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ABSTRACT

Despite recent advancements in language models (LMs), their application to di-
alogue management (DM) problems and ability to carry on rich conversations
remain a challenge. We use reinforcement learning (RL) to develop a dialogue
agent that avoids being short-sighted (outputting generic utterances) and maxi-
mizes overall user satisfaction. Most existing RL approaches to DM train the agent
at the word-level, and thus, have to deal with a combinatorially complex action
space even for a medium-size vocabulary. As a result, they struggle to produce a
successful and engaging dialogue even if they are warm-started with a pre-trained
LM. To address this issue, we develop a RL-based DM using a novel mixture of
expert language model (MoE-LM) that consists of (i) a LM capable of learning
diverse semantics for conversation histories, (ii) a number of specialized LMs (or
experts) capable of generating utterances corresponding to a particular attribute
or personality, and (iii) a RL-based DM that performs dialogue planning with the
utterances generated by the experts. Our MoE approach provides greater flexibility
to generate sensible utterances with different intents and allows RL to focus on
conversational-level DM. We compare it with SOTA baselines on open-domain
dialogues and demonstrate its effectiveness both in terms of the diversity and
sensibility of the generated utterances and the overall DM performance.

1 INTRODUCTION

With the tremendous advancements in natural language understanding and generation, increasing
attention has been directed to construct intelligent dialogue agents that can carry out engaging conver-
sations with users. Such interactions can be open-ended, contain different topics, and often involve
an underlying task, such as negotiation, information exchange, and recommendation. Therefore, to
satisfy the user, a good dialogue agent should not only generate natural responses, but also be capable
of pursuing the task’s objectives and adapting to the user’s feedback on-the-fly.

A standard solution is to train the dialogue agent using behavioral cloning, where the agent is a
language model (LM) that imitates the utterances in the training set (Gasi¢ et al., 2011; Fatemi et al.,
2016). By leveraging deep neural networks, e.g., RNNs (Sutskever et al., 2014) and Transform-
ers (Vaswani et al., 2017), a LM encodes the conversation to a low-dimensional dialogue state and
predicts an utterance, but steering such generation for particular purposes remains an open question.
Several works studied ways to fine-tune a LM to generate texts with specific contexts (Ziegler et al.,
2019; Ficler and Goldberg, 2017). Other results learned a single steerable LM that is capable of
generating utterances for multiple specific intents (Gu et al., 2017; Chen et al., 2018; Subramani et al.,
2019; Dathathri et al., 2019). While these LMs produce fluent and relevant responses, it is unclear
how to control them to systematically pursue goals during multi-turn dialogue conversations.

Another popular approach is to view dialogue management (DM) as a control problem and use
reinforcement learning (RL) to optimize the agent’s policy (which is often a LM itself). Using
RL for dialogue systems has a long history. Earlier work relies on specific, hand-crafted semantic
states (Levin and Pieraccini, 1997; Singh et al., 2002; Walker, 2000) or partially observable belief
states (Williams and Young, 2007; Young et al., 2010), in which the agent chooses the best hand-
crafted dialogue act at each turn, with the goal of either satisfying the user (Shah et al., 2018),
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completing the task (Shi and Yu, 2018), or responding to the user’s query (Serban et al., 2017a).
However, the application of these approaches is limited to problems whose action space can be
captured by hand-crafted representations, and they cannot handle complex conversations. On the
other hand, more recent approaches use deep learning to extract semantic representations from
conversation histories, treat these representations as dialogue belief states, and apply RL to learn a
word-level generative DM agent (Jaques et al., 2019; Li et al., 2016; 2017; Shin et al., 2020). However,
since there are innumerable possibilities of language utterances, and thus, the action space of the RL
problem is extremely large, the agent often performs planning poorly and generates incomprehensible
utterances (Zhao et al., 2019). Another issue is that RL only optimizes a scalar reward, while the
aforementioned methods often need to optimize for both the quality of the generated utterance,
e.g., ease of answering (Li et al., 2016), fluency (Li et al., 2017; 2019), and diversity (Yarats and
Lewis, 2018), and the goal, e.g., conversation length (Zhou et al., 2020), user’s sentiment (Hancock
et al., 2019), and task completion (Verma et al., 2022; Jang et al., 2021). Moreover, defining the
reward as weighted combination of these metrics is not ideal, since the hand-picked weights do not
often reflect the underlying success criteria.

To address the above issues related to using RL in dialogue management (DM) systems, we propose
an RL-based DM agent using a novel mixture of expert (MoE) approach. Our MoE approach is based
on a mixture of expert language model (MoE-LM), which consists of three main components: 1) a
LM (a probabilistic encoder and a decoder) capable of learning diverse semantics for conversation
histories, and as a result generating diverse utterances, which we refer to as the primitive LM or LMy,
2) a number of specialized LMs (or experts), {LM; } 7, that each is constructed using the latent space
learned by LMy, but has been trained such that it is capable of generating utterances corresponding to
a certain intent or personality, and 3) an RL-based dialogue manager (DM) that at each turn, given
the latent state shared by the experts {LM; }*, and the utterance action(s) they suggest, chooses one
among them for the agent to execute. Our MoE-LM can be seen as a special case of hierarchical
LMs (e.g., Serban et al. 2017a; Zhao et al. 2019; Saleh et al. 2020), but it is different than them
because it learns both the LMs (experts) and the DM. Moreover, the DM in MoE-LM is a policy
conditioned on both the latent state and the actions suggested by the experts, and not just the state
as it is common in hierarchical RL. The primitive LM (LMy) plays an important role in this model
because it learns diverse semantics for conversation histories and allows the agent to generate a wide
variety of utterances. This diversity is also shared with the specialized LMs (experts) and gives them
flexibility in generating their (more) specialized utterances. Another important feature of MoE-LM
is its modularity that facilitates adding and removing specialized LMs (experts). Moreover, this
hierarchical architecture allows us to solve an RL problem with much smaller state and action spaces,
which is quite important in the quality of the learned policy. Finally, since the candidate utterances
are generated by experts with different intents, instead of combining all agent-user signals into a
single RL reward, our DM agent can focus on optimizing the specific goal of the conversation task.

