Under review as a conference paper at ICLR 2026

TFHE-CODER: EVALUATING LLM AGENTS FOR
SECURE FULLY HOMOMORPHIC ENCRYPTION CODE
GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Fully Homomorphic Encryption over the Torus (TFHE) is a cornerstone of con-
fidential computing, yet its adoption is severely limited by a steep learning curve
requiring specialized cryptographic expertise. To bridge this skills gap, we investi-
gate the potential of Large Language Model (LLM) agents to automate the gener-
ation of secure TFHE code from natural language. We introduce TFHE-CODER,
a novel, three-phase agentic framework designed to overcome the critical failure
points of this process. Our framework integrates a Prompt Formalizer to structure
user intent and configure secure parameters, a specialized RAG retriever for ac-
curate API knowledge , and an automated Security Verifier that provides iterative
feedback to correct cryptographic flaws. We comprehensively evaluate our frame-
work by testing four leading LLMs on a benchmark of ten programming tasks of
increasing difficulty. Our results demonstrate that while baseline agents consis-
tently produce functionally correct but insecure code, our full agentic framework
is uniquely capable of generating solutions that are simultaneously compilable,
functionally correct, and verifiably secure. This work establishes the first robust
methodology and benchmark for agentic TFHE code generation, demonstrating a
viable path toward democratizing secure computation.

1 INTRODUCTION

Fully Homomorphic Encryption

No encryption of Inputs (FHE) |Gentry| (2009); [Lou & Jiang

int result = a & b; (2019); Zhang et al. (2024); [Lou et al.
(2021) allows computing over encrypted
data, eliminating the need for decryption
during processing |Brakerski et al.| (2014);

(a) Plaintext program.

Parameter Setup & Key Generation

const int minimum_lambda = 110; Lou & Jiang| (2021); Brakerski| (2012);
TFheGate...ParameterSet* params = ...; Zhang et al. (2023); [Fan & Vercauteren
TFheGate...SecretKeySet* key = ...; (2012)); (Cheon et al. (2017); |Chillotti

Encryplion of Input l et al.| (2020); Xue et al.| (2022); [Zhang
pootsSymEncrypt (kctx_alil, ...); et al| (2023); [Cou et al] (2019a); Zheng

et al.| (2023)). It is, therefore, a promising

Homomorphic Operation ‘

bootsAND (&result_ctx[i],...); . .
o cryptographic tool to ensure data privacy
IbootssymDecrypt e T D in the settings of secure computation,

such as privacy-preserving machine
(b) TFHE program. learning [Gilad-Bachrach et al| (2016);
Lou et al.| (2019b); [Santriaji et al.| (2024),
secure multi-party computation Jin
et al. (2023)), private blockchain transac-
tions [Madathil & Scafuro| (2023)), and secure medical diagnostic Raisaro et al.| (2018)). There are
various practical FHE schemes have been proposed. Among these, the TFHE scheme stands out. It
is unique by offering efficient gate bootstrapping and functional bootstrapping, which allow for the
computation of arbitrary functions while refreshing the noise.

Figure 1: High-level structure of TFHE programs.

Under review as a conference paper at ICLR 2026

However, the adoption of privacy-preserving computation frameworks, such as TFHE, has failed
to keep pace with rising industry and academic demand. A principal challenge hindering their
widespread implementation is the shortage of developers possessing the necessary specialized skills.
Developing applications with TFHE requires a deep understanding of advanced cryptographic and
mathematical concepts, a skill set distinct from the general programming expertise (e.g., in Python)
held by the broader developer community. This work confronts this challenge by exploring a funda-
mental question: can LLM Agents be used to translate Natural Language to secure TFHE code?

Recent advancements in Large Language Models (LLMs) Jiang et al.| (2024)); Xue et al.|(2024)) have
showcased their remarkable capacity to comprehend natural language. Regarding coding, LLMs can
assist developers by suggesting code snippets and even offering solutions to common programming
challenges|Mastropaolo et al.[(2023)); Nijkamp et al.| (2022). To this end, leveraging LLMs’ capabil-
ities to assist developers implement secure TFHE applications is a promising avenue for addressing
the complexities associated with TFHE implementations. It would be valuable to evaluate if LLM
Agents could help developers with the TFHE coding, such as encryption parameters configuration
and correct API calling, automatically. To this end, the expertise barrier could be significantly low-
ered, making TFHE more accessible for developer with few related expertise.

However, when regular code generation agents are employed for generating TFHE code in an auto-
mated fashion, they often fail to follow the instructions and produce plaintext programs like Fig. [Ta]
This failure stems from several core challenges inherent to this specialized domain. Models trained
on general-purpose code often lack a fundamental understanding of the required TFHE program
structure and the critical process of selecting appropriate security parameters. Furthermore, they
frequently exhibit poor knowledge of the correct library APIs, leading them to hallucinate functions
or misuse existing ones in ways that break homomorphic properties. Moreover, traditional code
generation metrics like Pass@k |Chen et al.| (2021)) are ill-equipped for this context, as they only
evaluate functional correctness, not cryptographic security. A program can therefore pass such tests
by operating on plaintext data, completely failing its primary privacy-preserving objective and high-
lighting that functional correctness is an insufficient and misleading proxy for success in secure code
generation.

