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Abstract001

The application of language models in essay002
scoring has gained significant attention in re-003
cent years, typically evaluating a single model004
across multiple prompts. However, in a multi-005
prompt setup, it is crucial to understand the006
varying aspects of different prompts. In such007
settings, there are notable variations even in a008
trait with the same name across prompts, often009
overlooked in existing research. We propose010
introducing multi-level disentanglement into a011
Transformer encoder-only framework for essay012
scoring, preserving fine-grained semantic dif-013
ferences across such traits. Our method not014
only improves the quality of essay scoring, but015
also reduces memory usage and latency. Exper-016
imental results demonstrate that our framework017
achieves the highest agreement with human es-018
say ratings over four SOTA approaches. The019
codes will become available upon acceptance.020

1 Introduction021

Recently, automated essay scoring (AES) has gar-022

nered significant attention due to advancements023

in various language models. In particular, meth-024

ods leveraging pre-trained BERT-based models025

have been proposed, demonstrating superior perfor-026

mance compared to traditional approaches (Yang027

et al., 2020; Wang et al., 2022; Jiang et al., 2023).028

However, the majority of these studies focus on029

scoring for a single prompt or a single overall score.030

To address these limitations, several multi-trait scor-031

ing methods have been developed (Mathias and032

Bhattacharyya, 2020a; Ridley et al., 2021; Kumar033

et al., 2022; Do et al., 2023). The latest approaches034

employ pre-trained Transformer models with an035

encoder-decoder structure to learn the relationships036

between traits in a multi-prompt, multi-trait essay037

scoring (Do et al., 2024). This model generates038

text including scores in a sequence-to-sequence039

(Seq2Seq) manner, achieving better performance040

in multi-prompt, multi-trait essay scoring.041

[Content Rubric of P1, P2, P8] 
This property checks for the amount of content and ideas present in the essay.
Score 6: The writing is exceptionally clear, focused, and interesting. It holds the reader’s attention throughout. 
Main ideas stand out and are developed by strong support and rich details suitable to audience and purpose. …

[Content Rubric of P5, P6] 
Score 4: The response answers the question asked of it. Supporting evidence is specific to the memoir is used to 
support the points the writer makes. …

[Content Rubric of P7] 
Score 3: Tells a story with ideas that are clearly focused on the topic and are thoroughly developed with specific, 
relevant details. …

Figure 1: The evaluation criteria for content trait vary
depending on the prompts.
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Figure 2: T-SNE visualisation of the embeddings ex-
tracted from the language model trained to evaluate
content scores. (Colors: Left-Score, Right-Prompt)

In these studies, traits have been simply treated 042

as equivalent if the names are identical across 043

prompts. Yet, this approach overlooks the fact that 044

different prompts may have different evaluation 045

criteria for traits, or different semantic factors em- 046

bedded in the essay that affect the score. Figure 1 047

shows that even the same trait can contains different 048

evaluation criteria depending on the prompt. Figure 049

2 illustrates the gap in essay embedding distribu- 050

tions of the same trait (i.e., content) between essay 051

prompts. Even essays with high scores on the same 052

trait, the embedding distributions vary significantly 053

depending on the prompt. Hence, overlooking such 054

differences and treating representations as if they 055

share the same distribution over different prompts 056

collapses prompt-specific information. 057

Despite that a recent work proposed prompt- 058

wise disentanglement in multi-prompt essay scor- 059

ing (Jiang et al., 2023), it still lacks granularity 060

because it only evaluates the overall trait and over- 061

looks the variations in how the same trait mani- 062

fests across different prompts in its disentangle- 063

ment phase. Therefore, this semantic variation 064

over the same traits underscores the necessity of 065
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Figure 3: Overview of MLPAS: Token-based instruction provides prompt-specific information about the target
essay to guide the model in outputting the essay score for each trait token, while multi-level disentanglement
dynamically adjusts the projection layers for fine-grained, multi-level disentanglement over prompts and traits.

treating them differently at a fine-grained level ac-066

cording to each prompt. In addition, the state-of-067

the-art Seq2Seq essay scoring framework is not068

appropriate for achieving trait-level disentangle-069

ment. It turns out that a strong dependency be-070

tween traits does exist in score generation. The071

order of traits generated by auto-regressive decod-072

ing significantly affects the scoring performance073

of the framework (Do et al., 2024). Besides, the074

Seq2Seq fashion results in high latency due to the075

need to maintain a Transformer decoder in addition076

to the encoder, and its expensive inference cost of077

auto-regressive decoding.078

In this paper, we propose a novel multi-level dis-079

entanglement framework for multi-prompt essay080

scoring, MLPAS (Multi-Level Prompt-Adaptive081

Multi-trait Essay Scoring), designed to achieve fine-082

grained disentanglement at both prompt- and trait-083

levels. In this framework, as shown in Figure 3,084

we introduce the notion of token-based instruction,085

a set of instruction tokens as input to the Trans-086

former encoder. The semantic embedding of the087

prompt text is extracted by a frozen text embedding088

model, followed by the concatenation with a learn-089

able prompt ID token. They are then concatenated090

with multiple learnable trait tokens as the final in-091

struction input. It provides prompt-specific infor-092

mation about the target essay to guide the model093

in outputting the essay score for each trait token.094

Furthermore, we leverage multi-level disentangle-095

ment, which introduces prompt-wise projection and096

trait-wise predictions to select the most suitable pa-097

rameters for the target prompt and traits. Here, the098

proposed method enables fine-grained disentangle-099

ment at both prompt- and trait-levels by adjusting 100

the projection layers on demand. 101

While each component is simple, the merger of 102

them facilitates fine-grained, multi-level disentan- 103

glement with an efficient encoder-only Transformer 104

architecture. This advantage of our framework en- 105

ables a more accurate essay scoring with low la- 106

tency. Our main contributions are: 107

• We propose a novel multi-level disentangle- 108

ment framework MLPAS for multi-prompt, 109

multi-trait essay scoring, enabling fine- 110

grained disentanglement at both prompt- and 111

trait-levels. 112

• MLPAS demonstrates the highest agreement 113

with human essay ratings compared to exist- 114

ing SOTA essay scoring methods. 115

• We experimentally demonstrate that our 116

method can achieve better performance even 117

without a decoder, while also being more effi- 118

cient in terms of parameter count and latency. 119

2 Related Work 120

2.1 Single-prompt Essay Scoring 121

Early research on AES primarily focused on 122

prompt-specific essay scoring, training and test- 123

ing each model for each essay prompt (Tay et al., 124

2018; Dong et al., 2017; Uto et al., 2020). Re- 125

cently, pre-trained Transformer models, such as 126

BERT (Devlin et al., 2019), have been successfully 127

applied to prompt-specific essay scoring, yielding 128

significant improvements in overall scoring accu- 129

racy (Yang et al., 2020; Wang et al., 2022). For a 130
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more precise scoring, several studies have proposed131

