base (located at https://huggingface.co/Salesforce/
moirai-1.0-R-base) and moirai-1.0-R-large (located at https://huggingface.co/Salesforce/
moirai-1.0-R-large) and reported the results of the best performing model, moirai-1.0-R-large in
Tab. 1. The model inference was done on a single H100 GPU.

D.7 TIMEGEN

We access TimeGEN-1, an optimization of the TimeGPT model (Garza et al., 2023), using the API
made available through the nixtla Python package. Unlike all other baselines, we only generate
point forecasts with TimeGEN due to its probabilistic mode requiring much longer historical data
than is available in instances evaluated in the benchmark. This is the reason the RCPRS values for
TimeGEN have zero standard error.

D.8 EXPONENTIAL SMOOTHING

We used the Exponential Smoothing implementation from the statsmodels Python package, namely
the statsmodels.tsa.holtwinters.ExponentialSmoothing class. Both trend and seasonal compo-
nents of the models are set to be additive. The seasonal period length is either set manually for tasks
where the simple guess using the time series frequency is incorrect. If there is not at least two full
seasonal periods in the history window of the time series, we disable the seasonal component of the
model. Since some of the benchmark tasks can have as few as 3 time steps in the history window, we
also disable the trend component if we have less than 5 time steps in said window.

D.9 ETS AND ARIMA

We used the implementations of ETS and ARIMA from the forecast R package, using rpy2 for
compatibility with Python. For ETS, we use the ets method, which we call with automatic error,
trend, and seasonality components. In the rare cases where the ETS forecast contains NaN values, we
manually switch off the trend component and rerun the forecast. The ARIMA results are computed
using the auto.arima method. If the ARIMA fits fail, we rerun it with restricted parameter and
disabled seasonality.

E DETAILS OF THE PROPOSED METRIC

The CiK benchmark is designed to determine whether models can improve their probabilistic forecasts
by leveraging associated textual information (see Sec. 2). To support this goal, the evaluation metric:

1. should be a proper scoring rule, such that a model who perfectly knows what the correct
forecast is should have no reason to favor another prediction;

2. must be easy to compute using a finite sample from the forecast distribution, since many
models do not provide a functional form for their forecasts.

To account for the importance of leveraging relevant context, the metric should also:

1. penalize obviously impossible forecasts, i.e. that can be inferred as implausible from the
contextual information;

2. take a similar range of values across different tasks, to prevent some tasks to dominate
the score as we average the results across tasks;

3. prioritize forecast quality for timesteps with relevant context, even if these timesteps are
a small portion of the forecast horizon.
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To satisfy the first two properties, we start with the Continuous Ranked Probability Score
(CRPS) (Gneiting & Raftery, 2007), a reliable strictly proper scoring rule for univariate proba-
bility distribution, and take its mean over all time steps. To compute the CRPS from a finite number
of samples, we use the estimator based on its probability weighted moment form (Taillardat et al.,
2016), since it is unbiased (Zamo & Naveau, 2018). See Appendix E.3 for more details about this
estimator.

Many of our tasks are built to include information about a hard constraint on XF in their C, which
can be written as vC(xF ) = 0. If we were only interested to measure by how much a forecast breaks
the constraint, we could take inspiration from the threshold-weighted CRPS (Gneiting & Ranjan,
2011) by using vC as its chaining function (Allen et al., 2023):

twCRPSvC (X̃F ,xF ) ≡ CRPS
(
vC(X̃F ), vC(xF )

)
, (1)

where X̃F is the forecast of XF to be evaluated. Since, by construction, the ground-truth xF always
satisfy the constraints, we have vC(xF ) = 0. But since we do not care only about whether forecasts
break constraints, we sum both the original CRPS and this twCRPS, but we weight the later by a
factor of β = 10, to denote the additional interest we show to these errors. See Appendix E.4 for the
various vC used in the benchmark.

One common approach to normalize the CRPS to get similar ranges for multiple problems is to divide
it by the mean absolute value of the target ground-truth of the forecasted series (Alexandrov et al.,
2020). This has two issues: the metric is no longer proper, and it leads to much larger values for
series close to zero than those far from it. To solve the first issue, we take advantage that we can
generate many more instances from each of our tasks, by computing a normalization factor α from
25 instances not included in the benchmark. The details of this calculations are in Appendix E.1.