Therefore, to mitigate each of these issues, we introduce the novel agentic code generation workflow
and evaluation framework as shown in Fig. 2} Our workflow is composed of three key components
designed to address these specific challenges. First, the FHE Prompt Formalizer (Fig. [3) corrects
structural and parameterization errors by translating the user’s request into a formal specification
with secure, correctly calculated cryptographic parameters. Second, to remedy the model’s lack of
API knowledge, an FHE API RAG Retriever (Fig. f)) provides the agent with relevant documentation
and code examples on-demand. Finally, to overcome inadequate evaluation, our FHE Security Ver-
ifier (Fig. B)introduces a multi-faceted check for critical security properties, ensuring the generated
code is not only functionally correct but also verifiably secure.

‘We summarize our contributions as follows:

* We propose a novel, three-phase agentic workflow for secure TFHE code generation. This
workflow includes an FHE Prompt Formalizer to ensure correct program structure and parameter-
ization, an FHE API RAG Retriever to provide necessary API knowledge, and an FHE Security
Verifier to validate the cryptographic integrity of the output.

* We introduce a new evaluation metric, Pass@1 (security), specifically designed to measure the
security of generated TFHE code, addressing the shortcomings of traditional metrics like PassQk
that only assess functional correctness.

* To the best of our knowledge, this work presents the first comprehensive benchmark and eval-
uation of large language model agents for the task of generating code for Fully Homomorphic
Encryption over the Torus (TFHE).

2 BACKGROUND

The intersection of large language models (LLMs) and fully homomorphic encryption (FHE)
presents a unique opportunity to democratize secure computation. While LLMs have shown remark-
able prowess in code generation for mainstream languages, their application to specialized crypto-
graphic libraries like TFHE remains unexplored. This section examines the potential of LLMs to

Under review as a conference paper at ICLR 2026

User Prompt o FHE Prompt Formalizer Formal Prompt LLM Agent

Implement a @ IL'%I Context: You are an

TFHE code to... LS expertcrypto-coder. @

The LWE parameter + L:t't.i.ce Objective: <Intent Here>
should be 1024. LLM Reference Pseudocode: [...]

AR Estimator

| ReAct E
Developer Ner
1 #include <tfhe/tfhe.h>

H— - .
Latenc Securit — #include <tfhe/tfhe_io.h>
o ky ecurity] g_ - o — — -. ~
ec H— _ﬂ Generated Code Questllon: [</code>
1
Compile: OK
| Functional: 3/5 Tests Passed e ©
S | v — *+ N4
| > Security: NA N— Q
Latency: NA TFHE Docs TopK Retreive
9 FHE Security Verifier Formal Error Prompt e FHE API RAG Retreiver

Figure 2: An overview of our workflow for secure FHE code generation. Our key contributions
(highlighted with stars) are: (1) the FHE Prompt Formalizer, which enriches a developer’s prompt
with secure parameters from a Lattice Estimator; (2) the FHE API RAG Retriever, which provides
the agent with expert-annotated API usage examples; and (3) the FHE Security Verifier, which
provides an automated feedback loop for security and correctness. Maximum Iterations is set to 10.

generate TFHE code, leveraging their understanding of logical operations, and explores the unique
characteristics of TFHE that make it both challenging and promising for automated code generation.

2.1 TFHE

Fully Homomorphic Encryption over the Torus (TFHE) Jiang et al.| (2022) operates on boolean cir-
cuits using logical gates (NOT, AND, OR) with explicit noise management through bootstrapping
after each operation. While TFHE requires adherence to strict security parameters, it offers several
advantages over schemes like BGV [Brakerski et al.| (2014); |Yudha et al.| (2024)) and CKKS |Cheon
et al.| (2017) in terms of practical implementation. TFHE’s boolean circuit approach aligns more
closely with traditional programming paradigms, making it easier for developers to conceptualize
and implement encrypted computations. Its efficient gate-by-gate bootstrapping is faster and more
straightforward to implement than the complex relinearization and modulus switching procedures
required in BGV/CKKS. TFHE’s deterministic noise management simplifies handling in code im-
plementation, as noise is reset after each gate operation. Additionally, TFHE’s structure allows for
efficient hardware acceleration, potentially simplifying high-performance implementations. How-
ever, programming TFHE still presents challenges, including the need to carefully manage boot-
strapping operations and adhere to specific security parameters to maintain the scheme’s integrity.

2.2 LLMS FOR CODE GENERATION

Code generation is a key application of large language models (LLMs), with models such as Code-
Gen Nijkamp et al.|(2022), CodeX |Chen et al.|(2021)), and CodeT5 |Wang et al.| (2021) excelling in
widely used languages like C, C++, Python, and Java due to the availability of extensive training
corpora. However, generating code for specialized libraries like TFHE, implemented in C, presents
challenges due to its cryptographic complexity and niche API. Recent studies on LLMs for High-
Level Synthesis (HLS) and Register Transfer Level (RTL) design [Thakur et al.| (2023)); [Liao et al.
(2024); IX1ong et al. (2024)) demonstrate that LLMs can effectively model logical operations such as
AND and OR gates. Given that TFHE operations also rely on gate-level computations, it is reason-
able to hypothesize that LLMs, with appropriate improvement techniques, could generate functional
TFHE code by leveraging their learned logical reasoning capabilities.

