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Transformers as Stochastic Optimizers

Anonymous Authors1

Abstract
In-context learning is a crucial framework for un-
derstanding the learning processes of foundation
models. Transformers are frequently used as a
useful architecture within this context. Recent ex-
perimental results have demonstrated that Trans-
formers can learn algorithms such as gradient de-
scent based on datasets. However, from a theoret-
ical aspect, while Transformers have been shown
to approximate non-stochastic algorithms, it has
not been shown for stochastic algorithms such as
stochastic gradietn descent. This study develops a
theory on how Transformers represent stochastic
algorithms in in-context learning. Specifically, we
show that Transformers can generate truly random
numbers by extracting the randomness inherent
in the data and pseudo random numbers by imple-
menting pseudo random number generators. As
a direct application, we demonstrate that Trans-
formers can implement stochastic optimizers, in-
cluding stochastic gradient descent and Adam, in
context.

1. Introduction
Among various strong capabilities of foundation models,
their in-context learning ability is powerful and thus actively
investigated. Using in-context learning, foundation models,
typically large language models, can perform new tasks pre-
sented at test time without updating their parameters. Such
a learning ability is not only observed empirically (Garg
et al., 2022; Von Oswald et al., 2023; Akyürek et al., 2022)
but also analyzed theoretically (Li et al., 2023; Xie et al.,
2021; Zhang et al., 2023; Bai et al., 2023; Lin et al., 2023;
Ahn et al., 2024; Raventós et al., 2024), revealing that Trans-
formers can approximate learning algorithms, such as least
square (Zhang et al., 2023) and gradient descent (Akyürek
et al., 2022). In particular, (Bai et al., 2023) showed that a
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Transformer layer can approximate a single step of gradient
descent of linear models, and thus, Transformers can per-
form training of linear models. Although these results are
powerful, the approximable algorithms are non-stochastic.

This paper unveils that Transformers can indeed approxi-
mate stochastic algorithms by generating random numbers
in context. Specifically, we show that Transformers can
construct random numbers 1. extracting randomness in ran-
domly sampled input data; and 2. implementing pseudo
random number generators, such as Mersenne Twister. As a
direct application, we extend the in-context gradient descent
to in-context stochastic gradient descent. We further show
that Transformers can represent more complex optimizers,
such as Adam, which further enpowers ICL.

2. Preliminary
Notation

0A,1A indicate A-dimensional vectors all of whose ele-
ments are 0 or 1. The notations for elementwise operators
for vectors are often abused for brevity, e.g., for a vector
a, 1/a, aa,

√
a denote elementwise division, power by a,

and square root, respectively. To measure the distance be-
tween the distributions of x,x′ ∈ Rp, we use Kormogorov
distance ∆(x,x′) =

∑
A⊂Rp |Pr(x ∈ A)− Pr(x′ ∈ A)|,

where A is taken from all measurable set in the parameter
space Rp.

2.1. Transformer

Define an L-layer Transformer consisting of L Transformer
layers as follows. The lth Transformer layer maps an input
matrix H(l) ∈ RD×N to H̃(l) ∈ RD×N and is composed
of a self-attention block and a feed-forward block. The
self-attention block Attn(l) : RD×N → RD×N is parame-
terized by D×D matrices {(K(l)

m ,Q
(l)
m ,V

(l)
m )}Mm=1, where

M is the number of heads, and defined as

Attn(l)(X) = X +
1

N

M∑
m=1

V (l)
m Xσ((Q(l)

m X)⊤K(l)
m X).

(1)
σ denotes an activation function applied elementwisely.

The feed-forward block MLP(l) : RD×N → RD×N is a
multi-layer perceptron with a skip connection, parameter-
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ized by (W
(l)
1 ,W

(l)
2 ) ∈ RD′×D × RD×D′

, such that

MLP(l)(X) = X +W
(l)
2 ς(W

(l)
1 X), (2)

where ς is an activation function applied elementwisely. We
let both σ and ς the ReLU function in this paper.

