
SELDOM:
Scene Editing via Latent Diffusion with Object-centric Modifications

Richard E. L. Higgins
University of Michigan

relh@umich.edu

David F. Fouhey
New York University
david.fouhey@nyu.edu

Abstract

We introduce SELDOM to composably edit scenes—mixing
and matching objects with backgrounds, camera changes,
and object-centric edits. SELDOM is a 3D-aware diffusion
editing method which conditions on sequences of “neural
nouns and verbs”. Neural nouns represent scene state and
are visual features extracted from source image(s). Neu-
ral verbs are learnt representations for image edits, formed
either by explicitly parsing prompts or implicitly attend-
ing to them. Neural verbs combine with their associated
neural nouns to convey object-centric transformations. Fi-
nally, a sequence of these tokens is composed with scene
background tokens and used as conditioning for a fine-
tuned latent diffusion model. Our factorization affords test-
time compositionality, allowing us to compose edited ob-
jects from multiple datasets into a single scene. We further
demonstrate our model’s ability to photo-edit: SELDOM
can convincingly edits scenes to change object hue and
lighting, scale and rotate objects, apply diverse language-
based edits, and control camera rotation and translation.

1. Introduction

Fig. 1 shows two source scenes, a shoe on a sidewalk and a
cereal box in a store. How might one edit the first scene to
rotate the camera, change the color of the shoe, and insert
the cereal box? How might one edit any scene (or scenes) to
compose objects, potentially across datasets, with multiple
transformations, and with a new camera orientation? Ex-
tracting 3D-aware object representations from 2D images,
editing them, and then composing them can enable deep-
learning photo editing and provide rich visual representa-
tions for downstream tasks. Our goal is to produce such a
representation.

Current text-based image editing methods are impres-
sive. But prompts like “move the chair to the right of the
couch” (and language generally) lack specificity compared
with the precise control of 3D objects [51] one might de-
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Figure 1. Our method, SELDOM, uses neural nouns and verbs for
compositional image edits within and across scenes via latent dif-
fusion. Here the shoe from the first source scene is made blue and
the camera is rotated. The box from the second source scene is
rotated, slightly saturated, and inserted into the first scene. SEL-
DOM performs edits, composes the second object into the first
scene, and rotates the camera viewpoint.

sire. Conversely, non text-based, explicitly 3D-aware meth-
ods, such as Neural Assets [107], excel at precise spatial
transformations but lack the capability to perform general
edits involving attributes, styles, or actions (e.g., changing
object color or state). Existing methods for text-based con-
trol using diffusion [2, 7, 31, 81] partially address precision
limitations, but are still limited by the vagueness of lan-
guage. Moreover, most image-editing approaches are lim-
ited in that they do not directly offer the ability to retain
subject identity or compose edits.

Prior image editing work often uses a single source im-
age (concatenated with to-be-denoised latents) and a text
prompt. But how might one combine multiple visual en-
tities across scenes (as in Fig. 1)? Should one just con-
catenate/stack more images? Single-image visual condi-
tioning is a limitation that prevents the broad type of com-
posability a simple text prompt already supports. Further-
more, unlike rich text encodings, images (and their mini-
malist latent conditionings) are raw rather than representa-
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Figure 2. Object Compositionality: Each triplet (scene, object, obj. in scene) shows two source images and SELDOM’s output applying
object-centric editing and then recomposing the scene. SELDOM first extracts features and edits from multiple images and prompts, then
applies the edits, and then recompose the scene as a sequence of neural nouns and verbs. SELDOM edits entities: rotating, translating,
changing attributes such as color, inserting synthetic objects into real scenes and vice versa, and finally also changing the camera orientation.
The left triplets insert Objectron objects into OBJect scenes. The right triplets are scenes from the Objectron dataset.