We start the paper with a brief introduction of LMs and the use of Markov decision processes
(MDPs) in modeling dialogue management problems in Section 2. We then describe the overall
architecture of our MoE-LM in Section 3, followed by the detailed implementation of each of its
three main components (described in the above paragraph) in Sections 4 to 6. Finally, in Section 7,
we demonstrate the effectiveness of our MoE-LM in open-domain dialogues, in terms of both its
ability to generate diverse and sensible utterances and its overall DM performance.

2 PRELIMINARIES

Language Models (LMs) In this work, we employ seq2seq LMs to generate the next utterances
in a dialogue. We assume access to a dataset of the form D = {(X*), Y(k))}LDJl, where each
X = X®*) is a L-turn conversation history X = {X;} f;ol and Y is its next utterance. We denote

by Nx, an upper-bound on the length (number of tokens) of each utterance X; in X.! The role
of a LM is to predict the probability of the next utterance Y, consisting of IV tokens, conditioned
on the conversation history X, i.e., p(Y = {yn}ff:1 | X) In the transformer architecture (?), the
LM first encodes the conversation history X using an encoder ® to a (L x Nx)-length sequence of
embeddings {(z 0, ..., 2, Nx_l)}lL:_ol, where each z; ,, is a vector in the latent space. For notational

convenience, we concatenate these embeddings into a single embedding z € Z C R? and denote
the overall dimension of the latent space as d. In the RNN architecture (Serban et al., 2016), the
LM’s encoder ® directly maps the conversation history X to a latent state z € Z C R?. In both

architectures, the next utterance Y = {%,,}N_, is sampled token-by-token from the decoder ¥,

'If the actual utterance X; has fewer tokens than Nx, it will be padded by a specific token and masked.
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: "...(some context), | had a bad day"

MMMMM

How can | help? s1| o8
[+ Inquisitive == | |What do you like abt. your friends?  —
Do you know how my day went? s2| o054

It's peaceful staying here, haha
Nice going outside, that's my favorite _J
neighborhood

It 's safe and nice to chill out

f—| Optimistic =o

s7| 080

ss| 082

Why do you want to be alive?
> Angry f=s | |Youareamerican, this is messed up! —
Are you kidding me! S10  0.06

sul o018

Step 1 Step 2 Bot: "How can | help? ‘ <Tc-p—K Samplmg> o

Itis safe and nice to chill out ™ Deduplication

Figure 1: (Left) MoE-LM Architecture. (Right) Sample utterance workflow generated by an MoE-LM trained
with Reddit data. Step 1: ® encodes conversation history. Step 2: ¥ o G;, Vi, generate candidate bot utterances.
Step 3: v selects the bot response by (QQ-score ranking & post-processing.

ie,Y ~ U(-|z) = HT]:/:I (¥ | Yo, ---»Un—1;2), where g is a fixed initial (start-of-sentence)
token (Chien and Kuo, 2019), and the latent state is denoted as z = ®(X).?

Markov Decision Processes (MDPs) have been used to model dialogue management problems
in a variety of settings (Li et al., 2016; Asadi and Williams, 2016; Jaques et al., 2019). In such
MDPs, denoted by M = (S, A, P,r, sq, ), the state space S represents the tokenized conversation
history and the initial state s € S is the initial user’s query. The action space A is also the
tokenized language space with each action a € A being the agent’s next utterance (which is a
fixed-length, Nx, sequence of tokens). The transition kernel P models the user’s response to the
action taken by the agent (bot). Finally, the reward function r measures the user’s satisfaction.
In these MDPs, we can think of the entire LM as a policy that maps conversation histories to
next utterances, and solve them by finding a policy 7* with maximum expected discounted return,
ie., 7 € argmax, Jr := E[>.,_,7'r: | P, so, ). Note that the size of the tokenized state and
action spaces grow exponentially with the size of the vocabulary. This makes it intractable to solve
the MDP even for a medium-size vocabulary. As a result, it would quite desirable to develop a novel
MDP paradigm that is more amendable to RL-based DM systems.

3 MIXTURE OF EXPERTS (MOE) LANGUAGE MODEL

We start by explaining how a MoE language model (MoE-LM) can enrich the bot’s utterances
and improve the overall performance of the DM. While our approach is applicable to any DM
system, we use open-domain dialogue (Sankar et al., 2019) as a running example to show how
MoE-LM-based agents can improve user satisfaction measured by an improvement on a sentiment
or engagement. Intuitively a good DM agent should possess different behaviors (e.g., inquisitive,
explorative, relevant, soothing, empathetic, complimentary, provoking) and swiftly decide which
intent to use to pivot a conversation, build rapport, pique the user’s interests, improve their mood, etc.
To achieve this goal, we require the LM to have a language representation (primitive discovery) that
captures different semantics, in order to encode different conversations and avoid generating dull and
repetitive responses. We also need a machinery (expert construction) to embed different intents into
sub-models of this LM, so that they can behave accordingly when prompted, and respond efficiently.
Finally, with various candidate utterances available, the DM module of this LM should understand
the current level of user satisfaction and determine which response is the most appropriate. Motivated
by these observations, we construct our MoE-LM in three steps as shown in Figure 1. We give the
main idea behind each step here and leave their detailed descriptions to Sections 4, 5, and 6.

