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ABSTRACT

Fully Homomorphic Encryption over the Torus (TFHE) is a cornerstone of con-
fidential computing, yet its adoption is severely limited by a steep learning curve
requiring specialized cryptographic expertise. To bridge this skills gap, we in-
vestigate the potential of Large Language Model (LLM) agents to automate the
generation of secure TFHE and CKKS code from natural language. We introduce
FHE-CODER, a novel, three-phase agentic framework designed to overcome the
critical failure points of this process. Our framework integrates a Prompt For-
malizer to structure user intent and configure secure parameters, a specialized
RAG retriever for accurate API knowledge , and an automated Security Verifier
that provides iterative feedback to correct cryptographic flaws. We comprehen-
sively evaluate our framework by testing four leading LLMs on a benchmark of
ten programming tasks of increasing difficulty. Our results demonstrate that while
baseline agents consistently produce functionally correct but insecure code, our
full agentic framework is uniquely capable of generating solutions that are si-
multaneously compilable, functionally correct, and verifiably secure. This work
establishes the first robust methodology and benchmark for agentic TFHE and
CKKS code generation, demonstrating a viable path toward democratizing secure
computation.

1 INTRODUCTION

(a) Plaintext program.

(b) TFHE program.

Figure 1: High-level structure of TFHE programs.

Fully Homomorphic Encryption
(FHE) (Gentry, 2009; Lou & Jiang,
2019; Zhang et al., 2024; Lou et al., 2021)
allows computing over encrypted data,
eliminating the need for decryption during
processing (Brakerski et al., 2014; Lou &
Jiang, 2021; Brakerski, 2012; Zhang et al.,
2023; Fan & Vercauteren, 2012; Cheon
et al., 2017; Chillotti et al., 2020; Xue
et al., 2022; Zhang et al., 2025; Lou et al.,
2019; Zheng et al., 2023). It is, therefore,
a promising cryptographic tool to ensure
data privacy in the settings of secure
computation. TFHE is one of the most
widely deployed and industry-relevant
HE schemes, with adoption that spans
billions of devices and multiple major
technology platforms. Apple, for instance,
has integrated HE-based private contact

discovery in iMessage and private email retrieval since iOS 18 (Apple, 2024), directly benefiting
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more than 1.5 billion iPhone users as of 2025. Other large-scale deployments of HE include
Microsoft’s Browser Password Monitor (Research, 2020). More specifically, TFHE has become
a cornerstone of modern encrypted computation stacks: Zama’s TFHE-based ecosystem supports
encrypted machine learning (Concrete ML (Zama, 2024)), private smart contracts (fhEVM (Z1Labs,
2024)), and blockchain infrastructures (Madathil & Scafuro, 2023). More TFHE programming will
be needed for emerging applications.

Yet, its widespread implementation remains prohibited by a steep learning curve. Unlike general-
purpose programming, developing secure TFHE applications requires a specialized skill set to navi-
gate tightly coupled, error-prone cryptographic steps: developers must enforce strict parameter com-
patibility to satisfy Learning With Errors (LWE) security bounds and meticulously manage noise
growth. The severity of this complexity is illustrated by recent community benchmarks like the
2025 FHERMA competitions (FHERMA, 2025a;b), where tasks as fundamental as CNN and MLP
inference remain open scientific challenges due to these intricate noise-sensitive constraints. This
work confronts this widening skills gap by exploring a fundamental question: can LLM Agents be
used to translate Natural Language to secure TFHE code?

Recent advancements in Large Language Models (LLMs) (Jiang et al., 2024; Xue et al., 2024) have
showcased their remarkable capacity to comprehend natural language. Regarding coding, LLMs can
assist developers by suggesting code snippets and even offering solutions to common programming
challenges (Mastropaolo et al., 2023; Nijkamp et al., 2022). To this end, leveraging LLMs’ capabil-
ities to assist developers implement secure TFHE applications is a promising avenue for addressing
the complexities associated with TFHE implementations. It would be valuable to evaluate if LLM
Agents could help developers with the TFHE coding, such as encryption parameters configuration
and correct API calling, automatically. To this end, the expertise barrier could be significantly low-
ered, making TFHE more accessible for developer with few related expertise.