tional. Diffusion systems may be limited when concurrently
parsing their visual scene while generating outputs. When
it comes to editing, encoders like CLIP [80] are limited as
they associate captions—not instructional prompts describ-
ing edits—with images. Yet latent diffusion [81] can sepa-
rately generate images corresponding to the before and after
of instructional prompts, e.g., a whole vs. chopped carrot or
a lounging vs. prowling cat. These before and afters don’t
preserve identity but their existence shows that the model
can understand these states. This highlights the power of
text-based generation for showing what is—just not what’s
changing. Still, text-based editing methods sometimes fail
to preserve object identity, fail to represent inarticulatable
changes, and can be restricted to conditioning on a single
scene. We explore visual representations for moving be-
tween states, learning features for what-can-be instead of
what-is. We pursue an object-centric composable editing
approach, breaking scenes down into objects, background,
and camera viewpoint before applying verbs individually
and re-recomposing them. We learn a disentangled, visual
understanding of verbs/actions for image generation.

Our method is SELDOM, Scene Editing via Latent
Diffusion with Object-centric Modifications. SELDOM
bridges the gap between broad language-based editability

and precise 3D control. Our approach allows us to insert
specific objects into new scenes, perform 3D transforma-
tions, and edit objects—so as to apply attribute edits such as
color changes—all while preserving object identity. SEL-
DOM extracts visual “neural nouns”, textual “neural verbs”,
and then associates them based on similarity. Sequences of
“neural nouns” describe the state of the scene, similar to a
non-editing text prompt, while “neural verbs” capture the
edits to be performed, similar to a text instruction. The as-
sociation between neural nouns and verbs controls which
verbs can affect which entities, and the edited scene is a re-
sult of conditioning a diffusion model with a sequence of
these associated tokens. Our contributions are:

• We introduce neural nouns and verbs, a composable
means of image editing that balances precise 3D control
with the broad expressivity of text-based prompts.

• We improve upon the state-of-the-art composable pose
editing method Neural Assets [107] without needing 3D
bounding boxes and while supporting the application of
verbs beyond just pose.

• SELDOM believably edits and insert objects (both real
and synthetic) across different datasets and scenes.

• SELDOM performs language-based photo edits such as
hue shift, scaling, brightness, and camera control.
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Figure 3. For image edits we require a source image and an edit prompt. We extract visual features from the source image, extracting 2× 2
sets of ROI aligned features for each object of interest. We generate conditioning for our UNet by concatenating these features with either
implicit or explicit neural verbs, magnitudes, and location information. We optionally edit and compose objects across scenes and datasets,
as shown with the tiger figurine inserted into the edited table scene.

2. Related Work

Diffusion-Based Image Editing. Diffusion models have
substantially advanced image editing and synthesis [34, 81,
85], building upon earlier GAN-based methods [26, 39, 60,
121] for style transfer and generation. Recent works focus
on text guidance [2, 7, 31, 56, 58, 71, 83], introduce seman-
tic and latent constraints [52, 67, 105], or unify visual and
textual editing [63, 109]. Concurrent improvements in dif-
fusion training/inference [43, 101] yield higher fidelity. Be-
yond static images, further approaches incorporate actions
or multi-frame sequences [29, 92], refine prompts for action
changes [18, 87], or embed state evolution [112]. Unlike
SELDOM, few prompt-based editing works focus on pre-
cise 3D-aware control [59] or extract verbs for composing
with object-centric representations.

Related efforts use pretrained diffusion models for edit-
ing without large-scale fine-tuning. Recent work explores
image/denoising deltas [32, 66], localizes regions from
unconditional–conditional differences [19], masks cross-
attention to avoid attribute leakage [65], and transfers
transformations from exemplar pairs [14, 68, 88, 119].
Others retrieve pivot embeddings for real-image inver-
sions [4, 44, 61, 93] or preserve structures via optimiza-
tion of timesteps/noise and self-attention features [12, 62].
These works extract interesting representations for edits, but
are often limited to changes that fit the granularity of text
prompts the models were trained with, unlike the compos-

able neural verb representations of SELDOM.

