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ABSTRACT

Rapid advances in the capabilities of large language models (LLMs) have raised
widespread concerns regarding their potential for malicious use. Open-weight
LLMs present unique challenges, as existing safeguards lack robustness to tamper-
ing attacks that modify model weights. For example, recent works have demon-
strated that refusal and unlearning safeguards can be trivially removed with a few
steps of fine-tuning. These vulnerabilities necessitate new approaches for enabling
the safe release of open-weight LLMs. We develop a method, called TAR, for
building tamper-resistant safeguards into open-weight LLMs such that adversaries
cannot remove the safeguards even after hundreds of steps of fine-tuning. In exten-
sive evaluations and red teaming analyses, we find that our method greatly improves
tamper-resistance while preserving benign capabilities. Our results demonstrate
that progress on tamper-resistance is possible, opening up a promising new avenue
to improve the safety and security of open-weight LLMs.

1 INTRODUCTION

The most capable open-weight large language models (LLMs) released over the past year now rival
closed-source frontier models (Llama Team, AI @ Meta, 2024). The availability of open-weight
LLMs for anyone to download and use has yielded numerous benefits, including lowering costs for
end users and enabling academic research on safety and security (Zou et al., 2023a). However, as
these models become increasingly powerful, many have raised concerns that they could be repurposed
by malicious actors to cause harm, motivating research on how to safeguard these models against
malicious use.

Existing open-weight models often adapt safeguards designed for closed-weight models served
through APIs (Touvron et al., 2023). These safeguards include refusal mechanisms and preference-
based training, and they have provided substantial robustness against input-based jailbreaking attacks.
However, recent work has demonstrated these safeguards are trivially defeated by attacks that edit
model weights, breaking down after only a handful of fine-tuning steps (Qi et al., 2023). This poses a
serious problem for open-weight models, because adversaries have full access to model weights and
can tamper with built-in safeguards.

The vulnerability of open-weight models to tampering attacks poses risks for model developers as
well. Under background tort law, AI developers must exercise reasonable care, meaning they have an
obligation to take reasonable precautions to prevent foreseeable harm. If malicious actors can easily
customize models to cause critical harm, model developers may inadvertently violate reasonable care
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Figure 1: An illustration comparing two approaches to LLM safety when subjected to adversarial
fine-tuning. The top branch shows conventional safeguards (like refusal training), which can be easily
bypassed when adversaries fine-tune the model weights to remove safety constraints. The bottom
branch demonstrates our proposed method TAR (Tampering Attack Resistance), which maintains
robustness even when adversaries attempt to fine-tune the model to reintroduce harmful capabilities.

standards and become open to liability under existing law. Thus, there is an urgent need for more
robust safeguarding techniques that can withstand tampering attacks.

In this work, we study the problem of tamper-resistant safeguards for LLMs. This problem is depicted
in Figure 1. Unlike existing research on LLM safeguards, we focus on attacks that modify model
weights, which we refer to as tampering attacks. This problem has been considered very challenging
and by some intractable, as no method has yet provided substantial robustness to these attacks.
However, making progress on this problem would provide a valuable tool to regulators and model
developers by ameliorating the dual-use dilemma of open-weight models (Miller & Selgelid, 2007).

To demonstrate that progress on this problem is possible, we develop the first LLM safeguards that
obtain strong robustness against a wide variety of tampering attacks. Our approach allows developers
to add a safeguard such that tampering attacks cannot easily remove the safeguard, while preserving
the general capabilities of the LLM. We achieve this by performing adversarial training against
tampering attacks, leveraging approaches from meta-learning. We identify various crucial factors that
enable our method to work, including the choice of tamper-resistance loss, the selection of train-time
adversaries, and the two-stage approach that we use for building in safeguards.

We apply our method to develop tamper-resistant unlearning and refusal safeguards. In experiments,
we demonstrate that our safeguards are far more robust to tampering attacks than prior methods. We
stress-test our safeguards with extensive red teaming evaluations against 26 test-time adversaries,
demonstrating resistance to fine-tuning attacks of hundreds of steps. We hope our results foster
future work on this important problem. Our experiment code and models are available at https:
//github.com/rishub-tamirisa/tamper-resistance.

2 RELATED WORK

Adversarial attacks on LLMs. Due to the extensive pre-training distribution of modern LLMs,
they are prone to generating harmful content (McGuffie & Newhouse, 2020; Sheng et al., 2019). To
mitigate this, many LLMs undergo fine-tuning to implement safeguards (Bai et al., 2022; OpenAI,
2023; Touvron et al., 2023), using methods such as reinforcement learning from human feedback
(RLHF) (Christiano et al., 2017; Ouyang et al., 2022) and direct preference optimization (DPO)

2

https://github.com/rishub-tamirisa/tamper-resistance
https://github.com/rishub-tamirisa/tamper-resistance


Published as a conference paper at ICLR 2025

(Rafailov et al., 2023). While effective for normal use, these safeguards have been shown to be brittle,
breaking down under jailbreak attacks (Jin et al., 2024a; Wei et al., 2023; Zou et al., 2023c) or a
handful of fine-tuning steps on “uncensored” data (Qi et al., 2023; Yang et al., 2023; Zhan et al.,
2023). This suggests current techniques for LLM alignment are inadequate, raising security concerns
after deployment.
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Figure 2: Comparison of our TAR method to 12
baseline safeguards. Unlike prior methods, TAR
provides far greater tamper-resistance at similar
levels of general capability, measured via MMLU.
Tamper-resistance is computed as the normalized
error on WMDP Biosecurity, Chemical Security,
and Cybersecurity questions (Li et al., 2024), aver-
aged across up to 26 fine-tuning attacks.

LLM safeguards. Since the discovery of
these attacks, many safeguards have been pro-
posed to defend against them. Against jailbreak
attacks, defenses include system-level defenses
Inan et al. (2023); Jain et al. (2023); Robey et al.
(2023); Yuan et al. (2024); Zhou et al. (2024)
that modify or filter model inputs or outputs and
model-level defenses such as adversarial train-
ing Mazeika et al. (2024). Alternatively, some
works explore machine unlearning as a way to
remove harmful knowledge entirely with tech-
niques such as influence functions (Bae et al.,
2022; Koh & Liang, 2017), maximizing loss on
forget sets (Eldan & Russinovich, 2023; Yao
et al., 2023; Yu et al., 2023), or modifying repre-
sentations (Belrose et al., 2024; Li et al., 2024;
Sheshadri et al., 2024; Wu et al., 2023). How-
ever, jailbreaking defenses are not fully robust to
adaptive adversaries Jin et al. (2024b); Liu et al.
(2023), and existing unlearning methods are
not robust to adversaries with access to model
weights Lynch et al. (2024).

Robust safeguards. Several works have ex-
plored the tamper-resistance of unlearning meth-
ods for image classification (Golatkar et al.,
2020a;b; Tarun et al., 2023). For bidirectional BERT-style models, Henderson et al. (2023) proposed
a meta-learning approach for robustly preventing models from learning harmful tasks. In concurrent
work, Deng et al. (2024) proposed a method extending this approach to small-scale vision classifiers
and diffusion models. Recently, Liu et al. (2024) discussed the potential for robust unlearning in
LLMs to improve the safety of open-source models, and Lynch et al. (2024) proposed evaluation
metrics for robust unlearning in LLMs. To the best of our knowledge, no methods have been proposed
for autoregressive LLMs that are robust to tampering attacks.

Several concurrent works have explored ways of defending LLM refusal mechanisms against fine-
tuning (Huang et al., 2024a;c;b; Rosati et al., 2024a;b). Huang et al. (2024c) add a perturbation loss
to make an LLM learn to produce embeddings that are more invariant to perturbations, Rosati et al.
(2024a) maximize prediction loss on harmful generations while minimizing loss on refusals, and
Rosati et al. (2024b) regularize harmful representations to look random. Unfortunately, these works
evaluate against small sets of fine-tuning adversaries or have limited robustness. We corroborate
this in our comparisons, finding that the approaches in the latter two works lack robustness to the
tampering attacks in our evaluations.

3 TAMPER-RESISTANT SAFEGUARDS

3.1 THREAT MODEL

We assume the defender releases an LLM with weights θG and a safeguard G applied. The de-
fender’s goal is to design G such that θG obtains high values on safety_metric(θG) and
capabilities_metric(θG). Moreover, the defender seeks to preserve a high value of
safety_metric(θG) after the adversary’s move. We consider a compute-bounded adversary
with unrestricted access to θG, enabling attacks that directly modify θG. We refer to these as “tam-
pering attacks.” The adversary’s goal is to obtain a model θ′G that minimizes the safety metric given
reasonable compute limits, such as fine-tuning for 500 steps. We note that in this work, we focus
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solely on fine-tuning adversaries and not input-space “jailbreaking” adversaries. We assume the
adversary will not spend a significant fraction of the compute required to pre-train the LLM, since at
that point they could train their own model without safeguards.

3.2 PROBLEM DEFINITION AND METRICS

We describe a general notation for quantifying the tamper-resistance of safeguards. Define G, θG,
safety_metric, and capabilities_metric as in the threat model. Let attack denote
a compute-bounded adversarial attack that maps θG to θ′G, with stronger attacks obtaining lower
values of safety_metric(θ′G). We say that a safeguard G is tamper-resistant if its post-attack
safety_metric(θ′G) is high across a broad range of strong test-time adversarial attacks Atest.

Note that θG often modifies an underlying θ that lacks safeguards, often through a fine-tuning
procedure. Additionally, strong tamper-resistance can be obtained if the safeguard simply over-
writes θ with noise, but this model would no longer be useful. Thus, maintaining a high
capabilities_metric(θG) is crucial, and evaluation of a safeguard must consider both its
tamper-resistance and how well it preserves general capabilities.