However, when regular code generation agents are employed for generating TFHE code in an auto-
mated fashion, they often fail to follow the instructions and produce plaintext programs like Fig. 1a.
This failure stems from several core challenges inherent to this specialized domain. Models trained
on general-purpose code often lack a fundamental understanding of the required TFHE program
structure and the critical process of selecting appropriate security parameters. Furthermore, they
frequently exhibit poor knowledge of the correct library APIs, leading them to hallucinate functions
or misuse existing ones in ways that break homomorphic properties. Moreover, traditional code
generation metrics like Pass@k (Chen et al., 2021) are ill-equipped for this context, as they only
evaluate functional correctness, not cryptographic security. A program can therefore pass such tests
by operating on plaintext data, completely failing its primary privacy-preserving objective and high-
lighting that functional correctness is an insufficient and misleading proxy for success in secure code
generation.

Therefore, to mitigate each of these issues, we introduce the novel agentic code generation workflow
and evaluation framework as shown in Fig. 2. Our workflow is composed of three key components
designed to address these specific challenges. First, the FHE Prompt Formalizer (Fig. 3) corrects
structural and parameterization errors by translating the user’s request into a formal specification
with secure, correctly calculated cryptographic parameters. Second, to remedy the model’s lack of
API knowledge, an FHE API RAG Retriever (Fig. 4) provides the agent with relevant documentation
and code examples on-demand. Finally, to overcome inadequate evaluation, our FHE Security Ver-
ifier (Fig. 5)introduces a multi-faceted check for critical security properties, ensuring the generated
code is not only functionally correct but also verifiably secure.

We summarize our contributions as follows:
• We propose FHE-CODER, a novel agentic framework that transforms unreliable LLMs into se-

cure cryptographic engineers. It introduces three key innovations: an FHE Prompt Formalizer
that replaces heuristic parameter selection with mathematical LWE-based derivation , an Expert-
Enriched RAG Retriever that bridges the semantic gap in cryptographic documentation , and an
FHE Security Verifier that strictly enforces privacy invariants.

• We demonstrate that traditional functional metrics are insufficient for confidential computing and
introduce a rigorous security evaluation methodology. This includes the new Pass@1 (secu-
rity) metric and a multi-stage validation pipeline that ensures code is not only functionally correct
but also mathematically secure against plaintext leakage and parameter mismatches.
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expertcrypto-coder.​

Objective: <Intent Here>​
Reference Pseudocode:​ [...]
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Compile: OK
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Security: NA
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Figure 2: An overview of our workflow for secure FHE code generation. Our key contributions (highlighted
with stars) are: (1) the FHE Prompt Formalizer, which enriches a developer’s prompt with secure parameters
from a Lattice Estimator; (2) the FHE API RAG Retriever, which provides the agent with expert-annotated API
usage examples; and (3) the FHE Security Verifier, which provides an automated feedback loop for security
and correctness. Maximum Iterations is set to 10.

• We establish the first comprehensive benchmark for agentic FHE generation, evaluating per-
formance across both TFHE and CKKS schemes. Our results show that while baseline agents fail
near-completely on security, our framework achieves robustness on complex, non-linear architec-
tures (e.g., Transformers) and serves as a generalizable blueprint for automated secure software
engineering.

2 BACKGROUND
The intersection of large language models (LLMs) and fully homomorphic encryption (FHE)
presents a unique opportunity to democratize secure computation. While LLMs have shown remark-
able prowess in code generation for mainstream languages, their application to specialized crypto-
graphic libraries like TFHE remains unexplored. This section examines the potential of LLMs to
generate TFHE code, leveraging their understanding of logical operations, and explores the unique
characteristics of TFHE that make it both challenging and promising for automated code generation.

2.1 TFHE

Fully Homomorphic Encryption over the Torus (TFHE) (Jiang et al., 2022) operates on boolean cir-
cuits using logical gates (NOT, AND, OR), distinguishing itself with efficient Programmable Boot-
strapping (PBS) that allows evaluating arbitrary non-linear functions while refreshing noise. This
capability has made TFHE a cornerstone of modern confidential computing, driving industrial adop-
tion in domains ranging from Post-Quantum secure cloud inference to confidential smart contracts
and blockchain infrastructure. While its boolean structure aligns closer to traditional programming
than arithmetic schemes like BGV (Brakerski et al., 2014) or CKKS (Cheon et al., 2017), imple-
menting secure TFHE remains a mathematically rigorous challenge. Unlike standard boolean logic,
TFHE development is grounded in the hardness of the Learning With Errors (LWE) problem. De-
velopers must navigate tightly coupled constraints: they must meticulously manage noise budgets
that grow with every operation, strictly adhere to interdependent security parameters (λ, dimension,
modulus) to prevent silent decryption failures, and ensure valid ciphertext-only computation. Con-
sequently, despite its functional advantages, the need for this specialized cryptographic expertise
creates a significant barrier to widespread adoption.