Personalization and Identity Preservation. Preserving
subject identity and composing multiple concepts is also
important. Recent works preserve subject identity and com-
pose multiple concepts from references [3, 48, 57, 108,
120], including fine-grained object- or part-level personal-
ization [20, 77, 111]. Many personalization works preserve
identity like SELDOM, but lack precise control over the
generated 3D content [76] (or are limited to a single entity).

Object-centric and Multi-Subject Editing. To organize
scenes at an object level, prior work aligns text tokens with
segments for multi-object generation [28, 35, 102, 110],
handles object insertions or replacements [69, 91, 95], or
performs region-based manipulation of objects [10, 15, 25,
49]. However, unlike SELDOM, these multi-object genera-
tion methods often lack identity preservation or editability.

Scene Factorization and Compositional Editing. Ear-
lier object-factorization methods [8, 22, 27, 55] have in-
spired slot-based diffusion architectures [40, 41, 72, 106]
and concept-disentangling techniques [51, 84], with further
extensions in unsupervised or contrastive learning [11, 16,
23, 74, 75, 78, 94, 118]. Slot based approaches are inher-
ently compositional, but most don’t focus on learning com-
posable neural verb representations like SELDOM.

3D-Aware Synthesis and Camera Control. Methods have
adapted 2D diffusion priors to 3D without explicit 3D train-
ing data [13, 53, 54, 76, 79, 100], often guided by geome-
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“move the cup to (0.45, 0.44) and rotate by (-0.02°, -10.44°, -7.03°), color greener by 30.00. camera 
dolly left by 0.11, down by 0.01, back by 0.01, orient right by 27.89°, up 1.25°, right 2.52°.”

target

Figure 4. SELDOM Implicit output generated using only an input
image and the text prompt shown (no bounding boxes – visual
features are clustered and attend to the prompt).

try critics or multi-view consistency [9, 17, 97]. Additional
approaches focus on camera orientation [24, 37, 64], re-
rendering or camera transforms [30, 99, 107], or lifting 2D
features into 3D for downstream tasks [113]. Yet 3D-aware
methods often don’t support a wide variety of actions and/or
lack the ability to control the camera—SELDOM aims to
bridge this gap.

Mechanistic Interpretability. Works dissect the internals
of diffusion, revealing how attention layers encode struc-
ture and object identity [50], measuring text–image faithful-
ness [38], and collecting real-world edits from reddit [89].
Others formalize composition or interpret classifier-free
guidance [5, 6], and align or compare diffusion with ad-
vanced vision-language models [42, 47, 103, 104, 114].
These works enlighten us about the internals of diffusion-
based image-generation, but unlike SELDOM they gener-
ally don’t evaluate on real world, non-toy datasets.

3. Method

SELDOM replaces text-based conditioning in diffusion
with a sequence of learnt “neural nouns and verbs”. Our
goal is an object-centric representation that supports general
text-based editing, e.g., “make the horse a camel”, while
supporting precise 3D-aware object/camera viewpoint ed-
its, e.g., “also rotate the camera 21.3 degrees clockwise”.
We extract visual features from input images to represent
objects and the background, and then apply actions (verbs)
to them. A sequence of extracted features and actions is
used to condition image generation. We train using pairs
of before and after images, coupled with a text prompt that
describes the change, e.g., “rotate the car by 35 degrees”.
Architecture. We fine-tune a pre-trained Stable Diffusion
2.1 [81] model to accept neural nouns and verbs as condi-
tioning instead of CLIP [80] text encodings for a prompt.
Neural Nouns. A neural noun represents an object in
the source image(s). We extract visual features (using DI-
NOv2 [73]) from object bounding boxes (or feature cluster-
ing) and use region-of-interest (ROI) pooling to reduce the
spatially variable number of K = 384 dimensional features
down to a 2× 2×K grid, which we use as a neural noun.

