
Published as a conference paper at ICLR 2026

FHE-CODER: SECURE AGENTIC CODE GENERATION
FOR FULLY HOMOMORPHIC ENCRYPTION

Mayank Kumar, Jiaqi Xue, Mengxin Zheng & Qian Lou
Department of Computer Science
University of Central Florida
{mayank.kumar,jiaqi.xue,mengxin.zheng,qian.lou}@ucf.edu

ABSTRACT

Fully Homomorphic Encryption (FHE) is a foundational technology for confiden-
tial computing, yet its practical adoption remains limited by the need for special-
ized cryptographic expertise and error-prone parameter configuration. To lower
this barrier, we investigate whether Large Language Model (LLM) agents can re-
liably generate secure FHE code from natural-language specifications. We present
FHE-CODER, a three-phase agentic framework that addresses the key failure
modes of FHE code generation: semantic ambiguity, API misuse, and crypto-
graphic insecurity. The framework integrates (1) a Prompt Formalizer that struc-
tures user intent and enforces secure parameterization, (2) a specialized retrieval-
augmented generation (RAG) module that supplies scheme-specific API and doc-
umentation knowledge, and (3) an automated Security Verifier that performs iter-
ative validation and feedback to detect and correct cryptographic flaws. We evalu-
ate FHE-CODER across four leading LLMs on a benchmark of ten FHE program-
ming tasks spanning increasing functional and security complexity. While base-
line agents frequently produce code that compiles and passes functional tests, they
often violate security constraints or misuse cryptographic parameters. In contrast,
FHE-CODER consistently generates solutions that are compilable, functionally
correct, and verifiably secure across schemes including TFHE and CKKS. Our
work establishes a systematic methodology and benchmark for agentic FHE code
generation, providing a practical step toward democratizing secure computation
without compromising cryptographic guarantees.

1 INTRODUCTION

Fully Homomorphic Encryption (FHE) (Gentry, 2009; Lou & Jiang, 2019; Zhang et al., 2024; Lou
et al., 2021) enables computation directly over encrypted data, eliminating the need for decryp-
tion during processing (Brakerski et al., 2014; Lou & Jiang, 2021; Brakerski, 2012; Zhang et al.,
2023; Fan & Vercauteren, 2012; Cheon et al., 2017b; Chillotti et al., 2020; Xue et al., 2022; Zhang
et al., 2025; Lou et al., 2019a; Zheng et al., 2023). It has become a foundational primitive for
privacy-preserving computation, supporting applications such as machine learning over encrypted
data (Gilad-Bachrach et al., 2016; Lou et al., 2019b; Santriaji et al., 2024), secure multi-party com-
putation (Jin et al., 2023), private blockchain transactions (Madathil & Scafuro, 2023), and secure
medical diagnostics (Raisaro et al., 2018).

Among modern schemes, TFHE Chillotti et al. (2020) and CKKS Cheon et al. (2017a) are widely
regarded as the most industry-relevant FHE frameworks, with deployments across major technology
platforms. Apple has integrated FHE-based private contact discovery and private email retrieval
since iOS 18 (Apple, 2024), benefiting over 1.5 billion iPhone users as of 2025. Microsoft has also
deployed FHE in its Browser Password Monitor (Research, 2020). Furthermore, Zama’s FHE-based
ecosystem enables encrypted machine learning (Concrete ML (Zama, 2024)), private smart contracts
(fhEVM (Z1Labs, 2024)), and blockchain infrastructures (Madathil & Scafuro, 2023).

Despite this momentum, widespread adoption remains hindered by a steep learning curve. Unlike
general-purpose programming, developing secure FHE applications requires precise coordination
of tightly coupled cryptographic components. Developers must ensure strict parameter compatibil-

1

Published as a conference paper at ICLR 2026

ity to satisfy Learning With Errors (LWE) security bounds while carefully managing noise growth
across homomorphic operations. Even minor misconfigurations can render programs insecure or
non-functional. This complexity is reflected in community benchmarks such as the 2025 FHERMA
competitions (FHERMA, 2025a;b), where implementing standard activation function (ReLU) and
convolution inference remains challenging due to noise-sensitive constraints. This expertise gap
raises a fundamental question: can LLM agents translate natural language into secure FHE code?

Recent advancements in Large Language Models (LLMs) (Jiang et al., 2024) have demonstrated
strong capabilities in natural language understanding and code generation (Mastropaolo et al., 2023;
Nijkamp et al., 2022). These models can synthesize executable programs from high-level descrip-
tions and assist developers in debugging and implementation. This progress raises the possibility
of leveraging LLM agents to automate FHE programming tasks, including secure parameter config-
uration and correct API usage. If reliable, such automation could significantly lower the expertise
barrier and broaden access to confidential computing.

(a) Plaintext program.

(b) TFHE program.

Figure 1: Illustrating the differences between a plaintext pro-
gram and a TFHE-based FHE program.

However, naive application of general-
purpose code generation agents to FHE of-
ten fails. As illustrated in Fig. 1a, agents
frequently generate plaintext implementa-
tions instead of homomorphic programs
(Fig. 1b). This failure arises from sev-
eral domain-specific challenges. First,
models trained on general-purpose code
lack awareness of FHE-specific program
structure and cryptographic constraints.
They frequently hallucinate APIs or mis-
use existing functions, violating homo-
morphic properties. Second, parame-
ter configuration requires scheme-specific
reasoning about security levels and noise
growth—capabilities absent from standard
prompting pipelines. Finally, conventional
evaluation metrics such as Pass@k (Chen
et al., 2021) measure only functional cor-
rectness, not cryptographic security. A
program may pass such tests while operating on plaintext data, entirely defeating its privacy-
preserving objective. Functional correctness is therefore an insufficient and potentially misleading
proxy for success in secure code generation.

To address these limitations, we introduce a novel agentic workflow and evaluation framework for
secure FHE code generation, illustrated in Fig. 2. Our workflow consists of three tightly integrated
components designed to mitigate the identified failure modes. First, the FHE Prompt Formalizer
(Fig. 3a) translates user intent into a structured specification with securely derived cryptographic
parameters. Second, the FHE API RAG Retriever (Fig. 3b) supplies scheme-specific documenta-
tion and expert-curated usage examples to prevent API hallucination and misuse. Third, the FHE
Security Verifier (Fig. 4) introduces an automated feedback loop that enforces security invariants
and detects plaintext leakage or parameter inconsistencies. Together, these components transform
unconstrained code generation into a security-aware, iterative synthesis process.