Step 1: Primitive Discovery. We first employ the dataset D, introduced in Section 2, and learn a
language model LMy = (P, Gy, ) consisting of a stochastic encoder (i.e., an encoder ¢ and a latent
space distribution Gy that maps the encoded conversation into a latent distribution), and a decoder V.
The stochastic encoder (P, Gy) comprises an encoder ® that maps tokenized conversation histories X

to a latent space Z C R ie., z = ®(X) € Z, which is then used to construct a parameterized d-

2Note that we use Y’ as the next utterance in the dataset and Y as the one predicted by the LM.
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dimensional Gaussian distribution Gy (2'|2) = N (10 (2), 08(2)Laxa) over R%. The decoder predicts

the next utterance Yy (token-by-token) conditioned on the point 2z’ sampled from the latent distribution,
e, U(Yolz')?, 2/ ~ Go(-]z). We denote by LMy(Y|X) := E.igy(.|2),.=0x) ¥ (Y]2)], the
primitive and learn it using a loss function that in addition to predicting the next utterance accurately,
encourages diversity and generalization in the learned latent space Z (see Eq. 1 and Fig. 2). As we
will explain in Section 4, our loss function is inspired by those in prior work, and more specifically by
the one in OPAL (Ajay et al., 2020), i.e., an unsupervised learning method for discovering primitive
skills in trajectories that are used by some downstream RL tasks.

Step 2: Expert Construction. Given the latent space Z, encoder (®,Gy), and decoder ¥
learned in Step 1, we now learn m latent distributions {G;}™,, each defined as G;(%'|z) =
N (1i(2), 02(2)Lixq). Intuitively, each G; corresponds to an attribute, e.g., an intent or a personality
(in case of a chatbot) and generates samples in specific parts of the latent space Z. This results in
having m LMs, {LM; },, LM; = (®,G;, ¥), each of them corresponds to a specialized version of
the original LM, LMy, and serves as an expert in our MoE-LM. Upon receiving a conversation history

X, each expert LM; generates a candidate (or more) for the next utterance Y; in certain parts of the
language space that are compatible with its attribute (personality). As we will explain in Section 5,
each G; is learned using a loss function that encourages its corresponding LM, L1;, to generate
utterances consistent with its attribute (see Eq. 2).

Step 3: Dialogue Manager (DM). The dialogue manager, denoted by 1, takes as input the encoded
conversation history z = ®(X) and the candidate action utterances generated by the experts {Y;}7 ,

and selects one of them as the action for the bot to execute, i.e., ¥ ~ pu(- | z, {)A/Z}f’;o) We will
describe how DM is trained using reinforcement learning (RL) in Section 6.

4 PRIMITIVE DISCOVERY IN MOE-LM

Motivated by literature in the reinforcement and imitation learning fields (Ajay et al., 2020), we
propose to learn the primitive LM, LMy, in our MoE-LM by solving the following KL-constrained
optimization problem that aims at capturing diverse semantics:

(q)‘g[l)i’r\lll)‘pEZINP(.‘Z,Y),z:q)(X) [ — log \I/(Y|z')}, st E.—ax) [KL(p(z/|z7 Y) || Qg(z'|z))] <ex, (1)
where I is the empirical expectation over (X,Y") in the dataset D, p is a distribution over the latent
space conditioned on the encoded conversation history z and the target utterance Y, and ek is a posi-
tive real-valued threshold. Using (1), we learn LMy = (®, Gy, ¥) by maximizing the log-likelihood,
while enforcing consistency between the latent variable 2’ predicted by Gy (+|z) and p(:|z,Y") via
the KL constraint. The distribution p(:|z,Y") is a Gaussian N (1, (z, ®,(Y)), 02(z, ®,(Y))Laxa) in

which @, is a pre-trained encoder for the target utterance Y, and mean (-, -) and variance 012,(~, 9
are trainable models. One reason for using a separate encoder ®, for the target utterance Y is to

avoid overfitting ® (i.e., to avoid having back-propagation gradient of ® with Y as input).

Connection to VAE-like objectives In practice, we implement the KL constraint in (1) as a penalty
weighted by an appropriately chosen coefficient. Thus, one may interpret the objective in (1) as a
variation of 5-VAE (Burgess et al., 2018). Due to the connection to VAEs, one may draw similarities
between our method and existing dialogue approaches such as VHRED (Serban et al., 2017b) and
VHCR (Park et al., 2018). However, we emphasize that there are key differences, and these may be
explained by first understanding how the objective in (1) encourages diversity, which is key to good
primitive learning. Namely, it is important that primitive discovery learns an encoder-decoder ¢, ¥
which can be modulated by the choice of z; i.e., changing 2" while fixing X should lead to different
distributions over generated utterances. The objective in (1) encourages this diversity by conditioning
the latent variable 2z’ on both the target utterance Y and z = ®(X), i.e., 2’ ~ p(-|z,Y). In contrast,
the KL constraint is used to make sure that the stochastic encoder Gy (+|z) of our primitive LM is not
too varied for different Y, and thus has a limiting effect on diversity. For example, in the extreme
when exy, = 0 (or, 8 — oo when used as a regularizer) there will be no specialization of the latent
space for different Y. Although 8 — oo is an extreme case, degenerate behavior can also happen
when 8 = 1, i.e., in the traditional variational loss used by VHRED and VHCR. Specifically, it is
well-known that the traditional VAE loss is an upper bound on the negative log-likelihood of the data
under a stochastic encoder-decoder parameterization. Thus if the data can be modeled by a single

3In practice, we can use both latent states as the input to the decoder model \I/()A/o |2', 2).
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LM then a VAE-optimal decoder ¥ can simply ignore Gy, leading to a degenerated latent space as
observed in previous work (Park et al., 2018). This is precisely the reason that, in our approach, we
weaken the KL constraint (ex;. > 0 or, equivalently, 5 < 1). This enables our approach to more
reliably guarantee that a unique 2’ represents each distinct conversation pair (X, Y"), thus capturing
diverse semantic modalities and enabling easier downstream specialization.