We focus on two common safeguard domains: weaponization knowledge restriction and harmful
request refusal. In each domain, we define safety and capabilities test metrics, which we use alongside
test-time adversaries to evaluate tamper-resistant safeguards.

Weaponization knowledge restriction. In weaponization knowledge restriction, safeguards prevent
the model from producing text about weaponization knowledge, while preserving capabilities for
benign knowledge domains. Existing safeguards of this nature include representation engineering
methods like circuit breaking (Zou et al., 2024). The safety_metric is defined as error on a
forget set, and the capabilities_metric is defined as accuracy on a retain set. Specifically,
we consider the problem of restricting biosecurity, chemical security, and cybersecurity knowledge,
and evaluate the resulting model on the Weapons of Mass Destruction Proxy (WMDP) benchmark
(Li et al., 2024). WMDP contains 3,668 multiple-choice questions, spanning biosecurity, chemical
security, and cybersecurity knowledge. Importantly, WMDP questions do not evaluate hazardous
knowledge directly, but instead measure proxy expert-level knowledge for each hazardous domain,
such that restricting the expert-level knowledge would also restrict the hazardous knowledge. We
define the forget set as the respective hazardous knowledge subject in WMDP, and retain set as the
complement of the given subject in MMLU (Hendrycks et al., 2021), a multi-task question-answering
benchmark spanning 57 tasks across a variety of knowledge domains.

Harmful request refusal. In the harmful request refusal setting, safeguards prevent the model from
producing “harmful” outputs. We define the safety_metric as the complement of average Attack
Success Rate (ASR) of various jailbreaking attacks, while the capabilities_metric captures
the conversational abilities of θG. Specifically, we use a static set of test cases from HarmBench, an
automated red-teaming framework for measuring prompt jailbreak robustness in LLMs, to evaluate
jailbreak ASR (Mazeika et al., 2024) after tampering attacks. We use MT-Bench, a multi-turn
question-answering benchmark graded by an LLM judge, to evaluate conversational abilities (Zheng
et al., 2023a).

3.3 RED TEAMING

To properly measure the robustness of tamper-resistant safeguards, we conduct red-teaming with up
to 26 adversaries, including many that are unseen at training time. In our evaluations, we subject
our method to adversaries with varying compute budgets, access to held-out datasets, and diverse
hyperparameters. For fine-tuning adversaries, we vary the learning rate, learning rate scheduler,
optimization algorithm, and batch size. Many of these adversaries were fixed during early experiments,
with some added over time as we found attacks that broke intermediate versions of our method.
Extensive stress testing of this nature is critical for obtaining confidence in a tamper-resistant
safeguard. For research on developing these safeguards, extensive red teaming also allows measuring
incremental progress, using the number and strength of existing attacks one can defend against as a
robustness metric.
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Algorithm 1 TAR: Tampering Attack Resistance

Input: Initial LLM parameters θ, train-time adversary set Atrain, capabilities_metric
proxy datasetDretain, safety_metric proxy datasetDTR, outer steps N , learning rate η, number
of sampled adversaries K, tamper-resistance loss scale λTR, retain loss scale λretain, hθ(·) returns
the residual stream hidden states for model parameters θ
θ0 ← Apply Initial Safeguard to θ
for i = 1 to N do
gTR ← 0 # For accumulating tamper-resistance gradient
Sample xTR ∼ DTR
for k = 1 to K do

Sample attack ∼ Atrain
# Tamper-resistance loss from Equation 1
gTR ← gTR + 1

K∇θi−1LTR(attack(θi−1), xTR)
end for
Sample xr ∼ Dretain
# RepE retain loss from Equation 2
gretain ← ∇θi−1

(
LLM(θi−1, xr) + ∥hθi−1

(xr)− hθ(xr)∥22
)

# Full tamper-resistance update
θi ← θi−1 − η

(
λTR · gTR + λretain · gretain

)
end for
θG ← θN
return θG

4 SAFEGUARD TAMPER-RESISTANCE TRAINING

To obtain tamper-resistant safeguards, we propose a new method outlined in Algorithm 1 inspired
by adversarial training and meta-learning to directly strengthen LLM safeguards against tampering
attacks, called Tampering Attack Resistance (TAR). We identify unique properties of this adversarial
training regime and leverage them to improve robustness.

Our method for training tamper-resistant safeguards consists of two phases: (1) model safeguarding
and (2) tamper-resistance training.

4.1 MODEL SAFEGUARDING

The method begins by including an initial safeguard G into a base model θ. For example, initial
safeguards for knowledge restriction can be drawn from a wide variety of existing methods, including
circuit breaking (Li et al., 2024; Zou et al., 2024) or constrained gradient ascent for a particular
knowledge domain. Similarly, we can include a refusal safeguard by performing RLHF (Ouyang et al.,
2022) or DPO (Rafailov et al., 2023) on refusal completions. Importantly, these initial safeguards
do not need to be tamper-resistant. Empirically, we find that this safeguarding step is crucial for
preserving a low pre-attack safety_metric.

4.2 TAMPER-RESISTANCE TRAINING

Starting from θG0
, we train the tamper-resistant θG using a novel adversarial training procedure.

Namely, we train against a set of tampering attacks Atrain, where the defender’s objective is to
maximize a proxy safety_metric after applying an adversarial attack attack ∼ Atrain to θ.
Since it may not be feasible to differentiate through attack, we draw on insights from prior work
in meta-learning, defining attack(θG) = θ′G = θG + attack′(θG) as a perturbation on top of
initial parameters, where backpropagation through attack′ is approximated with a straight-through
estimator (Bengio et al., 2013).

We focus on supervised fine-tuning (SFT) adversaries where attack applies several steps of
optimization to θG, which allows straight-through estimation through attack′ to benefit from the
setting and approximations of first-order MAML (Finn et al., 2017). However, we note key differences
in our approach from standard meta-learning and prior methods (Finn et al., 2017; Henderson et al.,
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Figure 3: The choice of tamper-resistance loss is crucial for obtaining good performance. Here,
we show loss trajectories when the tamper-resistance loss is negative cross-entropy (left), versus
negative entropy (right), over the course of TAR for 750 steps. Outer loop losses (blue) are reduced
by the defender, and inner-loop losses (red) are reduced by the train-time adversary. When the
tamper-resistance loss maximizes cross-entropy (left), the adversary is only affected earlier in its
trajectory and quickly recovers. By contrast, when the tamper-resistance loss maximizes entropy
(right), the inner loop adversary is eventually thwarted along its entire trajectory. Plots are smoothed.

2023). In particular, traditional meta-learning techniques seek to obtain a model initialization that is
close to optimality on multiple test distributions. In our setting, we seek to obtain an initialization
that is far from optimality on multiple adversaries’ test distributions. Novel to our approach in this
new setting is the use of a tamper-resistance loss in the “outer loop” that differs from the fine-tuning
adversary’s loss function and serves to maximize the proxy safety metric. We depict this structure in
Algorithm 1, and explain the objective below.

Impeding the adversary’s loss. The aim of tamper-resistance training is to prevent adversaries
with large compute budgets from reducing the safety_metric at test-time. In adversarial training
for tamper-resistance, we define a tamper-resistance loss LTR that counters attack. We opera-
tionalize our goal of avoiding adversary optimality as searching for θ such that LTR is minimized for
attack(θ).

Empirically, we find that the choice of tamper-resistance loss LTR significantly affects this goal. Prior
work (Henderson et al., 2023) negates the loss of a fine-tuning adversary, in which the aim is to
arbitrarily maximize the adversary’s loss throughout fine-tuning. This formulation has two issues:
(1) maximizing a cross-entropy loss can cause divergence; (2) empirically we observe that when
using this objective against fine-tuning adversaries, the model learns to explode the adversary’s loss
for the first few inner loop steps, while loss at later steps remains low. In Figure 3, we show the
difference in choosing LTR to be a clamped negative cross-entropy loss vs. negative entropy loss
for weaponization knowledge restriction. For the latter, LTR is eventually satisfied for all inner loop
steps. For harmful request refusal, we choose LTR to be the DPO loss (Rafailov et al., 2023). We
provide further detail on the choice of LTR in both settings in Appendix C.3, as well as an extended
depiction of the test-time loss characteristics in Appendix D.3 and Figure 6.

Tamper-resistance objective. We now describe the general proxy objective used for preventing
a tampering attack from recovering weaponization knowledge or harmful behavior. For a given
safety_metric, letDTR and LTR respectively be a dataset and loss function such that minimizing
LTR(θG,DTR) serves as a proxy objective for maximizing the safety_metric(θG). We define
Dretain and Lretain correspondingly for capabilities_metric(θG). The defender’s objective is
to solve the following optimization problem:

min
θ

λTR · Eattack∼Atrain

[
LTR(attack(θ);DTR)

]
+ λretain · Lretain(θ;Dretain), (1)

where LTR is a tamper-resistance loss that counters attack(θ). The Lretain term is a representation
engineering (Zou et al., 2023a) inspired retain loss for preserving performance on the capabilities
proxy dataset Dretain, given by

Lretain(θ;Dretain) = Ex∼Dretain

[
LLM(θ, x) + ∥hθ(x)− hθG0

(x)∥22
]

(2)

where hθ(·) returns the residual stream hidden states for model parameters θ and LLM is the standard
language modelling cross-entropy loss. Empirically, we find that pushing retain-set residual stream
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Weaponization Domain Model
Pre-Attacks Post-Attacks (Avg)

Retain (↑) Forget (↓) Forget (↓)

Biosecurity

Random 25.0 25.0 25.0
No Defense 67.3 70.5 70.5
Max Entropy 65.0 33.2 65.8
Min Posterior 65.6 50.4 66.0
LLMU 65.5 29.9 61.3
RMU 65.8 31.2 64.9
TAR (Ours) 54.7 28.1 35.2