to use multiple traits in addition to the single overall132

score (Mathias and Bhattacharyya, 2018, 2020b;133

Hussein et al., 2020). Specifically, Kumar et al.134

(2022) proposed multi-task learning with BERT-135

based architectures. However, it requires training136

separate models for each trait, leading to substan-137

tial resource inefficiency.138

2.2 Multi-prompt Essay Scoring139

In real-world essay scoring, there are many types140

of essay prompts, and it is inefficient to create a141

separate model for each prompt. To address this is-142

sue, multi-prompt essay scoring models have been143

proposed that can evaluate essays from multiple144

prompts simultaneously. Multi-prompt essay scor-145

ing can be categorized into cross-prompt setting146

and prompt-adaptive setting.147

The cross-prompt setup entails applying the eval-148

uation model trained on seen prompts to unseen149

ones, thereby generalizing its effectiveness across150

various prompts. There have been numerous prior151

studies in this setup, but most of them have focused152

solely on evaluating a single overall score (Ridley153

et al., 2020; Cao et al., 2020; Jiang et al., 2023).154

A few studies have expanded it to mulit-trait scor-155

ing, yet they primarily focused on utilizing Part-Of-156

Speech(POS) tagging, while neglecting semantic157

distinctions at both the prompt- and trait-levels (Ri-158

dley et al., 2021; Do et al., 2023; Chen and Li,159

2023, 2024).160

The prompt-adaptive setup involves adjusting161

scoring criteria based on the specific prompt to162

enhance the accuracy of essay evaluation (Mathias163

and Bhattacharyya, 2020a; Kumar et al., 2022).164

The most recent work (Do et al., 2024) uses a pre-165

trained Seq2Seq Transformer, thereby achieving166

higher performance in multi-prompt, multi-trait167

essay scoring. Nevertheless, they are inadequate168

for capturing the fine-grained level of semantic169

difference across prompts and traits, due to their170

text generation instability, with high latency, posing171

an extra challenge for an efficient essay scoring.172

In this study, our scope is to develop an effi-173

cient encoder-only essay scoring framework, which174

considers prompt- and trait-level semantic differ-175

ences with multi-level disentanglement, under the176

prompt-adaptive setup.177

3 Preliminaries178

A prior study utilized the pre-trained encoder-179

decoder Transformer to generate trait scores in an180

auto-regressive manner (Do et al., 2024). In the 181

study, only essay prompt ID and essay tokens were 182

used as inputs to the Transformer encoder, and then 183

the decoder generated a single text sequence con- 184

sisting of trait and score pairs as: 185

Ŝ = Dec(Enc([Pid|E])) ∈ Rv. (1) 186

Here, Ŝ denotes the generated text sequence, Dec 187

denotes the Transformer decoder, and Pid denotes 188

the essay prompt ID. This text sequence is parsed 189

to predict the final trait scores as: 190

Ŷ = g(Ŝ) ∈ Rn. (2) 191

Here, g is a parser that extracts a scalar value corre- 192

sponding to each trait score from the text sequence. 193

This method outperformed existing other essay 194

scoring methods, but overlooked the representa- 195

tion disentanglement, and also suffered from high 196

latency and additional parameters due to its auto- 197

regressive nature. To address these limitations, we 198

propose an encoder-only model that facilitates fine- 199

grained disentanglement at both prompt- and trait- 200

levels and replaces the complicated auto-regressive 201

task with a simple regression task for high effec- 202

tiveness and efficiency. 203

4 Method: MLPAS Framework 204

4.1 Overview 205

We adopt an encoder-only architecture combined 206

with multi-level disentanglement to achieve bet- 207

ter performance with reduced latency and fewer 208

parameters. We use a pre-trained Transformer en- 209

coder to extract trait-wise features from prompts 210

and essays. The three token sets are concatenated 211

into an integrated sequence S∗. 212

S∗ = [P ∗|T |E] ∈ R(2+n+m)×d. (3) 213

Here, P ∗ represents the concatenated prompt em- 214

bedding and prompt ID token embedding. The 215

Transformer encoder processes S∗ to generate the 216

representation Z∗: 217

Z∗ = Enc(S∗) ∈ R(2+n+m)×d. (4) 218

The representation Z∗, which integrates the prompt, 219

trait tokens, and essay, enables efficient multi-trait 220

score prediction by passing the target trait represen- 221

tation set Z∗
T through a non-auto-regressive predic- 222

tion function f , denoted as: 223

Ŷ = f(ZT ) ∈ Rn×d. (5) 224
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This process enables the model to generate predic-225

tions for the target traits based on the extracted in-226

formation from the prompt, essay, and target traits.227

Unlike the previous method described in Eq. (1)228

and Eq. (2), we do not follow the auto-regressive229

approach to predict final scores, which then allows230

us to predict each trait in parallel via regression.231

4.2 Main Components232

Token-based Instruction Prior studies often233

combine essay text and prompt IDs into a single234

sequence (Do et al., 2024), but this approach strug-235

gles to utilize semantic information in the prompts236

and learning distinct trait-specific representations.237

To address these limitations, we introduce three238

types of instruction tokens. The first type reflects239

the semantic information contained in the prompt240

through prompt embedding, the second type refers241

to special tokens assigned according to the prompt242

ID, and the third type consists of trait tokens, cru-243

cial for capturing trait-specific information. We244

assign a special token for each trait, and if the trait245

is not relevant to the prompt, it is masked with an246

NA token.247

The prompt embedding and the prompt ID token248

together form P ∗ as:249

P ∗ = [pemb∥pid] ∈ R2×d. (6)250

The fixed pre-traiend Transformer encoder and av-251

erage pooling are used to obtain prompt embedding252

pemb ∈ Rd. This approach can be applied regard-253

less of the length of the prompt, because it needs254

a single extracted token, and has the advantage of255

being able to extract more fine-grained informa-256

tion by calculating the attentions with the prompt257

embedding at the essay text token level.258

The final input sequence is formalized as:259

S∗ = [ pemb, pid︸ ︷︷ ︸
Prompt Tokens

, t1, t2, . . . , tn︸ ︷︷ ︸
Trait Tokens

, e1, e2, . . . , em︸ ︷︷ ︸
Essay Tokens

].

(7)260

This input sequence is fed into the Transformer261

encoder to get the sequence representation.262

Multi-level Disentanglement We design a multi-263

level disentanglement approach to predict trait264

scores from trait token embeddings1 to consider265

prompt-wise, trait-wise differentiation. We dynam-266

ically select the projection layer for multi-level dis-267

entanglement. It involves a two-step process: (1)268

1The subset of the trait tokens in Eq. (8) from the Trans-
former encoder’s output in Eq. (4).