In the mathematical results below, we formalize the claim above, namely, that the log-likelihood
objective in (1) leads to a learned ®, W that can easily recover any arbitrary desired LM by specializing
the latent space G. We begin with a definition that characterizes the coverage of an arbitrary LM on
the conditional conversation data distribution Pp (Y|X).

Definition 1. LMp ¢ is a {-common LM of data D if Ep[TV(LMp (Y |X)||Pp(Y]X)))]<¢.

Leveraging Theorem 4.1 in Ajay et al. (2020), we now present the theoretical result characterizing
the representational power of our primitive encoder-decoder pair (®, ¥) on data D.

Lemma 1. Let (®, p, ¥) be the solution to (1) with B,/ (.- v .—a(x)[— log ¥(Y|2')] = e. Then
there exists LM := (®, G, ¥) such that Ep [TV (LMp ¢ (Y |X)||LM(Y[X))] <& + 4/ 4 (e + H), where
G(#'|z) = Eyp[p(#|2,Y)], and H = Ep[log Pp(Y|X)] is a constant depending on D.

The result above shows that, as long as LMp ¢ is {-common in D, then there exists a specialization of
the latent space G that, when paired with ®, ¥, can approximately recover LMp ¢. The quality of the
approximation is a function of ¢ — how well the objective in (1) was optimized — and &. In practice,
to construct the primitive by replacing G with Gy, i.e., LMy = (P, Gp, V), because Gy (2’|z) can be
viewed as an distillation of p(z’|z,Y"). This theoretical result also motivates the next section, where
we explain our algorithm’s “Step 2: Expert Construction”. Specifically, we show how to use the
trained encoder-decoder pair @, U to learn a spectrum of different specialized experts parameterized
by different latent distributions G;.

5 EXPERT CONSTRUCTION WITH PLUG-AND-PLAY LANGUAGE MODELS

To complete the MoE framework one needs to systematically create a gamut of different experts
1M;, Vi € {1,...,m}, with each generating candidate utterances of different intents. By viewing
each expert as a distribution of particular behaviors in conversation data D, we leverage the results
of Section 4 and Lemma 1 and adopt a universal encoder-decoder (®, U) among all the experts.
Therefore, each expert ¢ is only parameterized by an arbitrary d-dimensional latent distribution
(e.g., Gaussian), and it samples certain regions of the latent space Z. Following the terminology
from Dathathri et al. (2019), these experts can all be catagorized as plug-and-play language models
(PPLMs). Creating experts is handy because it only requires learning new latent distributions, while
switching between experts amounts to sampling a different distribution.

Denote by £;(X,Y") € R areal-valued label that characterizes the intent of expert i € {1,...,m},
e.g., determined by an off-the-shelf sentiment classifier. We train the latent distribution G;(z) of
expert ¢ by solving the optimization problem

r%i»n Ez/,\,gi(.|z)7z:q>(x))y,\,\p(,|zl)[—ei(X,Y)]. (2)

Unlike the weighted maximum likelihood approach considered in Dathathri et al. (2019), which
assigns weight ¢; to training samples that correspond to expert i, we propose to learn each expert via
reward-maximization and treat ¢; as a reward signal w.r.t. expert i to be maximized. Interestingly,
this approach is also linked to reinforcement learning (RL), in which both the “state” and “action”
spaces are the latent space Z, and the “policy” is the latent distribution G;. The main benefit of our
approach is that it does not require the target utterance Y from data D and is thus less vulnerable to
data-imbalance issues in D on certain intents. Notice from (2) that the reward-maximization problem
is myopic, i.e., the above RL problem has a discounting factor of 0. The main motivation is that,
unlike dialogue management that is a sequential decision-making problem, here we want each expert
to possess particular behaviors, and this can readily be done via greedy maximization. Long-term
dialogue optimization will be handled by the dialogue manager rather than these experts.

For example in the case of a Gaussian G;, we use the standard REINFORCE (Sutton et al., 1999)
algorithm to learn the model parameters (11;, o2) of G; according to
{,ui,m} $— {/Li, O'i} + o - Ez/,\,gi(wz),ywq,(“z/)[éi(x, Y) . V{M’[,i} lOg]P)gi (2:/|Z)], 1€ {1, ey m},

where o« > 0 is the learning rate. To reduce the variance of these estimates, we also adopt the
baseline reduction technique (Greensmith et al., 2004) in policy gradient, which replaces ¢;(X,Y)
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with £;(X,Y) = £;(X,Y) — Ey Ly(ex)) [li(X,Y)]. Following arguments from Lemma 1 and
Lemma 4.0.1 in Ajay et al. (2020), in the foflowing we quantify the sub-optimality of expert LM;.