Chemical Security

Random 25.0 25.0 25.0
No Defense 68.2 47.8 47.8
Max Entropy 67.5 50.0 45.7
Min Posterior 66.8 49.5 47.5
LLMU 67.0 30.1 44.3
RMU 67.6 27.5 46.0
TAR (Ours) 56.5 28.4 27.1

Cybersecurity

Random 25.0 25.0 25.0
No Defense 68.2 46.4 46.4
Max Entropy 66.5 28.7 41.7
Min Posterior 66.6 41.8 41.9
LLMU 66.1 27.6 41.3
RMU 66.8 29.5 42.2
TAR (Ours) 60.7 23.6 28.6

Table 1: Pre-Attack and average Post-Attack accuracies for WMDP Biosecurity, Chemical Security,
and Cybersecurity for TAR and all other baselines, reported for Llama-3-8B. The average Post-Attack
accuracy is computed as the average accuracy across the 26 fine-tuning attacks discussed in Section 5,
averaged over multiple seed repeats. TAR is the only method that maintains low Post-Attack recovery
while preserving high Retain MMLU and low Forget accuracies. All values are percentages.

representations to be close to the base model θG0 via the ℓ2-norm loss in Equation 2 maintains a
high capabilities_metric(θG). In Equation 1 we include λTR and λretain as scalar weightings
for the tamper-resistance loss and retain loss, respectively. We provide further details on the design
of the tamper-resistance loss function in Appendix C.3 as well as an efficiency trick for sampling
fine-tuning attacks for TAR in Appendix C.4.

5 EXPERIMENTS

We evaluate TAR in weaponization knowledge restriction and harmful request refusal settings, with
results shown in Table 1 and Table 2 respectively. We discuss the setup, baselines, and analysis for
our results. In each setting, we use a specific set of training adversaries Atrain and test adversaries
Atest. Further experiment details are presented in Appendix E.

5.1 WEAPONIZATION KNOWLEDGE RESTRICTION

We now describe the setup, baselines, and results for our weaponization knowledge restriction
experiments, including the knowledge domains, optimizers, and evaluation details.

Setup. We focus on implementing tamper-resistant safeguards for restricting proxy weaponiza-
tion knowledge about biosecurity, chemical security, and cybersecurity from Llama-3-8B-Instruct
(AI@Meta, 2024) that has been initially safeguarded via the Random Mapping method discussed
in Appendix C.2. For each weaponization domain, we assign DTR to the corresponding forget set
described in Appendix E.1. We proceed to sample train-time 64-step fine-tuning attacks from differ-
ent data distributions, detailed in Appendix E.2. We use N = 750 outer loop steps, ScheduleFree
AdamW (Defazio et al., 2024) with a learning rate of 2× 10−5 as the outer loop tamper-resistance
optimizer. For biosecurity and cybersecurity we set the tamper-resistance loss scale λTR to 4.0,
and use λTR = 3.0 for chemical security. We use λretain = 1.0 in all settings. Lastly, we evaluate
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Figure 4: Red teaming results across weaponization domains. Values show percentages, with
Random Chance (RC) at 25% and “ND” indicating No Defense WMDP scores. Red indicates
attack performance approaching No Defense levels. We evaluate each defense against a diverse
range of strong adversaries described in Appendix F.1). Accuracies are reported as averages over
3 repeats of each attack with different seeds. Compared to prior safeguards, TAR greatly increases
tamper-resistance for nearly all adversaries.

Pre-Attack and Post-Attack accuracy on corresponding WMDP subjects (Li et al., 2024) averaged
across all adversaries in Appendix F.1, and measure benign capabilities via the complement of
subjects related to each proxy weaponization domain in MMLU (Hendrycks et al., 2021).

Baselines. We evaluate two recently proposed knowledge restriction methods: RMU (Li et al.,
2024) and LLMU (Yao et al., 2023). We also design two baseline methods for knowledge restriction:
Min Posterior, which minimizes posterior loss on forget set tokens; Max Entropy, which maximizes
entropy on forget set tokens. Two additional methods, MLAC (Henderson et al., 2023) and SOPHON
(Deng et al., 2024), require substantial modifications for the LLM setting, so we show results on
adapted versions of these baselines in Appendix G.3.

Results. We show weaponization knowledge restriction safeguard results on Llama-3-8B-Instruct
in Table 1 and Figure 2. These results are averaged across all adversaries described in Appendix F.1.
Our large-scale experiments corroborate the findings in recent work that existing LLM safeguards are
extremely brittle to fine-tuning attacks. By contrast, TAR maintains low post-attack forget accuracy
across all three domains. However, we observe that TAR lowers retain accuracy by 10.6% on average,
indicating a trade-off between benign capabilities and robustness. In Figure 4, we observe that TAR
is robust to significantly more fine-tuning attacks than all prior methods. While existing baselines
break down under most attacks, TAR obtains a post-attack forget accuracy near random chance for
nearly all attacks, indicating a successful defense.

Overall, we find that TAR provides significantly more robustness to realistic fine-tuning attacks
than all prior methods, including SFT attacks that utilize completely held-out data. We also include
further analysis of TAR’s test-time loss behavior in Appendix D.3, in which we empirically observe
TAR’s convergence and robustness. These results demonstrate for the first time that obtaining strong
tamper-resistance for open-weight LLMs may be possible.
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Refusal Trained R2D2 RepNoise RR TAR (Ours)

Pre-Attacks MT-Bench (↑) 8.1 6.0 6.2 8.0 6.3
Avg. Post-Attacks ASR (↓) 72.5 78.3 74.5 84.8 63.9

Table 2: Average Post-Attack HarmBench ASR, reported for TAR, Representation Rerouting (RR),
and the Refusal Trained Llama-3-8B-Instruct model across 5 fine-tuning attacks depicted in Appendix
F.2, as well as Pre-Attack MT-Bench. TAR is more robust than other methods after tampering, while
maintaining comparable MT-Bench performance. ASR values are percentages.

5.2 HARMFUL REQUEST REFUSAL
We now describe the setup, baselines, and results for our harmful request refusal experiments,
including the datasets used and evaluation details.

Setup. For harmful request refusal training, we seek to make existing refusal safeguards in Llama-
3-8B-Instruct robust to tampering attacks. We sample train-time adversaries that perform 64-step
SFT attacks using the Anthropic-HH-RLHF dataset (Bai et al., 2022), following the methodology in
Appendix E.2. Similar to the weaponization knowledge restriction setting, we use N = 100 outer
loop steps, ScheduleFree AdamW (Defazio et al., 2024) with an LR of 6× 10−5 as the outer loop
tamper-resistance optimizer, and loss scales of λTR = 0.1, λretain = 1.0. We evaluate the Post-Attack
jailbreak attack success rate (ASR) on HarmBench (Mazeika et al., 2024) after the tampering attacks
in Appendix F.2, and measure benign capabilities preservation via MT-Bench (Zheng et al., 2023b),
which evaluates multi-turn conversation ability.

Baselines. We consider 4 baselines alongside our TAR model: Llama-3-8B-Instruct (Refusal
Trained); Representation Rerouting (RR) (Zou et al., 2024) on Llama-3-8B-Instruct, which trains to
push representations for harmful inputs to be orthogonal to the original representations in Llama-
3-8B-Instruct; R2D2 (Mazeika et al., 2024) on Zephyr-7B (Tunstall et al., 2023), which performs
adversarial training against GCG attacks (Zou et al., 2023b); and RepNoise (Rosati et al., 2024b) on
Llama-2-7B (Touvron et al., 2023), which regularizes harmful representations to noise.

Results. We show refusal results in Table 2. While the Refusal Training, RR, and R2D2 baselines
resist jailbreak attacks in HarmBench before tampering, we find that percentage attack success
rate jumps up to above 77 after tampering, while our TAR method only rises to 61.7. Since we
apply our TAR refusal safeguard to Llama-3-8B, it does reduce MT-Bench by 1.7. However, this
exceeds the MT-Bench score of fairly capable open-weight models, indicating that benign capabilities
are largely preserved. We leave the exploration of the full impact on capabilities to future work.
Additional results are in Table 11. In general, we find that our TAR model refuses more Post-Attack
jailbreaks than previous baselines, and demonstrates the flexibility of the tamper-resistance objective
to accommodate the harmful request refusal setting.

5.3 ANALYSIS

Red teaming. To assess the tamper-resistance of our models, we conduct an extensive suite of
supervised fine-tuning attacks with 26 distinct adversaries in the Biosecurity setting and 24 distinct
adversaries in the Chemical Security and Cybersecurity settings. We vary the optimizer, number of
optimization steps, learning rate, learning rate schedule, fine-tuning dataset, batch size, and overall
fine-tuning method (e.g., full fine-tuning versus parameter-efficient fine-tuning). By default, our
attacks use 500 fine-tuning steps. Full details for these adversaries are provided in Table 9.

We show red teaming results in Figure 4. While baseline safeguards withstand fine-tuning attacks in
a small number of cases, most adversaries succeed in removing the safeguards. By contrast, our TAR
safeguard is robust to a wide range of adversaries. This shows that tamper-resistance is a tractable
problem on which progress can be made. However, we find our method exhibits varying robustness
to parameter-efficient fine-tuning (PEFT) and some out-of-distribution LR attacks, highlighting the
current sensitivity of the method to the adversary distributions sampled during TAR training. These
findings reinforce the importance of extensive red teaming when developing tamper-resistant defenses
to reveal the scope of their protection. We hypothesize that future work could easily address these
limitations, as we demonstrate in Appendix D.2 that targeted patching of vulnerabilities is possible.
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As mentioned in Section 3.1, the threat model we consider involves SFT weight tampering adversaries
and not input-space “jailbreaking” adversaries, nor does TAR explicitly optimize for input-space
robustness (Mazeika et al., 2024; Zou et al., 2023c; 2024). Nonetheless, we find that TAR’s pre-attack
forget accuracies are comparable to baselines in Table 1, and believe that explicitly defending against
input-space attacks alongside tampering attacks would be a good direction for future work.