In summary, an L-layer Transformer TFθ, parameterized
by ϑ

(l)
m := (K

(l)
m ,Q

(l)
m ,V

(l)
m ) and

θ = {(θ(l)
1 , . . . ,θ

(l)
M ,W

(l)
1 ,W

(l)
2 )}Ll=1, (3)

is a composition of the abovementioned layers as

TFθ(X) = MLP(L)◦Attn(L)◦· · ·◦MLP(1)◦Attn(1)(X).
(4)

In the remaining text, the superscript to indicate the number
of layer (l) is sometimes omitted for brevity. In some cases,
we denote the nth columns of H(l), H̃(l) as h(l)

n , h̃
(l)
n . We

define the following norm of a Transformer TFθ:

∥θ∥TF = max
l∈{1,...,L}

{
max

m∈{1,...,M}

{
∥Q(l)

m ∥, ∥K(l)
m ∥

}
(5)

+

M∑
m=1

∥V (l)
m ∥+ ∥W (l)

1 ∥+ ∥W (l)
2 ∥

}
, (6)

where ∥·∥ for matrices indicates the operator norm in this
equation.

2.2. In-context Learning

In the in-context learning (ICL), a virtual model is given a
dataset D = {(xi, yi)}Ni=1 ∼ (P )N and a test data point x∗
from a marginal distribution Px and then predicts its label
y∗. The dataset consists of N pairs of inputs xi ∈ Rd and
its label yi ∈ R Our goal is to construct a fixed Transformer
to perform ICL, by learning an algorithm for the virtual
model to predict y∗ using (Dj ,x∗j) sampled from different
distributions Pj from P .

The input dataset and the test data point are encoded into
H(1) ∈ RD×(N+1) as follows:

H(1) =


x1 x2 . . . xN x∗
y1 y2 . . . yN 0
1 1 . . . 1 1
t1 t2 . . . tN tN+1

0D−(d+p+2) 0D−(d+p+2) . . . 0D−(d+p+2) 0D−(d+p+2)

p1 p2 . . . pN pN+1

 ,

(7)
where tn = 1 for n ≤ N and tN+1 = 0 is used to indicate
which data points are from D. pn ∈ Rp encodes the position
information. Using these notations, the goal of ICL can
be rewritten as predicting y∗ by H̃

(L)
N+1,1, where H̃(L) =

TFθ(H
(1)), by the acquired algorithm.

2.3. In-context Gradient Descent

Bai et al. demonstrated that Transformers can implement
non-stochastic gradient descent of a linear model for a broad
class of convex loss functions in an in-context way. The key
ingredient is the following approximability.

Definition 1 ((ε,R,M,C)-approximability by sum of Re-
LUs, (Bai et al., 2023)). For ε > 0 and R ≥ 1, a function g :
Rk → R is (ϵ, R,M,C)-approximabile by sum of ReLUs
if there exist a function f(z) =

∑M
m=1 cmσ(a⊤

mz + bm)

with
∑M

m=1|cm| ≤ C, maxm∈{1,...,M}∥a∥1 + bm ≤
1, where am ∈ Rk, bm ∈ R, cm ∈ R,, such that
supz∈[−R,R]k |g(z)− f(z)| ≤ ε.

This notion enables the attention block (1) and the MLP
block (2) to approximate various functions, including loss
functions:

Theorem 1 (Theorem 9 of (Bai et al., 2023)). Fix any
Bw > 0, L > 1, η > 0, K > 0, and ϵ ≤ Bw/2L.
Given a loss function ℓ that is convex in the first argu-
ment, and ∇1ℓ is (ϵ, R,M,C)-approximable by the sum
of ReLUs with R = max(Bw, Bx, By, 1). Let h

(1)
n =

[xn, yn, 1, tn,0D−(d+p+3),pn] for n = 1, 2, . . . , N + 1.
Then, there exists an attention-only Transformer TFθ with
(L+1) layers and M heads such that for any input (D,x∗)
such that supw:∥w∥2≤Bw