We summarize our contributions as follows:
• We propose FHE-CODER, an agentic framework that enables reliable and security-aware FHE

code generation using LLM agents. It introduces three core components: an FHE Prompt For-
malizer that derives parameters grounded in LWE-based security analysis, an Expert-Enriched
RAG Retriever that bridges gaps in cryptographic API knowledge, and an FHE Security Verifier
that enforces privacy invariants through automated validation.

• We show traditional functional metrics are insufficient for private computing and introduce a rig-
orous security evaluation methodology, featuring a new Pass@1 (security) metric and a multi-
stage pipeline ensuring functional and cryptographic correctness.

2

Published as a conference paper at ICLR 2026

Implement a
TFHE code to...

The LWE parameter
should be 1024.

Context: You are an
expertcrypto-coder.​

Objective: <Intent Here>​
Reference Pseudocode:​ [...]

+

Compile: OK
Functional: 3/5 Tests Passed

Security: NA
Latency: NA

#include <tfhe/tfhe.h>
#include <tfhe/tfhe_io.h>Latency

Check
Security
Check Question: [...] </code>

ReAct
Loop

User Prompt Formal Prompt

Formal Error Prompt

Generated Code

LLM AgentFHE Prompt Formalizer

FHE Security Verifier FHE API RAG Retreiver

+
TFHE Docs TopK Retreive

Developer

LLM
Lattice

Estimator

Figure 2: Overview of our secure FHE code generation workflow. Our key components (highlighted with
stars) are: (1) the FHE Prompt Formalizer, which enriches a developer’s prompt with securely derived param-
eters using a Lattice Estimator; (2) the FHE API RAG Retriever, which provides expert-annotated API usage
examples; and (3) the FHE Security Verifier, which establishes an automated feedback loop for security and
correctness. Maximum iterations are set to 10.

• We establish a comprehensive benchmark for agentic FHE generation across TFHE and
CKKS. We show that while baselines fail security-critical tasks, our framework excels on complex
architectures (e.g., Transformers), offering a blueprint for automated secure software engineering.

2 BACKGROUND
2.1 FULLY HOMOMORPHIC ENCRYPTION

Fully Homomorphic Encryption (FHE) enables arbitrary computation over encrypted data with-
out requiring decryption, providing strong confidentiality guarantees grounded in hard lattice prob-
lems such as Learning With Errors (LWE). Modern FHE schemes can be broadly categorized into
boolean-gate-based systems (e.g., TFHE) and arithmetic-circuit-based systems (e.g., BGV (Braker-
ski et al., 2014) and CKKS (Cheon et al., 2017b)).

TFHE (Fully Homomorphic Encryption over the Torus) (Jiang et al., 2022) operates over boolean
circuits and supports logical gates (NOT, AND, OR) with highly efficient Programmable Boot-
strapping (PBS), enabling evaluation of non-linear functions while refreshing ciphertext noise. In
contrast, arithmetic schemes like BGV and CKKS operate over polynomial rings, optimizing integer
or real-number computation for encrypted ML workloads.

Despite their structural differences, these schemes share common cryptographic constraints. Devel-
opers must carefully manage noise growth across homomorphic operations, ensure strict compati-
bility among interdependent security parameters (e.g., security level λ, lattice dimension, modulus
size), and avoid silent decryption failures caused by parameter misconfiguration. In CKKS, ad-
ditional challenges arise from approximation error control and rescaling strategies, while TFHE
requires precise bootstrapping configuration and gate-level orchestration.

Consequently, although modern FHE schemes provide powerful functionality, implementing secure
and efficient FHE applications requires specialized cryptographic expertise. This complexity hinders
widespread adoption across both boolean and arithmetic FHE.

2.2 LLM AGENTS FOR CODE GENERATION

Code generation has emerged as a core application of large language models, with systems such
as CodeGen (Nijkamp et al., 2022), CodeX (Chen et al., 2021), and CodeT5 (Wang et al., 2021)
demonstrating strong performance in mainstream programming languages due to the availability
of large-scale training corpora. However, generating secure code for niche cryptographic libraries
remains fundamentally more challenging due to sparse documentation, domain-specific APIs, and
mathematically constrained execution semantics.

Recent advances extend beyond standalone LLMs toward LLM agents, which integrate planning,
retrieval, and tool-use capabilities into iterative reasoning pipelines. In adjacent domains such as
High-Level Synthesis (HLS) and Register Transfer Level (RTL) hardware design (Thakur et al.,

3

Published as a conference paper at ICLR 2026

2023; Liao et al., 2024; Xiong et al., 2024), LLM-based systems have demonstrated the ability
to reason about logical operations (e.g., AND/OR gates) and structured transformations. These
findings suggest that LLM agents may possess foundational reasoning abilities aligned with the
circuit-oriented nature of certain FHE schemes.

However, unlike standard program synthesis tasks, FHE code generation imposes additional
security-critical constraints: correctness depends not only on syntactic validity and functional be-
havior, but also on cryptographic soundness, parameter security margins, and ciphertext-only com-
putation guarantees. Traditional prompting cannot enforce these invariants. This motivates using
structured, security-aware LLM agents with parameter derivation, API grounding, and verification
to reliably generate FHE programs for schemes like TFHE and CKKS.

3 OUR METHOD: FHE-CODER

Our Agentic workflow 2 has three main components: FHE Prompt Formalizer, FHE API RAG
Retriever and FHE Security Verifier. The Agent uses ReAct (Yao et al., 2023) prompting.

3.1 FHE PROMPT FORMALIZER

Implement a
TFHE code to...

The LWE parameter
should be 1024.

Implement homorphic ... using TFHE in C

 λ = NULL
n = 1024 λ = 128

method Main(a, b)
{
ensure (λ = 128)
/*More instructions*/
result = TFHEAnd(a, b)
ensure (result == (a&b)
}

Functional
Correctness: [...]
Security: [...]

