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Abstract

The application of language models in essay
scoring has gained significant attention in re-
cent years, typically evaluating a single model
across multiple prompts. However, in a multi-
prompt setup, it is crucial to understand the
varying aspects of different prompts. In such
settings, there are notable variations even in a
trait with the same name across prompts, often
overlooked in existing research. We propose
introducing multi-level disentanglement into a
Transformer encoder-only framework for essay
scoring, preserving fine-grained semantic dif-
ferences across such traits. Our method not
only improves the quality of essay scoring, but
also reduces memory usage and latency. Exper-
imental results demonstrate that our framework
achieves the highest agreement with human es-
say ratings over four SOTA approaches. The
codes will become available upon acceptance.

1 Introduction

Recently, automated essay scoring (AES) has gar-
nered significant attention due to advancements
in various language models. In particular, meth-
ods leveraging pre-trained BERT-based models
have been proposed, demonstrating superior perfor-
mance compared to traditional approaches (Yang
et al., 2020; Wang et al., 2022; Jiang et al., 2023).
However, the majority of these studies focus on
scoring for a single prompt or a single overall score.
To address these limitations, several multi-trait scor-
ing methods have been developed (Mathias and
Bhattacharyya, 2020a; Ridley et al., 2021; Kumar
etal., 2022; Do et al., 2023). The latest approaches
employ pre-trained Transformer models with an
encoder-decoder structure to learn the relationships
between traits in a multi-prompt, multi-trait essay
scoring (Do et al., 2024). This model generates
text including scores in a sequence-to-sequence
(Seq2Seq) manner, achieving better performance
in multi-prompt, multi-trait essay scoring.

[Content Rubric of P1, P2, P8]

This property checks for the amount of content and ideas present in the essay.

Score 6: The writing is exceptionally clear, focused, and interesting. It holds the reader’s attention throughout.
Main ideas stand out and are developed by strong support and rich details suitable to audience and purpose. ...

[Content Rubric of P5, P6]
Score 4: The response answers the question asked of it. Supporting evidence is specific to the memoir is used to

support the points the writer makes. ...

[Content Rubric of P7]
Score 3: Tells a story with ideas that are clearly focused on the topic and are thoroughly developed with specific,
relevant details. ...

Figure 1: The evaluation criteria for content trait vary
depending on the prompts.

3

Figure 2: T-SNE visualisation of the embeddings ex-
tracted from the language model trained to evaluate
content scores. (Colors: Left-Score, Right-Prompt)

In these studies, traits have been simply treated
as equivalent if the names are identical across
prompts. Yet, this approach overlooks the fact that
different prompts may have different evaluation
criteria for traits, or different semantic factors em-
bedded in the essay that affect the score. Figure 1
shows that even the same trait can contains different
evaluation criteria depending on the prompt. Figure
2 illustrates the gap in essay embedding distribu-
tions of the same trait (i.e., content) between essay
prompts. Even essays with high scores on the same
trait, the embedding distributions vary significantly
depending on the prompt. Hence, overlooking such
differences and treating representations as if they
share the same distribution over different prompts
collapses prompt-specific information.

Despite that a recent work proposed prompt-
wise disentanglement in multi-prompt essay scor-
ing (Jiang et al., 2023), it still lacks granularity
because it only evaluates the overall trait and over-
looks the variations in how the same trait mani-
fests across different prompts in its disentangle-
ment phase. Therefore, this semantic variation
over the same traits underscores the necessity of
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Figure 3: Overview of MLPAS: Token-based instruction provides prompt-specific information about the target
essay to guide the model in outputting the essay score for each trait token, while multi-level disentanglement
dynamically adjusts the projection layers for fine-grained, multi-level disentanglement over prompts and traits.

treating them differently at a fine-grained level ac-
cording to each prompt. In addition, the state-of-
the-art Seq2Seq essay scoring framework is not
appropriate for achieving trait-level disentangle-
ment. It turns out that a strong dependency be-
tween traits does exist in score generation. The
order of traits generated by auto-regressive decod-
ing significantly affects the scoring performance
of the framework (Do et al., 2024). Besides, the
Seq2Seq fashion results in high latency due to the
need to maintain a Transformer decoder in addition
to the encoder, and its expensive inference cost of
auto-regressive decoding.

In this paper, we propose a novel multi-level dis-
entanglement framework for multi-prompt essay
scoring, MLPAS (Multi-Level Prompt-Adaptive
Multi-trait Essay Scoring), designed to achieve fine-
grained disentanglement at both prompt- and trait-
levels. In this framework, as shown in Figure 3,
we introduce the notion of token-based instruction,
a set of instruction tokens as input to the Trans-
former encoder. The semantic embedding of the
prompt text is extracted by a frozen text embedding
model, followed by the concatenation with a learn-
able prompt ID token. They are then concatenated
with multiple learnable trait tokens as the final in-
struction input. It provides prompt-specific infor-
mation about the target essay to guide the model
in outputting the essay score for each trait token.
Furthermore, we leverage multi-level disentangle-
ment, which introduces prompt-wise projection and
trait-wise predictions to select the most suitable pa-
rameters for the target prompt and traits. Here, the
proposed method enables fine-grained disentangle-

ment at both prompt- and trait-levels by adjusting
the projection layers on demand.

While each component is simple, the merger of
them facilitates fine-grained, multi-level disentan-
glement with an efficient encoder-only Transformer
architecture. This advantage of our framework en-
ables a more accurate essay scoring with low la-
tency. Our main contributions are:

* We propose a novel multi-level disentangle-
ment framework MLPAS for multi-prompt,
multi-trait essay scoring, enabling fine-
grained disentanglement at both prompt- and
trait-levels.

* MLPAS demonstrates the highest agreement
with human essay ratings compared to exist-
ing SOTA essay scoring methods.

* We experimentally demonstrate that our
method can achieve better performance even
without a decoder, while also being more effi-
cient in terms of parameter count and latency.

2 Related Work
2.1 Single-prompt Essay Scoring

Early research on AES primarily focused on
prompt-specific essay scoring, training and test-
ing each model for each essay prompt (Tay et al.,
2018; Dong et al., 2017; Uto et al., 2020). Re-
cently, pre-trained Transformer models, such as
BERT (Devlin et al., 2019), have been successfully
applied to prompt-specific essay scoring, yielding
significant improvements in overall scoring accu-
racy (Yang et al., 2020; Wang et al., 2022). For a



more precise scoring, several studies have proposed
to use multiple traits in addition to the single overall
score (Mathias and Bhattacharyya, 2018, 2020b;
Hussein et al., 2020). Specifically, Kumar et al.
(2022) proposed multi-task learning with BERT-
based architectures. However, it requires training
separate models for each trait, leading to substan-
tial resource inefficiency.