Corollary 1. Denote the i-th reward-maximizing objective as £;(LM) := IAEYNLM(.|X) [4;(X,Y)].
Suppose an optimal LM for this objective LM; ¢ € arg maxy £;(LM) is {-common in D. Moreover,
let G be in the arg min of (2). Then with expert LM; = (®, G, ¥) and (¢, H) from Lemma 1, we

have [ £:(TM;) — £i(TM; )| < 2]/l - (€ +1/ L (e + H)).

While it may be obvious that optimizing G; w.r.t. (2) encourages expert LM; to capture the behaviors
encouraged by /;, this corollary has two further implications: (i) Since the sub-optimality of LM;
compared to the oracle LM; ¢ is bounded by the quantity € defined in Lemma 1, it justifies using the
primitive (¥, @), which optimizes ¢, for expert construction; (ii) Sub-optimality further depends on &,
quantifying how well LI, ¢ is represented in the original dataset D.

6 REINFORCEMENT LEARNING FOR MOE-LM DIALOGUE MANAGER

We now describe the dialogue manager (DM) of our MoE-LM and propose RL algorithms to train
it. As mentioned in Section 3, the DM is a policy u that takes the encoded conversation history

z = ®(X) and the m + 1 candidate action utterances generated by the experts {}2}?;0,4 and

stochastically selects one of them to execute, i.e., ¥ ~ pu(- | z, {2};10) Note that each expert
i €{0,...,m}isalLM, LM, that acts as a policy ;(-|X) and maps each conversation history X

to an utterance Y;. With this architecture we address the large size of state and action spaces in the
original MDP that grows exponentially with the size of the vocabulary. As described in Section 2, the
state and action spaces of the original MDP are the tokenized conversation history and the tokenized
language space, respectively, while here the DM should choose among m + 1 actions (which is a
much smaller and finite action space) given the latent space Z (which is a continuous state space) of
encoded conversations. It is important to note that our MoE-LM is different than other hierarchical
architectures (Kulkarni et al., 2016) in which the decision at the high-level is to choose a low-level
controller only based on the current state of the system. In MoE-LM, the DM observes both the
current state and the actions suggested by the experts and then chooses one among them.

We consider two RL settings to solve this specialized MDP. The first one is offline RL, in which the pol-
icy must be learned from the collected conversations D without further (online) interactions. Offline
RL requires optimizing a policy, while minimizing the deviation from the behavior policy to avoid
errors due to data co-variate shift. Among numerous offline RL algorithms (Kumar et al., 2020; Carta
et al., 2021; Jaques et al., 2019), one effective algorithm to learn the DM policy p is IQL (Kostrikov
et al., 2021). Given conversation data D, IQL first computes the critic functions (Qg~ (2, @), Vy+(2))
via SOlVing min9,¢ E(z,a,r,z+)€D[(T + ’YV¢(Z+) - QO (Z7 a))2} +A E(z,a)ED [LE(QH (Z7 a’) - V¢(Z))]’
where z is the encoded conversation, a is the bot utterance, z is the next encoded conversation, 7 is
the conversation-level reward, A > 0 is a tunable weight, and L3 is the expectile regression operator
(Koenker and Hallock, 2001) of estimating the top-7 expectile statistics of the Q-function random
variable (approximated by the value function V), and then extracts the DM policy y via greedification

over the finite set of MoE candidate utterances: p(a | z, {2};’;0) = argmax, . g.ym Qo (z,a).
tJi=0

Intuitively, IQL leverages the generalization capacity of critic functions to estimate the value of the

best action without directly querying the values w.r.t. unseen actions. This makes it less conservative

than most offline RL methods that either constrain the policy’s actions to be in-distribution or solve a
behavior-regularized policy optimization problem.

The second RL setting for learning the DM policy p is via model-based RL (MBRL) (Shah
et al., 2018; Wei et al., 2018). While this paradigm can be applied to any online/offline RL
algorithms we demonstrate it with the simple DQN (Mnih et al., 2013). Here we first learn
a user utterance model Puer(X1(|X,a) = E.—g, (X)) [Puser(X1|2)] via maximum likeli-
hood, then generate data Dy, whose next-state 5, encodes the next conversation generated
from roll-outs and the corresponding candidate actions, solve the Bellman error minimization:
ming 35, o 5, yepyl™ + VQou (54, arg max, e (o, .m} Qo (54, a+)) — Qo(s, a))?, and obtain
the DM policy u via the aforementioned greedification step. The benefit of MBRL over offline RL
is two-fold. First, one can easily obtain a high-fidelity user utterance model (Peng et al., 2020) by
simply fine-tuning a large LM (e.g., GPT-3 (Floridi and Chiriatti, 2020)). Second, with sufficient

“For simplicity, we assume that each expert generates only a single candidate utterance at each step. It would
be straightforward to extend this to multiple (and even a varying number of) candidate utterances.
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dialogue roll-outs that captures many different scenarios, MBRL generally can be more data-efficient
and less prone to distributional shifts than offline RL.

7 EXPERIMENTS

We evaluate our MoE-approach on two open-domain benchmarks that are common within the RL-
based dialogue management literature (Jaques et al., 2019). The first one is the Cornell Movie corpus
(Danescu-Niculescu-Mizil and Lee, 2011), which consists of conversations between speakers in
different movie lines and has a median conversation length of 3 utterances. The second is the Reddit
Casual (Ghandeharioun et al., 2019) conversations, which is a subset of the Reddit corpus that only
contains casual conversations on various topics of at least 3 turns and a median of 7 utterances.