Apply Prompt
Template on

Inputs

Formal
Specification

LLM

Lattice
Estimator

Final TFHE Parameter

Dafny-Code

Code Requirements

Context: You are an
expert crypto-coder.​

Objective: <Intent
Here>​

Reference
Pseudocode:​

<Dafny code here>​
Code Requirements:​
<code requirements

here>​

Intent
Extraction

LLM

Parameter
Solver

Intent

Partial Specification

User Prompt

Formal Prompt

STEP 1

STEP 2

STEP 3STEP 4

FHE Prompt Formalizer

(a) LLMs and a Lattice Estimator transform a developer’s
prompt into a secure and structured set of instructions. The pro-
cess extracts intent and solves for cryptographic parameters.

Similarity(Q, Di)
TopK
D2: C2
D1: C1

/**
boostrapped And
gate
result = (a and b)
*/

Formalize Docstring

/**
 * @objective Perform
Bootstrapped AND gate
[...]
 */

Make Docstring-Code
Dictionary

Di

Human TFHE Expert

TFHE API Documentation

Compute
Similarity Ranking Similarity

[...]
Objective: How to
perform bitwise AND ?
[...]

Qi

/*Doxygen Docstring*/
void
bootsAND(LweSample*
[...]

Query From Agent
Code Snippet

FHE API
RAG Retriever

(b) An offline, human-in-the-
loop process maps expert-
enriched docstrings to TFHE
code snippets.

Figure 3: Overview of the instruction and generation phase. (a) The online instruction generation and param-
eter estimation. (b) The offline code mapping process.

The FHE Prompt Formalizer, illustrated in Figure 3a, addresses a critical failure mode in base-
line agents: the inability to select secure cryptographic parameters through probabilistic generation.
While standard LLMs often hallucinate inconsistent parameters or insecure noise budgets due to a
lack of domain-specific mathematical structure, our workflow replaces this heuristic guesswork with
cryptographic certainty. The process begins by extracting the user’s high-level intent, which is
then passed to a Lattice Estimator (Albrecht et al., 2015) to mathematically solve for the
precise security parameter, λ, rather than predicting it. A second LLM utilizes this secure config-
uration to generate a formal specification containing Dafny (Leino, 2010) pseudocode. This step
transforms ambiguous natural language into rigorous structural constraints; for instance, the gener-
ated ensure statements explicitly guide the agent to embed assert checks in the final C++ code,
ensuring the solution adheres to valid ciphertext structures and intermediate invariants.

While our FHE-Coder framework demonstrates strong performance on atomic tasks, Figure 6 shows
that direct generation degrades on complex, compositional problems that require multi-step reason-
ing (e.g., matrix-vector multiplication, MLP). To address this, we use a structured decomposition
strategy: the agent first generates secure code for required primitives (e.g., dot product), and then a
final “composer” agent receives a structured prompt containing these verified subroutines plus the
high-level goal, and composes them into the final program.

4

Published as a conference paper at ICLR 2026

3.2 FHE API RAG RETRIEVER

The FHE API RAG Retriever, illustrated in Figure 3b , addresses the limitations of standard re-
trieval methods, which fail almost entirely in this domain because LLMs lack the intrinsic struc-
ture to interpret strict cryptographic APIs or respect ciphertext-only computation rules B. To bridge
the semantic gap between natural-language intent and these rigid library constraints, we construct
a knowledge base using expert-enriched metadata. Specifically, we transform FHE method (e.g.,
TFHE) docstrings1 into the Doxygen format2, utilizing structured tags such as @objective to
embed machine-readable semantic instructions. This enrichment enables the agent to retrieve pre-
cise, security-compliant code snippets based on cryptographic purpose rather than ambiguous key-
word matching, ensuring the selected APIs adhere to necessary noise and parameter rules. Crucially,
this offline preparation is a one-time, lightweight security step designed to eliminate API hallucina-
tions, making the process fully scalable. Extending the framework to another scheme (e.g., CKKS)
simply requires replacing the documentation corpus with that scheme’s library documentation, ren-
dering cross-scheme adaptation essentially plug-and-play. In our experiments, the chunking-size
was set to 600, and the chunk-overlap was set to 120.

3.3 FHE SECURITY VERIFIER

Figure 4: This automated pipeline validates generated code across four stages: Compile, Functional, Security,
and Latency. The critical Security Check verifies correct API usage, secure parameter configuration, and proper
input encryption. If any stage fails, a consolidated Formal Error Report is generated and returned to the agent
for iterative correction; otherwise, the solution is accepted.

The FHE Security Verifier, detailed in Figure 4, introduces a novel, complementary validation layer
that addresses the critical limitation of standard code generation metrics. While traditional Pass@k
functional testing (implemented here via unit tests) ensures the code aligns with the user’s op-
erational intent, our experiments show that baseline LLMs often produce code that passes these
functional tests while remaining cryptographically insecure (e.g., using plaintext operations). To
bridge this gap, our pipeline subjects the agent’s code to a specialized Security Check rooted in
the mathematical hardness of the Learning With Errors (LWE) problem. Unlike simple heuristic
checks, this module strictly enforces LWE-based parameter bounds derived from the Lattice Esti-
mator and mandates exclusive homomorphic API usage to prevent data leakage. When a violation
is detected alongside Compile, Functional, or Latency errors, the system generates a structured
Formal Error Report, driving an automated feedback loop that forces the agent to converge
on a solution that is simultaneously functionally accurate and mathematically secure.

4 EXPERIMENT DESIGN SECTION

4.1 PROBLEM DEFINITION

We introduce the LLM-Agentic FHE Generation and Evaluation Framework, illustrated in Figure 2.
In this framework, each TFHE task is formulated as a natural language prompt and provided to

1https://tfhe.github.io/tfhe/gate-bootstrapping-api.html
2https://www.doxygen.nl/

5

Published as a conference paper at ICLR 2026

the agent. Leveraging its reasoning capabilities, the agent may (optionally) consult external docu-
mentation through retrieval-augmented generation (RAG) before implementing the corresponding
code. The generated code is subsequently evaluated by the Security Verifier, which consolidates any
compilation or verification errors into structured feedback and returns it to the agent for refinement.
The agent then iteratively revises its solution, continuing this process until all security checks are
satisfied or a predefined iteration limit is reached.