Prompt-wise projection and (2) Trait-wise multi- 269

layer perceptrons (MLPs). 270

Firstly, we extract the trait token embeddings 271

from the sequence embedding Z∗. Let Z∗
T ∈ Rn×d 272

represent the extracted trait token embeddings and 273

zi ∈ Rd represent the embedding of trait ti: 274

Z∗
T = [z1, z2, . . . , zn]. (8) 275

Prompt-wise projection captures the distinct char- 276

acteristics of each prompt within the trait embed- 277

dings. Then, for each prompt, unique weights and 278

biases are utilized: 279

Zp
T = W p · Z∗

T + bp. (9) 280

Here, W p ∈ Rd×d and bp ∈ Rd represent the 281

weights and biases for projecting a specific prompt 282

p, a set of specified projection parameters are dy- 283

namically selected based on the given prompts2. 284

Trait-wise MLPs predicts the scores for each trait 285

from the adapted trait embeddings: 286

ŷt = MLPt(z
p
t ). (10) 287

In the equation, MLPt represents the multi-layer 288

perceptron used for predicting the score of trait t, 289

zpt is the adapted embedding of trait t, and ŷt is the 290

predicted score of trait t. 291

These components capture trait variability across 292

prompts by addressing both prompt-specific and 293

trait-specific differences, leading to superior perfor- 294

mance in multi-prompt, multi-trait essay scoring. 295

4.3 Model Training 296

We train our model in a multi-prompt, multi-trait 297

setting, consistent with prior studies (Mathias and 298

Bhattacharyya, 2020a; Kumar et al., 2022; Do et al., 299

2024). The training set comprises a mixture of 300

essays from various prompts, each evaluated on 301

multiple traits. 302

We update the model by calculating the Mean 303

Squared Error (MSE) loss for each trait, masking 304

the non-existent traits during the process: 305

LMSE =
1

N

N∑
i=1

1∑T
t=1mi,t

T∑
t=1

mi,t(ŷi,t − yi,t)
2.

(11) 306

N is the total number of samples and T is the total 307

number of traits. For each sample i and trait t, 308

2Similar to the recent work, we assumes that prompt ID is
given, while it can be extended to the cross-prompt setting by
averaging the projections of trained prompts. We demonstrate
the generalization ability in Section 5.2.3.
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ŷi,t denotes the predicted score; yi,t the true score.309

The mask mi,t is 1 if trait t exists for sample i310

and 0 otherwise. This loss function ensures that311

only the traits present for each sample contribute312

to the loss, allowing the model to learn effectively313

from the data with differences in trait sets between314

prompts. We normalize scores to a range of 0 to315

10 for consistency across prompts and traits. For316

evaluation using the Quadratic Weighted Kappa317

(QWK) metric, we then map these scores back to318

their original trait-specific ranges.319

5 Evaluation320

Dataset We use the well-known ASAP and321

ASAP++ datasets (Mathias and Bhattacharyya,322

2018), each of which consists of a set of English es-323

says on eight prompts written by U.S. high school324

students in grades 7 through 10. We combine the325

ASAP dataset with the ASAP++ dataset to utilize326

the evaluation trait scores for all prompts. Con-327

sistent with prior studies (Kumar et al., 2022; Do328

et al., 2024), we use the same source data and ran329

our experiments using the same 5-fold split. Table330

1 shows the dataset compositions, revealing signifi-331

cant overlaps in traits across distinct domains.332

Compared Baselines We evaluate our model333

against several existing methods in multi-prompt,334

multi-trait settings. STL-LSTM (Dong et al.,335

2017) is an LSTM-CNN-based model for essay336

scoring in single-task learning scenarios. HISK337

(Cozma et al., 2018) utilizes a histogram inter-338

section string kernel with a support vector regres-339

sor. MTL-BiLSTM (Kumar et al., 2022) em-340

ploys a BiLSTM architecture for essay scoring341

in multi-task learning setups. ArTS (Do et al.,342

2024) is our main baseline, a recently proposed T5-343

based encoder-decoder model specifically designed344

for automated essay scoring and is considered a345

top-performing baseline. We compare the perfor-346

mance of our model with that of these baselines347

to demonstrate the effectiveness of our model in348

multi-prompt, multi-trait essay scoring.349

Training Configuration We use only the en-350

coder of the pre-trained T5 model (Raffel et al.,351

2020) to initialize the encoder of MLPAS and ex-352

tract prompt embeddings. Regarding training, we353

set the early stop tolerance to 5, the batch size to354

{8, 16}, the learning rate to {1e-4, 2e-4}, and the355

total epochs to 20. We run our experiments on an356

NVIDIA A100 GPU with 40GB VRAM.357

Prompt Essay Domain # Essays Available Traits
1 Computer usage 1,785 Over, Cont, WC, Org, SF, Conv
2 Library censorship 1,800 Over, Cont, WC, Org, SF, Conv
3 Cyclist setting 1,726 Over, Cont, PA, Nar, Lang
4 Story analysis 1,772 Over, Cont, PA, Nar, Lang
5 Memoir mood 1,805 Over, Cont, PA, Nar, Lang
6 Empire State Building 1,800 Over, Cont, PA, Nar, Lang
7 Patience story 1,569 Over, Cont, Org, Conv, Style
8 Laughter importance 723 Over, Cont, WC, Org, SF, Conv, Voice

Table 1: Overview of multi-prompt, multi-trait AS-
AP/ASAP++ datasets used in experiments. Over: Over-
all, Cont: Content, WC: Word Choice, Org: Organi-
zation, SF: Sentence Fluency, Conv: Conventions, PA:
Prompt Adherence, Nar: Narrativity, Lang: Language.

Evaluation Metric We leverage the quadratic 358

weighted kappa (QWK), a widely adopted metric 359

in existing AES studies (Ke and Ng, 2019; Ramesh 360

and Sanampudi, 2022). QWK is renowned for 361

its effectiveness in capturing agreement between 362

human-rated and model-predicted scores. We re- 363

port the average QWK of the trained model, which 364

performs best on the validation dataset. To ensure 365

a comprehensive evaluation, we report the QWK 366

scores aggregated for each trait, i.e., trait-wise com- 367

parison, and for each prompt, i.e., prompt-wise 368

comparison. 369

5.1 Main Results 370

5.1.1 Agreement with Human Rating 371

Tables 2 and 3 present the results of the agreement 372

between automated essay evaluators and human 373

ratings at two different levels: one for trait-wise 374

and the other for prompt-wise. Overall, the results 375

show that MLPAS surpasses other models in most 376

cases (9 out of 11 for trait-wise and 6 out of 8 377

for prompt-wise). While it does not achieve the 378

highest score in some cases (2 for trait-wise and 2 379

for prompt-wise), the performance gap is marginal. 380

We particularly observe significant improvement 381

in P8 (the minority w.r.t the number of training ex- 382

amples)3. This improvement is mainly attributed 383

to the robustness of MLPAS against bias from ma- 384

jority prompts (P1-P7), caused by their traits over- 385

lapping with those in P8. In the case of "Voice", it 386

is not directly affected by the major prompts, but 387

may be indirectly influenced through the overlap- 388

ping traits in P8 (e.g., "Content" in P1 influencing 389

"Content" in P8, which in turn impacts "Voice" in 390

P8). Our proposed method effectively reduces inter- 391

prompt and inter-trait interference, which suggests 392

that we can achieve performance improvements in 393

these more subtle prompts and traits. 394

3On P8, the performance increase by 0.08 both for the
non-overlapping trait (e.g., “Voice”) and for traits that overlap
with those in the major prompts.
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Model Type Model Overall Content PA Lang Nar Org Conv WC SF Style Voice AVG↑ (SD↓)
HISK 0.718 0.679 0.697 0.605 0.659 0.610 0.527 0.579 0.553 0.609 0.489 0.611 (-)