2.2  Multi-prompt Essay Scoring

In real-world essay scoring, there are many types
of essay prompts, and it is inefficient to create a
separate model for each prompt. To address this is-
sue, multi-prompt essay scoring models have been
proposed that can evaluate essays from multiple
prompts simultaneously. Multi-prompt essay scor-
ing can be categorized into cross-prompt setting
and prompt-adaptive setting.

The cross-prompt setup entails applying the eval-
uation model trained on seen prompts to unseen
ones, thereby generalizing its effectiveness across
various prompts. There have been numerous prior
studies in this setup, but most of them have focused
solely on evaluating a single overall score (Ridley
et al., 2020; Cao et al., 2020; Jiang et al., 2023).
A few studies have expanded it to mulit-trait scor-
ing, yet they primarily focused on utilizing Part-Of-
Speech(POS) tagging, while neglecting semantic
distinctions at both the prompt- and trait-levels (Ri-
dley et al., 2021; Do et al., 2023; Chen and Li,
2023, 2024).

The prompt-adaptive setup involves adjusting
scoring criteria based on the specific prompt to
enhance the accuracy of essay evaluation (Mathias
and Bhattacharyya, 2020a; Kumar et al., 2022).
The most recent work (Do et al., 2024) uses a pre-
trained Seq2Seq Transformer, thereby achieving
higher performance in multi-prompt, multi-trait
essay scoring. Nevertheless, they are inadequate
for capturing the fine-grained level of semantic
difference across prompts and traits, due to their
text generation instability, with high latency, posing
an extra challenge for an efficient essay scoring.

In this study, our scope is to develop an effi-
cient encoder-only essay scoring framework, which
considers prompt- and trait-level semantic differ-
ences with multi-level disentanglement, under the
prompt-adaptive setup.

3 Preliminaries

A prior study utilized the pre-trained encoder-
decoder Transformer to generate trait scores in an

auto-regressive manner (Do et al., 2024). In the
study, only essay prompt ID and essay tokens were
used as inputs to the Transformer encoder, and then
the decoder generated a single text sequence con-
sisting of trait and score pairs as:

S = Dec(Enc([Pg|E])) € R. (1)

Here, S denotes the generated text sequence, Dec
denotes the Transformer decoder, and P4 denotes
the essay prompt ID. This text sequence is parsed
to predict the final trait scores as:

Y = g(S) e R™ )

Here, g is a parser that extracts a scalar value corre-
sponding to each trait score from the text sequence.

This method outperformed existing other essay
scoring methods, but overlooked the representa-
tion disentanglement, and also suffered from high
latency and additional parameters due to its auto-
regressive nature. To address these limitations, we
propose an encoder-only model that facilitates fine-
grained disentanglement at both prompt- and trait-
levels and replaces the complicated auto-regressive
task with a simple regression task for high effec-
tiveness and efficiency.

4 Method: MLPAS Framework

4.1 Overview

We adopt an encoder-only architecture combined
with multi-level disentanglement to achieve bet-
ter performance with reduced latency and fewer
parameters. We use a pre-trained Transformer en-
coder to extract trait-wise features from prompts
and essays. The three token sets are concatenated
into an integrated sequence S™*.

S* — [P*’T‘E] c R(?-‘rn-ﬁ-m)xd. (3)

Here, P* represents the concatenated prompt em-
bedding and prompt ID token embedding. The
Transformer encoder processes S* to generate the
representation Z*:

Z* = Enc(S*) € R&+ntm)xd, 4)

The representation Z*, which integrates the prompt,
trait tokens, and essay, enables efficient multi-trait
score prediction by passing the target trait represen-
tation set Z7 through a non-auto-regressive predic-
tion function f, denoted as:

A~

Y = f(Zr) e R4, )



This process enables the model to generate predic-
tions for the target traits based on the extracted in-
formation from the prompt, essay, and target traits.
Unlike the previous method described in Eq. (1)
and Eq. (2), we do not follow the auto-regressive
approach to predict final scores, which then allows
us to predict each trait in parallel via regression.

4.2 Main Components

Token-based Instruction Prior studies often
combine essay text and prompt IDs into a single
sequence (Do et al., 2024), but this approach strug-
gles to utilize semantic information in the prompts
and learning distinct trait-specific representations.
To address these limitations, we introduce three
types of instruction tokens. The first type reflects
the semantic information contained in the prompt
through prompt embedding, the second type refers
to special tokens assigned according to the prompt
ID, and the third type consists of trait tokens, cru-
cial for capturing trait-specific information. We
assign a special token for each trait, and if the trait
is not relevant to the prompt, it is masked with an
NA token.

The prompt embedding and the prompt ID token
together form P* as:

= [Pembl|pia] € R**<. (6)

The fixed pre-traiend Transformer encoder and av-
erage pooling are used to obtain prompt embedding
Pemb € R?. This approach can be applied regard-
less of the length of the prompt, because it needs
a single extracted token, and has the advantage of
being able to extract more fine-grained informa-
tion by calculating the attentions with the prompt
embedding at the essay text token level.
The final input sequence is formalized as:

*
S* = Pemb, Pid st1,t2, .. tn,€1,€2, ... €m].
——
Prompt Tokens ~ Trait Tokens Essay Tokens
(7

This input sequence is fed into the Transformer
encoder to get the sequence representation.

Multi-level Disentanglement We design a multi-
level disentanglement approach to predict trait
scores from trait token embeddings' to consider
prompt-wise, trait-wise differentiation. We dynam-
ically select the projection layer for multi-level dis-
entanglement. It involves a two-step process: (1)

!The subset of the trait tokens in Eq. (8) from the Trans-
former encoder’s output in Eq. (4).

Prompt-wise projection and (2) Trait-wise multi-
layer perceptrons (MLPs).

Firstly, we extract the trait token embeddings
from the sequence embedding Z*. Let Z}. € R7xd
represent the extracted trait token embeddings and
2 € R4 represent the embedding of trait ¢;:

Zr = [z1,22,. -, 2n). ®)

Prompt-wise projection captures the distinct char-
acteristics of each prompt within the trait embed-
dings. Then, for each prompt, unique weights and
biases are utilized:

7P = WP Z% + b, )

Here, W? € R and b* € R? represent the
weights and biases for projecting a specific prompt
p, a set of specified projection parameters are dy-
namically selected based on the given prompts?.