Many tasks in our benchmark contains contextual information which is highly relevant for a small
fraction of the time steps in the forecasting window, while being only marginally relevant for the
majority of the time steps. If we were to weight these two categories equally, then the score for
a model which ignores the context would be hard to distinguish from the score of one who does
not. We correct this issue by identifying the subset of time steps with relevant information, which
we call the Region of Interest (RoI). We then weight the CRPS to give half weight to the RoI time
steps and half weight to the non-RoI time steps. Therefore, we obtain our metric, which we call the
Region-of-Interest CRPS (RCRPS):

RCRPS(X̃F ,xF ) :=


α ·
[

1
2|I| ·

∑
i∈I

CRPS
(
X̃i, xi

)
+ 1

2|¬I| ·
∑

i∈¬I
CRPS

(
X̃i, xi

)
+ β · CRPS

(
vC(X̃F ), 0

)]
if |I| > 0

α ·
[

1
|¬I| ·

∑
i∈¬I

CRPS
(
X̃i, xi

)
+ β · CRPS

(
vC(X̃F ), 0

)]
, if |I| = 0

where I is the set of time steps in the RoI, ¬I is the set of time steps in the forecast but not in the
RoI, α is the aforementioned scaling factor, and we drop the factor of two and the first sum for tasks
where there is no meaningful RoI.

E.1 SCALING FOR CROSS-TASK AGGREGATION

The rationale behind scaling the RCPRS is to allow us to average its value from diverse tasks without
the average being dominated by the forecast quality for tasks with time series with large values.
An alternative argument is: all other conditions being equal, a forecaster that is wrong by 10 in its
forecast for a time series which goes from 25 to 30 is worse than one that is wrong by 100 in its
forecast for a time series which goes from 2500 to 3000. Furthermore, we have multiple tasks for
which some instances have constant xF or nearly so, often with values close to zero. Due to these
tasks, we cannot simply use a scaling which only depends on said instances xF . Instead, we take
advantage of our benchmark ability to generate a very large number of instances for each tasks by
using M = 25 instances not included in our benchmark. Given the ground-truth future values xm

F for
these instance, the scaling factor β for an individual task is as follow:

α =

[∑
m (maxi x

m
i −mini x

m
i )

M

]−1

. (2)
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Properness In an ideal scenario, all instances of a tasks would be fully independent. In that case
then Eq. (2) would not contain any information about the target time series in the benchmark instances,
making the RCPRS a proper scoring rule. However, due to possible overlaps in the time windows
used when creating the instances and to auto-correlations, we cannot guarantee independence between
instances, and thus we cannot guarantee that the RCPRS is actually a proper scoring rule. Note that
this deviation from a proper scoring rule is minor, and has a much smaller effect than the one due to
the common approach of normalizing the CRPS using the Mean Absolute Value of the ground-truth.

E.2 CRPS AND TWCRPS

Given a univariate forecast X̃ and a ground-truth realization x, the Continuous Ranked Probability
Score (CRPS) can be defined in its integral as follow:

CRPS(X̃, x) =

∫ ∞

−∞
dy
[
ΦX̃(y)− 1(y ≥ x)

]2
, (3)

where ΦX̃(y) is the Cumulative Distribution Function of X̃ , and 1 is the indicator function.

There are multiple ways to compute the CRPS, but a particularly interesting one which showcases its
link to the Mean Absolute Error is the energy form of the CRPS:

CRPS(X̃, x) = EX∼X̃ |X − x| − 1

2
EX,X′∼X̃ |X −X ′| . (4)

We get the threshold-weighted CRPS (twCRPS) from Eq. (4) by adding a weighting function w(x) to
it:

twCRPS(X̃, x) =

∫ ∞

−∞
dyw(y)

[
ΦX̃(y)− 1(y ≥ x)

]2
. (5)

To get the energy form of the twCRPS, we must compute the chaining function v(x) from w(x):

v(x)− v(x′) =

∫
[x,x′)

dyw(y). (6)

Using v(x), we can write the twCRPS as:

twCRPS(X̃, x) = EX∼X̃ |v(X)− v(x)| − 1

2
EX,X′∼X̃ |v(X)− v(X ′)| . (7)

Eq. (7) can readily be generalized to a multivariate forecast, by using any Rd → R chaining function.

E.3 ESTIMATING THE CRPS USING SAMPLES

Computing the CRPS using Eq. (3) or Eq. (4) directly would be extremely hard for most of the
baselines included in our experiments. Instead, it is more computationally convenient to use an
estimator of the CRPS which uses a finite number of samples x1, ..., xM from the forecasting
distribution. An unbiased estimator of the CRPS created from Eq. (4) is:

CRPS(X̃, x) ≈ 1

M

M∑
n=1

|xn − x| − 1

2M(M − 1)

M∑
n=1

M∑
n′=1

|xn − xn′ | . (8)

However, this estimator is relatively costly, having a O(M2) time complexity.