3 OUR METHOD

Our Agentic workflow 2] has three main components: FHE Prompt Formalizer, FHE API RAG
Retriever and FHE Security Verifier. The Agent is implemented using the ReAct|Yao et al.|(2023)
prompting strategy.

Under review as a conference paper at ICLR 2026

3.1 FHE PROMPT FORMALIZER

A novice user might not be aware of
how to choose the appropriate secu-
rity parameter for a particular FHE
scheme (A in case of TFHE). First,

we use an Intent extraction LLM
which separates the intent (the over-

all goal) from any specification that

the user may have give. This (par-
tial) specification is then passed to

the Lattice Estimator «
which solves for \ parame-
ter. Next, the intent and the param-
eter are passed to a Formal Specifi-
cation LLM which outputs a Dafny
pseudo-code and code
requirements. Finally the pseudo-
code, the requirements and the intent
is set into a Formal Prompt template
which is finally fed to the agent. Note
that the formal prompt is much more
precise compared to the initial user

Here>

here>

User Prompt
Implement a
TFHE code to...
The LWE parameter
should be 1024.

Formal Prompt

Context: You are an
expert crypto-coder.
Objective: <Intent

Reference
Pseudocode:
<Dafny code here>
Code Requirements:
<code requirements

FHE Prompt Formalizer
STEP1
= Implement homorphic ... using TFHE in C

STEP 2
Parameter
lver,

Intent

> Partial Specification
Intent A=NULL
Extraction n=1024
LLM

Final TFHE Parameter

Estimator Dafny-Code
method Main(a, b)
«

STEP 4

Apply Prompt € °
Template on

ruc
Inputs f
Code Requirements |
Functional
Correctness: [...]

Formal
Security: [...]

Specification
LLM

Figure 3: LLMs and a Lattice Estimator transform a devel-
oper’s prompt into a secure and structured set of instruc-
tions. The process extracts the user’s intent, solves for cor-
rect cryptographic parameters, and generates a final formal
prompt containing Dafny-based pseudocode and security re-
quirements to guide the agent.

prompt. The ensure statements in the Dafny code guide the agent write assert statements in
actual code which ensure correctness of the generated solution at all intermediate steps.

3.2 FHE API RAG RETRIEVER

Code Snippet
Query From Agent PP
Ll /*Doxygen Docstring*/

void
bootsAND(LweSample*
(]

Objective: How to
perform bitwise AND ?
[.]

FHE API
RAG Retriever

Make Docstring-Code Di

l
\

Similarity(Q, Di)

Dictionary

Jix
* @objective Perform
Bootstrapped AND gate

Human TFHE Expert

%

boostrapped And
gate
result = (aand b)

*/

_w TFHE APl Documentation
v

Figure 4: An offline, human-in-the-loop process
creates a dictionary mapping expert-enriched doc-
strings to code snippets from the TFHE docu-
mentation. When the agent queries this dictio-
nary with a natural language objective, a similar-
ity search returns the most relevant and accurate
code snippet.

"https://www.doxygen.nl/

The agent might not be aware of the correct
TFHE API and its usage. Additionally, in our
initial experimentation, we found that NL to
code retrieval is not very optimal. To mitigate
this issue, we adapt the vanilla RAG for TFHE
by extracting the docstring of the methods and
enhancing them into more descriptive text fol-
lowing the Doxygen formatﬂ We chose Doxy-
gen specifically because its structured tags,
such as @objective, embed clear, machine-
readable semantic metadata into the documen-
tation. This structure allows for a more precise
similarity search between the agent’s intent and
the function’s documented purpose, overcom-
ing the ambiguity of plain natural language.
This docstring is then paired with the corre-
sponding code-snippet. When the agent queries
the retriever, the similarity is computed be-
tween the query and the docstring, and the most
relevant docstring along with the correspond-
ing code-snippet is returned. The chunking-size
was set to 600, and the chunk-overlap was set to
120.

3.3 FHE SECURITY VERIFIER

The FHE Security Verifier implements a four-
stage automated validation process (Security,
Functional, Compile, and Latency checks) to

Under review as a conference paper at ICLR 2026

Parameter From
Instruction Phase

A=128 FHE Security Verifier
I Generated Code from
Agent

Functional Check Compile Check #include <tfhe/tthe.h>
#include <tfhe/tfhe_io.h>

/ Security Check
Latency Check

\
. #include <stdio.h>
Latency Comparision with ; I::Eéi’l}:sf;ﬁused — @ int main(){
. - *, *
reference Lattice-Estimator. - < <« ezt i —
3. Incorrect Encryption J }
of Inputs
Solution Not optimized | e SEIIERIES | |
as reference Formal Error Report
Security Failure Reason Number of Tests Passed =~ Compile Error Message
STOP Compile: OK
0 v v v ° —Functional: 3/5 Tests >
\\ Passed
Security: NA
Latency: NA