4.2 WORKLOAD SELECTION

We describe the workloads for the code generation breifly in Table 1.

Table 1: Benchmark workloads for evaluating TFHE code generation, categorized by complexity.

Complexity Workload Description

Primitives

AND Bitwise AND between two 32-bit integers.
ReLU ReLU on a signed 32-bit integer.
Adder Addition of two 32-bit integers.
Multiplier Multiplication of two 32-bit integers.

Linear Algebra

Vector Add Vector addition between two integer vectors of length 5.
Dot Product Inner-product of two integer vectors of length 5.
Mat-Vec Mult Multiplication between an encrypted vector and a plaintext

matrix.
Mat-Mat Mult Multiplication between an encrypted matrix and a plaintext

matrix.

Deep Learning

MLP A simple 3-layer MLP with ReLU activation.
CNN A small Convolutional Neural Network with a fully con-

nected layer.
Softmax Computes the Softmax activation function over an input

vector.
Attention Single-head self-attention mechanism (Query, Key, Value).
Transformer A complete Transformer block combining attention and

feed-forward layers.

These tasks collectively evaluate LLMs’ ability to synthesize both low-level cryptographic primi-
tives and high-level machine learning components using TFHE’s gate-level programming paradigm.
However, in Section 5.3, we evaluate more complex workloads as well.

4.3 MODEL SELECTION

We select the latest LLMs to drive our agent. For open-source LLMs, we choose Qwen3-Coder-
480B-A35B((Yang et al., 2025)) (QWE) and Deepseek-V3.1((Liu et al., 2024))(DSK). For closed-
source LLMs, we select Gemini-2.5-Pro((Comanici et al., 2025))(GEM) and GPT-5((OpenAI,
2025))(GPT). For all studied LLMs, we set the temperature to 0.5. Furthermore, there is no heavy
local resource consumption for generation, as models are accessed via the OpenRouter API.

Note that, to mitigate issues stemming from the randomness of model generation, the experimental
results presented in this paper are obtained by conducting five repeated experiments and averaging
the results. For RAG, we used OpenAI’s text-embedding-3-small3.

4.4 METRICS

In our framework, we employ three key metrics to judge the quality of the generated codes. Fol-
lowing prior works on code-generation, we use 1. Pass@k(func) to denote the fraction of generated
codes that pass the unit tests. We present our novel metric 2. Pass@k(security), which denotes
the fraction of generated codes that are secure; a program is considered secure only if it passes an
automated analysis verifying: (i) exclusive use of TFHE APIs to prevent plaintext data leakage, (ii)
correct configuration of cryptographic parameters against secure values from the Lattice Estimator,
and (iii) proper encryption of all inputs before their use. A failure in any of these checks renders the
code insecure. Our third metric is 3. Latency, compared to expert-written reference codes.

3https://platform.openai.com/docs/models/text-embedding-3-small

6

Published as a conference paper at ICLR 2026

p
as

s@
1

(f
u

n
c.

)
p

as
s@

1
(s

ec
.)

la
te

n
cy

and relu adder multiplier vector
add

dot
product

Figure 5: Performance of GPT-5 across all tasks. A comparison of our framework (FHE-Coder) against
Baseline (BAS) and Chain-of-Thought (COT) techniques. FHE-Coder consistently produces code that is both
functionally correct and verifiably secure.

4.5 BASELINES

Our first baseline denotes a regular code generation workflow. Concretely, given the same natural-
language task description, the agent directly generates TFHE code in a single shot (or with its de-
fault self-revision), without (i) the Prompt Formalizer (no enforced program skeleton or parameter
derivation), (ii) the API RAG Retriever (no documentation-grounded API lookup), and (iii) the Se-
curity/Latency verification loop (no iterative feedback from compilation, functional tests, or security
checks as in Fig. 2).We abbreviate it as BAS. Our second baseline is Zero-shot Chain-of-Thought
agent, which builds upon the regular workflow by appending a step-by-step worked example of
correct TFHE code generation. We abbreviate it as COT.

5 EVALUATION RESULTS

This section presents a comprehensive empirical analysis of our proposed agentic framework (de-
noted as FHE-Coder) in comparison to a regular code generation workflow (BAS) and a Zero-shot
Chain-of-Thought agent (COT). We first evaluated four leading LLMs on a benchmark of ten TFHE
programming tasks with varying complexity, and then extended the scheme to CKKS.

5.1 IN-DEPTH ANALYSIS ON A STATE-OF-THE-ART MODEL

We first conduct a detailed analysis using the state-of-the-art GPT-5 model to illustrate the core
performance differences between our framework and the baselines across all tasks. The results are
presented in Fig. 5.

Functional Correctness: As shown in the top chart of Figure 6, the baseline methods (BAS and
COT) demonstrate partial success on tasks with low complexity, such as and and relu. We defer
discussion of tougher, compositional tasks to Section 5.3.

Security: A critical distinction between our framework and the baselines is revealed in the security
evaluation. Both the BAS and COT methods yield a pass@1(security) approaching zero for
all tasks evaluated. This finding indicates that they consistently fail to produce secure code, often
generating plaintext implementations that, while sometimes functionally correct, do not adhere to
the required cryptographic protocols. Conversely, the FHE-Coder framework achieves near-perfect
security scores across the entire benchmark. This outcome underscores the necessity of a guided,
multi-phase process—encompassing the proposed prompt formalization, accurate API retrieval, and
security verification—to meet the specific requirements of secure code generation.

Latency: The performance trade-offs are detailed in the bottom chart of Figure 6. While the FHE-
Coder framework naturally incurs higher latency due to its iterative feedback loop, the specific
computational overhead introduced by our verification logic is minimal. The Compile and Secu-
rity Checks rely on lightweight static analysis and complete in the order of milliseconds, while the
Latency Check adds negligible overhead. The majority of the time is consumed by the Functional
Check, which ranges from seconds (for simple gates) to minutes (for complex circuits like Ma-
trix Multiplication), but this duration is intrinsic to the execution of the generated FHE code itself

7

Published as a conference paper at ICLR 2026

DSK QWE GPT GEM

p
as

s@
1

(f
u

n
c.