6 CONCLUSION

We introduced a novel method for implementing tamper-resistant safeguards for LLMs and explored
applications in weaponization knowledge restriction and harmful refusal training. We compare our
results to prior work in each setting, finding that our method is the first method robust under the
rigorous red-teaming evaluation that we consider. More broadly, we demonstrate that progress on
open-weight tamper-resistance is tractable. We believe this line of research is crucial for enabling on-
going deployment of robust, open-weight LLMs, ensuring their alignment with regulatory frameworks
and preemptively addressing the risk of malicious use.
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A LIMITATIONS

Our method for training tamper-resistant safeguards demonstrates considerable robustness against
a wide range of tampering attacks, yet several avenues for improvement remain: (1) While we
focus on supervised fine-tuning attacks, the broader spectrum of open-weight tampering techniques
necessitates diverse future red-teaming efforts. (2) Scaling to larger models poses computational
challenges that require optimization to reduce overheads.

Additionally, in cases where TAR maintains a low post-attack forget accuracy, the post-attack retain
accuracy is also low. By contrast, we found in preliminary experiments that post-attack retain
accuracy for many of the baselines remained high. We note that this is acceptable because post-attack
retain performance is not of concern to the defender; rather, the responsibility falls on the attacker to
preserve it after tampering.

However, this does mean benign users trying to fine-tune the model must ensure their data is not
contaminated by forget set data, lest their fine-tuned model have poor performance. This could make
the method harder to use in practice. Thus, maintaining high post-attack retain accuracy would be a
useful direction for future work to explore.

Tamper-resistance alone cannot fully mitigate the risks of malicious AI use. While it raises the initial
costs for adversaries, it can eventually be circumvented. Once open-weight models are released,
they cannot be “unreleased,” leaving any compromised defenses permanently vulnerable. Therefore,
tamper-resistance should be considered a supplement to the broader effort of of improving the offense-
defense balance of AI systems. Addressing these limitations will improve the robustness of LLMs to
tampering and better support open-weight model developers.
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C METHOD DETAILS

C.1 NOTE ON UPDATED IMPLEMENTATION

After the initial release of this paper, we identified a data contamination issue in which our instruction-
tuning retain dataset, Magpie-Align (Xu et al., 2024), contained a significant amount of forget set
content. This resulted in an unintended input-space vulnerability (Qi et al., 2024). After cleaning
the dataset and re-training new TAR models with the same methodology and hyperparameters, the
input-space vulnerability is no longer observed (Qi et al., 2024).
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Figure 5: Test loss for five repeats of a 1,000-step
SFT attack against a TAR-Bio safeguard, each us-
ing a different dataloader shuffling seed. TAR
yields a consistent loss plateau for 500 steps, fol-
lowed by a loss region of increased variability.

Additionally, Qi et al. (2024) found that TAR’s
robustness at 1,000 of steps of fine-tuning varies
when changing the dataloader shuffling order,
which we corroborate in Figure 5. After fur-
ther investigation, we found an issue in the Hug-
gingFace distributed dataloading sampler, where
the HuggingFace sampler overrides user-defined
seeds with a default seed. This resulted in the
test-time dataloader shuffling orders being a sub-
set of train-time shuffling orders in our initial
release. Upon correcting the issue, we observe
the variability in Figure 5.

However, while the loss plateau and robustness
at 1,000 steps can vary with different dataloader
shuffling orders, we do observe in Figure 5 and
in nearly all adversaries that the loss plateau
and robustness we discuss throughout the pa-
per remains consistent across multiple shuffling
orders for 500 steps of fine-tuning. We report
these results in our updated Table 1, Figure 2,
and Figure 4. All depicted per-adversary post-attack accuracies in Table 1, Figure 2, and Figure 4 are
averaged over three replicates, each using a different random seed. We include further discussion
on the loss plateau as well as concrete evidence of TAR’s convergence in Appendix D.3. We do
emphasize that TAR models we consider in our experiments optimize against SFT adversaries that
use only K = 64 optimization steps yet achieve significant generalization to test-time adversaries
using substantially more compute, greatly improving tamper-resistance compared to prior work.

C.2 INITIAL WEAPONIZATION KNOWLEDGE RESTRICTION SAFEGUARD

Prior to tamper-resistance training, we install a safeguard that achieves surgical knowledge restriction
on the target hazardous domain. Let hθ(D) denote the distribution of post-decoder layer residual
stream activations for input sequences sampled from some data distribution D and model weights
θ. We define rand_hashed(x) for some input sequence x, which returns fixed Gaussian-sampled
vectors that are chosen via hashing the corresponding input token for each residual stream index of x
in θ. As a proxy for scrubbing target representations according to downstream task labels, we propose
a weaponization knowledge restriction safeguard termed Random Mapping, which maps hθ(DTR) to
random noise as follows:

min
θ

Ex∼DTR

[
1−

∣∣∣∣∣ hθ(x) · rand_hashed(x)
∥hθ(x)∥∥rand_hashed(x)∥

∣∣∣∣∣
]
+ LLM(θ;Dretain) (3)

The objective of Equation 3 maximizes cosine similarity between row vectors in the residual stream
in every layer of the LLM from h(DTR) and the hashed random vectors from rand_hashed(·). By
providing each token’s residual stream a unique random vector to push toward, the loss encourages a
“re-mapping” of token representations from DTR to the noised vectors. We include an additional term
for preserving performance on Dretain via the language-modelling cross-entropy loss LLM. We show
the performance of the raw Random Mapping safeguard as an ablation in Table 5, listed as “Excl.
Adv. Training.”
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C.3 DESIGNING THE TAMPER-RESISTANCE LOSS

Weaponization knowledge restriction. For weaponization knowledge restriction, we summarize
our intuition for ideal tamper-resistance loss design, corroborated by our empirical findings in Figure
3: we seek to flatten the adversary’s loss at a high value, rather than simply raise its y-intercept.

We choose the tamper-resistance loss LTR as an entropy loss to be maximized during the adversary’s
cross-entropy fine-tuning trajectory, since maximizing entropy would impede the adversary’s cross
entropy loss from decreasing during fine-tuning. In other words, we wish to obtain θ such that after
an adversary performs a fine-tuning attack on θ via a cross-entropy loss, entropy is still high. We
find that this formulation achieves the desired flattening behavior, and we depict the difference in
flattening between the choosing LTR to be a negative cross-entropy loss and negative entropy loss
in Figure 3. In the lefthand plot, where LTR is a cross-entropy loss, loss only increases in the first
inner loop step. In the righthand plot, where LTR is a negative entropy loss, entropy is eventually
maximized in all inner loop steps. Figure 6 also demonstrates the generalization of the flat adversary
loss behavior beyond the length of the simulated fine-tuning trajectories during TAR.

Harmful request refusal. For harmful request refusal, we choose LTR to be the DPO loss (Rafailov
et al., 2023), which works as follows. Given a DPO dataset containing pairs of rejected and
refusal completions, the sampled attack performs SFT on rejected completions, and the tamper-
resistance loss LTR is a DPO loss computed on the pair chosen and rejected completions on parameter
coordinates along the attack trajectory. This encourages TAR to find an initialization θ such that
after a harmful fine-tuning attack, the model still prefers refusal completions over harmful completions
when given an harmful prompt. While this does not necessarily encourage a flat adversary loss,
we find empirically in Table 2 that this formulation increases the average safety_metric(θG)
defined in Section 3.2 after fine-tuning attacks on harmful data, detailed in Section 5.

We also observe that the length of the simulated adversary SFT trajectory during training affects
test-time generalization in both Figure 6 and Appendix D.3. In particular, larger values of K
result in increased tamper-resistance for longer SFT attacks. However, to maintain reasonable
runtime efficiency, we need a more efficient sampling technique than simply running K independent
trajectories of varying length for every outer-loop step in Algorithm 1, which we describe in Section
C.4.

C.4 EFFICIENTLY SAMPLING FINE-TUNING ATTACKS

Optimizing Equation 1 with gradient descent requires simulating K tampering attacks for each
tamper-resistance optimizer update, which is prohibitively expensive to run when the sampled
attack performs SFT and θ contains billions of parameters. Inspired by prior work on snapshot
ensembles Huang et al. (2017), we leverage an efficiency trick: we can reuse the coordinates along
steps of a single adversary fine-tuning trajectory of length K to obtain K − 1 additional (though
non-independent) trajectories of increasing length. Using this trick, we collect all K parameter
coordinates along the trajectory into a single batch for computing the tamper-resistance losses,
effectively sampling attack from Atrain non-IID. To further improve runtime efficiency, we do
not compute the tamper-resistance loss LTR on all K steps and instead sub-sample coordinates
along the trajectory for computing LTR within an adversary batch, for example every 4 adversary
optimization steps. Additionally, we reduce variance in the tamper-resistance gradient by computing
the tamper-resistance loss at each inner loop step on the same held-out batch, denoted as xTR in
Algorithm 1.

C.5 IMPLEMENTATION DETAILS AND RESOURCE REQUIREMENTS

We perform TAR training on Llama-3-8B-Instruct (Llama Team, AI @ Meta, 2024) with 8 NVIDIA
80GB A100 GPUs, leveraging distributed training via FSDP (Ren et al., 2021; Rajbhandari et al.,
2020; Zhao et al., 2023). We use ZeRO Stage 3 from DeepSpeed (Rajbhandari et al., 2020), which
shards optimizer states, gradients, and parameters during training. While the efficiency trick in
Appendix C.4 improves runtime, we note additional considerations for conserving GPU memory.