Non-Transformer STL-LSTM 0.750 0.707 0.731 0.640 0.699 0.649 0.605 0.621 0.612 0.659 0.544 0.656 (-)
MTL-BiLSTM 0.764 0.685 0.701 0.604 0.668 0.615 0.560 0.615 0.598 0.632 0.582 0.638 (-)

Encoder-Decoder ArTS (main baseline) 0.754 0.730 0.751 0.698 0.725 0.672 0.668 0.679 0.678 0.721 0.570 0.695 (±0.018)
Encoder-only MLPAS (ours) 0.771 0.746 0.751 0.691 0.732 0.710 0.701 0.701 0.699 0.702 0.650 0.714 (±0.007)

Table 2: Trait-wise agreement with human ratings (PA: Prompt Adherence, Lang: Language, Nar: Narrativity, Org:
Organization, Conv: Conventions, WC: Word Choice, SF: Sentence Fluency).

Model Type Model P1 P2 P3 P4 P5 P6 P7 P8 AVG↑ (SD↓)
HISK 0.674 0.586 0.651 0.681 0.693 0.709 0.641 0.516 0.644 (-)

Non-Transformer STL-LSTM 0.690 0.622 0.663 0.729 0.719 0.753 0.704 0.592 0.684 (-)
MTL-BiLSTM 0.670 0.611 0.647 0.708 0.704 0.712 0.684 0.581 0.665 (-)

Encoder-Decoder ArTS (main baseline) 0.708 0.706 0.704 0.767 0.723 0.776 0.749 0.603 0.717 (±0.025)
Encoder-only MLPAS (ours) 0.718 0.726 0.703 0.771 0.727 0.765 0.753 0.683 0.731 (±0.007)

Table 3: Prompt-wise agreement with human ratings (P1-P8 denote the prompts).

Model # Parameters Overall Content PA Lang Nar Org Conv WC SF Style Voice AVG↑ (SD↓)
ArTS (t5-small) 60M 0.712 0.695 0.720 0.667 0.711 0.630 0.606 0.631 0.625 0.694 0.474 0.651 (±0.026)
ArTS (t5-base) 220M 0.754 0.730 0.751 0.698 0.725 0.672 0.668 0.679 0.678 0.721 0.570 0.695 (±0.018)
ArTS (t5-large) 770M 0.751 0.730 0.750 0.701 0.728 0.675 0.682 0.680 0.680 0.715 0.603 0.700 (±0.024)
MLPAS(T5-small) 37M 0.760 0.733 0.738 0.681 0.719 0.690 0.686 0.696 0.689 0.711 0.640 0.704 (±0.007)
MLPAS(T5-base) 113M 0.771 0.746 0.751 0.691 0.732 0.710 0.701 0.701 0.699 0.702 0.650 0.714 (±0.007)
MLPAS(T5-large) 342M 0.768 0.752 0.760 0.700 0.731 0.719 0.709 0.702 0.713 0.693 0.641 0.717 (±0.008)

Table 4: Trait-wise agreement with human scores when using different sizes of T5 backbones.

Model # Parameters P1 P2 P3 P4 P5 P6 P7 P8 AVG↑ (SD↓)
ArTS (T5-small) 60M 0.696 0.669 0.682 0.732 0.712 0.743 0.712 0.492 0.680 (±0.029)
ArTS (T5-base) 220M 0.708 0.706 0.704 0.767 0.723 0.776 0.749 0.603 0.717 (±0.025)
ArTS (T5-large) 770M 0.701 0.698 0.705 0.766 0.725 0.773 0.743 0.635 0.718 (±0.030)
MLPAS(T5-small) 37M 0.710 0.702 0.694 0.758 0.725 0.756 0.728 0.669 0.718 (±0.009)
MLPAS(T5-base) 113M 0.718 0.726 0.703 0.771 0.727 0.765 0.753 0.683 0.731 (±0.007)
MLPAS(T5-large) 342M 0.723 0.731 0.707 0.774 0.726 0.771 0.750 0.693 0.734 (±0.010)

Table 5: Prompt-wise agreement with human scores when using different sizes of T5 backbones.

Therefore, our multi-level disentanglement suc-395

cessfully captures the distinct characteristics of396

each trait at a fine-granular level, minimizing the397

collapse of each trait by other prompts.398

In addition, MLPAS outperforms ArTS, a Trans-399

former model using the encoder-decoder structure,400

even though we eliminate the decoder part of the401

Transformer. While ArTS does not perform well402

on the "Overall" trait, which is the most impor-403

tant among all traits, MLPAS exhibits the best404

agreement on that trait, highlighting the potential405

of using the encoder-only structure compared to406

the encoder-decoder structure.407

5.1.2 Model Size and Latency408

A crucial aspect when using Transformers is scala-409

bility, achieved by replacing the backbone with a410

larger one. However, the increasing latency by the411

larger model is the main bottleneck to hinders its412

practical use for online essay evaluation. Hence,413

we have conducted an in-depth study on the trade-414

off between model size and latency.415

Figure 4 illustrates the trade-off between model416

size and latency (in milliseconds) over three differ-417

ent sizes of T5 backbones, namely small, base, and418
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(a) batch size = 1. (b) batch size = 4.

Figure 4: Trade-off between model size (# parameters)
and latency (ms) when using two different batch sizes.

large from left to right. Notably, MLPAS exhibits 419

a much better trade-off between them, achieving 420

faster inference speed (lower latency) even with 421

larger size T5 backbones. This improvement is 422

attributed to (1) the removal of the Transformer de- 423

coder and (2) the replacement of a computationally 424

heavy auto-regressive decoding task with a simple 425

and efficient regression task. 426

Tables 4 and 5 present the QWK scores of ArTS 427

and MLPAS, from three different sizes of back- 428

bones. In general, both methods show good scal- 429

ability w.r.t the model size, considering that they 430

achieve higher performance as the size of models 431
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Figure 5: T-SNE visualization of the traits with the same name across different prompts, with and without the
prompt-wise projection of MLPAS, Trait embeddings just before regression are used, with each prompt color coded.