Trait-wise MLPs predicts the scores for each trait
from the adapted trait embeddings:

it = MLP;(27). (10)

In the equation, MLP; represents the multi-layer
perceptron used for predicting the score of trait ¢,
2V is the adapted embedding of trait ¢, and ¢ is the
predicted score of trait ¢.

These components capture trait variability across
prompts by addressing both prompt-specific and
trait-specific differences, leading to superior perfor-
mance in multi-prompt, multi-trait essay scoring.

4.3 Model Training

We train our model in a multi-prompt, multi-trait
setting, consistent with prior studies (Mathias and
Bhattacharyya, 2020a; Kumar et al., 2022; Do et al.,
2024). The training set comprises a mixture of
essays from various prompts, each evaluated on
multiple traits.

We update the model by calculating the Mean
Squared Error (MSE) loss for each trait, masking
the non-existent traits during the process:

—yir)*.

LMse = ~ Z
(11)

N is the total number of samples and 7" is the total
number of traits. For each sample ¢ and trait ¢,

T
mi +(Yit
Zt 1Mt 4—1

2Similar to the recent work, we assumes that prompt ID is
given, while it can be extended to the cross-prompt setting by
averaging the projections of trained prompts. We demonstrate
the generalization ability in Section 5.2.3.



i+ denotes the predicted score; y; ; the true score.
The mask m;; is 1 if trait ¢ exists for sample ¢
and 0 otherwise. This loss function ensures that
only the traits present for each sample contribute
to the loss, allowing the model to learn effectively
from the data with differences in trait sets between
prompts. We normalize scores to a range of 0 to
10 for consistency across prompts and traits. For
evaluation using the Quadratic Weighted Kappa
(QWK) metric, we then map these scores back to
their original trait-specific ranges.

5 Evaluation

Dataset We use the well-known ASAP and
ASAP++ datasets (Mathias and Bhattacharyya,
2018), each of which consists of a set of English es-
says on eight prompts written by U.S. high school
students in grades 7 through 10. We combine the
ASAP dataset with the ASAP++ dataset to utilize
the evaluation trait scores for all prompts. Con-
sistent with prior studies (Kumar et al., 2022; Do
et al., 2024), we use the same source data and ran
our experiments using the same 5-fold split. Table
1 shows the dataset compositions, revealing signifi-
cant overlaps in traits across distinct domains.

Compared Baselines We evaluate our model
against several existing methods in multi-prompt,
multi-trait settings. STL-LSTM (Dong et al.,
2017) is an LSTM-CNN-based model for essay
scoring in single-task learning scenarios. HISK
(Cozma et al., 2018) utilizes a histogram inter-
section string kernel with a support vector regres-
sor. MTL-BiLSTM (Kumar et al., 2022) em-
ploys a BiLSTM architecture for essay scoring
in multi-task learning setups. ArTS (Do et al.,
2024) is our main baseline, a recently proposed T5-
based encoder-decoder model specifically designed
for automated essay scoring and is considered a
top-performing baseline. We compare the perfor-
mance of our model with that of these baselines
to demonstrate the effectiveness of our model in
multi-prompt, multi-trait essay scoring.

Training Configuration We use only the en-
coder of the pre-trained TS5 model (Raffel et al.,
2020) to initialize the encoder of MLPAS and ex-
tract prompt embeddings. Regarding training, we
set the early stop tolerance to 5, the batch size to
{8, 16}, the learning rate to {1e-4, 2e-4}, and the
total epochs to 20. We run our experiments on an
NVIDIA A100 GPU with 40GB VRAM.

Prompt Essay Domain # Essays | Available Traits
1 Computer usage 1,785 Over, Cont, WC, Org, SF, Conv
2 Library censorship 1,800 Over, Cont, WC, Org, SF, Conv
3 Cyclist setting 1,726 Over, Cont, PA, Nar, Lang
4 Story analysis 1,772 Over, Cont, PA, Nar, Lang
5 Memoir mood 1,805 Over, Cont, PA, Nar, Lang
6 Empire State Building 1,800 Over, Cont, PA, Nar, Lang
7 Patience story 1,569 Over, Cont, Org, Conv, Style
8 Laughter importance 723 Over, Cont, WC, Org, SF, Conv, Voice

Table 1: Overview of multi-prompt, multi-trait AS-
AP/ASAP++ datasets used in experiments. Over: Over-
all, Cont: Content, WC: Word Choice, Org: Organi-
zation, SF: Sentence Fluency, Conv: Conventions, PA:
Prompt Adherence, Nar: Narrativity, Lang: Language.

Evaluation Metric We leverage the quadratic
weighted kappa (QWK), a widely adopted metric
in existing AES studies (Ke and Ng, 2019; Ramesh
and Sanampudi, 2022). QWK is renowned for
its effectiveness in capturing agreement between
human-rated and model-predicted scores. We re-
port the average QWK of the trained model, which
performs best on the validation dataset. To ensure
a comprehensive evaluation, we report the QWK
scores aggregated for each trait, i.e., trait-wise com-
parison, and for each prompt, i.e., prompt-wise
comparison.

5.1 Main Results
5.1.1 Agreement with Human Rating

Tables 2 and 3 present the results of the agreement
between automated essay evaluators and human
ratings at two different levels: one for trait-wise
and the other for prompt-wise. Overall, the results
show that MLPAS surpasses other models in most
cases (9 out of 11 for trait-wise and 6 out of 8
for prompt-wise). While it does not achieve the
highest score in some cases (2 for trait-wise and 2
for prompt-wise), the performance gap is marginal.

We particularly observe significant improvement
in P8 (the minority w.r.t the number of training ex-
amples)®. This improvement is mainly attributed
to the robustness of MLPAS against bias from ma-
jority prompts (P1-P7), caused by their traits over-
lapping with those in P8. In the case of "Voice", it
is not directly affected by the major prompts, but
may be indirectly influenced through the overlap-
ping traits in P8 (e.g., "Content" in P1 influencing
"Content" in P8, which in turn impacts "Voice" in
P8). Our proposed method effectively reduces inter-
prompt and inter-trait interference, which suggests
that we can achieve performance improvements in
these more subtle prompts and traits.