First, simulating fine-tuning attacks that require additional state (e.g., momentum) in the inner loop
of Algorithm 1 requires initializing a fresh optimizer for every outer loop iteration. Since we use
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an outer-loop optimizer that also requires maintaining state (ScheduleFree AdamW (Defazio et al.,
2024)), we move the outer loop optimizer to the CPU before instantiating inner-loop optimizers.

Second, first-order meta-learning in smaller models can typically be implemented by running multiple
forward passes for each inner loop iteration, averaging losses, then backpropagating on the averaged
loss term. However, because each inner-loop tamper-resistance loss term (LTR in Algorithm 1) is com-
puted on a separate forward pass, this requires maintaining K computation graphs in memory. Since
this is infeasible on reasonable hardware for LLMs with billions of parameters, we circumvent this in-
efficiency by accumulating tamper-resistance gradients in a separate data structure (gTR in Algorithm
1). We note that this can be done without using additional all-gather and reduce-scatter
distributed operations, since tamper-resistance gradient accumulation and application to the pre-inner
loop model parameters (θi−1 in Algorithm 1) can be computed solely on sharded gradients.

D ADDITIONAL ANALYSIS EXPERIMENTS

D.1 BENIGN FINE-TUNING

WMDP Forget (↓) Benign Domain (↑)

TAR-Bio Pre-SFT 28.1 59.7
Post-SFT 30.1 64.7

TAR-Chem Pre-SFT 28.4 58.6
Post-SFT 27.5 62.8

Table 3: Average accuracy on MMLU economics subjects and WMDP Forget subjects for our Llama-
3-8B TAR models safeguarded against hazardous biosecurity and chemical knowledge, before and
after fine-tuning on benign economics data (Li et al., 2024). Results indicate that models safeguarded
with TAR still preserve benign fine-tunability.

An important property of open-weight models is that they can be fine-tuned to improve performance
on custom data or in specific domains. Thus, ideal tamper-resistant safeguards should allow continued
fine-tuning of a model while preserving the safeguard. We evaluate whether TAR models can be
fine-tuned on data unrelated to the safeguard using economics as an example domain. Using TAR
models with biosecurity and chemical security safeguards, we perform supervised fine-tuning on
the WMDP auxiliary economics corpora (Li et al., 2024). We fine-tune models for 2 epochs using a
learning rate of 2× 10−6 and a batch size of 32, using AdamW ScheduleFree (Defazio et al., 2024).
For evaluation, we report average accuracy across the corresponding MMLU subjects (High School
Macroeconomics and Microeconomics) before and after fine-tuning. To confirm that the safeguard
remains tamper-resistant in this setting, we also evaluate accuracy on corresponding WMDP subjects
before and after fine-tuning.

We show the results of this evaluation in Table 3. We find that accuracy on economics questions can
be improved by 5.0 percentage points without recovering significant hazardous knowledge. This
illustrates that strong tamper-resistance can be compatible with benign model editing.

D.2 TARGETED PATCHING OF VULNERABILITIES

In Section E.2, we discuss the set of adversaries sampled during TAR for each weaponization
knowledge domain. However, we included the “Retain-set SFT followed by Weaponization-domain
SFT” (R→F in Table 4) adversary to improve robustness to specific adversaries that broke the defense
in earlier iterations of the method that did not sample this adversary. We find in Table 4 that including
the R→F adversary significantly improves robustness to more test-time attacks, indicated by an
improvement in Post-Attack Forget error by nearly 10.0 percentage points. Importantly, we find that
including the 64-step R→F adversary at train-time improves test-time robustness to both 500-step
R→F adversaries (Adv. 8 and 9) in Table 9 by nearly 30.0 percentage points on average, indicating
that target patching of vulnerabilities is possible within TAR.
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Adversary Setup
Post-Attacks

All Advs. (↓) R→F (↓)

Excl. R→F Adversary 44.9 58.7
Incl. R→F Adversary 35.2 29.7

Table 4: Pre-Attack and Post-Attack scores when excluding and including the “Retain-set SFT
followed by Biosecurity SFT adversary” (R→F) described in Appendix E.2. Post-attack R→F
accuracy averaged over both Adv. 8 and 9 in Table 9. Average tamper-resistance across all 26
adversaries improves by nearly 10 percentage points when including the R→F adversary in TAR, and
improves by nearly 30 percentage points for the R→F adversary specifically.

D.3 TEST-TIME GENERALIZATION EXPERIMENTS
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Figure 6: Our TAR safeguard can be robust to
fine-tuning attacks that greatly exceed the 64 steps
used by train-time adversaries. For the LLMU safe-
guard, the adversary’s loss quickly decreases into
the recovery region. By contrast, TAR maintains
flatness at a high loss for all 1,000 steps. Solid
lines are cross-entropy losses.

Generalization to stronger test-time attacks.
In Figure 6, we show a biosecurity fine-tuning
attack at an LR of 2× 10−5 on our TAR model
and a model safeguarded with LLMU. We find
that the tamper-resistance of TAR can general-
ize far beyond the 64 steps used by train-time
adversaries. Surprisingly, we observe that the
test-time adversary’s cross-entropy loss does not
decrease below 7 for all 1,000 steps. Moreover,
the loss enters a plateau and does not decrease
at all after 200 steps.

We also plot the entropy of the SFT ad-
versary’s posteriors during the attack (blue
dashed line). For the first ∼ 200 SFT attack
steps, the adversary’s entropy remains close to
log(vocab_size) — the maximum possible
entropy (shown as "Max Entropy" by the gray
dashed line). This is expected, since this exactly
what TAR optimizes for via the negative entropy
tamper-resistance loss. The convergence to max-
imum entropy at test-time clearly demonstrates
the TAR meta-learning objective working as in-
tended, in line with the inner-loop posteriors
observed in Figure 3.
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Figure 7: Comparison of a 1,000-step SFT attack
against TAR with the inner-loop length K varied
between {8, 16, 32, 64}. Test-time loss plateau
magnitude and duration increase as K increases.

As a point of reference, we show the progres-
sion of the same attack on LLMU. In this case,
the adversary’s cross-entropy loss decreases to
within the recovery region in under 20 steps,
corresponding to recovery in forget-set perfor-
mance on WMDP.

Varying the TAR inner-loop length K. Re-
call that via the efficiency trick discussed in
Appendix C.4, a single inner loop trajectory of
length K during TAR returns the K sampled at-
tacks in Algorithm 1. We compare the test-time
loss robustness as we vary the length of the inner
loop K during TAR, running fine-tuning attacks
for 1,000 steps on a held-out forget dataset for
biosecurity weaponization (Adversary 8 in Table
9).
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For each value of K, we observe a plateau in the test loss that drops off at later steps as K increases.
This suggests that the robustness of TAR improves as the inner loop length increases. Prior work
also corroborates that increasing the inner-loop length during meta-learning increases test-time
generalization (Henderson et al., 2023). We note the contrast to conventional meta-learning methods
mentioned in Section 4, in which typical meta-learning applications seek optimality after as few
test-time steps as possible (Nichol et al., 2018; Finn et al., 2017). Here, our results suggest that
the TAR objective is incentivized to run with as many inner loop steps as possible, representing a
beneficial tradeoff in which compute can be exchanged for robustness. We find that K = 64 provides
significant robustness to the range of adversaries we consider in Section 5 and Appendix F.1, while
balancing computational efficiency as discussed in Appendix C.4.

D.4 ABLATIONS

Ablation
Pre-Attack Post-Attacks (Avg)

Retain (↑) Forget (↓) Forget (↓)

No Defense 67.3 70.5 70.5
Excl. Adv. Training 59.7 27.3 61.6
Excl. Initial Safeguard 62.5 47.3 35.5
TAR 54.7 28.1 35.2

Table 5: Ablations for primary components of TAR: (1) the initial model safeguard, (2) the adversarial
training phase. We find that these components are critical for the high tamper-resistance that TAR
achieves.
Including the initial safeguard. In Table 5, we examine the impact of incorporating the Random
Mapping safeguard step prior to the adversarial training phase during TAR. The Random Mapping
safeguard in isolation achieves a near-random chance Pre-Attack Forget accuracy of 27.3 (“Excl.
Adv. Training” in Table 5). However, it is susceptible to fine-tuning attacks similar to other baselines
in Table 1, indicated by a higher Post-Attack Forget accuracy of 61.6. When including the tamper-
resistance adversarial training phase (TAR), we observe significantly increased tamper-resistance as
the Post-Attack Forget accuracy decreases by nearly 26 percentage points.

Excluding the initial safeguard. We also examine the impact of performing the adversarial training
phase without the initial safeguarding step (“Excl. Initial Safeguard” in Table 5), finding that Pre-
Attack accuracy is substantially higher without the initial safeguard. We find that including the
Random Mapping phase reduces pre-attack forget set accuracy by 19.2 percentage points.

Pre-Attack Post-Attacks (Avg)

LTR Weighting Retain (↑) Forget (↓) Forget (↓)

λTR = 1.0 62.5 29.3 39.9
λTR = 4.0 54.7 28.1 35.2

Table 6: Pre-Attack and Post-Attack scores when varying the tamper-resistance loss weighting, λTR.
Tamper-resistance improves by nearly 10.0% when increasing λTR from 1.0 to 4.0. The retain loss
weight λretain is fixed at 1.0 for both settings.