λmax(∇2L̂(w;D)) ≤ 2/η and
∃w⋆ ∈ argminw∈Rd L̂(w;D) such that ∥w⋆∥2 ≤ Bw/2,
TFθ approximately implements IC-GD with initialization
w

(0)
GD = 0d: For every l ∈ {1, . . . , L}, the lth layer’s

output H̃(l) approximates l steps of IC-GD: we have
h
(l)
n = [xn, yn, 1, tn, ŵ

(l),0D−(L+2d+p+2),p1] for each

n ∈ {1, . . . , N}, where ∥ŵ(l) − w
(l)
GD∥2 ≤ ϵlηBx. The

Transformer also admits norm bound ∥θ∥TF ≤ 2 + R +
2ηC.

3. In-context Random Number Generation
In this section, we show that Transformers can generate
random numbers in two ways.

3.1. Generating Truly Random Numbers

First, we demonstrate that a single layer Transformer can
generate a truly random number on [0, 1] using the stochas-
ticity in data. The key idea is to estimate the density function
of data using some training data points, and then, and then
evaluate it with a held-out data point.

Theorem 2 (Generating a Random Number). For any ϵ >
0 and Bx > 0, there exists a self-attention block Attnθ
with two heads and ∥θ∥TF ≤ 7

2 + max{ 1
4ϵ + 2, (Bx +

1) 1
4ϵ} such that, for any input (D,x∗), TFθ approximately

implements the cumulative distribution function P̂z(z) of
{z1, . . . , zN−1}, where zn = xn,1 ∼ Px,1, such that, for

2
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zN = xN,1,

∆(P̂z(zN ), u) ≤ ϵ+O(
1√
N

), (8)

for u ∼ U(0, 1).

3.2. Generating Pseudo Random Numbers

Next, we show that Transformers can implement
pseudo-random number generators, including Mersenne
Twister (Matsumoto & Nishimura, 1998), which is a popular
pseudo-random number generator: for example, Python’s
random module adopts it1.

Definition 2 (Pseudo Random Number Generator over F2).
The following linear generator over the finite field of order
2, F2, outputs a pseudo-random number ot ∈ Fw

2 given a
state st ∈ Fk

2

st = Ast−1,

ot = Bst,

where A ∈ Fk×k
2 , and B ∈ Fk×m

2 , for t ∈ N. s0 is the
seed.

By selecting A and B appropriately, this generalized gen-
erator obtains several pseudo-random number generators,
such as Mersenne Twister.

Theorem 3 (Implementing Pseudo-random Number Gener-
ator). For any state s0 ∈ Fk

2 , a single self-attention block
with M heads can generate (o1, . . . ,oM ) exactly using the
pseudo-random number generators in Definition 2.

We can generate pseudo-random numbers by using a random
number generated in Theorem 2 as an initial seed. This is
basically the same as what we do in numerical experiments.

4. In-context Stochastic Gradient Descent
In this section, we extend in-context gradient descent in
Theorem 1 to in-context stochastic gradient descent. We
assume that the following function can be constructed in
context.

Assumption 1. Fix a sequence of (pseudo-
) random numbers (u1, . . . , uK). There ex-
ists a Transformer TFθ such that maps input
h
(1)
n = [xn, yn, 1, tn, u,0n,0D−(d+p+3),pn] to

h
(1)
n = [xn, yn, 1, tn, u, bn,0D−(d+p+3),pn] for

n = 1, 2, . . . , N , where bn ∈ {0, 1}L determines a
minibatch of size K such that bn,l = 1 indicates that the
nth data point is in the minibatch at the lth iteration.