30n P8, the performance increase by 0.08 both for the
non-overlapping trait (e.g., “Voice”) and for traits that overlap
with those in the major prompts.



Model Type Model Overall Content PA Lang Nar Org Conv WC SF  Style Voice | AVGT (SD])
HISK 0.718 0.679  0.697 0.605 0.659 0.610 0.527 0.579 0.553 0.609 0.489 0.611 (-)
Non-Transformer | STL-LSTM 0.750 0.707  0.731 0.640 0.699 0.649 0.605 0.621 0.612 0.659 0.544 0.656 (-)
MTL-BIiLSTM 0.764 0.685  0.701 0.604 0.668 0.615 0.560 0.615 0.598 0.632 0.582 0.638 (-)
Encoder-Decoder | ArTS (main baseline) | 0.754 0.730  0.751 0.698 0.725 0.672 0.668 0.679 0.678 0.721 0.570 | 0.695 (x0.018)
Encoder-only MLPAS (ours) 0.771 0.746  0.751 0.691 0.732 0.710 0.701 0.701 0.699 0.702 0.650 | 0.714 (+0.007)

Table 2: Trait-wise agreement with human ratings (PA: Prompt Adherence, Lang: Language, Nar: Narrativity, Org:
Organization, Conv: Conventions, WC: Word Choice, SF: Sentence Fluency).

Model Type Model P1 P2 P3 P4 Ps P6 P7 P8 AVGT (SD))
HISK 0.674 0.586 0.651 0.681 0.693 0.709 0.641 0.516 0.644 (-)
Non-Transformer | STL-LSTM 0.690 0.622 0.663 0.729 0.719 0.753 0.704 0.592 0.684 (-)
MTL-BiLSTM 0.670 0.611 0.647 0.708 0.704 0.712 0.684 0.581 0.665 (-)
Encoder-Decoder | ArTS (main baseline) | 0.708 0.706 0.704 0.767 0.723 0.776 0.749 0.603 | 0.717 (x0.025)
Encoder-only MLPAS (ours) 0.718 0.726 0.703 0.771 0.727 0.765 0.753 0.683 | 0.731 (+0.007)

Table 3: Prompt-wise agreement with human ratings (P1-P8 denote the prompts).

Model # Parameters | Overall Content PA Lang Nar Org Conv WC SF  Style Voice | AVGT (SDJ)

ArTS (t5-small) 60M 0.712 0.695 0.720 0.667 0.711 0.630 0.606 0.631 0.625 0.694 0.474 | 0.651 (+0.026)
ArTS (t5-base) 220M 0.754 0.730  0.751 0.698 0.725 0.672 0.668 0.679 0.678 0.721 0.570 | 0.695 (+0.018)
ArTS (t5-large) 770M 0.751 0.730  0.750 0.701 0.728 0.675 0.682 0.680 0.680 0.715 0.603 | 0.700 (+0.024)
MLPAS(T5-small) 3™ 0.760 0.733  0.738 0.681 0.719 0.690 0.686 0.696 0.689 0.711 0.640 | 0.704 (+0.007)
MLPAS(T5-base) 113M 0.771 0.746  0.751 0.691 0.732 0.710 0.701 0.701 0.699 0.702 0.650 | 0.714 (+0.007)
MLPAS(T5-large) 342M 0.768 0.752  0.760 0.700 0.731 0.719 0.709 0.702 0.713 0.693 0.641 | 0.717 (+0.008)

Table 4: Trait-wise agreement with human scores when using different sizes of TS backbones.

Model # Parameters | P1 P2 P3 P4 P5 P6 P7 P8 AVGT (SD))
ArTS (T5-small) 60M 0.696 0.669 0.682 0.732 0.712 0.743 0.712 0.492 | 0.680 (x£0.029)
ArTS (T5-base) 220M 0.708 0.706 0.704 0.767 0.723 0.776 0.749 0.603 | 0.717 (x0.025)
ArTS (T5-large) 770M 0.701 0.698 0.705 0.766 0.725 0.773 0.743 0.635 | 0.718 (+0.030)
MLPAS(T5-small) 3M 0.710 0.702 0.694 0.758 0.725 0.756 0.728 0.669 | 0.718 (+0.009)
MLPAS(T5-base) 113M 0.718 0.726 0.703 0.771 0.727 0.765 0.753 0.683 | 0.731 (x0.007)
MLPAS(T5-large) 342M 0.723 0.731 0.707 0.774 0.726 0.771 0.750 0.693 | 0.734 (+0.010)

Table 5: Prompt-wise agreement with human scores when using different sizes of TS backbones.

Therefore, our multi-level disentanglement suc-
cessfully captures the distinct characteristics of
each trait at a fine-granular level, minimizing the
collapse of each trait by other prompts.

In addition, MLPAS outperforms ArTS, a Trans-
former model using the encoder-decoder structure,
even though we eliminate the decoder part of the
Transformer. While ArTS does not perform well
on the "Overall" trait, which is the most impor-
tant among all traits, MLPAS exhibits the best
agreement on that trait, highlighting the potential
of using the encoder-only structure compared to
the encoder-decoder structure.

5.1.2 Model Size and Latency

A crucial aspect when using Transformers is scala-
bility, achieved by replacing the backbone with a
larger one. However, the increasing latency by the
larger model is the main bottleneck to hinders its
practical use for online essay evaluation. Hence,
we have conducted an in-depth study on the trade-
off between model size and latency.

Figure 4 illustrates the trade-off between model
size and latency (in milliseconds) over three differ-
ent sizes of T5 backbones, namely small, base, and

—4- MLPAS —#- ArTS
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400
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0 ——
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800 0

large
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(b) batch size = 4.

Number of Parameters
(a) batch size = 1.

Figure 4: Trade-off between model size (# parameters)
and latency (ms) when using two different batch sizes.

large from left to right. Notably, MLPAS exhibits
a much better trade-off between them, achieving
faster inference speed (lower latency) even with
larger size TS backbones. This improvement is
attributed to (1) the removal of the Transformer de-
coder and (2) the replacement of a computationally
heavy auto-regressive decoding task with a simple
and efficient regression task.

Tables 4 and 5 present the QWK scores of ArTS
and MLPAS, from three different sizes of back-
bones. In general, both methods show good scal-
ability w.r.t the model size, considering that they
achieve higher performance as the size of models
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Figure 5: T-SNE visualization of the traits with the same name across different prompts, with and without the
prompt-wise projection of MLPAS, Trait embeddings just before regression are used, with each prompt color coded.