2.2 LLMS FOR CODE GENERATION

Code generation is a key application of large language models (LLMs), with models such as Code-
Gen (Nijkamp et al., 2022), CodeX (Chen et al., 2021), and CodeT5 (Wang et al., 2021) excelling
in widely used languages like C, C++, Python, and Java due to the availability of extensive training
corpora. However, generating code for specialized libraries like TFHE, implemented in C, presents
challenges due to its cryptographic complexity and niche API. Recent studies on LLMs for High-
Level Synthesis (HLS) and Register Transfer Level (RTL) design (Thakur et al., 2023; Liao et al.,
2024; Xiong et al., 2024) demonstrate that LLMs can effectively model logical operations such as
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AND and OR gates. Given that TFHE operations also rely on gate-level computations, it is reason-
able to hypothesize that LLMs, with appropriate improvement techniques, could generate functional
TFHE code by leveraging their learned logical reasoning capabilities.

3 OUR METHOD

Our Agentic workflow 2 has three main components: FHE Prompt Formalizer, FHE API RAG
Retriever and FHE Security Verifier. The Agent is implemented using the ReAct (Yao et al., 2023)
prompting strategy.

3.1 FHE PROMPT FORMALIZER

Implement a
TFHE code to...

The LWE parameter 
should be 1024.

Implement homorphic ... using TFHE in C

 λ = NULL
n = 1024  λ = 128

method Main(a, b)
{
ensure (λ = 128)
/*More instructions*/
result = TFHEAnd(a, b)
ensure (result == (a&b)
}

Functional
Correctness: [...]
Security: [...]

Apply Prompt
Template on

Inputs

Formal
Specification

LLM

Lattice
Estimator

Final TFHE Parameter

Dafny-Code

Code Requirements

Context: You are an
expert crypto-coder.​

Objective: <Intent
Here>​

Reference
Pseudocode:​

<Dafny code here>​
Code Requirements:​
<code requirements

here>​

Intent
Extraction

LLM

Parameter
Solver

Intent

Partial Specification

User Prompt

Formal Prompt

STEP 1

STEP 2

STEP 3STEP 4

FHE Prompt Formalizer

Figure 3: LLMs and a Lattice Estimator transform a developer’s
prompt into a secure and structured set of instructions. The process
extracts the user’s intent, solves for correct cryptographic parame-
ters, and generates a final formal prompt containing Dafny-based
pseudocode and security requirements to guide the agent.

The FHE Prompt Formalizer, illus-
trated in Figure 3, addresses a criti-
cal failure mode in baseline agents:
the inability to select secure cryp-
tographic parameters through proba-
bilistic generation. While standard
LLMs often hallucinate inconsistent
parameters or insecure noise bud-
gets due to a lack of domain-specific
mathematical structure, our work-
flow replaces this heuristic guess-
work with cryptographic certainty.
The process begins by extracting
the user’s high-level intent, which
is then passed to a Lattice
Estimator (Albrecht et al., 2015)
to mathematically solve for the pre-
cise security parameter, λ, rather than
predicting it4. A second LLM uti-
lizes this secure configuration to generate a formal specification containing Dafny (Leino, 2010)
pseudocode. This step transforms ambiguous natural language into rigorous structural constraints;
for instance, the generated ensure statements explicitly guide the agent to embed assert checks
in the final C++ code, ensuring the solution adheres to valid ciphertext structures and intermediate
invariants.

3.2 FHE API RAG RETRIEVER

Similarity(Q, Di)
TopK
D2: C2
D1: C1

/**
boostrapped And
gate
result = (a and b)
*/

Formalize Docstring

/**
 * @objective Perform
Bootstrapped AND gate 
[ ...]
 */

Make Docstring-Code
Dictionary

Di

Human TFHE Expert

TFHE API Documentation

Compute
Similarity Ranking Similarity

[...]
Objective: How to
perform bitwise AND ?
[...] 

Qi

/*Doxygen Docstring*/
void
bootsAND(LweSample*
[...]

Query From Agent
Code Snippet

FHE API 
RAG Retriever

Figure 4: An offline, human-in-the-loop process cre-
ates a dictionary mapping expert-enriched docstrings to
code snippets from the TFHE documentation.