Model Overall Content PA Lang Nar Org Conv WC SF Style Voice AVG↑ (SD↓)
MLPAS 0.771 0.746 0.751 0.691 0.732 0.710 0.701 0.701 0.699 0.702 0.650 0.714 (±0.007)
(1) w/o essay prompt 0.759 0.735 0.755 0.690 0.728 0.690 0.698 0.695 0.689 0.693 0.622 0.705 (±0.004)
(2) w/o prompt ID token 0.768 0.740 0.755 0.692 0.727 0.700 0.694 0.698 0.692 0.698 0.607 0.706 (±0.009)
(3) w/o trait tokens 0.770 0.741 0.752 0.695 0.732 0.692 0.693 0.701 0.690 0.683 0.633 0.707 (±0.005)
(4) w/o prompt-wise projection 0.760 0.734 0.754 0.682 0.727 0.696 0.696 0.703 0.697 0.694 0.635 0.707 (±0.009)

Table 6: Ablation study results based on traits.

gets larger (see the last "AVG" column for the ta-432

bles). Nevertheless, our framework, MLPAS has433

better scalability compared with ArTS: (1) ML-434

PAS (w. T5-small) achieves the average QWK435

score even better than ArTS (w. T5-large); (2) ML-436

PAS (w. T5-large) is even faster than ArTS (w. T5-437

small) due to our efficient framework design, i.e.,438

the encoder-only Transformer; and (3) MLPAS439

needs much fewer trainable parameters than ArTS,440

thus leading to less computational cost. These ad-441

vantages over ArTS suggest that our model offers442

substantial advantages in real-world use cases.443

5.1.3 Impact of Multi-level Disentanglement444

We investigate the impact of multi-level disen-445

tanglement by MLPAS on traits with the same446

name across different prompts. Figure 5 visual-447

izes the trait embedding just before the regression448

layer with and without our prompt-wise projection.449

We observe a distinct difference with and without450

multi-level disentanglement by MLPAS. Without451

the prompt-wise projection, the unique character-452

istics of the trait in each prompt are likely to col-453

lapse (i.e., the overlap of trait embeddings across454

prompts). In contrast, the trait embeddings pro-455

duced by MLPAS exhibit a clear separation across456

prompts. Therefore, our multi-level disentangle-457

ment indeed helps each trait embedding to keep458

their individual semantic over prompts.459

5.2 In-depth Analysis 460

5.2.1 Ablation of Each Component 461

We have conducted an ablation study to assess the 462

impact of each component in MLPAS. For the con- 463

struction of token-based instruction, three compo- 464

nents can be adjusted: (1) essay prompt embedding; 465

(2) prompt ID, and (3) trait tokens. In addition, re- 466

garding the multi-level disentanglement, we can 467

control (4) the use of the prompt-wise projection. 468

Table 6 summarizes the results when each one of 469

the four components is eliminated from the final 470

model. The ablation results indicate that every 471

component is essential for the best performance on 472

essay evaluation. 473

Specifically, the most significant performance 474

drop, on average, occurs when essay prompts are 475

excluded. These results demonstrate the impor- 476

tance of utilizing the semantic information con- 477

tained in prompts. Additionally, our observations 478

indicate that our methods are particularly effective 479

at leveraging the diverse semantic information con- 480

tained in multiple prompts more efficiently. 481

5.2.2 Impact of Trait Ordering 482

The sensitivity to the order of traits in the input is 483

a concern in the encoder-decoder ArTS (Do et al., 484

2024), due to its auto-regressive decoding. How- 485

ever, with the task replaced by a simple regression, 486
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Figure 6: Absolute QWK score gaps before and after
reversing the order of traits in the input.

MLPAS alleviates the impact of the order on the487

predicted essay scores. Figure 6 well supports this488

by comparing the absolute gap of QWK scores be-489

fore and after reversing the order of traits in the490

input. The smaller gaps over the ArTS at both lev-491

els demonstrate that MLPAS is more robust to the492

trait order than ArTS.493

5.2.3 Generalization for Unseen Prompts494

We conduct cross-prompt experiments to evaluate495

the generalization ablility of our method to unseen496

prompts. We compare the performance of MLPAS497

with SOTA cross-prompt AES models4. As in pre-498

vious studies, we train the model on all prompts ex-499

cept the target prompt. To generalize to unobserved500

prompts in training, we apply prompt-wise z-score501

normalization to the embeddings from prompt-wise502

projection. We train the trait-wise MLP layers with503

fix the normalized embeddings, to avoid overfitting504

to the training dataset. In the inference step, we505

assume that the target prompt ID is unknown, and506

therefore use average pooled embeddings utilizing507

all the trained prompt-wise projections.508

As illustrated in Figure 7, our method outper-509

formed recent cross-prompt AES models in both510

average score and across the majority of prompts511

and traits (6 out of 9 for traits and 6 out of 8 for512

prompts). Our approach leverages pre-trained lan-513

guage models, offering a clear advantage over ex-514

isting POS tagging-based methods by utilizing the515

latest advancements in language model technology.516

5.2.4 Comparison with GPT-4517

One interesting aspect is to compare MLPAS with518

recent LLMs. The foundational model, like GPT-519

4, is capable of performing human-like evaluation520

with prompt tuning (Kojima et al., 2022; Liusie521

et al., 2024; Zhang et al., 2024). Our finding is that522

the naive use of LLMs is inappropriate for accurate523

essay scoring due to the unclear scoring standards.524

4CTS (Ridley et al., 2021), PMAES (Ridley et al., 2020),
and PLAES (Chen and Li, 2024).
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Figure 7: Cross-prompt performance comparison.
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Figure 8: Agreement with human ratings using fine-
tuned small models and LLMs as essay evaluators.

More specifically, we provide relevant traits and 525

ranges of scores as prompts to GPT-4 for automatic 526

essay scoring (see Appendix for the prompt details). 527

Figure 8 illustrates the comparison of GPT-4’s 528

zero-shot evaluation performance with other mod- 529

els across various traits and prompts. The results 530

indicate that GPT-4 performs poorly compared to 531

other fine-tuned small language models, such as 532

MLPAS and ArTS, highlighting the necessity of 533

fine-tuning with clearly defined criteria for scoring. 534

6 Conclusion 535

In this work, we propose a multi-level disentangle- 536

ment framework named MLPAS for essay scor- 537

ing. This framework benefits from token-based 538

instruction and prompt- and trait-levels disentan- 539

glement. They help the model keep the distinct 540

semantic knowledge of each trait across prompts, 541

even if the trait is shared across multiple prompts. 542

Notably, MLPAS outperforms the SOTA models 543

while achieving improved efficiency in terms of 544

latency and parameter numbers. Through visual- 545

izations, we demonstrate the efficacy of the multi- 546

level disentanglement. Furthermore, our findings 547

underscore the limitations of zero-shot essay scor- 548

ing with LLMs, highlighting the effectiveness of 549

lightweigth fine-tuned essay scoring models. 550
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7 Limitations551