Model Overall Content PA Lang Nar Org Conv WC SF  Style Voice | AVGT (SDJ)

MLPAS 0.771 0.746  0.751 0.691 0.732 0.710 0.701 0.701 0.699 0.702 0.650 | 0.714 (+0.007)
(1) w/o essay prompt 0.759 0.735  0.755 0.690 0.728 0.690 0.698 0.695 0.689 0.693 0.622 | 0.705 (+0.004)
(2) w/o prompt ID token 0.768 0.740  0.755 0.692 0.727 0.700 0.694 0.698 0.692 0.698 0.607 | 0.706 (+0.009)
(3) w/o trait tokens 0.770 0.741 0752 0.695 0.732 0.692 0.693 0.701 0.690 0.683 0.633 | 0.707 (+0.005)
(4) w/o prompt-wise projection | 0.760 0.734  0.754 0.682 0.727 0.696 0.696 0.703 0.697 0.694 0.635 | 0.707 (+0.009)

Table 6: Ablation study results based on traits.

gets larger (see the last "AVG" column for the ta-
bles). Nevertheless, our framework, MLPAS has
better scalability compared with ArTS: (1) ML-
PAS (w. T5-small) achieves the average QWK
score even better than ArTS (w. T5-large); (2) ML-
PAS (w. T5-large) is even faster than ArTS (w. T5-
small) due to our efficient framework design, i.e.,
the encoder-only Transformer; and (3) MLPAS
needs much fewer trainable parameters than ArTS,
thus leading to less computational cost. These ad-
vantages over ArTS suggest that our model offers
substantial advantages in real-world use cases.

5.1.3 Impact of Multi-level Disentanglement

We investigate the impact of multi-level disen-
tanglement by MLPAS on traits with the same
name across different prompts. Figure 5 visual-
izes the trait embedding just before the regression
layer with and without our prompt-wise projection.
We observe a distinct difference with and without
multi-level disentanglement by MLPAS. Without
the prompt-wise projection, the unique character-
istics of the trait in each prompt are likely to col-
lapse (i.e., the overlap of trait embeddings across
prompts). In contrast, the trait embeddings pro-
duced by MLPAS exhibit a clear separation across
prompts. Therefore, our multi-level disentangle-
ment indeed helps each trait embedding to keep
their individual semantic over prompts.

5.2 In-depth Analysis
5.2.1 Ablation of Each Component

We have conducted an ablation study to assess the
impact of each component in MLPAS. For the con-
struction of token-based instruction, three compo-
nents can be adjusted: (1) essay prompt embedding;
(2) prompt ID, and (3) trait tokens. In addition, re-
garding the multi-level disentanglement, we can
control (4) the use of the prompt-wise projection.
Table 6 summarizes the results when each one of
the four components is eliminated from the final
model. The ablation results indicate that every
component is essential for the best performance on
essay evaluation.

Specifically, the most significant performance
drop, on average, occurs when essay prompts are
excluded. These results demonstrate the impor-
tance of utilizing the semantic information con-
tained in prompts. Additionally, our observations
indicate that our methods are particularly effective
at leveraging the diverse semantic information con-
tained in multiple prompts more efficiently.

5.2.2 Impact of Trait Ordering

The sensitivity to the order of traits in the input is
a concern in the encoder-decoder ArTS (Do et al.,
2024), due to its auto-regressive decoding. How-
ever, with the task replaced by a simple regression,
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Figure 6: Absolute QWK score gaps before and after
reversing the order of traits in the input.

MLPAS alleviates the impact of the order on the
predicted essay scores. Figure 6 well supports this
by comparing the absolute gap of QWK scores be-
fore and after reversing the order of traits in the
input. The smaller gaps over the ArTS at both lev-
els demonstrate that MLPAS is more robust to the
trait order than ArTS.

5.2.3 Generalization for Unseen Prompts

We conduct cross-prompt experiments to evaluate
the generalization ablility of our method to unseen
prompts. We compare the performance of MLPAS
with SOTA cross-prompt AES models*. As in pre-
vious studies, we train the model on all prompts ex-
cept the target prompt. To generalize to unobserved
prompts in training, we apply prompt-wise z-score
normalization to the embeddings from prompt-wise
projection. We train the trait-wise MLP layers with
fix the normalized embeddings, to avoid overfitting
to the training dataset. In the inference step, we
assume that the target prompt ID is unknown, and
therefore use average pooled embeddings utilizing
all the trained prompt-wise projections.

As illustrated in Figure 7, our method outper-
formed recent cross-prompt AES models in both
average score and across the majority of prompts
and traits (6 out of 9 for traits and 6 out of 8 for
prompts). Our approach leverages pre-trained lan-
guage models, offering a clear advantage over ex-
isting POS tagging-based methods by utilizing the
latest advancements in language model technology.

5.24 Comparison with GPT-4

One interesting aspect is to compare MLPAS with
recent LLMs. The foundational model, like GPT-
4, is capable of performing human-like evaluation
with prompt tuning (Kojima et al., 2022; Liusie
et al., 2024; Zhang et al., 2024). Our finding is that
the naive use of LLMs is inappropriate for accurate
essay scoring due to the unclear scoring standards.

*CTS (Ridley et al., 2021), PMAES (Ridley et al., 2020),
and PLAES (Chen and Li, 2024).
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Figure 8: Agreement with human ratings using fine-
tuned small models and LLMs as essay evaluators.

More specifically, we provide relevant traits and
ranges of scores as prompts to GPT-4 for automatic
essay scoring (see Appendix for the prompt details).
Figure 8 illustrates the comparison of GPT-4’s
zero-shot evaluation performance with other mod-
els across various traits and prompts. The results
indicate that GPT-4 performs poorly compared to
other fine-tuned small language models, such as
MLPAS and ArTS, highlighting the necessity of
fine-tuning with clearly defined criteria for scoring.

6 Conclusion

In this work, we propose a multi-level disentangle-
ment framework named MLPAS for essay scor-
ing. This framework benefits from token-based
instruction and prompt- and trait-levels disentan-
glement. They help the model keep the distinct
semantic knowledge of each trait across prompts,
even if the trait is shared across multiple prompts.
Notably, MLPAS outperforms the SOTA models
while achieving improved efficiency in terms of
latency and parameter numbers. Through visual-
izations, we demonstrate the efficacy of the multi-
level disentanglement. Furthermore, our findings
underscore the limitations of zero-shot essay scor-
ing with LLMs, highlighting the effectiveness of
lightweigth fine-tuned essay scoring models.