)
p

as
s@

1
(s

ec
.)

la
te

n
cy

BAS COT FHE-Coder BAS COT FHE-Coder BAS COT FHE-Coder

Figure 6: A comparison of our framework (FHE-Coder) against baselines (BAS, COT) using four different
LLMs. The results show that the security failures of baseline methods are universal; all models produce insecure
code with BAS and COT across all tasks. In contrast, our FHE-Coder framework is the only technique that
provides a consistent and essential security uplift, proving its benefits are model-agnostic.

rather than the framework’s processing. This overhead is a deliberate design choice, representing a
practical trade-off for significant improvements in security. The absolute runtimes of representative
workloads are mentioned in Table 2.

5.2 GENERALIZABILITY ACROSS DIVERSE LLMS

To ensure our findings are not model-specific, we assessed the generalizability of our framework by
applying it to four different LLMs. Fig. 6 presents a comparative analysis on three representative
tasks. The results confirm that the performance patterns persist across all models. The security
deficiencies of the baseline methods are model-agnostic; both BAS and COT fail to generate secure
code regardless of the LLM used. In contrast, the FHE-Coder framework is the only approach
that enables the models to consistently produce secure outputs. While the overall performance
ceiling is influenced by the base model’s intrinsic capabilities—with GPT-5 and Gemini-2.5-pro
generally outperforming Deepseek-V3.1 and Qwen3-Coder —our framework provides a consistent
and essential security impoves for all tested models.

5.3 SOLVING COMPLEX TASKS WITH STRUCTURED DECOMPOSITION

Matrix-Vector Matrix-Matrix MLP CNN
0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

@
1

FHE-Coder + Structured Decomposition
Functional
Security

Figure 7: Performance: FHE-Coder + structured decomposition.

As detailed in Figure 7, our struc-
tured decomposition approach
effectively solves tougher composi-
tional tasks (e.g., matrix-vector
multiplication and CNN)
where the direct method fails. It
achieves high functional and security
scores across most tasks, reaching
a perfect 1.0 security pass rate for
matrix-vector and matrix-matrix
multiplication. The increased com-
positional complexity of the MLP task lowers both its functional (0.4) and security (0.6) pass rates,
suggesting a link between logical complexity and the agent’s ability to maintain security protocols.
Overall, this hierarchical strategy of composing solutions from verified sub-tasks significantly
extends the agent’s capabilities to a previously unsolvable class of problems.

Scaling to Complex Non-Linear TFHE Architectures. We further test this decomposition strat-
egy on complex non-linear TFHE circuits (Softmax, Attention, and Transformer). Figure 10 shows
that baselines (BAS, COT) may sometimes achieve partial functional success but consistently fail
the security checks (Pass@1 (sec) ≈ 0.0). In contrast, FHE-Coder combined with structured decom-
position achieves perfect functional and security scores on Softmax and Attention and maintains a
strong security pass rate on Transformers (e.g., ≈ 0.8 for GPT), indicating the approach scales to
state-of-the-art circuit depth.

8

Published as a conference paper at ICLR 2026

p
as

s@
1

(f
u

n
c.

)
p

as
s@

1
(s

ec
.)

task_softmax task_attention task_transformer

BAS COT FHE-Coder + Structured
Decomposition

BAS COT BAS COT

DSK GPT

FHE-Coder + Structured
Decomposition

FHE-Coder + Structured
Decomposition

Figure 9: Generalization to CKKS. Performance on Softmax, Attention, and Transformer tasks. FHE-Coder
+ Structured Decomposition achieves high functionality and security scores, demonstrating robust generaliza-
tion to complex non-linear architectures where baselines fail.

5.4 GENERALIZATION TO CKKS SCHEME

Figure 9 shows that our workflow generalizes beyond TFHE to CKKS on non-linear workloads
(Softmax, Attention, Transformer). Baselines (BAS, COT) show near-zero Pass@1 (sec.), while
FHE-Coder—using a CKKS parameter estimator and documentation—achieves near-perfect Soft-
max/Attention results and higher Transformer security.

5.5 ABLATION STUDY

Oursw/o SCw/o RAGw/o FPBaseline

Figure 8: Ablation Study on Vector Addi-
tion. Removing the Security Verifier (w/o
SC) eliminates security guarantees, while
removing the Prompt Formalizer (w/o FP)
degrades functionality to baseline levels.
These results demonstrate that all compo-
nents are essential for the full framework’s
robust performance.

To quantitatively assess the contribution of each compo-
nent within our framework, we conduct an ablation study
by systematically removing each of our three key mod-
ules: the FHE Prompt Formalizer (FP), the FHE API
RAG Retriever (RAG), and the FHE Security Verifier
(SC). The results for the GPT-5 model on the represen-
tative Vector Addition task, shown in Figure 8, reveal a
clear performance hierarchy.

The study establishes that the Baseline agent, lacking our
modules, is unable to produce secure TFHE code, achiev-
ing a low functional pass rate of 0.4 and zero security
pass rate. Removing the FHE Security Verifier (w/o
SC) from our full system causes the most critical secu-
rity degradation, with the security pass rate falling from
1.0 to 0.6. This highlights that the iterative feedback from
the verifier is indispensable for correcting cryptographic
flaws. Similarly, ablating the FHE API RAG Retriever
(w/o RAG) degrades both functionality and security to
0.8, confirming that access to correct API knowledge is
crucial. Removing the FHE Prompt Formalizer (w/o FP) causes the functional pass rate to collapse
to baseline levels (0.4), demonstrating its vital role in achieving functional correctness. Ultimately,
the Ours (Full) configuration is the only one to achieve a perfect 1.0 score on both metrics, con-
firming that all three components are essential and complementary, working in concert to generate
code that is simultaneously secure and functionally correct.

Table 2: Illustrative Execution Times for FHE workloads.

Task (Complexity) Average Execution Time

AND (Elementary Gate Logic) 10.45 milliseconds
ReLU (Simple Bitwise Circuit) 11.50 milliseconds
MatMul (Complex Compositional Circuit) 2.54 minutes

9

Published as a conference paper at ICLR 2026

p
as

s@
1

(f
u

n
c.