The FHE API RAG Retriever, illustrated in
Figure 4 , addresses the limitations of stan-
dard retrieval methods, which fail almost en-
tirely in this domain because LLMs lack the
intrinsic structure to interpret strict crypto-
graphic APIs or respect ciphertext-only com-
putation rules B. To bridge the semantic gap
between natural-language intent and these rigid
library constraints, we construct a knowledge
base using expert-enriched metadata. Specifi-
cally, we transform TFHE method docstrings1

into the Doxygen format2, utilizing struc-
tured tags such as @objective to embed
machine-readable semantic instructions. This
enrichment enables the agent to retrieve pre-
cise, security-compliant code snippets based on
cryptographic purpose rather than ambiguous

1https://tfhe.github.io/tfhe/gate-bootstrapping-api.html
2https://www.doxygen.nl/
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Figure 5: This automated pipeline validates generated code across four stages: Compile, Functional, Security,
and Latency. The critical Security Check verifies correct API usage, secure parameter configuration, and proper
input encryption. If any stage fails, a consolidated Formal Error Report is generated and returned to the agent
for iterative correction; otherwise, the solution is accepted.

keyword matching, ensuring the selected APIs
adhere to necessary noise and parameter rules.
Crucially, this offline preparation is a one-time,
lightweight security step designed to eliminate
API hallucinations, making the process fully scalable. Extending the framework to another scheme
(e.g., CKKS) simply requires replacing the documentation corpus with that scheme’s library doc-
umentation, rendering cross-scheme adaptation essentially plug-and-play. In our experiments, the
chunking-size was set to 600, and the chunk-overlap was set to 120.

3.3 FHE SECURITY VERIFIER

The FHE Security Verifier, detailed in Figure 5, introduces a novel, complementary validation layer
that addresses the critical limitation of standard code generation metrics. While traditional Pass@k
functional testing (implemented here via unit tests) ensures the code aligns with the user’s op-
erational intent, our experiments show that baseline LLMs often produce code that passes these
functional tests while remaining cryptographically insecure (e.g., using plaintext operations). To
bridge this gap, our pipeline subjects the agent’s code to a specialized Security Check rooted in
the mathematical hardness of the Learning With Errors (LWE) problem. Unlike simple heuristic
checks, this module strictly enforces LWE-based parameter bounds derived from the Lattice Esti-
mator and mandates exclusive homomorphic API usage to prevent data leakage. When a violation
is detected alongside Compile, Functional, or Latency errors, the system generates a structured
Formal Error Report, driving an automated feedback loop that forces the agent to converge
on a solution that is simultaneously functionally accurate and mathematically secure.

4 EXPERIMENT DESIGN SECTION

4.1 PROBLEM DEFINITION

We introduce the LLM-Agentic TFHE Generation and Evaluation Framework, illustrated in Fig-
ure 2. In this framework, each TFHE task is formulated as a natural language prompt and provided
to the agent. Leveraging its reasoning capabilities, the agent may (optionally) consult external doc-
umentation through retrieval-augmented generation (RAG) before implementing the corresponding
code. The generated code is subsequently evaluated by the Security Verifier, which consolidates any
compilation or verification errors into structured feedback and returns it to the agent for refinement.
The agent then iteratively revises its solution, continuing this process until all security checks are
satisfied or a predefined iteration limit is reached.

4.2 WORKLOAD SELECTION

We describe the workloads for the code generation breifly in Table 1.
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Table 1: Benchmark workloads for evaluating TFHE code generation, progressing from elementary boolean
operations to sophisticated machine learning architectures.

Workload Description
AND Bitwise AND between two 32-bit integers.
ReLU ReLU on a signed 32-bit integer.
Adder Adding two between two 32-bit integers.
Multiplier Multiplying two 32-bit integers.
Vector Addition Vector addition between two integer vectors of length 5.
Vector Dot Product Inner-product of two integer vectors of length 5.
Matrix-Vector Multiplication Multiplication between an encrypted vector and a plaintext matrix.
Matrix-Matrix Multiplication Multiplication between an encrypted matrix and a plaintext matrix.
MLP A simple 3-layer MLP with ReLU activation.
CNN A small Convolutional Neural Network with a fully connected layer.

These tasks collectively evaluate LLMs’ ability to synthesize both low-level cryptographic primi-
tives and high-level machine learning components using TFHE’s gate-level programming paradigm.
However, in Section 6, we evaluate more complex workloads as well.

4.3 MODEL SELECTION

We select the latest LLMs to drive our agent. For open-source LLMs, we choose Qwen3-Coder-
480B-A35B( (Yang et al., 2025)) (QWE) and Deepseek-V3.1( (Liu et al., 2024))(DSK). For closed-
source LLMs, we select Gemini-2.5-Pro( (Comanici et al., 2025))(GEM) and GPT-5( (OpenAI,
2025))(GPT). For all studied LLMs, we set the temperature to 0.5. Furthermore, there is no heavy
local resource consumption for generation, as models are accessed via the OpenRouter API.