7 Limitations

While our proposed model demonstrates signifi-
cant improvements in multi-prompt, multi-trait es-
say scoring, several limitations must be acknowl-
edged. Our experiments were conducted exclu-
sively on benchmark datasets, and the performance
and adaptability of our model in real-world ap-
plications with diverse essay topics and prompts
remain to be tested. The current evaluation does
not account for the introduction of new prompts
over time, making it essential to investigate how
well the model can adapt to these new prompts
sequentially without significant retraining. Addi-
tionally, our study did not extensively explore the
model’s performance for the condition where the
number of available essay samples for training is
limited. In many practical situations, there may be
insufficient data for certain prompts or traits, which
could affect the model’s robustness and general-
ization capabilities. Addressing these limitations
in future research will be important for enhancing
the applicability and effectiveness of the model in
real-world essay scoring scenarios.

8 Ethics Statement

Potential Risks Our study was conducted using a
constrained dataset, and our proposed method does
not guarantee impartial essay scoring outcomes.
Models for essay scoring may exhibit biases in their
predictions based on the training data employed.
The ASAP and ASAP++ datasets utilized in our
research could potentially introduce biases towards
specific demographic groups (Mathias and Bhat-
tacharyya, 2018). However, it should be noted that
demographic information was not provided in these
datasets. To mitigate privacy concerns, any person-
ally identifiable information within the essays has
been anonymized.

Use of Scientific Artifacts Our research lever-
aged open-source tools including PyTorch (Paszke
et al., 2019) and scikit-learn (Pedregosa et al.,
2011), alongside pre-trained language models such
as T5 obtained via the Huggingface (Wolf et al.,
2019) library. The experiments were conducted
using the ASAP and ASAP++ datasets, accessible
for non-commercial research purposes. For experi-
ments involving LL.Ms, we utilized OpenAI’s API
under their sharing and publication policy (OpenAl,
2022).

Use of Ai Assistants We only used ChatGPT
to provide a better expression and to refine the
wording. Some of the code used in the experiment
was written with the assistance of Copilot.
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A Additional Experiments

In this section, we present additional experiments
that were not included in the main text due to space
constraints. These include ablation study results
based on traits, exploration of diverse backbone
models, and the use of high-scoring essays as an al-
ternative to prompts. These experiments offer valu-
able insights into the characteristics of our model
and suggest directions for future research.

A.1 Ablation Study

Tables 7 and 8 presents the results of our ablation
study based on prompts. Excluding components of
the model generally led to lower performance com-
pared to using all components. Notably, omitting
the essay prompts resulted in the largest average
performance drop.

Interestingly, the Prompt Adherence (PA) trait
increased when the essay prompts were omitted.
This can be attributed to the fact that P3-P6, which
involve the Prompt Adherence trait, are source-
dependent essay types; however, the dataset’s essay
prompts lack the source text. For instance, P5 re-
quires describing the mood of a given memoir, but
the prompt does not provide the content of the mem-
oir. This lack of source text is a common issue in
P3-P6. To address these issues, we have conducted
additional experiments, which are detailed in the
next subsection.

A.2 Utilizing High-Score Essays as Prompts

To address the absence of source text in the
prompts for source-dependent essays, we have ex-
perimented with the idea of replacing the prompts
with high-scoring essays. For each prompt, we ran-
domly sample one essay with the highest overall
score and an average across all traits of at least
80% of a max score. We use these sampled essays
as proxies for the prompts to observe changes in
model performance. Additionally, we instruct GPT-
4 to rewrite these sampled essays and prompts as
high-quality essays.

Tables 9 and 10 summarize the results of this ex-
periment. "Gold Essay" refers to the sampled high-
scoring essays, while "Gold Essay GPT-4" refers to
the essays transformed by GPT-4. In both cases, the
average performance is lower than the traditional
method, but the Prompt Adherence score is higher.
These results suggest that the absence of source
text in source-dependent essay types can be miti-
gated by using other high-quality essays. We also
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observed that the decrease in average scores was
smaller when using essays rewritten by GPT-4 com-
pared to using the sampled essays as is. This find-
ing indicates that data augmentation with LLMs
can effectively fill gaps in the existing dataset.

A.3 Evaluating Performance with Various
Backbone

We have conducted multiple experiments to verify
the effectiveness of our proposed method with var-
ious Transformer backbone models. Specifically,
we applied BART (Lewis et al., 2020) and FLAN-
TS5 (Chung et al., 2022) models at different scales,
in addition to the T5-based models previously used.
Tables 11 and 12 present the results of these exper-
iments.

Our findings indicate that the proposed method
is effective across different Transformer backbone
models. Except for the BART-base model, our ap-
proach consistently achieves higher average QWK
performance compared to the ArTS using the
T5-base model. Given that the BART-base en-
coder contains approximately 70 million param-
eters, these results demonstrate the robustness and
effectiveness of our method across a broad range
of pre-trained transformer encoders.

A4 Impact of Trait Order

One of the advantages of our proposed encoder-
only model is its stability, with minimal per-
formance variation based on the order of traits.
Previous work generates trait scores sequentially
through the decoder, which inherently leads to or-
der sensitivity. Experiments have shown that cer-
tain orderings can achieve higher performance. In
contrast, our method learns representations for each
trait simultaneously through the encoder, eliminat-
ing dependence on the order of generation. Ta-
bles 13 and 14 provide specific data supporting this
claim, as illustrated in Figure 6. Our findings show
that the encoder-only approach exhibits greater sta-
bility across different trait orders. This stability is
particularly notable in the case of the minor prompt
P8. Such robustness enables us to streamline the
process of identifying the optimal trait sequence,
thereby reducing the time and resources involved
in experimentation.

A.5 LLM-based Prompt Augmentation

We conduct experiments using LLM-based prompt
augmentation to evaluate our model’s ability to
make accurate inferences across a variety of essay



prompts. Each prompt is augmented with 30 se-
mantically similar but textually different prompts
generated using GPT-3.5-turbo. This augmenta-
tion is applied during both the training and testing
phases to observe performance changes.

Tables 15 and 16 present the results of these ex-
periments. In the "Prompt Augmentation" column,
A — B indicates that prompt A was used during
the training phase, while prompt B was used during
the testing phase. Our findings show performance
drop was not significant when varying prompts dur-
ing training. Moreover, using different prompts
in the training phase sometimes led to improved
performance. Performance decreased when testing
with various prompts, but our model still achieved
higher performance than ArTS, which does not
utilize prompts. These results highlight not only
the robustness of our model but also suggest that
leveraging the power of LLMs can enhance the
performance of relatively smaller models.