Neural Verbs. A neural verb is a conceptual representation
of the edit to be performed. We build neural verbs in one of
two ways. Explicit neural verbs involve directly parsing the
text to build verbs. Explicit DINOv2 verbs are a concate-
nation of cached delta visual features from the training set,
a magnitude, and a bounding box. Building a neural verb
starts by explicitly parsing the verb and magnitude from a
prompt using spaCy [36], e.g., “rotate” and “35 degrees”
from “rotate the car by 35 degrees”. Next, the text string
for the verb is used as a key into a pre-computed database
that fetches the median delta neural noun for that verb from
the training set to use as a visual representation of that verb,
a 2 × 2 × K vector, where K is the DINOv2 feature di-
mension. The flattened delta neural noun, magnitude, and
bounding box are concatenated and projected to form the
neural verb. We also parse neural verbs implicitly, with an
example show in Figure 4. Implicit DINOv2 neural verbs
are more promising, as they are more general than parsing
prompts. Implicit neural verbs start by using a linear layer
to project the neural noun to the dimensionality of a frozen
text encoder (either CLIP [80] or T5 [70], before using it
as a query for multi-head attention while the text encoder
output serves as keys and values.
Background and Camera. To compare to Neural As-
sets [107] with our explicit neural verbs, we first create a
neural noun to represent the background of the image by
pooling the remaining DINO features down to a 2× 2×K
grid. We then project the delta camera pose as the asso-
ciated neural verb for this background neural noun. For
implicit neural verbs, the pooled background features pro-
jected to the text dimensionality attend to a text prompt de-
scribing the camera change.
Conditioning. The model is conditioned on a sequence of
tokens. Each neural noun represents an entity in the image,
with an additional entry for the scene background. Com-
posing entities explicitly as individual tokens is a powerful
break from the contextual text encodings of prompts. Our
neural nouns are size 4(X + 1) × 1024, where X is the
number of entities in the image. The additional 1 describes
camera changes, and the 4 represents the flattened 2 × 2
grid of DINOv2 features. The sequence of neural verbs is a
(X + 1) × 1024 sequence of tokens. The neural verbs are
then repeated 4 times to a final size of 4(X + 1) × 1024
to correspond with the 4 DINOv2 features per neural noun.
The 2048 dimensional sequence of paired and concatenated
nouns and verbs is projected to the dimensionality of the
CLIP text encoder output and used in lieu of it.
Inference. At test time, only a source image and prompt
are needed. SELDOM supports multiple source image(s)
and general text-editing prompts. To build neural nouns, we
either cluster the fine-tuned DINOv2 features, use an object
detector, or use ground truth bounding boxes. To build neu-
ral verbs, we parse the prompt for the verb, magnitude, and
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Figure 5. SELDOM Outputs: Triplets of source, target, and SELDOM editing result (one model produces all outputs). The left three rows
show triplets that all include the move, rotate, and camera motion verbs for the Objectron [1] dataset: (top-left) a rotated pair of shoes,
with an inferred shelf bottom; (middle-left) a rotation to the front of the camera, successfully darkening the transparent lens and generating
a plausible backcard for the camera; (bottom-left) a top-view of a mug without the side visible, and SELDOM acceptably hallucinates a
dragon. The right three rows show triplets from the OBJect [59] dataset with translation, removal, and rotation edits respectively: (top-
right) a box is shifted left; (middle-right) a boot is removed; (bottom-right) a grill is rotated, revealing a hidden object that was occluded.

desired 2D bounding box and compose them with retrieved
delta DINOv2 features for the verb. Alternatively, our im-
plicit method projects DINOv2 features as queries against
the frozen text encoder output.

Training. A training sample is a source image, target im-
age, and a text prompt describing the change to be per-
formed. Our explicit variant of SELDOM requires source
and target bounding boxes for entities.