We conduct several experiments to test the efficacy of different parts in the MoE-LM, namely (i) the
predictive power and diversity of the primitive, (ii) the quality of experts, and (iii) the overall DM
performance. For each metric, we report mean =+ standard error over 100 conversations sampled from
the evaluation set. We also ran an ablation study on 4 transformer-based MoE-LMs, namely MoE-1,
MoE-2, MoE-3- MoE-4, to understand how performance is affected by different model architectures,
language encoders, and latent generators. MoE-1 and MoE-2 use a simpler architecture, while MoE-3
and MoE-4 use the same encoder architecture as BERT (Devlin et al., 2018). MoE-1 uses much
smaller latent distribution models {G;} than MoE-2; MoE-3 uses the pre-trained BERT encoder,
while MoE-4 trains that from scratch. Details of these models can be found in Appendix B.3.

EXP 1: Comparing Primitive Models We compare the quality of latent representations learned
by the 4 MoE-LMs (via optimizing Eq. 1) and 2 baselines (standard Transformer (Vaswani et al.,
2017) and VHRED ° (Serban et al., 2017b)). To assess their quality, for each test conversation we
generated 25 utterances and reported the following 3 metrics: (i) Diversity: The 1— Sparsity (Hurley
and Rickard, 2009) of the singular values of the embedded utterances, i.e., Diversity({Y;}) :=
1-— \/d — ||SVD||1/||SVDH2/\/d —1e [O, 1], where SVD := SVD({(DSEO/; ?iﬂ, and ‘bs]; is a
pre-trained sentence encoder (e.g., a USE (Cer et al., 2018)); (ii) Dist-{1, 2, 3} (Li et al., 2015):
Ratio of unique {1, 2, 3}-gram in the generated utterances; (iii) Perplexity: The perplexity score of
the utterance w.r.t. a GPT-2 LM, which is more correlated to human’s judgement on semantic fluency
(Pang et al., 2020). These metrics measure both accuracy and semantic diversity. Qualitatively, we
also measure fluency and diversity of LMs using human ratings (see Appendix B.8 for details). The
results of the above experiments are reported in Table 1 and 6 (Appendix A.1), and sample utterances
generated by these LMs can be found in Appendix A.3. Human evaluation on diversity/fluency of
different LMs are given in Table 4. In comparisons with the baselines (Transformer and VHRED),
generally (i) transformer-based LMs out-perform VHRED due to their attention mechanism that
explicitly encodes sequential semantic information, and (ii) the MoE-LMs achieve way better diversity
without sacrificing much on accuracy (i.e., the perplexity scores are still quite low). Qualitatively, the
sample utterances generated the Transformer are closer to the targets than that by MoE-2 and MoE-4,
likely because Transformer tends to memorize the corpus (Kharitonov et al., 2021). Contrarily,
MOoE-LMs generate utterances that have similar contexts with targets but paraphrased or similar
structures but different contexts, demonstrating their generalizability. Human evaluations also show
that MoE-2 and MoE-4 generate more diverse utterances while retaining sufficient semantic fluency.

Among different MoE-LMs, MoE-2 and MoE-4 have the best performances, particularly MoE-4 has
better diversity while MoE-2 has lower perplexity. This corroborates with our hypotheses that (i)
jointly training the encoder and decoder with Eq. 1 seems necessary to encourage semantic diversity
(as opposed to using a pre-trained BERT encoder, which maximizes likelihood), (ii) sufficient
representation power is necessary for G, to match the posterior distribution p in order to capture
different semantics in D. In Fig. 2a and 2b, we visualize the latent space of 400 conversation data
samples for both Transformer and MoE-4. The latent states of MoE-4 are much more dispersed
across the embedding space, implying that most conversations get encoded uniquely. In contrast,
the latent space of Transformer has many clusters, suggesting it is more prone to generating similar
utterances even with different input conversation and is thus less generalizable.

EXP 2: Quality of Experts We compare the performance of experts learned by the 4 MoE-LMs
(where experts are separately trained by optimizing Eq. 2) and 2 baselines (WD (Holtzman et al., 2018)
and PPLM (Dathathri et al., 2019)). To study the sub-optimality gap in Corollary 1, we also include
the performance of Transformer-based expert end-to-end LMs that are individually optimized with
REINFORCE (Li et al., 2016), using the expert labels {¢;} as rewards. Inspired by Ghandeharioun
et al. (2019) on how bot behaviors are characterized, we use the following label functions to define the

>The VHRED model implementation is identical to that in Jaques et al. (2019) to ensure fair comparisons.
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Method Diversity Dist-1 Dist-2 Dist-3 Perplexity Method User Tot. Sent. User Sent. Trans. Perplexity
MoE-1 0.069 £ 0.03 0.27 0.66 0.75 27.43 + 18.49 MoE-4 IQL 4.55 +0.38 2.88 +0.35 45.53 £ 26.71
MoE-2 0.14 £ 0.05 0.35 0.77 0.90 38.81 £ 17.34 MoE-4 Ens-Q 4.14 + 041 2.36 + 031 43.77 £ 28.24
MoE-3 0.089 £ 0.04 0.29 0.75 0.90 41.35 £ 26.68 MoE-4 KLC 3.94 4+ 025 221 +0.24 38.35 + 16.88
MoE-4 0.16 & 0.04 0.38 0.80 0.95 50.17 + 28.11 VHRL 3.85£0.28 2.19 +£0.28 55.81 +24.21
Trans. 0.087 £ 0.03 0.26 0.65 0.85 19.23 + 15.46 VHRL-KLC 3.95+0.19 2.16 £ 0.33 64.05 = 36.98
VHRED 0.09 £ 0.04 0.35 0.70 0.79 79.77 £ 39.61 VHRL-SAC 3.93+028 2.19 +0.32 62.06 + 40.43

Table 1: Accuracy (Perplexity) and Diversity of Lan-  Table 2: Performance (w.r.t. User Satisfaction in Conversa-
guage Primitive Experts Trained with Reddit. tion) of MBRL-based DM Trained with Reddit.