A.6 Cross-prompt Setup

We provide additional explanations on how to ex-
tend MLPAS for cross-prompt setups. By leverag-
ing the prompt-wise projection and normalization
techniques, MLPAS can be adapted to handle un-
seen prompts during inference. We apply prompt-
wise z-score normalization to the embeddings pro-
duced by the prompt-wise projection. Specifically,
given the embedding Z%. for a specific prompt p,
we normalize it using:

Z?} — Hp

7
Zp = o
where p,, and o, represent the mean and standard
deviation of ZZ. for prompt p, respectively. Z2 is
the normalized embedding for the given prompt
p after normalization. This normalization ensures
that the embeddings are standardized, mitigating
the distribution gap between prompts and risk of
overfitting to the training dataset.

The trait-wise MLP layers are then trained us-
ing these normalized embeddings to predict the
trait scores. At this stage, the input embeddings
are fixed and only the trait-wise MLP layers are
updated.

gt = MLP,(Z2)

where g denotes the predicted score for trait ¢,
MLP; represents the multi-layer perceptron used
for predicting the score of trait £.
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During inference, we assume that the target
prompt ID is unknown, we use average pooling
across all the trained prompt-wise projections to
generate the embeddings. The average pooled em-
bedding is computed as:

1 K
_ 4
Zr = — ;1: 7

where K is the number of trained prompts and Z1
is the generalized embedding for unseen prompt
sample. This pooling approach allows the model to
make generalized predictions even when encoun-
tering unseen prompts.



Model Overall Content PA Lang Nar Org Conv WC SF Style Voice | AVGT (SDJ)
MLPAS 0.771 0.746  0.751 0.691 0.732 0.710 0.701 0.701 0.699 0.702 0.650 | 0.714 (+0.007)
(1) w/o essay prompt 0.759 0.735  0.755 0.690 0.728 0.690 0.698 0.695 0.689 0.693 0.622 | 0.705 (x0.004)
(2) w/o prompt ID token 0.768 0.740  0.755 0.692 0.727 0.700 0.694 0.698 0.692 0.698 0.607 | 0.706 (+0.009)
(3) w/o trait tokens 0.770 0.741 0.752  0.695 0.732 0.692 0.693 0.701 0.690 0.683 0.633 | 0.707 (x0.005)
(4) w/o prompt-wise projection | 0.760 0.734  0.754 0.682 0.727 0.696 0.696 0.703 0.697 0.694 0.635 | 0.707 (+0.009)
Table 7: Ablation study results based on traits.

Model P1 P2 P3 P4 P5 P6 P7 P8 AVGT (SD])

MLPAS 0.718 0.726 0.703 0.771 0.727 0.765 0.753 0.683 | 0.731 (+0.007)

(1) w/o essay prompt 0.714 0.724 0.703 0.765 0.717 0.768 0.746 0.650 | 0.723 (+0.009)

(2) w/o prompt ID token 0.712  0.716 0.705 0.768 0.725 0.768 0.753 0.664 | 0.726 (+0.008)

(3) w/o trait tokens 0.714 0.715 0.703 0.776 0.719 0.777 0.743 0.666 | 0.727 (+0.006)

(4) w/o prompt-wise projection | 0.715 0.716 0.703 0.767 0.716 0.767 0.743 0.662 | 0.724 (x0.008)

Table 8: Ablation study results based on prompts.
Model Overall Content PA Lang Nar Org Conv WC SF  Style Voice AVG (SD)
Original Prompt 0.771 0.746  0.751 0.691 0.732 0.710 0.701 0.701 0.699 0.702 0.650 | 0.714 (x0.007)
Gold Essay 0.766 0.737  0.757 0.694 0.728 0.692 0.694 0.701 0.686 0.676 0.610 | 0.704 (x0.015)
Gold Essay GPT-4 | 0.764 0.741 0.757 0.693 0.727 0.698 0.699 0.701 0.697 0.711 0.644 | 0.712 (£0.006)
Table 9: Trait-wise prompt replacement experiment results.

Model P1 P2 P3 P4 P5 P6 P7 P8 AVG (SD)

Original Prompt 0.718 0.726 0.703 0.771 0.727 0.765 0.753 0.683 | 0.731 (£0.007)

Gold Essay 0.711 0.712 0.707 0.769 0.727 0.765 0.740 0.666 | 0.725 (x0.012)

Gold Essay GPT-

410712 0.722 0.699 0.766 0.723 0.773 0.750 0.675

0.728 (+0.009)

Table 10: Prompt-wise prompt replacement experiment results.

Backbone Overall Content PA Lang Nar Org Conv WC SF  Style Voice | AVGT (SDJ)

T5-small 0.760 0.733  0.738 0.681 0.719 0.690 0.686 0.696 0.689 0.711 0.640 | 0.704 (+0.007)
T5-base 0.771 0.746  0.751 0.691 0.732 0.710 0.701 0.701 0.699 0.702 0.650 | 0.714 (+0.007)
T5-large 0.768 0.752  0.760 0.700 0.731 0.719 0.709 0.702 0.713 0.693 0.641 | 0.717 (£0.008)
BART-large 0.742 0.733  0.744 0.674 0.713 0.679 0.678 0.687 0.692 0.709 0.634 | 0.699 (+0.009)
BART-base 0.754 0.711  0.733 0.660 0.697 0.654 0.655 0.666 0.657 0.681 0.611 | 0.680 (+0.010)
FLAN-TS-small | 0.760 0.728 0.742 0.674 0.720 0.679 0.666 0.681 0.670 0.719 0.635 | 0.698 (+0.009)
FLAN-TS5-base 0.761 0.730  0.748 0.689 0.726 0.672 0.678 0.685 0.673 0.695 0.607 | 0.697 (+0.009)
FLAN-TS-large | 0.776 0.745 0.760 0.686 0.721 0.700 0.702 0.689 0.698 0.707 0.645 | 0.712 (£0.005)

Table 11: Trait-wise QWK performance of MLPAS with various backbone models.