While our proposed model demonstrates signifi-552

cant improvements in multi-prompt, multi-trait es-553

say scoring, several limitations must be acknowl-554

edged. Our experiments were conducted exclu-555

sively on benchmark datasets, and the performance556

and adaptability of our model in real-world ap-557

plications with diverse essay topics and prompts558

remain to be tested. The current evaluation does559

not account for the introduction of new prompts560

over time, making it essential to investigate how561

well the model can adapt to these new prompts562

sequentially without significant retraining. Addi-563

tionally, our study did not extensively explore the564

model’s performance for the condition where the565

number of available essay samples for training is566

limited. In many practical situations, there may be567

insufficient data for certain prompts or traits, which568

could affect the model’s robustness and general-569

ization capabilities. Addressing these limitations570

in future research will be important for enhancing571

the applicability and effectiveness of the model in572

real-world essay scoring scenarios.573

8 Ethics Statement574

Potential Risks Our study was conducted using a575

constrained dataset, and our proposed method does576

not guarantee impartial essay scoring outcomes.577

Models for essay scoring may exhibit biases in their578

predictions based on the training data employed.579

The ASAP and ASAP++ datasets utilized in our580

research could potentially introduce biases towards581

specific demographic groups (Mathias and Bhat-582

tacharyya, 2018). However, it should be noted that583

demographic information was not provided in these584

datasets. To mitigate privacy concerns, any person-585

ally identifiable information within the essays has586

been anonymized.587

Use of Scientific Artifacts Our research lever-588

aged open-source tools including PyTorch (Paszke589

et al., 2019) and scikit-learn (Pedregosa et al.,590

2011), alongside pre-trained language models such591

as T5 obtained via the Huggingface (Wolf et al.,592

2019) library. The experiments were conducted593

using the ASAP and ASAP++ datasets, accessible594

for non-commercial research purposes. For experi-595

ments involving LLMs, we utilized OpenAI’s API596

under their sharing and publication policy (OpenAI,597

2022).598

Use of Ai Assistants We only used ChatGPT 599

to provide a better expression and to refine the 600

wording. Some of the code used in the experiment 601

was written with the assistance of Copilot. 602
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A Additional Experiments816

In this section, we present additional experiments817

that were not included in the main text due to space818

constraints. These include ablation study results819

based on traits, exploration of diverse backbone820

models, and the use of high-scoring essays as an al-821

ternative to prompts. These experiments offer valu-822

able insights into the characteristics of our model823

and suggest directions for future research.824

A.1 Ablation Study825

Tables 7 and 8 presents the results of our ablation826

study based on prompts. Excluding components of827

the model generally led to lower performance com-828

pared to using all components. Notably, omitting829

the essay prompts resulted in the largest average830

performance drop.831

Interestingly, the Prompt Adherence (PA) trait832

increased when the essay prompts were omitted.833

This can be attributed to the fact that P3-P6, which834

involve the Prompt Adherence trait, are source-835

dependent essay types; however, the dataset’s essay836

prompts lack the source text. For instance, P5 re-837

quires describing the mood of a given memoir, but838

the prompt does not provide the content of the mem-839

oir. This lack of source text is a common issue in840

P3-P6. To address these issues, we have conducted841

additional experiments, which are detailed in the842

next subsection.843

A.2 Utilizing High-Score Essays as Prompts844

To address the absence of source text in the845

prompts for source-dependent essays, we have ex-846

perimented with the idea of replacing the prompts847

with high-scoring essays. For each prompt, we ran-848

domly sample one essay with the highest overall849

score and an average across all traits of at least850

80% of a max score. We use these sampled essays851

as proxies for the prompts to observe changes in852

model performance. Additionally, we instruct GPT-853

4 to rewrite these sampled essays and prompts as854

high-quality essays.855

Tables 9 and 10 summarize the results of this ex-856

periment. "Gold Essay" refers to the sampled high-857

scoring essays, while "Gold Essay GPT-4" refers to858

the essays transformed by GPT-4. In both cases, the859

average performance is lower than the traditional860

method, but the Prompt Adherence score is higher.861

These results suggest that the absence of source862

text in source-dependent essay types can be miti-863

gated by using other high-quality essays. We also864

observed that the decrease in average scores was 865

smaller when using essays rewritten by GPT-4 com- 866

pared to using the sampled essays as is. This find- 867

ing indicates that data augmentation with LLMs 868

can effectively fill gaps in the existing dataset. 869

A.3 Evaluating Performance with Various 870

Backbone 871

We have conducted multiple experiments to verify 872

the effectiveness of our proposed method with var- 873

ious Transformer backbone models. Specifically, 874

we applied BART (Lewis et al., 2020) and FLAN- 875

T5 (Chung et al., 2022) models at different scales, 876

in addition to the T5-based models previously used. 877

Tables 11 and 12 present the results of these exper- 878

iments. 879

Our findings indicate that the proposed method 880

is effective across different Transformer backbone 881

models. Except for the BART-base model, our ap- 882

proach consistently achieves higher average QWK 883

performance compared to the ArTS using the 884

T5-base model. Given that the BART-base en- 885

coder contains approximately 70 million param- 886

eters, these results demonstrate the robustness and 887

effectiveness of our method across a broad range 888

of pre-trained transformer encoders. 889

A.4 Impact of Trait Order 890

One of the advantages of our proposed encoder- 891

only model is its stability, with minimal per- 892

formance variation based on the order of traits. 893

Previous work generates trait scores sequentially 894

through the decoder, which inherently leads to or- 895

der sensitivity. Experiments have shown that cer- 896

tain orderings can achieve higher performance. In 897

contrast, our method learns representations for each 898

trait simultaneously through the encoder, eliminat- 899

ing dependence on the order of generation. Ta- 900

bles 13 and 14 provide specific data supporting this 901

claim, as illustrated in Figure 6. Our findings show 902

that the encoder-only approach exhibits greater sta- 903

bility across different trait orders. This stability is 904

particularly notable in the case of the minor prompt 905

P8. Such robustness enables us to streamline the 906

process of identifying the optimal trait sequence, 907

thereby reducing the time and resources involved 908

in experimentation. 909

A.5 LLM-based Prompt Augmentation 910

We conduct experiments using LLM-based prompt 911

augmentation to evaluate our model’s ability to 912

make accurate inferences across a variety of essay 913
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prompts. Each prompt is augmented with 30 se-914