)
p

as
s@

1
(s

ec
.)

task_softmax task_attention task_transformer

BAS
COT BAS COT BAS COT

DSK GPT

FHE-Coder + Structured
Decomposition

FHE-Coder + Structured
Decomposition

FHE-Coder + Structured
Decomposition

Figure 10: Complex TFHE Tasks. Performance on Softmax, Attention, and Transformers. FHE-Coder +
Structured Decomposition robustly solves these non-linear circuits with high functionality and security scores,
significantly outperforming baselines.

6 DISCUSSION

Our work demonstrates that automating the generation of secure FHE code requires moving beyond
simple prompt-to-code workflows, which we show consistently fail in security-critical domains. The
core finding is that while baseline agents may achieve functional correctness, they lack the intrinsic
mathematical reasoning to select secure parameters or adhere to strict ciphertext-only constraints,
resulting in a near-zero security pass rate. This highlights a fundamental misalignment: traditional
metrics like Pass@k(func) are misleading proxies for success in cryptographic programming. Our
framework addresses this by elevating verifiable security to a primary objective, grounding the gen-
eration process in the mathematical hardness of the Learning With Errors (LWE) problem via the
Lattice Estimator, rather than relying on probabilistic LLM heuristics.

Crucially, our extended evaluation confirms that this agentic architecture serves as a generalizable
blueprint for confidential computing, not just a TFHE-specific solution. The modular design of our
three components—Prompt Formalizer, RAG Retriever, and Security Verifier—enables ”plug-and-
play” adaptation to other schemes. As evidenced by our results with CKKS, we achieved high secu-
rity scores by simply swapping the underlying parameter solver and documentation corpus, proving
that the workflow’s effectiveness is scheme-agnostic. Furthermore, our experiments with Structured
Decomposition reveal that the framework scales to state-of-the-art complexity. While direct gener-
ation struggles with deep circuits, agents excel as ”composers” when provided with verified prim-
itives, successfully implementing complex non-linear architectures like Attention mechanisms and
Transformers. Ultimately, FHE-CODER establishes that with the right scaffolding—specifically,
a priori structural knowledge and a posteriori security feedback—LLMs can be transformed from
unreliable assistants into verifiable partners for secure software engineering.

7 CONCLUSION

Fully Homomorphic Encryption has emerged as a cornerstone of modern confidential computing,
enabling unique programmable bootstrapping capabilities that drive widespread industry adoption;
however, utilizing this powerful tool is severely limited by a steep learning curve. In this work,
we introduced FHE-CODER, a structured agentic framework that bridges this gap by integrating
prompt formalization, retrieval-augmented generation, and a critical security verification loop. Our
findings reveal that while standard agents consistently fail due to a lack of domain constraints, our
framework succeeds by strictly grounding the generation process in the mathematical hardness of the
Learning With Errors (LWE) problem. Beyond establishing the first robust benchmark for TFHE,
our extended evaluation demonstrates significant generalization and scalability: we proved that the
framework’s modular design serves as a scheme-agnostic blueprint, successfully adapting to the
CKKS scheme, and that a structured decomposition strategy enables the synthesis of state-of-the-art
non-linear architectures, such as Attention mechanisms and Transformers. By enabling developers
to reliably generate code that is simultaneously functional and verifiably secure, this work takes a
definitive step toward democratizing access to these advanced privacy-preserving technologies.

8 ETHICS STATEMENT

Large language models (LLMs) were used to check grammer and polish writing.

10

Published as a conference paper at ICLR 2026

9 REPRODUCIBILITY STATEMENT

In order to ensure reproducibility, we fixed the seed while inferencing the models. As
noted in Section 4.3, the results of the experiments shown are aggregated after 5 indepen-
dent runs with different seed values. Source code: https://github.com/mayank64ce/
fhe-agentic-benchmarking

REFERENCES

Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with errors.
Journal of Mathematical Cryptology, 9(3):169–203, 2015.

Apple. Homomorphic encryption. https://machinelearning.apple.com/research/
homomorphic-encryption, 2024. Accessed: 2025.

Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp.
In Annual cryptology conference, pp. 868–886. Springer, 2012.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption
without bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1–36, 2014.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for arith-
metic of approximate numbers. In International conference on the theory and application of
cryptology and information security, pp. 409–437. Springer, 2017a.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for arith-
metic of approximate numbers. In Advances in cryptology–ASIACRYPT 2017: 23rd international
conference on the theory and applications of cryptology and information security, Hong kong,
China, December 3-7, 2017, proceedings, part i 23, pp. 409–437. Springer, 2017b.

Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Tfhe: fast fully homo-
morphic encryption over the torus. Journal of Cryptology, 33(1):34–91, 2020.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, 2012.

FHERMA. Fherma challenge: Cnn inference. https://fherma.io/challenges/
652bf663485c878710fd0209/overview, 2025a. Accessed: 2025.

FHERMA. Fherma challenge: Mlp inference. https://fherma.io/challenges/
652bf648485c878710fd0208/overview, 2025b. Accessed: 2025.

Craig Gentry. A fully homomorphic encryption scheme. Stanford university, 2009.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John Werns-
ing. Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy.
In International conference on machine learning, pp. 201–210. PMLR, 2016.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. arXiv preprint arXiv:2406.00515, 2024.

Lei Jiang, Qian Lou, and Nrushad Joshi. Matcha: A fast and energy-efficient accelerator for fully
homomorphic encryption over the torus. In The Design Automation Conference (DAC 2022),
2022.

11

https://github.com/mayank64ce/fhe-agentic-benchmarking
https://github.com/mayank64ce/fhe-agentic-benchmarking
https://machinelearning.apple.com/research/homomorphic-encryption
https://machinelearning.apple.com/research/homomorphic-encryption
https://fherma.io/challenges/652bf663485c878710fd0209/overview
https://fherma.io/challenges/652bf663485c878710fd0209/overview
https://fherma.io/challenges/652bf648485c878710fd0208/overview
https://fherma.io/challenges/652bf648485c878710fd0208/overview

Published as a conference paper at ICLR 2026

Weizhao Jin, Yuhang Yao, Shanshan Han, Jiajun Gu, Carlee Joe-Wong, Srivatsan Ravi, Salman
Avestimehr, and Chaoyang He. Fedml-he: An efficient homomorphic-encryption-based privacy-
preserving federated learning system. arXiv preprint arXiv:2303.10837, 2023.