Note that, to mitigate issues stemming from the randomness of model generation, the experimental
results presented in this paper are obtained by conducting five repeated experiments and aver-
aging the results. The embedding model used for RAG was text-embedding-3-small 3

from OpenAI.

4.4 METRICS

In our framework, we employ three key metrics to judge the quality of the generated codes. Fol-
lowing prior works on code-generation, we use 1. Pass@k(func) to denote the fraction of generated
codes that pass the unit tests. We present our novel metric 2. Pass@k(security), which denotes
the fraction of generated codes that are secure; a program is considered secure only if it passes an
automated analysis verifying: (i) exclusive use of TFHE APIs to prevent plaintext data leakage, (ii)
correct configuration of cryptographic parameters against secure values from the Lattice Estimator,
and (iii) proper encryption of all inputs before their use. A failure in any of these checks renders the
code insecure. Our third metric is 3. Latency, compared to expert-written reference codes.

4.5 BASELINES

Our first baseline denotes the regular code generation workflow. This can be constructed by re-
moving the FHE Prompt Formalizer, FHE API RAG Retreiver and removing the security and latency
checks from the proposed workflow in Fig. 2. We abbreviate it as BAS. Our second baseline is Zero-
shot Chain-of-Thought agent, which builds upon the regular workflow by appending a step-by-step
worked example of correct TFHE code generation. We abbreviate it as COT.

5 EVALUATION RESULTS

This section presents a comprehensive empirical analysis of our proposed agentic framework (de-
noted as FRS) in comparison to a regular code generation workflow (BAS) and a Zero-shot Chain-of-
Thought agent (COT). We evaluated four leading LLMs on a benchmark of ten TFHE programming
tasks with varying complexity.

3https://platform.openai.com/docs/models/text-embedding-3-small
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Figure 6: Performance of GPT-5 across all tasks. A comparison of our framework (FRS) against Baseline
(BAS) and Chain-of-Thought (COT) techniques. While the baseline methods fail on complex tasks and are
fundamentally insecure (near-zero security pass rate), FRS consistently produces code that is both functionally
correct and verifiably secure.

5.1 IN-DEPTH ANALYSIS ON A STATE-OF-THE-ART MODEL

We first conduct a detailed analysis using the state-of-the-art GPT-5 model to illustrate the core
performance differences between our framework and the baselines across all tasks. The results are
presented in Fig. 6.

Functional Correctness: As shown in the top chart of Figure 6, the baseline methods (BAS and
COT) demonstrate partial success on tasks with low complexity, such as and and relu. However,
their performance exhibits a notable decline as task complexity increases, particularly for compo-
sitional tasks like matrix-vector multiplication and CNN. However, this performance
drop in FRS can be recovered with Structured Decomposition as described in Section 5.3.

Security: A critical distinction between our framework and the baselines is revealed in the security
evaluation. Both the BAS and COT methods yield a pass@1(security) approaching zero for
all tasks evaluated. This finding indicates that they consistently fail to produce secure code, often
generating plaintext implementations that, while sometimes functionally correct, do not adhere to
the required cryptographic protocols. Conversely, the FRS framework achieves near-perfect security
scores across the entire benchmark. This outcome underscores the necessity of a guided, multi-phase
process—encompassing the proposed prompt formalization, accurate API retrieval, and security
verification—to meet the specific requirements of secure code generation.

Latency: The performance trade-offs are detailed in the bottom chart of Figure 6. While the FRS
framework naturally incurs higher latency due to its iterative feedback loop, the specific computa-
tional overhead introduced by our verification logic is minimal. The Compile and Security Checks
rely on lightweight static analysis and complete in the order of milliseconds, while the Latency
Check adds negligible overhead. The majority of the time is consumed by the Functional Check,
which ranges from seconds (for simple gates) to minutes (for complex circuits like Matrix Multipli-
cation), but this duration is intrinsic to the execution of the generated FHE code itself rather than the
framework’s processing. This overhead is a deliberate design choice, representing a practical trade-
off for significant improvements in security. The absolute runtimes of representative workloads are
mentioned in Table 3.

5.2 GENERALIZABILITY ACROSS DIVERSE LLMS

To ensure our findings are not model-specific, we assessed the generalizability of our framework by
applying it to four different LLMs. Fig. 7 presents a comparative analysis on three representative
tasks. The results confirm that the performance patterns persist across all models. The security defi-
ciencies of the baseline methods are model-agnostic; both BAS and COT fail to generate secure code
regardless of the LLM used. In contrast, the FRS framework is the only approach that enables the
models to consistently produce secure outputs. While the overall performance ceiling is influenced
by the base model’s intrinsic capabilities—with GPT-5 and Gemini-2.5-pro generally outperform-
ing Deepseek-V3.1 and Qwen3-Coder —our framework provides a consistent and essential security
impoves for all tested models.
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Figure 7: A comparison of our framework (FRS) against baselines (BAS, COT) using four different LLMs.
The results show that the security failures of baseline methods are universal; all models produce insecure code
with BAS and COT across all tasks. In contrast, our FRS framework is the only technique that provides a
consistent and essential security uplift, proving its benefits are model-agnostic.