Backbone P1 P2 P3 P4 P5 P6 P7 P8 AVGT (SD))
T5-small 0.710 0.702 0.694 0.758 0.725 0.756 0.728 0.669 | 0.718 (x0.009)
T5-base 0.718 0.726 0.703 0.771 0.727 0.765 0.753 0.683 | 0.731 (x0.007)
T5-large 0.723 0.731 0.707 0.774 0.726 0.771 0.750 0.693 | 0.734 (x0.010)
BART-large 0.687 0.694 0.690 0.762 0.703 0.745 0.750 0.671 | 0.713 (x0.004)
BART-base 0.681 0.665 0.678 0.746 0.715 0.743 0.728 0.635 | 0.699 (x0.006)
FLAN-T5-small | 0.711 0.690 0.689 0.752 0.725 0.757 0.747 0.639 | 0.714 (x0.008)
FLAN-T5-base | 0.704 0.708 0.708 0.768 0.720 0.759 0.747 0.623 | 0.717 (x0.009)
FLAN-T5-large | 0.719 0.711 0.706 0.775 0.722 0.766 0.762 0.675 | 0.729 (+0.008)

Table 12: Prompt-wise QWK performance of MLPAS with various backbone models
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Model Overall Content PA Lang Nar Org Conv WC SF  Style Voice | AVGT(SDJ)
ArTS 0.754 0.730  0.751 0.698 0.725 0.672 0.668 0.679 0.678 0.721 0.570 | 0.695 (+0.018)
ArTS-rev 0.739 0.724  0.749 0.687 0.718 0.667 0.658 0.660 0.666 0.711 0.562 | 0.686 (+0.021)
MLPAS 0.771 0.746  0.751 0.691 0.732 0.710 0.701 0.701 0.699 0.702 0.650 | 0.714 (+0.007)
MLPAS-rev 0.763 0.742  0.754 0.680 0.726 0.701 0.695 0.705 0.698 0.706 0.660 | 0.712 (+0.012)
ArTS Gap 0.015 0.006  0.002 0.011 0.007 0.005 0.010 0.019 0.012 0.010 0.008 0.009 (-)
MLPAS Gap | 0.009 0.004  0.003 0.011 0.006 0.009 0.006 0.004 0.002 0.004 0.010 0.002 (-)

Table 13: Traits-wise results for the trait ordering. "-rev" indicates traits order reversing.

Model P1 P2 P3 P4 P5 P6 P7 P8 AVGT (SD))
ArTS 0.696 0.669 0.682 0.732 0.712 0.743 0.712 0.492 | 0.680 (+0.029)
ArTS-rev 0.700 0.683 0.702 0.763 0.730 0.767 0.734 0.586 | 0.708 (+0.027)
MLPAS 0.718 0.726 0.703 0.771 0.727 0.765 0.753 0.683 | 0.731 (x0.007)
MLPAS-rev | 0.715 0.717 0.691 0.770 0.724 0.766 0.750 0.679 | 0.726 (+0.008)
ArTS Gap 0.004 0.014 0.020 0.031 0.018 0.024 0.022 0.094 0.028 (-)
MLPAS Gap | 0.003 0.009 0.012 0.001 0.003 0.001 0.003 0.005 0.004 (-)

Table 14: Prompt-based results for the trait ordering. "-rev" indicates traits order reversing.

Model ‘ Prompt Augmentation ‘ Overall Content PA Lang Nar Org Conv WC SF  Style Voice ‘ AVGT (SD))
origin — origin 0.760 0.733  0.738 0.681 0.719 0.690 0.686 0.696 0.689 0.711 0.640 | 0.704 (£0.007)
MLPAS GPT-3.5-turbo — origin 0.762 0.734 0.740 0.686 0.717 0.690 0.693 0.697 0.693 0.688 0.644 | 0.704 (£0.009)
(T5-small) origin — GPT-3.5-turbo 0.751 0.730  0.738 0.674 0.718 0.681 0.675 0.688 0.682 0.657 0.585 | 0.689 (+0.007)
GPT-3.5-turbo — GPT-3.5-turbo | 0.756 0.731 0.739 0.686 0.713 0.689 0.694 0.697 0.701 0.679 0.649 | 0.703 (£0.013)

Table 15: Performance comparison on traits with LLM-based prompt augmentation.

Model |  Prompt Augmentation | PI P2 P3 P4 P5 P6 P7 P8 | AVG?(SD))
origin — origin 0710 0702 0.694 0758 0.725 0.756 0.728 0.669 | 0.718 (x0.009)

MLPAS GPT-3.5-turbo — origin 0715 0709 0.689 0754 0.726 0753 0.737 0.675 | 0.720 (x0.008)
(T5-small) origin — GPT-3.5-turbo 0708 0711 0.685 0745 0.720 0750 0.723 0.646 | 0.711 (x0.005)
GPT-3.5-turbo — GPT-3.5-turbo | 0.706 0.716 0.686 0.752 0.720 0.753 0.726 0.684 | 0.718 (£0.013)

Table 16: Performance comparison on prompts with LLM-based prompt augmentation.
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B Experiment Prompts for GPT-4

Here are the prompts used in our experiment to

evaluate GPT-4’s zero-shot essay scoring capability.

The prompts included the essay scoring instruction,
the essay text, and the specific traits, along with
their respective maximum and minimum scores.
Below are some examples of the prompts:
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Evaluate the following essay based on the given
traits and their score ranges. Provide only numeric
scores without any explanation. Format the scores
as "Trait: Score’ for each trait.

"Patience, whats the first word that comes to
your mind when you hear that word? Waiting? 1
know that’s the main word in my mind. Here is a
story when I was very patient. Every kid dreads
meap testing it was @DATEI1 and we have to be
completely silent. It’s hard enough to be quite. But
it’s harder when your next to your friends, and
your a girl. We had to do meap writing, writing is
the most wrost for me. But when I was done I felt
really good and quiet for everyone else. That’s the
story when I had to be patient."

Overall: 0 to 30
Content: 0 to 6
Organization: 0 to 6
Conventions: 0 to 6
Style: 0 to 6

Evaluate the following essay based on the given
traits and their score ranges. Provide only numeric
scores without any explanation. Format the scores
as "Trait: Score’ for each trait.

The author concluded the story in this manner
so that the audience would feel sympathy and
understanding for the things that Saeng and her
family were going through in this hard time. It
makes the reader feel sympathy for Saeng because
all she can think of to make herself feel better is
her home town and how she got taken away.

Overall: 0 to 3

Content: 0 to 3
Prompt_adherence: 0 to 3
Language: 0 to 3
Narrativity: 0 to 3
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