K Rustan M Leino. Dafny: An automatic program verifier for functional correctness. In Interna-
tional conference on logic for programming artificial intelligence and reasoning, pp. 348–370.
Springer, 2010.

Yuchao Liao, Tosiron Adegbija, and Roman Lysecky. Are llms any good for high-level synthesis?
arXiv preprint arXiv:2408.10428, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Qian Lou and Lei Jiang. She: A fast and accurate deep neural network for encrypted data. In
Advances in Neural Information Processing Systems (NeurIPS) 2019, pp. 10035–10043, 2019.

Qian Lou and Lei Jiang. Hemet: A homomorphic-encryption-friendly privacy-preserving mobile
neural network architecture. ICML 2021, 2021.

Qian Lou, Bo Feng, Geoffrey C Fox, and Lei Jiang. Glyph: Fast and accurately training deep
neural networks on encrypted data. NeurIPS 2020 (Advances in Neural Information Processing
Systems), 2019a.

Qian Lou, Feng Guo, Lantao Liu, Minje Kim, and Lei Jiang. Autoq: Automated kernel-wise neural
network quantization. In International Conference on Learning Representations (ICLR) 2020,
2019b.

Qian Lou, Yilin Shen, Hongxi Jin, and Lei Jiang. Safenet: A secure, accurate and fast neural network
inference. 2021.

Varun Madathil and Alessandra Scafuro. Prifhete: Achieving full-privacy in account-based cryp-
tocurrencies is possible. Cryptology ePrint Archive, 2023.

Antonio Mastropaolo, Luca Pascarella, Emanuela Guglielmi, Matteo Ciniselli, Simone Scalabrino,
Rocco Oliveto, and Gabriele Bavota. On the robustness of code generation techniques: An em-
pirical study on github copilot. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), pp. 2149–2160. IEEE, 2023.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2022.

OpenAI. Introducing GPT5. https://openai.com/index/introducing-gpt-5/, Au-
gust 2025. Accessed: 2025-09-21.

Jean Louis Raisaro, Gwangbae Choi, Sylvain Pradervand, Raphael Colsenet, Nathalie Jacquemont,
Nicolas Rosat, Vincent Mooser, and Jean-Pierre Hubaux. Protecting privacy and security of ge-
nomic data in i2b2 with homomorphic encryption and differential privacy. IEEE/ACM transac-
tions on computational biology and bioinformatics, 15(5):1413–1426, 2018.

Microsoft Research. Password monitor: Safeguarding passwords in mi-
crosoft edge. https://www.microsoft.com/en-us/research/blog/
password-monitor-safeguarding-passwords-in-microsoft-edge/, 2020.
Accessed: 2025.

Muhammad Husni Santriaji, Jiaqi Xue, Qian Lou, and Yan Solihin. Dataseal: Ensuring the verifia-
bility of private computation on encrypted data. arXiv preprint arXiv:2410.15215, 2024.

Shailja Thakur, Baleegh Ahmad, Zhenxing Fan, Hammond Pearce, Benjamin Tan, Ramesh Karri,
Brendan Dolan-Gavitt, and Siddharth Garg. Benchmarking large language models for automated
verilog rtl code generation. In 2023 Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), pp. 1–6. IEEE, 2023.

12

https://openai.com/index/introducing-gpt-5/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/

Published as a conference paper at ICLR 2026

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. arXiv preprint
arXiv:2109.00859, 2021.

Chenwei Xiong, Cheng Liu, Huawei Li, and Xiaowei Li. Hlspilot: Llm-based high-level synthesis.
arXiv preprint arXiv:2408.06810, 2024.

Jiaqi Xue, Lei Xu, Lin Chen, Weidong Shi, Kaidi Xu, and Qian Lou. Audit and improve robustness
of private neural networks on encrypted data. arXiv preprint arXiv:2209.09996, 2022.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Z1Labs. What is fhevm? https://docs.z1labs.ai/cyphers-fhevm-technology/
what-is-fhevm, 2024. Accessed: 2025.

Zama. Concrete ml documentation. https://docs.zama.org/concrete-ml, 2024. Ac-
cessed: 2025.

Yancheng Zhang, Xun Chen, and Qian Lou. Hebridge: Connecting arithmetic and logic operations
in fv-style he schemes. In Proceedings of the 12th Workshop on Encrypted Computing & Applied
Homomorphic Cryptography, pp. 23–35, 2023.

Yancheng Zhang, Mengxin Zheng, Yuzhang Shang, Xun Chen, and Qian Lou. Heprune: Fast private
training of deep neural networks with encrypted data pruning. Advances in Neural Information
Processing Systems, 37:51063–51084, 2024.

Yancheng Zhang, Jiaqi Xue, Mengxin Zheng, Mimi Xie, Mingzhe Zhang, Lei Jiang, and Qian
Lou. Cipherprune: Efficient and scalable private transformer inference. arXiv preprint
arXiv:2502.16782, 2025.

Mengxin Zheng, Qian Lou, and Lei Jiang. Primer: Fast private transformer inference on encrypted
data. DAC 2023, 2023.

A APPENDIX

A FULL CODE EXAMPLE: BITWISE RELU

Below is a full working example for a bitwise ReLU operation. Listing 1 provides a complete,
runnable C program demonstrating the plaintext bitwise logic, which reads an integer from standard
input. Listing 2 shows the full, equivalent implementation using the TFHE library.

1 #include <stdio.h>
2 #include <stdint.h>
3

4 // Plaintext bitwise ReLU for a 32-bit signed integer.
5 int32_t relu(int32_t input) {
6 int32_t mask = input >> 31;
7 int32_t output = input & ˜mask;
8 return output;
9 }

10

11 int main() {
12 int32_t input_val;
13

14 scanf("%d", &input_val);
15

13

https://docs.z1labs.ai/cyphers-fhevm-technology/what-is-fhevm
https://docs.z1labs.ai/cyphers-fhevm-technology/what-is-fhevm
https://docs.zama.org/concrete-ml

Published as a conference paper at ICLR 2026

16 printf("%d\n", relu(input_val));
17

18 return 0;
19 }

Listing 1: Complete, runnable plaintext C code for bitwise ReLU.