Figure 5: This automated pipeline validates generated code across four stages: Compile, Functional,
Security, and Latency. The critical Security Check verifies correct API usage, secure parameter
configuration, and proper input encryption. If any stage fails, a consolidated Formal Error Report is
generated and returned to the agent for iterative correction; otherwise, the solution is accepted.

ensure generated TFHE code meets both func-

tional and security requirements. The Secu-

rity Check serves as the primary gate, analyzing
code for three critical vulnerabilities: improper TFHE API usage, incorrect lattice parameter con-
figuration, and plaintext data leakage. When violations are detected, the system provides diagnostic
feedback through an automated correction loop with up to 10 iterations, addressing the fundamen-
tal challenge that baseline LLMs often produce functionally correct but cryptographically insecure
implementations.

4 EXPERIMENT DESIGN SECTION

4.1 PROBLEM DEFINITION

We introduce the LLM-Agentic TFHE Generation and Evaluation Framework, illustrated in Fig-
ure[2] In this framework, each TFHE task is formulated as a natural language prompt and provided
to the agent. Leveraging its reasoning capabilities, the agent may (optionally) consult external doc-
umentation through retrieval-augmented generation (RAG) before implementing the corresponding
code. The generated code is subsequently evaluated by the Security Verifier, which consolidates any
compilation or verification errors into structured feedback and returns it to the agent for refinement.
The agent then iteratively revises its solution, continuing this process until all security checks are
satisfied or a predefined iteration limit is reached.

4.2 WORKLOAD SELECTION
We describe the workloads for the code generation breifly in Table[T}

Table 1: Benchmark workloads for evaluating TFHE code generation, progressing from elementary
boolean operations to sophisticated machine learning architectures.

Workload Description

AND Bitwise AND between two 32-bit integers.

ReLU ReLU on a signed 32-bit integer.

Adder Adding two between two 32-bit integers.

Multiplier Multiplying two 32-bit integers.

Vector Addition Vector addition between two integer vectors of length 5.

Vector Dot Product Inner-product of two integer vectors of length 5.

Matrix-Vector Multiplication | Multiplication between an encrypted vector and a plaintext matrix.
Matrix-Matrix Multiplication | Multiplication between an encrypted matrix and a plaintext matrix.
MLP A simple 3-layer MLP with ReL.U activation.

CNN A small Convolutional Neural Network with a fully connected layer.

Under review as a conference paper at ICLR 2026

GPT — pass@1 (functionality)

10

z Technique

Toe = BAS
£ o0 == cor
H == FRS
o4 ﬂ

@

Goz N —

L : l [|

GPT — pass@1 (security)

10

?03 = aas
=
Gos

o2 _— 1 — e

GPT — latency

— Techni

and relu adder multiplier vector add dot product matrix-vector matrix-matrix mlp cnn

Tasks

Figure 6: Performance of GPT-5 across all tasks. A comparison of our framework (FRS) against
Baseline (BAS) and Chain-of-Thought (COT) techniques. While the baseline methods fail on com-
plex tasks and are fundamentally insecure (near-zero security pass rate), FRS consistently produces
code that is both functionally correct and verifiably secure.

These tasks collectively evaluate LLMs’ ability to synthesize both low-level cryptographic primi-
tives and high-level machine learning components using TFHE’s gate-level programming paradigm.

4.3 MODEL SELECTION

We select the latest LLMs to drive our agent. For open-source LLMs, we choose Qwen3-Coder-
480B-A35B(|Yang et al.|(2025)) (QWE) and Deepseek-V3.1(|Liu et al.| (2024))(DSK). For closed-
source LL.Ms, we select Gemini-2.5-Pro(|(Comanici et al.| (2025))(GEM) and GPT-5(|[OpenAl
(2025))(GPT). For all studied LLMs, we set the temperature to 0.5. Note that, to mitigate issues
stemming from the randomness of model generation, the experimental results presented in this pa-
per are obtained by conducting five repeated experiments and averaging the results. The embedding
model used for RAG was text—embedding—-3-small E|fr0m OpenAlL

4.4 METRICS

In our framework, we employ three key metrics to judge the quality of the generated codes. Fol-
lowing prior works on code-generation, we use 1. Pass@k(func) to denote the fraction of generated
codes that pass the unit tests. We present our novel metric 2. Pass@k(security), which denotes
the fraction of generated codes that are secure; a program is considered secure only if it passes an
automated analysis verifying: (i) exclusive use of TFHE APIs to prevent plaintext data leakage, (ii)
correct configuration of cryptographic parameters against secure values from the Lattice Estimator,
and (iii) proper encryption of all inputs before their use. A failure in any of these checks renders the
code insecure. Our third metric is 3. Latency, compared to expert-written reference codes.

4.5 BASELINES

Our first baseline denotes the regular code generation workflow. This can be constructed by re-
moving the FHE Prompt Formalizer, FHE API RAG Retreiver and removing the security and latency
checks from the proposed workflow in Fig. 2] We abbreviate it as BAS. Our second baseline is Zero-
shot Chain-of-Thought agent, which builds upon the regular workflow by appending a step-by-step
worked example of correct TFHE code generation. We abbreviate it as COT.