(a) Transformer Primitive, TSNE  (b) MoE-4 Primitive, TSNE (C) MoE-4 Sentiment, PCA (d) MoE-4 Emotion, PCA

Figure 2: Latent Space Visualizations. Figures (a) and (b) Compares Two Primitive Representations. Figures
(c) and (d) Illustrates How Experts (of Different Sentiments and Emotions) are Represented by Latent Clusters.

intents of experts: (1) £pos-sent(Y"); Cneg-sent(Y); Cioy (Y), Loptimism (Y"), Langer(Y), Lsadness(Y) quantify 6
different sentiment tones and are constructed by a RoBERTa-based sentiment detector (Liao et al.,
2021) that predicts whether an utterance is of positive or negative sentiment, and whether it falls into
any of the 4 more-refined emotions: {joy, optimisim, sadness, anger}; (ii) sent-con (X, Y') measures
empathy, i.e., bot’s sentiment coherence with user’s; (iii) Equestion(Y) outputs 1 when a bot question is
detected and O otherwise; (iv) KCXP(X, Y') quantifies exploration, i.e., the tendency to avoid repetitive
contexts (see Appendix B.7 for details). Qualitatively, we also measure fluency and expert skills
of LMs using human ratings (see Appendix B.8 for details). The results of the above experiments
are reported in Table 3 and 8 (Appendix A.1), with sample utterances reported in Appendix A.4 to
A.10. Results on human evaluation of different LMs w.r.t. fluency and different expert skills are
given in Table 5. Compared with the baseline LMs, generally the experts created under the MoE-LM
framework, especially under MoE-2 and MoE-4, better capture all different language intents (where
WD and PPLM appear to capture negative sentiments and emotions much more effectively than
behaviors), demonstrating the efficacy of our approach which constructs specialized experts on a
diverse language space via reward maximization (instead of weighted MLE). Human evaluations also
show that MoE-4 is most effective in generating semantically fluent utterances that possess a wide
range of expert characteristics.

Similar to the ablation study in EXP 1, all the experts associated with MoE-2 and MoE-4 are also
among the best ones in capturing language intents. Interestingly, with the Reddit data the experts
in MoE-4 perform the best, while with much less data (Cornell) the best experts are built upon the
simpler MoE-2 architecture. We conjecture this difference is due to over-fitting issues faced by the
larger LMs (MoE-4) when there is insufficient data for expert fine-tuning. In Fig. 2c and 2d we
visualize the latent space of the sentiment-based experts in MoE-4, each with 400 conversation data
samples. Notice that the sentiment experts’ latent distributions are clearly separated (because positive
and negative sentiments have opposite behaviors), while the emotion expert’s latent distribution have
more gradual separations and even some overlaps (because e.g., joy versus optimism are quite similar,
while joy versus anger are quite different). This validates our MoE-LM represents different behaviors
in separate regions of the latent space and justifies our structural prior of modeling each expert as a
specialized version of the primitive LM, whose latent distribution focuses on particular regions.

EXP 3: MoE-RL Against DialoGPT Simulated Users We compare the dialogue management
performance of MoE-LM, for which their MoE-based DMs p are trained with different methods:
(1) IQL (Kostrikov et al., 2021), (ii) Ensemble DQN (Carta et al., 2021), (iii) KL-control (Jaques
et al., 2019), with 3 standard RL-based DM baselines using the VHRL architecture (Saleh et al.,
2020): (i) REINFORCE (Li et al., 2016), (ii) KL-control, (iii)) SAC (Haarnoja et al., 2018). Ac-
cording to the results on expert quality in EXP2, we pick the MoE-2 and MoE-4 frameworks for
the Cornell and Reddit tasks respectively. For systematic evaluation, we perform the experiment
by having these RL agents interact with a DialoGPT (Zhang et al., 2019) simulated user envi-
ronment for a maximum of 5 turns. The DM task is to maximize total user satisfaction in the
conversation level, which is measured by both (i) user’s overall sentiment, and (ii) user’s sentiment
transition. To construct an immediate reward that serves as a surrogate for user satisfaction, we set

(X, 0, X4) = Mbaen(X4) + Ao (baen(X ) = £ 315" Y lien (X1)), where the linear combi-
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Method Question Exploration Positive Sent. Negative Sent. Sent. Coherence Joy Optimism Anger Sadness
MokE-1 0.65 +0.20 0.45 +0.17 1.13 £ 0.21 0.35 +0.19 0.50 £ 0.38 0.96 & 0.26 -0.21 £+ 0.56 0.54 £ 0.58 0.99 £ 0.83
MoE-2 0.95 +0.27 0.47 £ 0.21 3294033 1.42 £+ 0.38 0.51 £ 0.40 1.99 + 0.38 1.25 + 043 1.48 £ 0.39 2.01 + 0.46
MoE-3 0.41 £ 0.35 0.50 &+ 0.24 1.23 £0.78 0.99 + 0.48 0.66 & 0.35 1.02 +0.29 0.49 £ 0.51 0.53 £+ 0.49 1.10 £ 0.48
MoE-4 0.96 + 0.37 0.51 + 0.31 3.41 £ 0.55 1.80 + 0.34 0.52 +0.31 2.05 + 0.55 1.57 £ 0.44 1.42 £ 042 1.97 £ 0.36
WD 0.05 + 0.03 0.15 £ 0.37 -0.50 + 0.74 1.01 £+ 048 0.51 £ 0.20 -0.51 £ 0.39 -0.84 + 0.76 1.00 £ 0.44 1.27 &+ 0.67