mantically similar but textually different prompts915

generated using GPT-3.5-turbo. This augmenta-916

tion is applied during both the training and testing917

phases to observe performance changes.918

Tables 15 and 16 present the results of these ex-919

periments. In the "Prompt Augmentation" column,920

A → B indicates that prompt A was used during921

the training phase, while prompt B was used during922

the testing phase. Our findings show performance923

drop was not significant when varying prompts dur-924

ing training. Moreover, using different prompts925

in the training phase sometimes led to improved926

performance. Performance decreased when testing927

with various prompts, but our model still achieved928

higher performance than ArTS, which does not929

utilize prompts. These results highlight not only930

the robustness of our model but also suggest that931

leveraging the power of LLMs can enhance the932

performance of relatively smaller models.933

A.6 Cross-prompt Setup934

We provide additional explanations on how to ex-935

tend MLPAS for cross-prompt setups. By leverag-936

ing the prompt-wise projection and normalization937

techniques, MLPAS can be adapted to handle un-938

seen prompts during inference. We apply prompt-939

wise z-score normalization to the embeddings pro-940

duced by the prompt-wise projection. Specifically,941

given the embedding Zp
T for a specific prompt p,942

we normalize it using:943

Z̃p
T =

Zp
T − µp

σp
944

where µp and σp represent the mean and standard945

deviation of Zp
T for prompt p, respectively. Z̃p

T is946

the normalized embedding for the given prompt947

p after normalization. This normalization ensures948

that the embeddings are standardized, mitigating949

the distribution gap between prompts and risk of950

overfitting to the training dataset.951

The trait-wise MLP layers are then trained us-952

ing these normalized embeddings to predict the953

trait scores. At this stage, the input embeddings954

are fixed and only the trait-wise MLP layers are955

updated.956

ŷt = MLPt(Z̃
p
T )957

where ŷt denotes the predicted score for trait t,958

MLPt represents the multi-layer perceptron used959

for predicting the score of trait t.960

During inference, we assume that the target 961

prompt ID is unknown, we use average pooling 962

across all the trained prompt-wise projections to 963

generate the embeddings. The average pooled em- 964

bedding is computed as: 965

ZT =
1

K

K∑
p=1

Zp
T 966

where K is the number of trained prompts and ZT 967

is the generalized embedding for unseen prompt 968

sample. This pooling approach allows the model to 969

make generalized predictions even when encoun- 970

tering unseen prompts. 971
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Model Overall Content PA Lang Nar Org Conv WC SF Style Voice AVG↑ (SD↓)
MLPAS 0.771 0.746 0.751 0.691 0.732 0.710 0.701 0.701 0.699 0.702 0.650 0.714 (±0.007)
(1) w/o essay prompt 0.759 0.735 0.755 0.690 0.728 0.690 0.698 0.695 0.689 0.693 0.622 0.705 (±0.004)
(2) w/o prompt ID token 0.768 0.740 0.755 0.692 0.727 0.700 0.694 0.698 0.692 0.698 0.607 0.706 (±0.009)
(3) w/o trait tokens 0.770 0.741 0.752 0.695 0.732 0.692 0.693 0.701 0.690 0.683 0.633 0.707 (±0.005)
(4) w/o prompt-wise projection 0.760 0.734 0.754 0.682 0.727 0.696 0.696 0.703 0.697 0.694 0.635 0.707 (±0.009)

Table 7: Ablation study results based on traits.

Model P1 P2 P3 P4 P5 P6 P7 P8 AVG↑ (SD↓)
MLPAS 0.718 0.726 0.703 0.771 0.727 0.765 0.753 0.683 0.731 (±0.007)
(1) w/o essay prompt 0.714 0.724 0.703 0.765 0.717 0.768 0.746 0.650 0.723 (±0.009)
(2) w/o prompt ID token 0.712 0.716 0.705 0.768 0.725 0.768 0.753 0.664 0.726 (±0.008)
(3) w/o trait tokens 0.714 0.715 0.703 0.776 0.719 0.777 0.743 0.666 0.727 (±0.006)
(4) w/o prompt-wise projection 0.715 0.716 0.703 0.767 0.716 0.767 0.743 0.662 0.724 (±0.008)

Table 8: Ablation study results based on prompts.

Model Overall Content PA Lang Nar Org Conv WC SF Style Voice AVG (SD)
Original Prompt 0.771 0.746 0.751 0.691 0.732 0.710 0.701 0.701 0.699 0.702 0.650 0.714 (±0.007)
Gold Essay 0.766 0.737 0.757 0.694 0.728 0.692 0.694 0.701 0.686 0.676 0.610 0.704 (±0.015)
Gold Essay GPT-4 0.764 0.741 0.757 0.693 0.727 0.698 0.699 0.701 0.697 0.711 0.644 0.712 (±0.006)

Table 9: Trait-wise prompt replacement experiment results.

Model P1 P2 P3 P4 P5 P6 P7 P8 AVG (SD)
Original Prompt 0.718 0.726 0.703 0.771 0.727 0.765 0.753 0.683 0.731 (±0.007)
Gold Essay 0.711 0.712 0.707 0.769 0.727 0.765 0.740 0.666 0.725 (±0.012)
Gold Essay GPT-4 0.712 0.722 0.699 0.766 0.723 0.773 0.750 0.675 0.728 (±0.009)

Table 10: Prompt-wise prompt replacement experiment results.

Backbone Overall Content PA Lang Nar Org Conv WC SF Style Voice AVG↑ (SD↓)
T5-small 0.760 0.733 0.738 0.681 0.719 0.690 0.686 0.696 0.689 0.711 0.640 0.704 (±0.007)
T5-base 0.771 0.746 0.751 0.691 0.732 0.710 0.701 0.701 0.699 0.702 0.650 0.714 (±0.007)
T5-large 0.768 0.752 0.760 0.700 0.731 0.719 0.709 0.702 0.713 0.693 0.641 0.717 (±0.008)
BART-large 0.742 0.733 0.744 0.674 0.713 0.679 0.678 0.687 0.692 0.709 0.634 0.699 (±0.009)
BART-base 0.754 0.711 0.733 0.660 0.697 0.654 0.655 0.666 0.657 0.681 0.611 0.680 (±0.010)
FLAN-T5-small 0.760 0.728 0.742 0.674 0.720 0.679 0.666 0.681 0.670 0.719 0.635 0.698 (±0.009)
FLAN-T5-base 0.761 0.730 0.748 0.689 0.726 0.672 0.678 0.685 0.673 0.695 0.607 0.697 (±0.009)
FLAN-T5-large 0.776 0.745 0.760 0.686 0.721 0.700 0.702 0.689 0.698 0.707 0.645 0.712 (±0.005)

Table 11: Trait-wise QWK performance of MLPAS with various backbone models.