Classifier-free Guidance for Editing. Classifier-free guid-
ance [33] for image generation typically involves combin-
ing an unconditional and conditional denoising step. This
combination is purported to both denoise towards the distri-
bution of natural images and the direction of the condition-
ing. For compositional image editing compared with gen-
eration, it is unclear if this same intuition is best applied.
We explore three variants of classifier-free guidance. The
first is normal classifier-free guidance, with a guidance fac-
tor of 2.0. The second is an “edit” approach in which, with
probability p = 0.1, we both change the target to be the
source image and drop the neural verbs (but not the neural
nouns) from the conditioning. This encourages the network
to learn that neural nouns represent the current state and
setting neural verbs to zeros should be a no-op. The third

variant, dubbed “raw-edit”, drops neural verb conditioning
similarly, but is not classifier-free guidance because it only
uses conditional generation.
Loss. Latent diffusion [81] encodes images x0 into latent
representations z0 using an autoencoder E:

z0 = E(x0)

where x0 is the original image and z0 its latent encoding.
Then, at timestep t, a noisy latent zt is defined by:

zt = αtz0 + σtϵ, with ϵ ∼ N (0, I),

where scalar coefficients αt and σt control the amount of
signal and noise according to a predetermined schedule.

We fine-tune the diffusion model using v-prediction [82],
predicting the velocity vector: v = αtz0 − σtϵ.

The training objective is the mean squared error (MSE)
between the predicted velocity vθ(zt, t, c) and the true ve-
locity v:

L = Ex0,c,t,ϵ

[
∥vθ(zt, t, c)− v∥2

]
,

where vθ is the neural network parameterized by weights θ,
and c denotes conditioning prompt embeddings. The expec-
tation is taken over batches of input images x0, conditioning
embeddings c, timesteps t, and noise realizations ϵ.
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Figure 6. Photo-Editing: Existing actions from source target pairs are augmented with photo-edits on the Objectron [1] (three left
columns) and OBJect [59] (three right columns) datasets. The Objectron triplets show: (top-left) a shoe is brightened and the camera
orbits, (middle-left) a white chair is turned pink and the camera is moved, (bottom-left) a shoe on a doorstep is scaled up as the camera
approaches. The OBJect triplets show: (top-right) a simple scale-up, (middle-right) a silver cube made pink and moved forward and to the
left, (bottom-right) a box cart turned yellow.

Hardware and Training Details. We fine-tune models for
1-2 days and 100,000 steps, similar to Neural Assets [107].
We use NVIDIA A40, A100, and H100 GPUs. We use
batch sizes ranging from 2 to 50. We use a learning rate
of 1 × 10−4 and optimize the model using the Schedule-
Free [21] LR adjuster with an Adam optimizer [45].

4. Experiments
SELDOM both follows precise instructions, e.g., “rotate the
car 35.3 degrees”, and performs general text-based image
edits, e.g., “paint the door red”. SELDOM can compose
objects across scenes and edit photos using verbs.

4.1. Datasets
We train on the Objectron [1] and OBJect [59] datasets, as
they have granular prompts, e.g., “rotate the hat by 35◦.”
Objectron. [1] consists of short video clips of common ob-
jects like chairs and tables, annotated with 3D bounding
boxes and camera poses. It provides explicit knowledge
of 3D camera extrinsics, allowing for precise conditioning
based on camera movements. Additionally, Objectron in-
cludes multiple verbs that affect the same object, e.g., move
to location and rotate, allowing us to better test SELDOM.
OBJect. [59] is a dataset comprising 100,000 procedurally

generated synthetic scenes, each containing 1 to 4 objects,
designed for 3D-aware image editing tasks such as rotation,
removal, insertion, and translation. This dataset includes
multiple objects in a scene, with one edited per sample, al-
low disentangled neural verb learning.
Pseudolabels. Using SAM-generated segmentation masks
for objects in both datasets, we create modified target im-
ages with different hue, scale, and brightness, to provide a
greater diversity of “image editing” targets.

4.2. Metrics
Similar to prior work in image generation, we evaluate our
method using Peak Signal-to-Noise Ratio (PSNR), Struc-
tural Similarity Index Measure (SSIM) [98], and Learned
Perceptual Image Patch Similarity (LPIPS) [116]. PSNR
measures reconstruction quality between the generated and
target images. SSIM evaluates perceptual similarity be-
tween images. LPIPS measures perceptual similarity us-
ing deep features. For a fair comparison with Neural As-
sets [107], we evaluate within object bounding boxes.