5 EVALUATION RESULTS

This section presents a comprehensive empirical analysis of our proposed agentic framework (de-
noted as FRS) in comparison to a regular code generation workflow (BAS) and a Zero-shot Chain-of-

“https://platform.openai.com/docs/models/text-embedding-3-small

Under review as a conference paper at ICLR 2026

trix_vector — latency

\ : W
"l \ ; K ‘
Lﬁ s Bn NN /B B |

Figure 7: A comparison of our framework (FRS) against baselines (BAS, COT) using four different
LLMs. The results show that the security failures of baseline methods are universal; all models
produce insecure code with BAS and COT across all tasks. In contrast, our FRS framework is the
only technique that provides a consistent and essential security uplift, proving its benefits are model-
agnostic.

Thought agent (COT). We evaluated four leading LLMs on a benchmark of ten TFHE programming
tasks with varying complexity.

5.1 IN-DEPTH ANALYSIS ON A STATE-OF-THE-ART MODEL

We first conduct a detailed analysis using the state-of-the-art GPT-5 model to illustrate the core
performance differences between our framework and the baselines across all tasks. The results are
presented in Fig. [

Functional Correctness: As shown in the top chart of Figure 6, the baseline methods (BAS and
COT) demonstrate partial success on tasks with low complexity, such as and and relu. However,
their performance exhibits a notable decline as task complexity increases, particularly for composi-
tional tasks likematrix—vector multiplication and CNN. In contrast, our FRS framework
maintains high functional correctness across the majority of tasks, indicating a greater robustness to
increasing complexity.

Security: A critical distinction between our framework and the baselines is revealed in the security
evaluation. Both the BAS and COT methods yield a pass@1 (security) approaching zero for
all tasks evaluated. This finding indicates that they consistently fail to produce secure code, often
generating plaintext implementations that, while sometimes functionally correct, do not adhere to
the required cryptographic protocols. Conversely, the FRS framework achieves near-perfect security
scores across the entire benchmark. This outcome underscores the necessity of a guided, multi-phase
process—encompassing the proposed prompt formalization, accurate API retrieval, and security
verification—to meet the specific requirements of secure code generation.

Latency: The performance trade-offs are detailed in the bottom chart of Figure 6, which shows the
latency overhead. The FRS framework naturally incurs higher latency due to its iterative feedback
loop and verification stages. This overhead is a deliberate design choice, representing a practical
trade-off for the significant improvements in security and functional reliability.

5.2 GENERALIZABILITY ACROSS DIVERSE LLMS

To ensure our findings are not model-specific, we assessed the generalizability of our framework by
applying it to four different LLMs. Fig. [7| presents a comparative analysis on three representative
tasks. The results confirm that the performance patterns persist across all models. The security defi-
ciencies of the baseline methods are model-agnostic; both BAS and COT fail to generate secure code
regardless of the LLM used. In contrast, the FRS framework is the only approach that enables the
models to consistently produce secure outputs. While the overall performance ceiling is influenced
by the base model’s intrinsic capabilities—with GPT-5 and Gemini-2.5-pro generally outperform-

Under review as a conference paper at ICLR 2026

ing Deepseek-V3.1 and Qwen3-Coder —our framework provides a consistent and essential security

impoves for all tested models.

5.3 SOLVING COMPLEX TASKS WITH STRUCTURED DECOMPOSITION

While our FRS framework demonstrates strong performance on atomic tasks, Figure 6 shows that
its effectiveness diminishes on complex, compositional problems that require multi-step reasoning
(e.g., matrix-vector multiplication, MLP). To address this limitation, we evaluate a structured de-
composition approach where a complex task is broken down into simpler, solvable subtasks.

In this approach, the agent first generates secure code for the necessary primitives (such as dot
product). A final “composer” agent is then provided with a structured prompt containing these
verified subroutines and a high-level goal to compose them into the final solution.

As detailed in Table 2] our structured decom-
position approach effectively solves complex
tasks where the direct method fails. It achieves
high functional and security scores across most
tasks, reaching a perfect 1.0 security pass rate
for matrix-vector and matrix-matrix multiplica-
tion. The increased compositional complexity
of the MLP task lowers both its functional (0.4)
and security (0.6) pass rates, suggesting a link

Table 2: Performance using structured decomposition.

Task Pass@1(func) Pass@]1(sec)
Matrix-Vector 0.8 1.0
Matrix-Matrix 0.8 1.0
MLP 0.4 0.6
CNN 0.8 0.8

between logical complexity and the agent’s ability to maintain security protocols. Overall, this hi-
erarchical strategy of composing solutions from verified sub-tasks significantly extends the agent’s
capabilities to a previously unsolvable class of problems.

5.4 ABLATION STUDY

To quantitatively assess the contribution of each
component within our framework, we conduct
an ablation study by systematically removing
each of our three key modules: the FHE Prompt
Formalizer (FP), the FHE API RAG Retriever
(RAG), and the FHE Security Verifier (SC).
The results for the GPT-5 model on the repre-
sentative Vector Addition task, shown in Figure
8, reveal a clear performance hierarchy.