PPLM 0.20 +0.25 0.48 £ 0.28 0.44 + 041 0.69 £ 0.22 0.53 + 031 0.31 £0.29 0.40 £ 0.55 0.71 & 0.46 0.98 + 0.59

[ Trans. RL* ][ 099 £023 | 054£0.18 [ 353F£1.64 [ 189E£120 | 072+030 [ 288+£096 [ 1.80£059 [ 1.62+075 [ 2.35+0.62 |

Table 3: Quality of Each Expert PPLM Trained on Reddit Casual dataset w.r.t. its Trained Label. Trans. RL

Corresponds to Individually Optimized LMs Using Expert Labels {¢; } as Rewards.

Table 5: Phase 2 Raters Evaluation (Reddit Casual Models).

Table 4: Phase 1 Raters Evaluation

nation weights (A1, A2) = (0.75,0.25) correlate with Ghandeharioun et al. (2019), and £yeq (X)) is
the same RoBerTa-based sentiment labeler as in EXP2, which assigns a score from [—1, 1] that is
proportional to the positive sentiment and inversely proportional to the negative sentiment prediction
probabilities. To ensure the baseline RL. DM methods can also possess certain bot-level features, e.g.,
question, positive sentiment, etc., besides the above RL reward for user satisfaction we also optimize
a linear combination of bot-based rewards when training the baseline models, see Appendix B of
Saleh et al. (2020) for more details. Since the DM problem lasts at most 5 turns, we use this as the
effective horizon and sety =1 —1/5 = 0.8.

The results of the above experiments (performed in both offline RL and MBRL settings) are reported
in Table 2, Table 7 (Appendix A.1), Table 9 and 10 (Appendix A.2), with sample utterances reported
in Appendix A.11. Our experiments show that MoE-LMs outperform most baselines on DM per-
formance. We attribute this finding to three factors: (i) MoE-LM restricts the action space into a
smaller set of candidate utterances generated by experts (whose qualities are validated in EXP2), the
corresponding RL problem then becomes simpler and requires less data (especially in Cornell) to
solve; (ii) Unlike the baseline RL methods, which need to optimize both bot-and-user signals, the
MoE DM agents focus on optimizing the user satisfaction goal and are therefore more effective; (iii)
Among different RL settings, MBRL, which first learns a user utterance model (the model uses the
same encoder from the primitive LM and learns a separate decoder for user-utterance prediction) then
does DM, performs much better than offline RL methods that moderately improve upon the primitive
LM (behavior policy). IQL-based dialogue managers are among the best across different settings
potentially because IQL is more robust to co-variate shifts than standard RL methods, e.g., Ens-Q,
SAC, and yet it is less conservative than the behavior-regularized algorithms, e.g., KLC. Interestingly,
our MoE-LMs also have lower (better) perplexity scores than other methods. This may be due to the
fact that MoE-LM uses pre-trained encoder and decoder from the primitive LM, which are optimized
for generalization and accuracy, while other RL methods may distort their language representations
to create utterances that maximize reward but become less natural.

8 CONCLUDING REMARKS

We developed a mixture-of-expert (MoE) approach for RL-based dialogue management (DM). Our
MoE language model (MoE-LM) comprises of three main components: (i) a LM that can generate
diverse semantics for conversation histories, (ii) a number of specialized LMs (or experts) that can
produce utterances corresponding to a particular attribute or intent, and (iii) a RL-based DM that
performs dialogue planning with the utterances generated by the experts. To understand how well our
MoE approach generates diverse and sensible utterances, and solves DM problems, we evaluated it
using two open-domain dialogue tasks and compared it with SOTA baselines. Our results showed
that MoE-LM (i) improves diversity of text generation, (ii) can generate utterances with specific
intents, and (iii) yields better overall performance. We consider our work as a step forward in
creating steerable LMs that possess different intents and in training RL-based DMs that can carry on
rich conversations. Future work includes improving the language representation with information-
theoretic approaches, fine-tuning the experts based on the DM objective, extending the RL agent to
track users’ behaviors (via abstract belief states) and plan upon them, preventing RL dialogue agents
from generating harmful behaviors (via enforcing safety constraints), and evaluating our MoE-LM on
more realistic problems, such as information retrieval, recommendation, and negotiation.

Method Avg. Fluency Diversity

MoE-1 0.72 £+ 0.02 0.51 £ 0.02 Method Avg. Fluency SQuestion SPos. Sent SNeg. Sent Sloy SAnger
MOoE-2 0.75 + 0.02 0.54 +0.02 MOoE-3 0.76 + 0.04 0.27 £ 0.05 | 0.64 +0.04 | 0.26 +0.05 | 0.41 +0.04 | 0.33 4+ 0.05
MOoE-3 0.72 + 0.02 0.42 £+ 0.03 MoE-4 0.82 + 0.02 0.74 +0.04 | 0.46+0.04 | 0.44 +0.03 | 0.51 +0.04 | 0.43 £+ 0.03
MOoE-4 0.65 + 0.03 0.69 £ 0.02 Trans. 0.78 + 0.03 0.124+0.03 | 029 +0.04 | 0.194+0.04 | 038 +0.04 | 0.33 £+ 0.05
Trans. 0.70 4 0.02 0.47 £+ 0.02
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