1https://docs.python.org/3/library/random.
html

For the approximation, we define a sequence of parameters
{w(l)

SGD}l=1,...,L generated by stochastic gradient descent:

w
(l+1)
SGD = w

(l)
SGD − η

K

∑
(x,y)∈Bl

∇wℓ(w
(l)⊤
SGDx, y), (9)

where η is a learning rate, Bl is a minibatch of size K for
the lth iteration, and ℓ : R × R → R≥0 is a loss function.
The trained model is evaluated by f(x;w) = w⊤x. We
suppose that xn ≤ Bw, y ≤ By, and w(l) ≤ Bw, for each
n and l.

Theorem 4 (Implementation of In-context Stochastic Gra-
dient Descent). Fix any Bw > 0, L > 1, η > 0, K > 0,
and ϵ ≤ Bw/2L. Given a loss function ℓ that is convex in
the first argument, and ∇1ℓ is (ϵ, R,M,C)-approximable
by the sum of ReLUs with R = max(Bw, Bw, By, 1).
Let h(1)

n = [xn, yn, 1, tn, u, bn,0D−(d+p+3),pn] for n =
1, 2, . . . , N . Then, there exists a Transformer TFθ with
(L+1) layers and M heads such that for any input (D,x∗)
such that supw:∥w∥2≤Bw

λmax(∇2L̂(w;B)) ≤ 2/η and
∃w⋆ ∈ argminw∈Rd L̂(w;B) such that ∥w⋆∥2 ≤ Bw/2
for any B ∼ D with a minibatch size of K, TFθ approxi-
mately implements SGD with initialization w

(0)
SGD = 0d:

For every l ∈ {1, . . . , L}, the lth layer’s output
H̃(l) approximates l steps of SGD: we have h

(l)
n =

[xn, yn, tn, 1, u, bn, ŵ
(l),0D−(L+2d+p+2),pn] for each

n ∈ {1, . . . , N}, where

∆(ŵ(l),w
(l)
SGD) ≤ ϵlηBx. (10)

As a result, it approximates the output for a test data point
as

∆(f(x∗,w
(L)
SGD),TFθ(H

(1))) ≤ ϵLηB2
x. (11)

Such a Transformer admits ∥θ∥TF ≤ 2 +R+ 2ηC.

Additionally, we present that Transformers can approximate
some (adaptive) first-order stochastic optimizers, such as
Adam (Kingma & Ba, 2015).

Let a sequence of parameters {w(l)
Adam}l=1,...,L generated

by Adam as follows:

w
(l+1)
Adam = w

(l)
Adam − η

m(l)/(1− βl
1)√

v(l)/(1− βl
2) + ε1

, (12)

m(l) = β1m
(l−1) + (1− β1)g, (13)

v(l) = β2v
(l−1) + (1− β2)g

2, (14)

g =
1

K

∑
(x,y)∈Bl

∇wℓ(w
(l)⊤
Adamx, y), (15)

where η > 0 is a learning rate, β1, β2 ∈ [0, 1) are decay
rates, ε > 0 is a small constant to avoid division by zero,
and m(l),v(l) ∈ Rd are buffers, initialized by zeros.

3
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Theorem 5 (Implementation of Adam). Fix any Bw > 0,
L > 1, η > 0, K > 0, and ϵ ≤ Bw/2L. Given a loss
function and h

(1)
n in Theorem 4. Then, there exists a Trans-

former TFθ with 2L+1 layers with M heads self-attention
blocks and feed-forward blocks with width D′ such that
for any inputs (D,x∗) in Theorem 4, TFθ approximately
implements IC-Adam with initialization ŵ

(0)
Adam = 0d:

For every l ∈ {2, . . . , L}, the 2lth layer’s output
H̃(2l) approximates l steps of IC-Adam: we have h

(2l)
n =

[xn, yn, 1, u, bn, ŵ
(l), β1m̂

(l), β2v̂
(l),0D−(L+4d+p+2),pn]

for every n ∈ {1, . . . , N}, where

∆(ŵ(l),w
(l)
Adam) ≤ ϵlηBx. (16)

The norm of the Transformer admits ∥θ∥TF ≤ max{5 +
R+ 2C + β2 +

2
M2

+ (1− β2)C2,
1

1−max(β1,β2)
+ ηC3}.