A faster estimator which gives the same result as Eq. (8) (up to numerical accuracy) is the one based
on the probability weighted moment form of the CRPS (Taillardat et al., 2016; Zamo & Naveau,
2018):

CRPS(X̃, x) ≈ 1

M

M∑
n=1

|xn − x|+ 1

M

M∑
n=1

xn − 2

M(M − 1)

M∑
n=1

(n− 1)xn, (9)

where the xn have been sorted in ascending order. We used Eq. (9) in our metric, since it is as
accurate as Eq. (8), while only having a O(M logM) time complexity.
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E.4 CONSTRAINT-VIOLATION FUNCTIONS

In selecting constraint-violation functions vC for our various tasks, we have the following require-
ments: it should be invariant to the number of timesteps in the forecasting window and it should be
multiplied by α if all numerical data in a task is transformed using x → αx+ β. Here are the vC we
use in some of our benchmark tasks:

• Constant upper-bound constraint xi ≤ τ+:

vC(xF ) =
1

T − t

T∑
i=t+1

max(0, xi − τ+),

• Constant lower-bound constraint xi ≥ τ−:

vC(xF ) =
1

T − t

T∑
i=t+1

max(0, τ− − xi),

• Constant lower-bound and upper-bound constraints τ− ≤ xi ≤ τ+:

vC(xF ) =
1

T − t

T∑
i=t+1

max(0, τ− − xi) + max(0, xi − τ+),

• and Variable upper-bound constraints, on a subset of time steps xi ≤ τ+i ∀i ∈ C:

vC(xF ) =
1

|C|
∑
i∈C

max(0, xi − τ+i ).

E.5 COVARIANCE OF TWO CRPS ESTIMATORS

One approach to compute standard error on the RCRPS is to compute the empirical standard deviation
based on the 5 instances we use for each task. However, such a method would overestimate the
standard error, since it would consider both the variance coming from the selection of instances of a
given task, and the variance coming from the models sampling processes. Since all models are tested
using the exact same instances, the variance coming from their selection is not relevant, and thus we
need a way to ignore it.

To do so, we take advantage that the RCRPS is a weighted sum of multiple CRPS estimates. Since
those estimates are not independent from one another, we can compute an estimate of the variance of
the RCPRS under the sampling process by computing an estimate of the covariance matrix between
the various CRPS estimates, followed by the appropriate weighted sum.

Let says we want to compute the covariance between the CRPS for variable i and the CRPS for
variable j, using M independent and identically distributed samples from the joint distribution of X̃i

and X̃j .

Cov
(

CRPS
(
X̃i, xi

)
,CRPS

(
X̃j , xj

))
=

Cov

(
1

M

∑
n

|X̃i,n − xi| −
1

2M(M − 1)

∑
n ̸=n′

|X̃i,n − X̃i,n′ |,

1

M

∑
n

|X̃j,n − xj | −
1

2M(M − 1)

∑
n̸=n′

|X̃j,n − X̃j,n′ |

)
,

where the sums are over the various samples n and xi and xj and the ground-truth values.
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After some tedious algebraic manipulations, we obtain the final formula for the covariance of two
CRPS estimates:

Cov
(

CRPS
(
X̃i, xi

)
,CRPS

(
X̃j , xj

))
=

− 1

M
E
X̃i

|X̃i − xi| E
X̃′

j

|X̃ ′
j − xj |

+
1

M
E
X̃i

|X̃i − xi| E
X̃′

j

E
X̃′′

j

|X̃ ′
j − X̃ ′′

j |

+
1

M
E
X̃i

E
X̃′

i

|X̃i − X̃ ′
i| E

X̃′′
j

|X̃ ′′
j − xj |

− 2M − 3

2M(M − 1)
E
X̃i

E
X̃′

i

|X̃i − X̃ ′
i| E

X̃′′
j

E
X̃′′′

j

|X̃ ′′
j − X̃ ′′′

j |

+
1

M
E

(X̃i,X̃j)
|X̃i − xi| · |X̃j − xj |

− 1

M
E

(X̃i,X̃j)
E
X̃′

i

|X̃i − X̃ ′
i| · |X̃j − xj |

− 1

M
E

(X̃i,X̃j)
E
X̃′

j

|X̃i − xi| · |X̃j − X̃ ′
j |

+
1

2M(M − 1)
E

(X̃i,X̃j)
E

(X̃′
i,X̃

′
j)
|X̃i − X̃ ′

i| · |X̃j − X̃ ′
j |

+
M − 1

M(M − 1)
E

(X̃i,X̃j)
E
X̃′

i

E
X̃′′

j

|X̃i − X̃ ′
i| · |X̃j − X̃ ′′

j |,

where variables with the same number of apostrophes (′) are drawn together and those with different
number of apostrophes are independent variables.

To get an estimate of covariance using our M samples, we can estimate each of these terms using
their respective unbiased estimators. Once we have compute an estimate of the variance for a single
task instance, the overall variance for a full task is computed using the formula for the variance of
the average of multiple independent variables. One slight disadvantage of using this method, is that
it offers now guarantee that the RCPRS variance estimate will be non-negative, so in the rare cases
where the estimate for the variance of a full task is negative, we clip it to 0.
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