The study establishes that the Baseline agent,
lacking our modules, is unable to produce se-
cure TFHE code, achieving a low functional
pass rate of 0.4 and zero security pass rate. Re-
moving the FHE Security Verifier (w/o SC)
from our full system causes the most critical se-
curity degradation, with the security pass rate
falling from 1.0 to 0.6. This highlights that the
iterative feedback from the verifier is indispens-
able for correcting cryptographic flaws. Sim-
ilarly, ablating the FHE API RAG Retriever
(w/o RAG) degrades both functionality and se-
curity to 0.8, confirming that access to correct
API knowledge is crucial. Removing the FHE
Prompt Formalizer (w/o FP) causes the func-
tional pass rate to collapse to baseline levels
(0.4), demonstrating its vital role in achieving
functional correctness. Ultimately, the Ours
(Full) configuration is the only one to achieve
a perfect 1.0 score on both metrics, confirming
that all three components are essential and com-

GPT-5 Vector Addition
1.0

[0 pass@1 functionality
[0 pass@1 security

0.8 1 — [

0.6]

Pass@l

0.4

0.2

0.0

Baséline w/oFP w/0oRAG w/oSC Ours

Figure 8: Ablation study on the Vector Addition
task. The results reveal the specific contribution
of each module. Removing the Security Verifier
(w/o SC) eliminates the security guarantee, while
removing the Prompt Formalizer (w/o FP) reduces
functionality to baseline levels. This demonstrates
that all components are essential for the perfect
functional and security performance of the full
framework (Ours).

Under review as a conference paper at ICLR 2026

plementary, working in concert to generate code that is simultaneously secure and functionally cor-
rect.

6 DISCUSSION

Our work demonstrates a viable path toward automating the generation of secure TFHE code, a task
where standard Large Language Model agents consistently fail. The core finding is that for security-
critical domains, a simple prompt-to-code workflow is insufficient. Success requires a structured,
multi-phase agentic framework that guides the model from instruction to generation and, most criti-
cally, through iterative, security-aware feedback. Our results show that baseline agents, while some-
times achieving functional correctness, have a near-zero success rate in producing secure code. This
highlights a fundamental misalignment: traditional code generation metrics like Pass@k(func) are
misleading proxies for success in cryptographic programming. Our framework, particularly through
the FHE Security Verifier, directly addresses this by making verifiable security a primary objective
of the generation process.

The ablation study underscores that our framework’s success is not attributable to a single compo-
nent but to their synergistic effect. The FHE Prompt Formalizer and RAG Retriever provide the
necessary a priori knowledge of structure and API usage, preventing a significant number of er-
rors. However, it is the a posteriori feedback from the Security Verifier that proves indispensable,
correcting subtle but critical flaws that persist even with a well-formed prompt. Furthermore, our
experiments with structured decomposition reveal a key insight : while the agents struggle with end-
to-end reasoning for complex, compositional tasks, they excel as "composers” when provided with
a structured prompt containing verified, functional sub-components.

7 CONCLUSION

The adoption of powerful cryptographic tools like TFHE is severely limited by a steep learning curve
and the need for specialized expertise. In this work, we investigated whether LLM agents could
bridge this skills gap by automatically translating natural language specifications into secure TFHE
code. Our findings reveal that while standard agents consistently fail due to a lack of domain-specific
knowledge and the inadequacy of traditional evaluation metrics, a structured agentic approach can
successfully overcome these challenges. We introduced TFHE-CODER, a three-phase framework
that integrates prompt formalization, retrieval-augmented generation, and a critical security verifi-
cation loop to reliably guide LLM agents.

Our comprehensive evaluation demonstrates that our framework enables the generation of code that
is simultaneously functional and verifiably secure—a task at which baseline methods consistently
fail. Furthermore, we showed that a structured decomposition strategy can extend this capability
to complex, compositional tasks that are otherwise unsolvable. By establishing a robust method-
ology and benchmark for secure TFHE code generation, this work takes a significant step toward
democratizing secure computation. Our framework effectively lowers the barrier to entry, enabling
developers without deep cryptographic knowledge to correctly and safely utilize advanced privacy-
preserving technologies. Ultimately, TFHE-CODER serves as a blueprint for developing LLM
agents in other security-critical domains, proving that with the right scaffolding, these models can
be transformed from unreliable assistants into valuable partners for secure software engineering.

8 ETHICS STATEMENT

Large language models (LLMs) were used to check grammer and polish writing.

9 REPRODUCIBILITY STATEMENT

In order to ensure reproducibility, we fixed the seed while inferencing the models.

Under review as a conference paper at ICLR 2026

REFERENCES

Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with errors.
Journal of Mathematical Cryptology, 9(3):169-203, 2015.

Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp.
In Annual cryptology conference, pp. 868—886. Springer, 2012.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption
without bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1-36, 2014.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for arith-
metic of approximate numbers. In Advances in cryptology-ASIACRYPT 2017: 23rd international
conference on the theory and applications of cryptology and information security, Hong kong,
China, December 3-7, 2017, proceedings, part i 23, pp. 409-437. Springer, 2017.

Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabacheéne. Tfhe: fast fully homo-
morphic encryption over the torus. Journal of Cryptology, 33(1):34-91, 2020.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, 2012.

Craig Gentry. A fully homomorphic encryption scheme. Stanford university, 2009.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John Werns-
ing. Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy.
In International conference on machine learning, pp. 201-210. PMLR, 2016.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. arXiv preprint arXiv:2406.00515, 2024.

Lei Jiang, Qian Lou, and Nrushad Joshi. Matcha: A fast and energy-efficient accelerator for fully
homomorphic encryption over the torus. In The Design Automation Conference (DAC 2022),
2022.

Weizhao Jin, Yuhang Yao, Shanshan Han, Jiajun Gu, Carlee Joe-Wong, Srivatsan Ravi, Salman
Avestimehr, and Chaoyang He. Fedml-he: An efficient homomorphic-encryption-based privacy-
preserving federated learning system. arXiv preprint arXiv:2303.10837, 2023.

K Rustan M Leino. Dafny: An automatic program verifier for functional correctness. In Interna-
tional conference on logic for programming artificial intelligence and reasoning, pp. 348-370.
Springer, 2010.

Yuchao Liao, Tosiron Adegbija, and Roman Lysecky. Are llms any good for high-level synthesis?
arXiv preprint arXiv:2408.10428, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Qian Lou and Lei Jiang. She: A fast and accurate deep neural network for encrypted data. In
Advances in Neural Information Processing Systems (NeurIPS) 2019, pp. 10035-10043, 2019.

Qian Lou and Lei Jiang. Hemet: A homomorphic-encryption-friendly privacy-preserving mobile
neural network architecture. ICML 2021, 2021.

10

Under review as a conference paper at ICLR 2026

Qian Lou, Bo Feng, Geoffrey C Fox, and Lei Jiang. Glyph: Fast and accurately training deep
neural networks on encrypted data. NeurIPS 2020 (Advances in Neural Information Processing
Systems), 2019a.

Qian Lou, Feng Guo, Lantao Liu, Minje Kim, and Lei Jiang. Autoq: Automated kernel-wise neural
network quantization. In International Conference on Learning Representations (ICLR) 2020,
2019b.

Qian Lou, Yilin Shen, Hongxi Jin, and Lei Jiang. Safenet: A secure, accurate and fast neural network
inference. 2021.

Varun Madathil and Alessandra Scafuro. Prifthete: Achieving full-privacy in account-based cryp-
tocurrencies is possible. Cryptology ePrint Archive, 2023.

Antonio Mastropaolo, Luca Pascarella, Emanuela Guglielmi, Matteo Ciniselli, Simone Scalabrino,
Rocco Oliveto, and Gabriele Bavota. On the robustness of code generation techniques: An em-
pirical study on github copilot. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), pp. 2149-2160. 1EEE, 2023.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2022.

OpenAl Introducing GPTS. https://openai.com/index/introducing-gpt—-5/, Au-
gust 2025. Accessed: 2025-09-21.

Jean Louis Raisaro, Gwangbae Choi, Sylvain Pradervand, Raphael Colsenet, Nathalie Jacquemont,
Nicolas Rosat, Vincent Mooser, and Jean-Pierre Hubaux. Protecting privacy and security of ge-
nomic data in i2b2 with homomorphic encryption and differential privacy. IEEE/ACM transac-
tions on computational biology and bioinformatics, 15(5):1413-1426, 2018.

Muhammad Husni Santriaji, Jiaqi Xue, Qian Lou, and Yan Solihin. Dataseal: Ensuring the verifia-
bility of private computation on encrypted data. arXiv preprint arXiv:2410.15215, 2024.

Shailja Thakur, Baleegh Ahmad, Zhenxing Fan, Hammond Pearce, Benjamin Tan, Ramesh Karri,
Brendan Dolan-Gavitt, and Siddharth Garg. Benchmarking large language models for automated
verilog rtl code generation. In 2023 Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), pp. 1-6. IEEE, 2023.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. arXiv preprint
arXiv:2109.00859, 2021.

Chenwei Xiong, Cheng Liu, Huawei Li, and Xiaowei Li. Hlspilot: LIm-based high-level synthesis.
arXiv preprint arXiv:2408.06810, 2024.

Jiaqi Xue, Lei Xu, Lin Chen, Weidong Shi, Kaidi Xu, and Qian Lou. Audit and improve robustness
of private neural networks on encrypted data. arXiv preprint arXiv:2209.09996, 2022.

Jiaqi Xue, Mengxin Zheng, Ting Hua, Yilin Shen, Yepeng Liu, Ladislau B616ni, and Qian Lou.
Trojllm: A black-box trojan prompt attack on large language models. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Ardhi Wiratama Baskara Yudha, Jiaqi Xue, Qian Lou, Huiyang Zhou, and Yan Solihin. Boostcom:
Towards efficient universal fully homomorphic encryption by boosting the word-wise compar-
isons. In (PACT’24) The International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2024.