Varying the tamper-resistance loss scale λTR. We compare the downstream robustness of TAR
when varying the tamper-resistance loss weighting λTR between 1.0 and 4.0 in Table 6. We observe
that when setting λTR = 1.0, TAR maintains high retain MMLU accuracy at 62.5 percentage
points, with moderate tamper-resistance indicated by a Post-Attack Forget accuracy of 39.9. Further
increasing λTR to 4.0 in our final TAR model results in a significantly improved Post-Attack Forget
Accuracy of 35.2, with a partial decrease in Retain MMLU to 54.7. When varying λTR, we keep
λretain constant; thus, our results indicate a clear way to increase downstream tamper-resistance by
increasing the weighting of the tamper-resistance gradient during TAR, reflecting a balance between
tamper-resistance and capabilities similar to the robustness-performance tradeoff for adverarial
robustness in vision models.
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D.5 DPO TAMPER-RESISTANCE DURING TAR
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Figure 8: The development of inner-loop DPO win-
rates during harmful SFT attack inner loops (red),
over the course of tamper-resistance training for
TAR. The outer loop win-rate (blue) depicts the
average win-rate across inner loops over the course
of tamper-resistance training. We observe that by
the end of training, the win-rate for refusal com-
pletions becomes completely flat near the optimal
win-rate value of 1.0.

In Figure 8, we plot the DPO win-rate during
harmful SFT attack trajectories during the ad-
versarial training phase of TAR. We find that the
outer-loop DPO loss steadily decreases, which
corresponds to the average inner-loop win-rate
of refusal completions over rejected completions
steadily increasing over the 100 outer loop steps.
Our results demonstrate that TAR is able to sat-
isfy complex tamper-resistance losses after fine-
tuning. We believe that this is a useful feature
of the method, enabling TAR to adapt to other
potentially useful objective functions that corre-
spond to downstream robustness.

E EXPERIMENT DETAILS

E.1 WEAPONIZATION
DOMAIN PROXY DATASET DETAILS

Biosecurity. We use a synthetically labeled
partition of the Pile (Gao et al., 2020) that was
filtered for relevance to biology and the Camel
AI Biology dataset (Li et al., 2023). We generate
synthetic labels for Pile token sequences using
openchat-3.5 (Wang et al., 2023), categorizing them as belonging to "Cellular Biology" or not. This
process yields 49,984 samples: 7,558 for the Forget-set (Pile-bio Forget) and 42,426 for the Retain-set
(Pile-bio Retain). Concurrently, we pack entries from the Camel AI Biology dataset to the truncation-
enabled 256 tokenization limit, resulting in 54,258 samples of about 188 words each (Camel-bio
Forget). We apply the same procedure to our held-out hazardous biology dataset (identical to the
WMDP biosecurity Forget-set), producing 598,933 samples of similar length (OOD Forget).

Chemical Security. We use a private forget dataset containing text sequences about hazardous
chemical security content (Chem Forget).

Cybersecurity. We scrape CTF writeups on CTFtime (CTFtime, 2024) that are numbered between
1 and 39181, collecting cybersecurity writeups written as recently as 2024. We filter to keep writeups
that contain more than 150 characters. As a result of filtering and HTTP errors while scraping, our
resulting forget dataset contains slightly over 18k samples (Cyber Forget).

E.2 TRAIN-TIME SETTINGS AND ADVERSARIES

Weaponization knowledge restriction. For each weaponization knowledge restriction domain, we
have a corresponding retain dataset Dretain, comprised of a mix of data from the Pile-bio Retain set
and Magpie-Align instruction-tuning dataset (Xu et al., 2024), which we refer to as the Retain-set.
Referencing the datasets described in Appendix E.1, we specify the adversary tamper-resistance
datasets that constitute the data used by attacks sampled from Atrain during TAR training, as well as
the attack setup for each domain as follows:

• Biosecurity: We simulate 6 adversaries from the following three setups: Pile-Bio Forget-set SFT,
Camel-Bio Forget-set SFT, and Retain-set SFT followed by Pile-Bio Forget-set SFT (R→F), where
the switching point between Retain-set and Pile-Bio Forget-set SFT within the 64-step length
trajectory is sampled from a beta distribution β(6.0, 3.0). LRs are sampled from {2× 10−5, 4×
10−5}.

• Chemical Security: We simulate 6 adversaries from the following three setups: Chem Forget-set
SFT, Retain-set SFT, and Retain-set followed by Chem Forget-set SFT, using the same switching-
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point sampling scheme as in the Biosecurity setting. LRs are sampled from {2× 10−5, 4× 10−5}.
For chemical security, we set the tamper-resistance loss scale λTR to 3.0.

• Cybersecurity: We simulate 6 adversaries from the following two setups: Cyber Forget-set SFT,
Retain-set SFT, and Retain-set SFT followed by Cyber Forget-set SFT, using the same switching
point sampling scheme as in the Chemical Security and Biosecurity settings. LRs are sampled from
{2× 10−5, 4× 10−5}.

For each weaponization knowledge domain, we create 80-20 splits for adversary and held-out data
of the corresponding forget sets, respectively. For Biosecurity, which uses multiple forget datasets,
this involves creating 80-20 splits for each dataset, then combining the corresponding splits. The
adversary data splits are used for sampled attacks from Atrain, whereas the held-out split is used
for computing tamper-resistance losses. The held-out splits for each domain correspond to DTR in
Section 4. We use minibatches from a held-out dataset for computing tamper-resistance losses rather
than cycling through a single dataset, following the recommendation of Nichol et al. (2018), in which
first-order meta-learning without properly held-out minibatches caused a performance degradation.

All train-time adversary setups are tabulated in Table 7, where F-Pile, F-Chem, F-Cyber denote the
respective datasets described in Appendix E.1, and Retain denotes the mixed Pile-bio and Magpie-
Align Retain-set described in Appendix E.2. We use R→F to label the adversaries that perform
Retain-set SFT followed by Forget-set SFT. The final column is an abbreviation for Finetuning
Paradigm and indicates whether the SFT setup used full parameter finetuning or parameter-efficient
fine-tuning (PEFT) via LoRA adapters (Hu et al., 2021).

Table 7: Train-time adversary setups for weaponization knowledge restriction of Biosecurity, Chemi-
cal Security, and Cybersecurity.

Adversary Dataset Opt. Steps (K) Optimizer LR LR Schedule Batch Size FT Paradigm

Biosecurity Weaponization Restriction

Adv 1 F-Pile 64 AdamW 2× 10−5 No Warmup 64 Full Parameter
Adv 2 F-Pile 64 AdamW 4× 10−5 No Warmup 64 Full Parameter
Adv 3 F-Camel 64 AdamW 2× 10−5 No Warmup 64 Full Parameter
Adv 4 F-Camel 64 AdamW 4× 10−5 No Warmup 64 Full Parameter
Adv 5 R→F 64 AdamW 2× 10−5 No Warmup 64 Full Parameter
Adv 6 R→F 64 AdamW 4× 10−5 No Warmup 64 Full Parameter

Chemical Security Weaponization Restriction

Adv 1 F-Chem 64 AdamW 2× 10−5 No Warmup 64 Full Parameter
Adv 2 F-Chem 64 AdamW 4× 10−5 No Warmup 64 Full Parameter
Adv 3 Retain 64 AdamW 2× 10−5 No Warmup 64 Full Parameter
Adv 4 Retain 64 AdamW 4× 10−5 No Warmup 64 Full Parameter
Adv 5 R→F 64 AdamW 2× 10−5 No Warmup 64 Full Parameter
Adv 6 R→F 64 AdamW 4× 10−5 No Warmup 64 Full Parameter

Cybersecurity Weaponization Restriction

Adv 1 F-Cyber 64 AdamW 2× 10−5 No Warmup 64 Full Parameter
Adv 2 F-Cyber 64 AdamW 4× 10−5 No Warmup 64 Full Parameter
Adv 3 Retain 64 AdamW 2× 10−5 No Warmup 64 Full Parameter
Adv 4 Retain 64 AdamW 4× 10−5 No Warmup 64 Full Parameter
Adv 5 R→F 64 AdamW 2× 10−5 No Warmup 64 Full Parameter
Adv 6 R→F 64 AdamW 4× 10−5 No Warmup 64 Full Parameter

Harmful request refusal. For harmful request refusal, we choose the retain dataset Dretain to be
the Magpie-Align instruction-tuning dataset (Xu et al., 2024). We sample train-time adversaries that
perform K = 64 steps of SFT on rejected completions of the Anthropic-HH-RLHF dataset (Bai
et al., 2022) and vary the learning rate within {2× 10−6, 2× 10−5, 4× 10−5}. We depict this list of
adversaries in Table 8.
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While the rejected completions from Anthropic-HH-RLHF constitute the data used for sampled
attacks from Atrain for harmful request refusal, we compute the tamper-resistance loss LTR as follows.
Since LTR is the DPO loss (Rafailov et al., 2023) in this setting, we use the base model weights
θ as the reference model and sample harmful and benign completions from a modified test split
of Anthropic-HH-RLHF (Bai et al., 2022), where rejected completions are replaced with refusals
(Cai et al., 2024). To avoid keeping the base model weights in memory and speed up training, we
precompute the reference model DPO log-probabilities for the full Anthropic-HH-RLHF dataset
before training. To summarize, we have that the sampled train-time adversaries perform SFT on
the rejected completions from Anthropic-HH-RLHF, and tamper-resistance DPO loss is computed
on the corresponding modified refusal completions; the modified refusal completions in this setting
correspond to DTR in Section 4.

In practice, we perform an additional 100 steps of supervised fine-tuning on the Magpie-Align dataset
to improve the benign capabilities performance of the TAR refusal model in Table 2.

Table 8: Train-time adversary red-teaming setups harmful request refusal. “A-HH-Rejected” in the
Dataset column corresponds to the adversary dataset comprised of rejected completions from the
Anthropic-HH-RLHF dataset.

Adversary Dataset Opt. Steps (K) Optimizer LR LR Schedule Batch Size FT Paradigm

Harmful Request Refusal

Adv 1 A-HH-Rejected 64 AdamW 2× 10−5 No Warmup 64 Full Parameter
Adv 2 A-HH-Rejected 64 AdamW 2× 10−6 No Warmup 64 Full Parameter
Adv 3 A-HH-Rejected 64 AdamW 4× 10−5 No Warmup 64 Full Parameter

F RED TEAMING DETAILS

F.1 WEAPONIZATION KNOWLEDGE RESTRICTION

In Table 9, we list all test-time adversary setups for recovering Biosecurity, Chemical Security, and
Cybersecurity Weaponization knowledge.