4.3. Results

Quantitative Results. Table 1 evaluates SELDOM
against three baselines from the state-of-the-art Neural As-
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Table 1. Quantitative comparison on the OBJect unseen split within bounding boxes for translation, rotation, and removal tasks. ↑ indicates
higher is better, ↓ indicates lower is better. SELDOM performs on-par or better than Neural Assets [107].

Method PSNR ↑ SSIM ↑ LPIPS ↓
Translate Rotate Remove Translate Rotate Remove Translate Rotate Remove

Chained [107] 14.1 12.9 12.1 0.33 0.27 0.38 0.47 0.54 0.46
3DIT [59] 15.2 16.3 24.7 0.29 0.37 0.57 0.48 0.45 0.26
Neural Assets [107] 20.1 18.4 28.4 0.43 0.38 0.61 0.27 0.37 0.17

SELDOM (Ours) 20.6 17.6 31.0 0.52 0.40 0.77 0.07 0.16 0.03

Table 2. Quantitative comparison on the Objectron validation split
within bounding boxes for the joint translation and rotation task.
↑ indicates higher is better, ↓ indicates lower is better. Neural
Assets [107] uses 3D bboxes but SELDOM only uses 2D bboxes.

Method PSNR ↑ SSIM ↑ LPIPS ↓
Chained [107] 11 0.1 0.4
3DIT [59] 11 0.1 0.4
Neural Assets [107] 16 0.45 0.15

SELDOM (Ours) 14.4 0.35 0.25

Table 3. SELDOM ablations evaluated on a subset of OBJect [59]
seen and Objectron val datasets. We compare ∆ VAE latents vs. ∆
DINOv2 features in explicit neural verbs. Next, we compare slot-
based vs. DINOv2 feature implicit neural verbs. Then we compare
slot-based vs. DINOv2 feature explicit neural verbs. Finally, we
compare variations of classifier-free guidance.

Conditioning PSNR ↑ SSIM ↑ LPIPS ↓
Explicit VAE 22.3 0.59 0.12
Explicit DINOv2 25.9 0.66 0.09

Implicit Slot 20.2 0.53 0.13
Implicit DINOv2 20.6 0.51 0.12

Explicit Slot 20.0 0.46 0.16
Explicit DINOv2 25.9 0.66 0.09

Imp. DINOv2 Normal 20.1 0.49 0.12
Imp. DINOv2 Edit 20.0 0.47 0.14
Imp. DINOv2 Raw 20.6 0.51 0.12

sets [107]. We perform on par with or better than Neural
Assets, improving PSNR, SSIM, and LPIPS on the OB-
Ject [59] unseen subset, except for on PSNR rotation. Com-
pellingly, SELDOM does not make use of 3D bounding
boxes like Neural Assets does, working well without the
canonical orientation implied by such bounding boxes. By
avoiding 3D bounding boxes, SELDOM is capable of train-
ing and inference on any image dataset that has object de-
tections (rather than needing 3D bounding box annotations).

Qualitative Results. Figure 2 shows the object compo-
sitionality capabilities of SELDOM using image triplets
(scene, object, obj. in scene) with two source images
and SELDOM’s generated output placing the object in the
scene. These triplets show SELDOM is capable of inter-
dataset edits, as well as meaningful 3D-aware positioning
(including occlusion). Unlike most image-editing meth-
ods, SELDOM is capable of jointly composing image and
camera changes, as Figure 2 shows. No target features are
available for the changed viewpoint; the model has simply
learnt how to rotate real world Objectron scenes. Figure 5
shows results from SELDOM on the Objectron and OBJect
datasets that directly compare to Neural Assets, in that they
don’t mix-and-match objects across datasets or apply gen-
eral verbs (as SELDOM is capable of). Figure 6 introduces
SELDOM doing more than just manipulate the poses of
objects. SELDOM’s general verb-based approach enables
photo editing capabilities, including color changes, scaling,
and other edits on the Objectron (three left columns) and
OBJect (right three columns) datasets. Meanwhile, Figure 7
shows failures of SELDOM, while Figure 8 shows how
SELDOM can be applied to other image editing datasets.