5.3 SOLVING COMPLEX TASKS WITH STRUCTURED DECOMPOSITION

While our FRS framework demonstrates strong performance on atomic tasks, Figure 6 shows that
its effectiveness diminishes on complex, compositional problems that require multi-step reasoning
(e.g., matrix-vector multiplication, MLP). To address this limitation, we evaluate a structured de-
composition approach where a complex task is broken down into simpler, solvable subtasks.

In this approach, the agent first generates secure code for the necessary primitives (such as dot
product). A final ”composer” agent is then provided with a structured prompt containing these
verified subroutines and a high-level goal to compose them into the final solution.

Table 2: Performance using structured decomposition.

Task Pass@1(func) Pass@1(sec)

Matrix-Vector 0.80± 0.05 1.00± 0.00
Matrix-Matrix 0.80± 0.05 1.00± 0.00
MLP 0.40± 0.05 0.60± 0.05
CNN 0.80± 0.02 0.80± 0.02

As detailed in Table 2, our structured decom-
position approach effectively solves complex
tasks where the direct method fails. It achieves
high functional and security scores across most
tasks, reaching a perfect 1.0 security pass rate
for matrix-vector and matrix-matrix multiplica-
tion. The increased compositional complexity
of the MLP task lowers both its functional (0.4)
and security (0.6) pass rates, suggesting a link
between logical complexity and the agent’s ability to maintain security protocols. Overall, this
hierarchical strategy of composing solutions from verified sub-tasks significantly extends the
agent’s capabilities to a previously unsolvable class of problems.

5.4 ABLATION STUDY

Oursw/o SCw/o RAGw/o FPBaseline

Figure 8: Ablation Study on Vector Addition.
Removing the Security Verifier (w/o SC) elim-
inates security guarantees, while removing the
Prompt Formalizer (w/o FP) degrades function-
ality to baseline levels. These results demon-
strate that all components are essential for the full
framework’s robust performance.

To quantitatively assess the contribution of each
component within our framework, we conduct an
ablation study by systematically removing each of
our three key modules: the FHE Prompt Formalizer
(FP), the FHE API RAG Retriever (RAG), and the
FHE Security Verifier (SC). The results for the GPT-
5 model on the representative Vector Addition task,
shown in Figure 8, reveal a clear performance hier-
archy.

The study establishes that the Baseline agent, lack-
ing our modules, is unable to produce secure TFHE
code, achieving a low functional pass rate of 0.4 and
zero security pass rate. Removing the FHE Secu-
rity Verifier (w/o SC) from our full system causes
the most critical security degradation, with the secu-
rity pass rate falling from 1.0 to 0.6. This highlights
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Figure 9: Generalization to CKKS. Performance on Softmax, Attention, and Transformer tasks. FRS +
Structured Decomposition achieves high functionality and security scores, demonstrating robust generalization
to complex non-linear architectures where baselines fail.
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Figure 10: Complex TFHE Tasks. Performance on Softmax, Attention, and Transformers. FRS + Structured
Decomposition robustly solves these non-linear circuits with high functionality and security scores, signifi-
cantly outperforming baselines.

that the iterative feedback from the verifier is indis-
pensable for correcting cryptographic flaws. Simi-
larly, ablating the FHE API RAG Retriever (w/o
RAG) degrades both functionality and security to 0.8, confirming that access to correct API knowl-
edge is crucial. Removing the FHE Prompt Formalizer (w/o FP) causes the functional pass rate
to collapse to baseline levels (0.4), demonstrating its vital role in achieving functional correctness.
Ultimately, the Ours (Full) configuration is the only one to achieve a perfect 1.0 score on both met-
rics, confirming that all three components are essential and complementary, working in concert to
generate code that is simultaneously secure and functionally correct.

Table 3: Illustrative Execution Times for FHE workloads.