For Biosecurity, we examine post-attack forget accuracy after fine-tuning for 500 steps on three data
distributions: the Pile-bio Forget set and the Retain-set used during Random Mapping and TAR, and
an OOD-Forget set mentioned in Appendix E.1, which is unseen during tamper-resistance training.

We leverage a consistent setup for Chemical Security and Cybersecurity, substituting the Pile-bio
Forget set for the respective Chem and Cyber Forget sets. We exclude the unseen forget distribution
adversaries for a total of 24 attacks, as we were unable to obtain an equally high quality held-out
dataset for Chemical Security and Cybersecurity.

For all subjects, we compare the effect of different optimizers (AdamW, Adadelta, and Stochastic
Gradient Descent with Nesterov Momentum, Schedule Free AdamW) (Zeiler, 2012; Kingma & Ba,
2017; Xie et al., 2023; Defazio et al., 2024), learning rates (2 × 10−6, 2 × 10−5, 4 × 10−5), and
learning rate scheduling techniques (SGDR and 30 steps of linear warmup) (Loshchilov & Hutter,
2016).

Similar to Table 7, we use F-Pile, F-Chem, F-Cyber, and OOD-F in the Dataset Column to denote
the respective datasets described in Appendices F.1. At test-time, we use the Pile-bio Retain set as
the global Retain-set adversary, labeled as Retain. The R→F adversary at test-time also differs from
the train-time version: we perform Forget-set SFT for 40% of the optimization steps, followed by
Retain-set SFT for the remaining 60%. We found this combination to be a potent attack that broke
intermediate versions of the method, as described in Appendix D.2.
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In the Optimizer column, Schedule Free is an abbreviation of Schedule Free AdamW and SGD
Nesterov is an abbreviation of SGD with Nesterov Momentum. In cases where the adversary used
parameter-efficient fine-tuning (PEFT) via LoRA adapters (Hu et al., 2021), we used a LoRA config
with an attention dimension, or rank, of 16, a LoRA alpha value of 32, a LoRA dropout of 0.05, on
target linear modules:

{‘up_proj’,‘down_proj’,‘gate_proj’,‘q_proj’,‘k_proj’,‘v_proj’,‘o_proj’}.
Lastly, for each Weaponization Knowledge Restriction domain, we red-team the TAR model with
three runs of supervised fine-tuning attacks from each adversary, using different random seeds. We
then calculate the final post-attack value for each adversary by averaging these three replicates.

Table 9: Test-time adversary red-teaming setups for weaponization knowledge restriction of Biosecu-
rity, Chemical Security, and Cybersecurity.

Adversary Dataset Opt. Steps (K) Optimizer LR LR Schedule Batch Size FT Paradigm

Biosecurity Weaponization Restriction

Adv 1 F-Pile 500 AdamW 2× 10−5 No Warmup 64 Full Parameter
Adv 2 F-Pile 500 AdamW 4× 10−5 No Warmup 64 Full Parameter
Adv 3 Retain 500 AdamW 2× 10−5 No Warmup 64 Full Parameter
Adv 4 Retain 500 AdamW 4× 10−5 No Warmup 64 Full Parameter
Adv 5 OOD-F 500 AdamW 2× 10−5 No Warmup 64 Full Parameter
Adv 6 OOD-F 500 AdamW 4× 10−5 No Warmup 64 Full Parameter
Adv 7 R→F 500 AdamW 2× 10−5 No Warmup 64 Full Parameter
Adv 8 R→F 500 AdamW 4× 10−5 No Warmup 64 Full Parameter
Adv 9 F-Pile 500 Adadelta 2× 10−5 No Warmup 64 Full Parameter
Adv 10 F-Pile 500 Adadelta 4× 10−5 No Warmup 64 Full Parameter
Adv 11 F-Pile 500 Schedule Free 2× 10−5 No Warmup 64 Full Parameter
Adv 12 F-Pile 500 Schedule Free 4× 10−5 No Warmup 64 Full Parameter
Adv 13 F-Pile 500 SGD Nesterov 2× 10−5 No Warmup 64 Full Parameter
Adv 14 F-Pile 500 SGD Nesterov 4× 10−5 No Warmup 64 Full Parameter
Adv 15 F-Pile 500 AdamW 2× 10−6 No Warmup 64 Full Parameter
Adv 16 F-Pile 500 AdamW 2× 10−6 30 Steps Warmup 64 Full Parameter
Adv 17 F-Pile 500 AdamW 2× 10−5 30 Steps Warmup 64 Full Parameter
Adv 18 F-Pile 500 AdamW 4× 10−5 30 Steps Warmup 64 Full Parameter
Adv 19 F-Pile 500 AdamW 2× 10−5 SGDR 64 Full Parameter
Adv 20 F-Pile 500 AdamW 4× 10−5 SGDR 64 Full Parameter
Adv 21 F-Pile 500 AdamW 2× 10−5 No Warmup 32 Full Parameter
Adv 22 F-Pile 500 AdamW 4× 10−5 No Warmup 32 Full Parameter
Adv 23 F-Pile 500 AdamW 2× 10−5 No Warmup 128 Full Parameter
Adv 24 F-Pile 500 AdamW 4× 10−5 No Warmup 128 Full Parameter
Adv 25 F-Pile 500 AdamW 2× 10−5 No Warmup 64 PEFT
Adv 26 F-Pile 500 AdamW 4× 10−5 No Warmup 64 PEFT

Chemical Security Weaponization

Adv 1 F-Chem 500 AdamW 2× 10−5 No Warmup 64 Full Parameter
Adv 2 F-Chem 500 AdamW 4× 10−5 No Warmup 64 Full Parameter
Adv 3 Retain 500 AdamW 2× 10−5 No Warmup 64 Full Parameter
Adv 4 Retain 500 AdamW 4× 10−5 No Warmup 64 Full Parameter
Adv 5 R→F 500 AdamW 2× 10−5 No Warmup 64 Full Parameter
Adv 6 R→F 500 AdamW 4× 10−5 No Warmup 64 Full Parameter
Adv 7 F-Chem 500 Adadelta 2× 10−5 No Warmup 64 Full Parameter
Adv 8 F-Chem 500 Adadelta 4× 10−5 No Warmup 64 Full Parameter
Adv 9 F-Chem 500 ScheduleFree 2× 10−5 No Warmup 64 Full Parameter
Adv 10 F-Chem 500 ScheduleFree 4× 10−5 No Warmup 64 Full Parameter
Adv 11 F-Chem 500 SGD Nesterov 2× 10−5 No Warmup 64 Full Parameter
Adv 12 F-Chem 500 SGD Nesterov 4× 10−5 No Warmup 64 Full Parameter
Adv 13 F-Chem 500 AdamW 2× 10−6 No Warmup 64 Full Parameter

Continued on next page
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Table 9 – continued from previous page
Adversary Dataset Opt. Steps (K) Optimizer LR LR Schedule Batch Size FT Paradigm

Adv 14 F-Chem 500 AdamW 2× 10−6 30 Steps Warmup 64 Full Parameter
Adv 15 F-Chem 500 AdamW 2× 10−5 30 Steps Warmup 64 Full Parameter
Adv 16 F-Chem 500 AdamW 4× 10−5 30 Steps Warmup 64 Full Parameter
Adv 17 F-Chem 500 AdamW 2× 10−5 SGDR 64 Full Parameter
Adv 18 F-Chem 500 AdamW 4× 10−5 SGDR 64 Full Parameter
Adv 19 F-Chem 500 AdamW 2× 10−5 No Warmup 32 Full Parameter
Adv 20 F-Chem 500 AdamW 4× 10−5 No Warmup 32 Full Parameter
Adv 21 F-Chem 500 AdamW 2× 10−5 No Warmup 128 Full Parameter
Adv 22 F-Chem 500 AdamW 4× 10−5 No Warmup 128 Full Parameter
Adv 23 F-Chem 500 AdamW 2× 10−5 No Warmup 64 PEFT
Adv 24 F-Chem 500 AdamW 4× 10−5 No Warmup 64 PEFT

Cybersecurity Weaponization Restriction

Adv 1 F-Cyber 500 AdamW 2× 10−5 No Warmup 64 Full Parameter
Adv 2 F-Cyber 500 AdamW 4× 10−5 No Warmup 64 Full Parameter
Adv 3 Retain 500 AdamW 2× 10−5 No Warmup 64 Full Parameter
Adv 4 Retain 500 AdamW 4× 10−5 No Warmup 64 Full Parameter
Adv 5 R→F 500 AdamW 2× 10−5 No Warmup 64 Full Parameter
Adv 6 R→F 500 AdamW 4× 10−5 No Warmup 64 Full Parameter
Adv 7 F-Cyber 500 Adadelta 2× 10−5 No Warmup 64 Full Parameter
Adv 8 F-Cyber 500 Adadelta 4× 10−5 No Warmup 64 Full Parameter
Adv 9 F-Cyber 500 ScheduleFree 2× 10−5 No Warmup 64 Full Parameter
Adv 10 F-Cyber 500 ScheduleFree 4× 10−5 No Warmup 64 Full Parameter
Adv 11 F-Cyber 500 SGD Nesterov 2× 10−5 No Warmup 64 Full Parameter
Adv 12 F-Cyber 500 SGD Nesterov 4× 10−5 No Warmup 64 Full Parameter
Adv 13 F-Cyber 500 AdamW 2× 10−6 No Warmup 64 Full Parameter
Adv 14 F-Cyber 500 AdamW 2× 10−6 30 Steps Warmup 64 Full Parameter
Adv 15 F-Cyber 500 AdamW 2× 10−5 30 Steps Warmup 64 Full Parameter
Adv 16 F-Cyber 500 AdamW 4× 10−5 30 Steps Warmup 64 Full Parameter
Adv 17 F-Cyber 500 AdamW 2× 10−5 SGDR 64 Full Parameter
Adv 18 F-Cyber 500 AdamW 4× 10−5 SGDR 64 Full Parameter
Adv 19 F-Cyber 500 AdamW 2× 10−5 No Warmup 32 Full Parameter
Adv 20 F-Cyber 500 AdamW 4× 10−5 No Warmup 32 Full Parameter
Adv 21 F-Cyber 500 AdamW 2× 10−5 No Warmup 128 Full Parameter
Adv 22 F-Cyber 500 AdamW 4× 10−5 No Warmup 128 Full Parameter
Adv 23 F-Cyber 500 AdamW 2× 10−5 No Warmup 64 PEFT
Adv 24 F-Cyber 500 AdamW 4× 10−5 No Warmup 64 PEFT

F.2 HARMFUL REQUEST REFUSAL

For the harmful request refusal setting, we conduct 5 test-time adversary attacks that perform SFT for
10 epochs on a held-out toxicity dataset called Toxic-DPO v0.2, on each of the settings in Table 10.
The dataset contains 541 user-assistant chat interactions where the assistant complies with harmful
instructions.