Variations. Table 3 explores SELDOM variants. First,
we compare the use of ∆ VAE latents vs ∆ DINOv2 fea-
tures for explicit neural verbs. The comparison explores the
visual representation’s value in capturing the verb-related
delta visual features (from a cached median lookup from
the training dataset) between the source and target latent
diffusion VAE features or the DINOv2 features. This re-
veals whether the DINOv2 features improve the ability for
the model to recognize the verb being applied, and we only
show modest improvements, demonstrating that identify-
ing the verb is not challenging. Next, we compare im-
plicit methods that attend to text prompts, specifically a slot-
based method vs. a DINOv2 feature-based implicit neural
verb formulation. The slot-based variant involves initializ-
ing n = 5 slots of the same dimensionality as the text en-
coder. Each slot attends to the text prompt and is matched
to a neural noun based on similarity. Promisingly, our slot-
based variant forms a verb representation solely from text,
separating concerns of edits and state. We achieve mixed
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Figure 7. Failure Cases: The left three columns show object compositionality failures, the right three columns show different failure
modes: (top-left) an object composition successfully rotates the chair, mug, and camera but creates a hybrid chair-mug due to recomposing
them in the same location; (bottom-left) a cross-dataset failure from inserting a chair into a scene with an artifact behind the chair; (top-
right) a synthetically generated colored target is wrong but SELDOM correctly colors only the camera body; (bottom-right) the model has
generally seen paired shoes, and is tricked by two mismatched shoes, turning the blue shoe into a brown one.

source output

“change the handle to brown wood, color 
yellower by 10, brighten 1.19, scale 1.35.”

source output

“transition day to night, add a twilight sky… stars 
in the sky with a full moon…add highlights to 

suggest bioluminescent flora…color bluer by 10.”

source output

“change to a winter scene.”

Figure 8. SELDOM on Image-Editing Datasets: We train SELDOM on multiple image-editing datasets and show results: (left-pair)
a hammer from the HQEdit dataset is edited, augmented with our synthetic verbs of yellowing, brightening, and scaling, (middle-pair) a
scene-wide transition, showing SELDOM is capable of operating with non object-centric prompts, (right-pair) a similar scene change.

performance, showing that both verb slots and implicit dino
queries can learn to model verbs. We then compare explicit
slot-based and dino-based verb formulations. The explicit
slot-based variant parses the prompt for verbs, projects them
to queries, and attends to the full text prompt. We compare
to the explicit DINOv2 version as outlined in the neural verb
description of Section 3. Finally, we compare three means
of applying classifier-free guidance, “normal”, “edit”, and
“rawedit” as described in Section 3. We adopt “rawedit” for
implicit DINOv2 verbs.

Testing SELDOM on Image Editing Datasets. To
demonstrate the broad applicability of SELDOM, we
train a variant across multiple general image-editing
datasets, specifically: HQ-Edit [96], MagicBrush [115],

HIVE [117], Instruct-Pix2Pix [7], AURORA [46],
COIN [90], ChangeIt [86], and GenHowTo [87]. We
demonstrate the generalizability of SELDOM in Figure 8.

5. Conclusion
We introduce SELDOM for object-centric image editing.
We first decompose a scene into objects, extract and apply
verbs to objects, and finally recompose them in a scene.
Our approach eschews the paradigm of single-image
conditioning to instead compose objects, object-centric
verb-based edits, and scene/camera control across datasets.
We find a single fine-tuned Stable Diffusion 2.1 model is
capable of both general text edits such as “make the camera
pink” and “rotate the camera 23.4 degrees”, as well as
inserting real objects into synthetic scenes and vice-versa.
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