Task (Complexity) Average Execution Time

AND (Elementary Gate Logic) 10.45 milliseconds
ReLU (Simple Bitwise Circuit) 11.50 milliseconds
Matrix Multiplication (Complex Compositional Circuit) 2.54 minutes

6 EXTENDED EVALUATION: GENERALIZATION AND ROBUSTNESS

6.1 GENERALIZATION TO OTHER CKKS FHE SCHEME

To demonstrate the framework’s generalization beyond TFHE, Figure 9 presents the evaluation on
the CKKS scheme for complex non-linear architectures (Softmax, Attention, Transformers). Con-
sistent with our TFHE findings, baseline agents (BAS, COT) fail to generate secure implementa-
tions, yielding near-zero Pass@1 (security) scores across all tasks due to their inability to manage
CKKS-specific noise and parameter constraints. In contrast, our FRS framework, adapted by sim-
ply swapping the parameter estimator and documentation modules, achieves robust performance.
Specifically, it reaches near-perfect functional and security scores (≈ 1.0) on Softmax and Atten-
tion, and significantly outperforms baselines on the Transformer task (0.6 − 0.8 security vs. 0.0),
confirming that our modular agentic workflow successfully scales to fundamentally different FHE
schemes.

9
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6.2 SCALING TFHE TO COMPLEX ARCHITECTURES

Figure 10 evaluates the framework’s robustness on complex non-linear TFHE architectures, specif-
ically Softmax, Attention, and Transformer circuits. A clear dichotomy is observed: while baseline
agents (BAS, COT) manage partial functional success on simpler non-linear tasks like Softmax, they
universally fail to generate secure code (Pass@1 (sec) ≈ 0.0) across all workloads. In contrast, our
FRS framework combined with Structured Prompting effectively manages the compositional com-
plexity of these circuits. It achieves perfect functional and security scores (1.0) on Softmax and
Attention, and maintains a strong security pass rate (≈ 0.8 for GPT) on the Transformer task, con-
firming that our hierarchical decomposition strategy successfully scales to secure, state-of-the-art
neural network components.

7 DISCUSSION

Our work demonstrates that automating the generation of secure FHE code requires moving beyond
simple prompt-to-code workflows, which we show consistently fail in security-critical domains. The
core finding is that while baseline agents may achieve functional correctness, they lack the intrinsic
mathematical reasoning to select secure parameters or adhere to strict ciphertext-only constraints,
resulting in a near-zero security pass rate. This highlights a fundamental misalignment: traditional
metrics like Pass@k(func) are misleading proxies for success in cryptographic programming. Our
framework addresses this by elevating verifiable security to a primary objective, grounding the gen-
eration process in the mathematical hardness of the Learning With Errors (LWE) problem via the
Lattice Estimator, rather than relying on probabilistic LLM heuristics.

Crucially, our extended evaluation confirms that this agentic architecture serves as a generalizable
blueprint for confidential computing, not just a TFHE-specific solution. The modular design of our
three components—Prompt Formalizer, RAG Retriever, and Security Verifier—enables ”plug-and-
play” adaptation to other schemes. As evidenced by our results with CKKS, we achieved high secu-
rity scores by simply swapping the underlying parameter solver and documentation corpus, proving
that the workflow’s effectiveness is scheme-agnostic. Furthermore, our experiments with Structured
Decomposition reveal that the framework scales to state-of-the-art complexity. While direct gener-
ation struggles with deep circuits, agents excel as ”composers” when provided with verified prim-
itives, successfully implementing complex non-linear architectures like Attention mechanisms and
Transformers. Ultimately, FHE-CODER establishes that with the right scaffolding—specifically,
a priori structural knowledge and a posteriori security feedback—LLMs can be transformed from
unreliable assistants into verifiable partners for secure software engineering.

8 CONCLUSION

Fully Homomorphic Encryption over the Torus (TFHE) has emerged as a cornerstone of mod-
ern confidential computing, enabling unique programmable bootstrapping capabilities that drive
widespread industry adoption; however, utilizing this powerful tool is severely limited by a steep
learning curve. In this work, we introduced TFHE-CODER, a structured agentic framework that
bridges this gap by integrating prompt formalization, retrieval-augmented generation, and a critical
security verification loop. Our findings reveal that while standard agents consistently fail due to a
lack of domain constraints, our framework succeeds by strictly grounding the generation process
in the mathematical hardness of the Learning With Errors (LWE) problem. Beyond establishing
the first robust benchmark for TFHE, our extended evaluation demonstrates significant generaliza-
tion and scalability: we proved that the framework’s modular design serves as a scheme-agnostic
blueprint, successfully adapting to the CKKS scheme, and that a structured decomposition strat-
egy enables the synthesis of state-of-the-art non-linear architectures, such as Attention mechanisms
and Transformers. By enabling developers to reliably generate code that is simultaneously func-
tional and verifiably secure, this work takes a definitive step toward democratizing access to these
advanced privacy-preserving technologies.