Remark 1. By using Theorem 5, we can show that Trans-
formers can implement other optimizers, such as Momen-
tum SGD, Adagrad, and RMSProp.

5. Proof Outline
Proof outline of Theorem 2 We can construct the cumula-
tive distribution function P̂z(t) =

1
N−1

∑N−1
n=1 1z≤t. This

function can be approximated by sum of ReLUs as

P̂z(t) =
1

N − 1

N−1∑
n=1

{σ(a(zn−t)+0.5)+σ(a(z−t)−0.5)},

(17)
where a = 1

4ϵ > 0. This function can be represented by a
self-attention block.

Proof outline of Theorem 3 The mth head of the self-
attention block can contain BAm for m = 1, . . . ,M , out-
putting om = BAms0.

Proof outline of Theorem 4 We use the (ϵ, R,M,C)-
approximability of (s, t) 7→ ∂1ℓ(s, t) at the lth itera-
tion by the sum of ReLUs to approximate ∂1ℓ(w

⊤x, y)

as f(w⊤x, y) =
∑M

m=1 cmσ(amw⊤x + bmy + dm −
R(1 − bn,l)), where R = max(BxBw, By, 1), so that
f(w⊤x, y) = 0 if bn,l = 0.

Proof outline of Theorem 5 We use the (ϵ, R,M,C)-
approximability of (s, t) 7→ ∂1ℓ(s, t) ,s 7→ s2, and (s, t) 7→

s/(1−βl
1)√

t/(1−βl
2)+ε

.

6. Conclusion and Discussion
In this work, we have demonstrated the capabilities of the
in-context learning framework to implement random num-
ber generation and stochastic gradient descent algorithms.
Our findings broaden the applications of in-context learn-
ing, extending its reach to stochastic algorithms, which

possess unique advantages over their non-stochastic coun-
terparts. Notably, stochastic algorithms can solve certain
problems that non-stochastic algorithms cannot address ef-
fectively. For instance, stochastic gradient descent has an
asymptotic global convergence guarantee for sufficiently
regular non-convex objectives (Raginsky et al., 2017), a
property that non-stochastic gradient descent methods lack.
While our work showcases the potential of in-context learn-
ing for stochastic algorithms, exploring its application to
more complex scenarios remains an intriguing avenue for
future research.

Theorem 2 constructs an empirical distribution function
using N − 1 training data points and generates a random
number with a another data point. As a result, if the order
of training data changes, the generated random number also
changes. This aligns with the empirical observation that the
order of prompts alters the performance (Lu et al., 2022).
Further investigating this line is also an interesting direction.
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Proof of Theorem 2. The empirical cumulative distribution function Pz(t) can be defined as Pz(t) =
1
N

∑N
n=1 1xn,0≤t.

This function can be approximated by sum of ReLU functions as

P̂z(t) =
1

N

N∑
n=1

{σ(a(xn,1 − t) + 0.5) + σ(a(xn,1 − t)− 0.5)}, (18)

where a = 1
4ϵ > 0. Equation (18) can be represented by self-attention block with matrices Qm,Km,Vm for m = ±, such

that

Qmhi =


axi,0 ± 0.5

1
−2

0D−3

 , Kmhj =


1

−axj,0

(aBx ± 0.5)tj
0D−3

 , and Vmhj =

 0d+3

(N + 1)/N
0D−(d+4)

 , (19)

For hi = [xi, yi, 1, ti,0,pi], such matrices exist and can be bounded as maxm∥Qm∥ ≤ a + 7
2 , and maxm∥Km∥ ≤

(Bx + 1)a+ 3
2 ,

∑
m∥Vm∥ ≤ 2, and thus ∥θ∥TF ≤ 7

2 +max{ 1
4ϵ + 2, (Bx + 1) 1

4ϵ}. Then,

σ(⟨Qmhi,Kmhj⟩) (20)
= σ(a(xi,1 − xj,1 ± 0.5)− (aBx ± 0.5)tj) (21)