11

https://openai.com/index/introducing-gpt-5/

[S

- o

8
9
10
11
12

13

15

16

Under review as a conference paper at ICLR 2026

Yancheng Zhang, Xun Chen, and Qian Lou. Hebridge: Connecting arithmetic and logic operations
in fv-style he schemes. In Proceedings of the 12th Workshop on Encrypted Computing & Applied
Homomorphic Cryptography, pp. 23-35, 2023.

Yancheng Zhang, Mengxin Zheng, Yuzhang Shang, Xun Chen, and Qian Lou. Heprune: Fast private
training of deep neural networks with encrypted data pruning. Advances in Neural Information
Processing Systems, 37:51063-51084, 2024.

Yancheng Zhang, Jiaqi Xue, Mengxin Zheng, Mimi Xie, Mingzhe Zhang, Lei Jiang, and Qian
Lou. Cipherprune: Efficient and scalable private transformer inference. arXiv preprint
arXiv:2502.16782, 2025.

Mengxin Zheng, Qian Lou, and Lei Jiang. Primer: Fast private transformer inference on encrypted
data. DAC 2023, 2023.

A APPENDIX

A FULL CODE EXAMPLE: BITWISE RELU

Below is a full working example for a bitwise ReLU operation. Listing 1 provides a complete,
runnable C program demonstrating the plaintext bitwise logic, which reads an integer from standard
input. Listing 2 shows the full, equivalent implementation using the TFHE library.

#include <stdio.h>
#include <stdint.h>

// Plaintext bitwise ReLU for a 32-bit signed integer.
int32_t relu(int32_t input) {

int32_t mask = input >> 31;

int32_t output = input & “mask;

return output;

}

int main () {
int32_t input_val;

scanf ("%d", &input_val);
printf ("$d\n", relu(input_val));

return 0;

Listing 1: Complete, runnable plaintext C code for bitwise ReLU.

#include <tfhe/tfhe.h>
#include <tfhe/tfhe_io.h>
#include <stdio.h>
#include <assert.h>

// The plaintext relu function would be included here
int32_t relu(int32_t input);

int main () {
// 1. Generate a keyset
const int minimum_lambda = 110;

TFheGateBootstrappingParameterSet+ params =
new_default_gate_bootstrapping_parameters (minimum_lambda) ;

// Generate a deterministic key for reproducibility

uint32_t seed[] = { 314, 1592, 657 };
tfhe_random_generator_setSeed(seed, 3);

12

=

G

(SR ST I SR
PNTE-N

)
O

30

Under review as a conference paper at ICLR 2026

TFheGateBootstrappingSecretKeySet* key =
new_random_gate_bootstrapping_secret_keyset (params) ;

int32_t plaintextl;
scanf ("%d", &plaintextl);

// 2. Encrypt the 32-bit signed integer bit by bit
LweSamplex ciphertextl = new_gate_bootstrapping_ciphertext_array (32,
params) ;
for (int i = 0; i < 32; i++) {
bootsSymEncrypt (&ciphertextl[i], (plaintextl >> i) & 1, key);
}

// 3. Homomorphically compute ReLU: result = input & “mask
LweSample* result = new_gate_bootstrapping_ciphertext_array (32,
params) ;

LweSample* mask = new_gate_bootstrapping ciphertext_array (32, params)

r

// 3a. Create a 32-bit mask from the encrypted sign bit (bit 31)
for (int i=0; 1<32; i++){

bootsCOPY (&mask[i], &ciphertextl[31], &key->cloud);
}

// 3b. Invert the mask homomorphically
for (int i=0; i<32; i++) {

bootsNOT (&mask [i], &mask[i], &key->cloud);
}

// 3c. Compute the final result: input & "mask
for (int i = 0; 1 < 32; i++){

bootsAND (&result[i], &ciphertextl[i], &mask[i], &key—->cloud);
}

// 4. Decrypt the result for verification
int32_t final_ result = 0;
for (int i = 0; 1 < 32; i++) {
int bit = bootsSymDecrypt (&result[i], key);
final_result |= (bit << 1i);
}
printf ("$d\n", final_ result);

// Verify against the plaintext function
assert (final_result == relu(plaintextl));

// Cleanup
delete_gate_bootstrapping_ciphertext_array

(32, mask);
delete_gate_bootstrapping_ciphertext_array (3

(3

)

)

2
2, result);
2, ciphertextl);

r

delete_gate_bootstrapping_ciphertext_array
delete_gate_bootstrapping_secret_keyset (key
delete_gate_bootstrapping_parameters (params

r

return 0;

Listing 2: Full secure TFHE implementation for bitwise ReLLU.

13

	Introduction
	Background
	TFHE
	LLMs for Code Generation

	Our Method
	FHE Prompt Formalizer
	FHE API RAG Retriever
	FHE Security Verifier

	Experiment Design Section
	Problem Definition
	Workload Selection
	Model Selection
	Metrics
	Baselines

	Evaluation Results
	In-Depth Analysis on a State-of-the-Art Model
	Generalizability Across Diverse LLMs
	Solving Complex Tasks with Structured Decomposition
	Ablation Study

	Discussion
	Conclusion
	Ethics Statement
	Reproducibility statement
	Appendix
	Full Code Example: Bitwise ReLU