9 ETHICS STATEMENT

Large language models (LLMs) were used to check grammer and polish writing.
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10 REPRODUCIBILITY STATEMENT

In order to ensure reproducibility, we fixed the seed while inferencing the models. As
noted in Section 4.3, the results of the experiments shown are aggregated after 5 indepen-
dent runs with different seed values. Source code: https://github.com/mayank64ce/
fhe-agentic-benchmarking
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A APPENDIX

A FULL CODE EXAMPLE: BITWISE RELU

Below is a full working example for a bitwise ReLU operation. Listing 1 provides a complete,
runnable C program demonstrating the plaintext bitwise logic, which reads an integer from standard
input. Listing 2 shows the full, equivalent implementation using the TFHE library.

1 #include <stdio.h>
2 #include <stdint.h>
3

4 // Plaintext bitwise ReLU for a 32-bit signed integer.
5 int32_t relu(int32_t input) {
6 int32_t mask = input >> 31;
7 int32_t output = input & ˜mask;
8 return output;
9 }

10

11 int main() {
12 int32_t input_val;
13

14 scanf("%d", &input_val);
15

16 printf("%d\n", relu(input_val));
17

18 return 0;
19 }

Listing 1: Complete, runnable plaintext C code for bitwise ReLU.

1 #include <tfhe/tfhe.h>
2 #include <tfhe/tfhe_io.h>
3 #include <stdio.h>
4 #include <assert.h>
5

6 // The plaintext relu function would be included here
7 int32_t relu(int32_t input);
8

9 int main() {
10 // 1. Generate a keyset
11 const int minimum_lambda = 110;
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12 TFheGateBootstrappingParameterSet* params =
new_default_gate_bootstrapping_parameters(minimum_lambda);

13

14 // Generate a deterministic key for reproducibility
15 uint32_t seed[] = { 314, 1592, 657 };
16 tfhe_random_generator_setSeed(seed, 3);
17 TFheGateBootstrappingSecretKeySet* key =

new_random_gate_bootstrapping_secret_keyset(params);
18

19 int32_t plaintext1;
20 scanf("%d", &plaintext1);
21

22 // 2. Encrypt the 32-bit signed integer bit by bit
23 LweSample* ciphertext1 = new_gate_bootstrapping_ciphertext_array(32,

params);
24 for (int i = 0; i < 32; i++) {
25 bootsSymEncrypt(&ciphertext1[i], (plaintext1 >> i) & 1, key);
26 }
27

28 // 3. Homomorphically compute ReLU: result = input & ˜mask
29 LweSample* result = new_gate_bootstrapping_ciphertext_array(32,

params);
30 LweSample* mask = new_gate_bootstrapping_ciphertext_array(32, params)

;
31

32 // 3a. Create a 32-bit mask from the encrypted sign bit (bit 31)
33 for (int i=0; i<32; i++){
34 bootsCOPY(&mask[i], &ciphertext1[31], &key->cloud);
35 }
36

37 // 3b. Invert the mask homomorphically
38 for (int i=0; i<32; i++){
39 bootsNOT(&mask[i], &mask[i], &key->cloud);
40 }
41

42 // 3c. Compute the final result: input & ˜mask
43 for (int i = 0; i < 32; i++){
44 bootsAND(&result[i], &ciphertext1[i], &mask[i], &key->cloud);
45 }
46

47 // 4. Decrypt the result for verification
48 int32_t final_result = 0;
49 for (int i = 0; i < 32; i++) {
50 int bit = bootsSymDecrypt(&result[i], key);
51 final_result |= (bit << i);
52 }
53 printf("%d\n", final_result);
54

55 // Verify against the plaintext function
56 assert(final_result == relu(plaintext1));
57

58 // Cleanup
59 delete_gate_bootstrapping_ciphertext_array(32, mask);
60 delete_gate_bootstrapping_ciphertext_array(32, result);
61 delete_gate_bootstrapping_ciphertext_array(32, ciphertext1);
62 delete_gate_bootstrapping_secret_keyset(key);
63 delete_gate_bootstrapping_parameters(params);
64

65 return 0;
66 }

Listing 2: Full secure TFHE implementation for bitwise ReLU.
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B USING VANILLA RAG

Table 4: Results for Using Vanilla RAG with Documentation (without preprocessing with expert summary).
Standard RAG fails to provide robust security or functionality.

Workload pass@1 (func.) pass@1 (sec.)
ReLU 0.40± 0.02 0.20± 0.01
MatMul 0.20± 0.01 0.00± 0.00
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