=

{
0 if j ≤ N

σ(a(xi,1 − x∗,1)± 0.5)
. (22)

Consequently, we get

N+1∑
i=1

∑
m=±

σ(⟨Qmhi,Kmhj⟩)Vmhj (23)

=
N + 1

N

N+1∑
i=1

{σ(a(xi,1 − x∗,1) + 0.5) + σ(a(xi,1 − x∗,1)− 0.5)}, (24)

which results in

h̃j = hj +
1

N + 1

N+1∑
i=1

∑
m=±

σ(⟨Qmhi,Kmhj⟩)Vmhj (25)

= [xj , yj , 1, tj , u,0,pj ], (26)

where u = P̂z(t)(x∗,1), which can be regarded as a random variable sampled from U(0, 1).

Proof of Theorem 5. We divide a single update of Adam into the following three steps:

h(2l)
n =



xi

yi
1
u
bn
ŵ(l)

0
m̂(l)

v̂(l)

pn


Step 1−−−→



xi

yi
1
u
bn
ŵ(l)

g
β1m̂

(l)

β2v̂
(l)

pn


Step 2−−−→



xi

yi
1
u
bn
ŵ(l)

0
β1m̂

(l) + (1− β1)g
β2v̂

(l) + (1− β2)g
2

pn


Step 3−−−→



xi

yi
1
u
bn

ŵ(l) − η
m(l+1)/(1−βl

1)√
v(l+1)/(1−βl

2)+ε1

0
m̂(l+1)

v̂(l+1)

pn


= h̃

(2l+1)
i ,

(27)

where g indicates gradient. Step 1 is achieved in a single self-attention block, Step 2 is computed in a single feed-forward
block, and finally, Step 3 is calculated in a feed-forward block. Thus, we need a two-layer Transformer for a single Adam
step. Fix ϵ1, ϵ2, ϵ3 that are determined later.
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330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Step 1 As ∂1ℓ is (ϵ1, R1,M1, C1)-approximable by sum of ReLUs, there exists a function f : [−R1, R1]
2 → R of form

f(s, t) =

M1∑
m=1

cmσ(ams+ bmt+ dm), (28)

with
∑M1

m=1|cm| ≤ C, |am| + |bm| + |dm| ≤ 1(∀m), such that sup(s,t)∈[−R1,R1]2 |f(s, t) −∇1ℓ(s, t)| ≤ ϵ1. Then, there
exist matrices Qm,Km,Vm for m ∈ {1, . . . ,M1} such that

Qmhi =


amw
bm
dm
−2
0

 , Kmhj =


xj

yj
1

R(1− bj,l)
0

 , and Vmhj =
(N + 1)cm

N

 0
xj

0

 , (29)

and QM1+1,KM1+1,VM1+1 such that

QM1+1hi =

[
1
0

]
,KM1+1hj =

[
1
0

]
,VM1+1hj =


0

β1m̂
(l)

β2v̂
(l)

0

 , (30)

These matrices have norm bonds maxm∥Qm∥ ≤ 3,maxm∥Km∥ ≤ 2 + R,
∑

m∥Vm∥ ≤ 2C + (β1 + β2), for m ∈
{1, . . . ,M1}. With these matrices, we get, for m ∈ {1, . . . ,M1},

σ(⟨Qmhi,Kmhj⟩) = σ(amw⊤xj + bmyj + dm)1bj,l=1, (31)

and thus,

1

N + 1

M1+1∑
m=1

σ(⟨Qmhi,Kmhj⟩)Vmhj (32)

=
1

N
f(w⊤xj , yj)1bj,l=1[0,xj ,0] + [0, β1m̂

(l), β2v̂
(l)0] (33)

= [0, g, β1m̂
(l), β2v̂

(l),0]. (34)