Backbone P1 P2 P3 P4 P5 P6 P7 P8 AVG↑ (SD↓)
T5-small 0.710 0.702 0.694 0.758 0.725 0.756 0.728 0.669 0.718 (±0.009)
T5-base 0.718 0.726 0.703 0.771 0.727 0.765 0.753 0.683 0.731 (±0.007)
T5-large 0.723 0.731 0.707 0.774 0.726 0.771 0.750 0.693 0.734 (±0.010)
BART-large 0.687 0.694 0.690 0.762 0.703 0.745 0.750 0.671 0.713 (±0.004)
BART-base 0.681 0.665 0.678 0.746 0.715 0.743 0.728 0.635 0.699 (±0.006)
FLAN-T5-small 0.711 0.690 0.689 0.752 0.725 0.757 0.747 0.639 0.714 (±0.008)
FLAN-T5-base 0.704 0.708 0.708 0.768 0.720 0.759 0.747 0.623 0.717 (±0.009)
FLAN-T5-large 0.719 0.711 0.706 0.775 0.722 0.766 0.762 0.675 0.729 (±0.008)

Table 12: Prompt-wise QWK performance of MLPAS with various backbone models
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Model Overall Content PA Lang Nar Org Conv WC SF Style Voice AVG↑(SD↓)
ArTS 0.754 0.730 0.751 0.698 0.725 0.672 0.668 0.679 0.678 0.721 0.570 0.695 (±0.018)
ArTS-rev 0.739 0.724 0.749 0.687 0.718 0.667 0.658 0.660 0.666 0.711 0.562 0.686 (±0.021)
MLPAS 0.771 0.746 0.751 0.691 0.732 0.710 0.701 0.701 0.699 0.702 0.650 0.714 (±0.007)
MLPAS-rev 0.763 0.742 0.754 0.680 0.726 0.701 0.695 0.705 0.698 0.706 0.660 0.712 (±0.012)
ArTS Gap 0.015 0.006 0.002 0.011 0.007 0.005 0.010 0.019 0.012 0.010 0.008 0.009 (-)
MLPAS Gap 0.009 0.004 0.003 0.011 0.006 0.009 0.006 0.004 0.002 0.004 0.010 0.002 (-)

Table 13: Traits-wise results for the trait ordering. "-rev" indicates traits order reversing.

Model P1 P2 P3 P4 P5 P6 P7 P8 AVG↑ (SD↓)
ArTS 0.696 0.669 0.682 0.732 0.712 0.743 0.712 0.492 0.680 (±0.029)
ArTS-rev 0.700 0.683 0.702 0.763 0.730 0.767 0.734 0.586 0.708 (±0.027)
MLPAS 0.718 0.726 0.703 0.771 0.727 0.765 0.753 0.683 0.731 (±0.007)
MLPAS-rev 0.715 0.717 0.691 0.770 0.724 0.766 0.750 0.679 0.726 (±0.008)
ArTS Gap 0.004 0.014 0.020 0.031 0.018 0.024 0.022 0.094 0.028 (-)
MLPAS Gap 0.003 0.009 0.012 0.001 0.003 0.001 0.003 0.005 0.004 (-)

Table 14: Prompt-based results for the trait ordering. "-rev" indicates traits order reversing.

Model Prompt Augmentation Overall Content PA Lang Nar Org Conv WC SF Style Voice AVG↑ (SD↓)

origin → origin 0.760 0.733 0.738 0.681 0.719 0.690 0.686 0.696 0.689 0.711 0.640 0.704 (±0.007)
MLPAS GPT-3.5-turbo → origin 0.762 0.734 0.740 0.686 0.717 0.690 0.693 0.697 0.693 0.688 0.644 0.704 (±0.009)
(T5-small) origin → GPT-3.5-turbo 0.751 0.730 0.738 0.674 0.718 0.681 0.675 0.688 0.682 0.657 0.585 0.689 (±0.007)

GPT-3.5-turbo → GPT-3.5-turbo 0.756 0.731 0.739 0.686 0.713 0.689 0.694 0.697 0.701 0.679 0.649 0.703 (±0.013)

Table 15: Performance comparison on traits with LLM-based prompt augmentation.

Model Prompt Augmentation P1 P2 P3 P4 P5 P6 P7 P8 AVG↑ (SD↓)

origin → origin 0.710 0.702 0.694 0.758 0.725 0.756 0.728 0.669 0.718 (±0.009)
MLPAS GPT-3.5-turbo → origin 0.715 0.709 0.689 0.754 0.726 0.753 0.737 0.675 0.720 (±0.008)
(T5-small) origin → GPT-3.5-turbo 0.708 0.711 0.685 0.745 0.720 0.750 0.723 0.646 0.711 (±0.005)

GPT-3.5-turbo → GPT-3.5-turbo 0.706 0.716 0.686 0.752 0.720 0.753 0.726 0.684 0.718 (±0.013)

Table 16: Performance comparison on prompts with LLM-based prompt augmentation.

972 973
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B Experiment Prompts for GPT-4974

Here are the prompts used in our experiment to975

evaluate GPT-4’s zero-shot essay scoring capability.976

The prompts included the essay scoring instruction,977

the essay text, and the specific traits, along with978

their respective maximum and minimum scores.979

Below are some examples of the prompts:980

981

Evaluate the following essay based on the given
traits and their score ranges. Provide only numeric
scores without any explanation. Format the scores
as ’Trait: Score’ for each trait.

"Patience, whats the first word that comes to
your mind when you hear that word? Waiting? I
know that’s the main word in my mind. Here is a
story when I was very patient. Every kid dreads
meap testing it was @DATE1 and we have to be
completely silent. It’s hard enough to be quite. But
it’s harder when your next to your friends, and
your a girl. We had to do meap writing, writing is
the most wrost for me. But when I was done I felt
really good and quiet for everyone else. That’s the
story when I had to be patient."

Overall: 0 to 30
Content: 0 to 6
Organization: 0 to 6
Conventions: 0 to 6
Style: 0 to 6

982

983

984
Evaluate the following essay based on the given
traits and their score ranges. Provide only numeric
scores without any explanation. Format the scores
as ’Trait: Score’ for each trait.

The author concluded the story in this manner
so that the audience would feel sympathy and
understanding for the things that Saeng and her
family were going through in this hard time. It
makes the reader feel sympathy for Saeng because
all she can think of to make herself feel better is
her home town and how she got taken away.

Overall: 0 to 3
Content: 0 to 3
Prompt_adherence: 0 to 3
Language: 0 to 3
Narrativity: 0 to 3

985

16


	Introduction
	Related Work
	Single-prompt Essay Scoring
	Multi-prompt Essay Scoring

	Preliminaries
	Method: MLPAS Framework
	Overview
	Main Components
	Model Training

	Evaluation
	Main Results
	Agreement with Human Rating
	Model Size and Latency
	Impact of Multi-level Disentanglement

	In-depth Analysis
	Ablation of Each Component
	Impact of Trait Ordering
	Generalization for Unseen Prompts
	Comparison with GPT-4


	Conclusion
	Limitations
	Ethics Statement
	Additional Experiments
	Ablation Study
	Utilizing High-Score Essays as Prompts
	Evaluating Performance with Various Backbone
	Impact of Trait Order
	LLM-based Prompt Augmentation
	Cross-prompt Setup

	Experiment Prompts for GPT-4