1 #include <tfhe/tfhe.h>
2 #include <tfhe/tfhe_io.h>
3 #include <stdio.h>
4 #include <assert.h>
5

6 // The plaintext relu function would be included here
7 int32_t relu(int32_t input);
8

9 int main() {
10 // 1. Generate a keyset
11 const int minimum_lambda = 110;
12 TFheGateBootstrappingParameterSet* params =

new_default_gate_bootstrapping_parameters(minimum_lambda);
13

14 // Generate a deterministic key for reproducibility
15 uint32_t seed[] = { 314, 1592, 657 };
16 tfhe_random_generator_setSeed(seed, 3);
17 TFheGateBootstrappingSecretKeySet* key =

new_random_gate_bootstrapping_secret_keyset(params);
18

19 int32_t plaintext1;
20 scanf("%d", &plaintext1);
21

22 // 2. Encrypt the 32-bit signed integer bit by bit
23 LweSample* ciphertext1 = new_gate_bootstrapping_ciphertext_array(32,

params);
24 for (int i = 0; i < 32; i++) {
25 bootsSymEncrypt(&ciphertext1[i], (plaintext1 >> i) & 1, key);
26 }
27

28 // 3. Homomorphically compute ReLU: result = input & ˜mask
29 LweSample* result = new_gate_bootstrapping_ciphertext_array(32,

params);
30 LweSample* mask = new_gate_bootstrapping_ciphertext_array(32, params)

;
31

32 // 3a. Create a 32-bit mask from the encrypted sign bit (bit 31)
33 for (int i=0; i<32; i++){
34 bootsCOPY(&mask[i], &ciphertext1[31], &key->cloud);
35 }
36

37 // 3b. Invert the mask homomorphically
38 for (int i=0; i<32; i++){
39 bootsNOT(&mask[i], &mask[i], &key->cloud);
40 }
41

42 // 3c. Compute the final result: input & ˜mask
43 for (int i = 0; i < 32; i++){
44 bootsAND(&result[i], &ciphertext1[i], &mask[i], &key->cloud);
45 }
46

47 // 4. Decrypt the result for verification
48 int32_t final_result = 0;
49 for (int i = 0; i < 32; i++) {
50 int bit = bootsSymDecrypt(&result[i], key);
51 final_result |= (bit << i);
52 }
53 printf("%d\n", final_result);

14

Published as a conference paper at ICLR 2026

54

55 // Verify against the plaintext function
56 assert(final_result == relu(plaintext1));
57

58 // Cleanup
59 delete_gate_bootstrapping_ciphertext_array(32, mask);
60 delete_gate_bootstrapping_ciphertext_array(32, result);
61 delete_gate_bootstrapping_ciphertext_array(32, ciphertext1);
62 delete_gate_bootstrapping_secret_keyset(key);
63 delete_gate_bootstrapping_parameters(params);
64

65 return 0;
66 }

Listing 2: Full secure TFHE implementation for bitwise ReLU.

B USING VANILLA RAG

Table 3: Results for Using Vanilla RAG with Documentation (without preprocessing with expert summary).
Standard RAG fails to provide robust security or functionality.

Workload pass@1 (func.) pass@1 (sec.)
ReLU 0.40± 0.02 0.20± 0.01
MatMul 0.20± 0.01 0.00± 0.00

C RESULTS ON ADDITIONAL TASKS (AND SCHEMES)

Table 4: Comparison of functional correctness and security Pass@1 rates for TFHE workloads using GPT-5
across different prompting strategies (BAS, COT, and FRS).

Workload BAS p@1 (func.) BAS p@1 (sec.) COT p@1 (func.) COT p@1 (sec.) FHE-Coder p@1 (func.) FHE-Coder p@1 (sec.)
MatMul 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.80± 0.05 1.00± 0.00
Softmax 0.80± 0.05 0.00± 0.00 0.60± 0.02 0.00± 0.00 1.00± 0.00 1.00± 0.00
Attention 0.00± 0.00 0.00± 0.00 0.20± 0.01 0.00± 0.00 0.80± 0.02 0.80± 0.02
Transformer 0.00± 0.00 0.00± 0.00 0.20± 0.01 0.00± 0.00 0.40± 0.01 0.80± 0.02

Table 5: Comparison of functional correctness and security Pass@1 rates for CKKS workloads using GPT-5
across different prompting strategies (BAS, COT, and FHE-Coder).

Workload BAS p@1 (func.) BAS p@1 (sec.) COT p@1 (func.) COT p@1 (sec.) FHE-Coder p@1 (func.) FHE-Coder p@1 (sec.)
MatMul 1.00± 0.00 0.00± 0.00 0.80± 0.01 0.00± 0.00 0.80± 0.01 0.60± 0.02
Softmax 1.00± 0.00 0.00± 0.00 0.80± 0.03 0.00± 0.00 0.80± 0.02 0.60± 0.02
Attention 0.40± 0.02 0.00± 0.00 0.40± 0.01 0.00± 0.00 1.00± 0.00 1.00± 0.00
Transformer 0.00± 0.00 0.00± 0.00 0.20± 0.01 0.00± 0.00 0.40± 0.01 0.60± 0.03

15

	Introduction
	Background
	Fully Homomorphic Encryption
	LLM Agents for Code Generation

	Our Method: FHE-Coder
	FHE Prompt Formalizer
	FHE API RAG Retriever
	FHE Security Verifier

	Experiment Design Section
	Problem Definition
	Workload Selection
	Model Selection
	Metrics
	Baselines

	Evaluation Results
	In-Depth Analysis on a State-of-the-Art Model
	Generalizability Across Diverse LLMs
	Solving Complex Tasks with Structured Decomposition
	Generalization to CKKS Scheme
	Ablation Study

	Discussion
	Conclusion
	Ethics Statement
	Reproducibility statement
	Appendix
	Full Code Example: Bitwise ReLU
	Using Vanilla RAG
	Results on additional tasks (and schemes)