Finally, we get

h̄(2l)
n := Attn(h(2l)

n ) (35)

= [xn, yn, 1, u, bn, ŵ
(l), g, β1m̂

(l), β2v̂
(l),pn]. (36)

Step 2. As s 7→ s2 is (ϵ2, R2,M2, C2)-approximable by sum of ReLUs, there exists a function f : [−R2, R2] → R of
form

f(s) =

M2∑
m=1

cmσ(ams+ bm), (37)

with
∑M2

m=1|cm| ≤ C, |am|+ |bm| ≤ 1(∀m) such that
∑

s∈[−R2,R2]
|f(s)− s2| ≤ ϵ2

With matrices W1 ∈ R3dM2×D and W2 ∈ RD×3dM2 , we get W1,mh̄
(2l)
n = [amg + bm1, 1

M2
g,− 1

M2
g] and

W2σ(W1h̄
(2l)
n ) = [0,−g′, (1−β1)g

′, (1−β2)
∑M2

m=1 cmσ(amg+bm1),0], where g′ =
∑M2

m=1
1

M2
{σ(g)−σ(−g)} = g.

These matrices have norm bound of ∥W1∥+ ∥W2∥ ≤ 3 + 2
M2

− β1 + (1− β2)C2. Consequently, we obtain

h̃(2l)
n = MLP(h̄(2l)

n ) (38)

= [xn, yn, 1, u, bn, ŵ
(l), g − g, β1m̂

(l) + (1− β1)g, β2v̂
(l) + (1− β2)f(g),pn], (39)

where ∥f(g)− g2∥ ≤ dϵ3. β1m̂
(l) + (1− β1)g and β2v̂

(l) + (1− β2)g
2 are m(l+1) and v(l+1).
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385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Step 3. As (s, t) 7→ s/(1−β
(l)
1 )√

t/(1−βl
2)+ε

is (ϵ3, R3,M3, C3)-approximable by the sum of ReLUs, there exists a function f as

Equation (28) such that
∑

(s,t)∈[−R3,R3]2
|f(s, t)− s/(1−β

(l+1)
1 )√

t/(1−βl
2)+ε

| ≤ ϵ3. With matrices W1 ∈ RdM3×D and W2 ∈ RD×dM3 ,

we obtain

W1,mh̄(2l+1)
n = [am

m̂(l+1)

1− β
(l+1)
1

+ bm
v̂(l+1)

1− β
(l+1)
2

+ dm1] (40)

and

W2σ(W1h̄
(2l+1)
n ) = [0,−η

M3∑
m=1

cmσ(am
m̂(l+1)

1− β
(l+1)
1

+ bm
v̂(l+1)

1− β
(l+1)
2

+ dm1),0]. (41)

These matrices have norm bound of ∥W1∥+ ∥W2∥ ≤ 1

1−max(β
(l+1)
1 ,β

(l+1)
2 )

+ ηC3.

Finally, we get

h̃(2l+1)
n = MLP(h̄(2l+1)

n ) (42)

= [xn, yn, 1, u, bn, ŵ
(l) − z(l+1),0, m̂(l+1), v̂(l+1),0,pn], (43)

where z(l) = ηf(m̂(l+1), v̂(l+1)) and ∥f(m̂(l+1), v̂(l+1))− m̂(l+1)/(1−β
(l)
1 )√

v̂(l+1)/(1−βl
2)+ε1

∥ ≤ dϵ3.

To sum up, a single Adam step can be approximated with a two-layer Transformer with M1 heads, max(3dM2, dM3)
width MLP, and a norm of ∥θ∥TF ≤ max{5 +R+ 2C + β2 +

2
M2

+ (1− β2)C2,
1

1−max(β1,β2)
+ ηC3}. By appropriately

selecting ϵ1, ϵ2, ϵ3, we have ∥ŵ(l) −w
(l)
Adam∥ ≤ ϵlηBx.
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