Table 10: Test-time adversary red-teaming setups for harmful request refusal. “ToxicDPO” in the
Dataset column refers to the ToxicDPOv0.2 dataset containing harmful chat completions.

Adversary Dataset Epochs Optimizer LR LR Schedule Batch Size FT Paradigm

Harmful Request Refusal

Adv 1 ToxicDPO 10 AdamW 1× 10−5 10 Steps Warmup 32 Full Parameter

Continued on next page
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Table 10 – continued from previous page
Adversary Dataset Epochs Optimizer LR LR Schedule Batch Size FT Paradigm

Adv 2 ToxicDPO 10 AdamW 1× 10−5 No Warmup 32 Full Parameter
Adv 3 ToxicDPO 10 AdamW 1× 10−5 No Warmup 16 Full Parameter
Adv 4 ToxicDPO 10 AdamW 2× 10−5 No Warmup 32 Full Parameter
Adv 5 ToxicDPO 10 AdamW 4× 10−5 No Warmup 32 Full Parameter

F.2.1 ADDITIONAL HARMFUL REQUEST REFUSAL RESULTS

Model
Pre-Attacks Post-Attacks (Avg)

MT-Bench (↑) ASR (↓) ASR (↓)

Refusal Trained 8.1 14.7 72.5
R2D2 6.0 25.0 78.3
RepNoise 6.2 18.8 74.5
RR 8.0 1.4 84.8
TAR (Ours) 6.3 31.4 63.9

Table 11: Average Post-Attack HarmBench ASR, reported for TAR, Representation Rerouting (RR),
and the Refusal Trained Llama-3-8B-Instruct model across 5 fine-tuning attacks depicted in Table
10, as well as Pre-Attack MT-Bench and HarmBench ASR. TAR is more robust than other methods
after tampering, while maintaining comparable MT-Bench performance. Note that Pre-Attack ASR is
not a priority for us, as we focus on reducing ASR after tampering attacks. To improve both metrics,
future work could consider combining tamper-resistance training with a strong baseline safeguard
like RR. ASR values are percentages.

G BASELINE DETAILS

G.1 WEAPONIZATION KNOWLEDGE RESTRICTION

Max Entropy. Let K be the set of all token-wise output probability distributions returned by a
model θ, where k ∈ K corresponds to every position in the sequence. We maximize the average
entropy of these discrete distributions in K as follows:

LMax Entropy =
∑
k∈K

pk log(pk)

This is equivalent to minimizing the average Kullback-Leibler (KL) divergence (Kullback & Leibler,
1951) between each k and the discrete uniform distribution u(x) over the vocabulary V . For Llama-
3-8B-Instruct, |V | = 128256. Thus, this objective is upper-bounded by:

h(x) = − log(u(x)) = log(|V |) ≈ 11.76

where h(x) measures the Shannon information or self-information and log(x) has base e. We apply
this objective for all elements in the Forget-set and perform standard cross-entropy on the Retain-set.

Min Posterior. The goal of the Min Posterior objective is to assign lower probabilities to true
forget-set labels, essentially minimizing − log(1− P (label)). Let pi be the probability assigned to
the true label for token i and V be the model’s vocabulary distribution. We define the Min Posterior
objective function as follows:

LMin Posterior = −
1

|V|
∑
i∈V

log(1− pi + ϵ) · I[log(pi) ≥ τ ]
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where τ is the threshold for masking out target label logits (which we set to the negative maximum
entropy of the vocabulary distribution, − log |V|) and I[·] is the corresponding indicator function (1 if
the condition is true, 0 otherwise). We include an optional ϵ = 1 × 10−12 to help with numerical
stability. Similar to the Max Entropy objective, we apply this objective for all elements in the
Forget-set and perform standard cross-entropy on the Retain-set.

RMU. We adapt RMU’s implementation from Li et al. (2024) with a learning rate of 5 × 10−5

and 250 unlearning steps. We use the released WMDP’s unlearning datasets for Biosecurity (Bio)
and Cybersecurity (Cyber) unlearning, and our private hazardous chemistry dataset for Chemical
Security (Chem) unlearning. We use unlearning coefficients of 20, 30, and 50 for Bio, Cyber, and
Chem respectively. We use a retain coefficient of 700 on Wikitext Merity et al. (2016).

LLMU. We use a modified version of LLMU from Yao et al. (2023). Instead of computing the
KL divergence to regularize retain-set logits towards the base frozen model, we employ a standard
cross-entropy loss. This modification allows for memory-efficient execution on our hardware while
maintaining comparable performance.

Hyperparameter tuning. Besides RMU, all baseline hyperparameters were chosen after a grid
search across learning rates {3 × 10−6, 5 × 10−6, 8 × 10−6, 1 × 10−5}, optimization step count
{600, 1000}, and warmup steps {0, 100}. We found that 600 optimization steps using the AdamW
Schedule Free optimizer, at a learning rate of 1 × 10−5, with 100 steps of linear warmup, and an
effective batch size of 64 produced the best performance. For the Max Entropy, Min Posterior, and
LLMU baselines, we train on the three corresponding forget datasets discussed in E.1. For these
baselines, we modify our Biosecurity forget corpus to be a mixture of the Pile-bio and Camel-bio
Forget corpora. We use the Pile-bio Retain-set as a global Retain-set for baseline training.

G.2 HARMFUL REQUEST REFUSAL

Representation Rerouting. We use the Llama-3-8B-Instruct RR model from Zou et al. (2024),
which uses a cosine distance loss to push representations for harmful inputs to become orthogonal to
those of the base Llama-3-8B-Instruct model.

R2D2. We use the R2D2 model run on Zephyr-7B directly from Mazeika et al. (2024), which
performs adversarial training against GCG attacks to increase jailbreak robustness.

RepNoise. We the RepNoise model run on Llama-2-7B directly from Rosati et al. (2024b), which
uses a distributional loss to push representations for harmful inputs toward Gaussian noise.

G.3 ADDITIONAL BASELINE COMPARISONS

MLAC-AR. Meta-Learned Adversarial Censoring (MLAC) (Henderson et al., 2023) was originally
proposed to prevent BERT-style models from learning binary classification for gender bias data.
Since the approach is not immediately applicable to LLMs, we extend MLAC in a variant we call
autoregressive MLAC (MLAC-AR). Since MLAC in its original formulation calls for “task-blocking”
via negating the adversary’s loss during the inner loop of meta-learning, we implement this by
negating the cross-entropy loss of an LLM fine-tuning adversary. However, we found that this
approach diverges in performance across a variety of hyperparameters, and opted to further improve
performance of the MLAC-AR baseline by clamping the maximum cross-entropy loss at the value of
the maximum entropy of the output vocabulary distribution, log(vocab_size). We show results in
Table 12, finding that MLAC-AR does not maintain sufficient benign capabilities performance nor
uniform tamper-resistance across weaponization domains.

SOPHON-AR. In concurrent work, SOPHON (Deng et al., 2024) was introduced to prevent
small diffusion models and image classifiers from learning specific data distributions. Similarly to
MLAC-AR, we extend SOPHON to LLMs via SOPHON-AR, using the alternating retain loss and
fine-tuning suppression loss formulation that the authors propose. Furthermore, we adapt the inverse
cross-entropy loss from Deng et al. (2024) , which aims to boost convergence of the fine-tuning
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Domain Model
Pre-Attacks Post-Attacks (Avg)

Retain (↑) Forget (↓) Forget (↓)

Biosecurity

Random 25.0 25.0 25.0
MLAC-AR 49.1 31.2 50.6
SOPHON-AR 27.2 24.0 28.3
TAR (Ours) 54.7 28.1 35.2

Chemical Security

Random 25.0 25.0 25.0
MLAC-AR 47.8 29.9 33.6
SOPHON-AR 23.3 26.2 26.1
TAR (Ours) 56.5 28.4 27.1

Cybersecurity

Random 25.0 25.0 25.0
MLAC-AR 36.0 26.6 35.1
SOPHON-AR 24.4 24.6 30.4
TAR (Ours) 60.7 23.6 28.6

Table 12: Additional baselines for MLAC-AR, an extension of the method in Henderson et al. (2023)
to autoregressive LLMs, as well as SOPHON-AR from Deng et al. (2024), respectively. Despite
extensive tuning, SOPHON-AR does not yield a usable model. Additionally, MLAC-AR has varying
robustness and worse Retain MMLU performance.

suppression process. We find in practice that despite heavy tuning, SOPHON-AR does not converge
well enough to yield a usable Pre-Attack model in Table 12.
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