Transformers as Stochastic Optimizers

Ryuichiro Hataya¹ Masaaki Imaizumi²¹

Abstract

In-context learning is a crucial framework for understanding the learning processes of foundation models. Transformers are frequently used as a useful architecture within this context. Recent experimental results have demonstrated that Transformers can learn algorithms such as gradient descent based on datasets. However, from a theoretical aspect, while Transformers have been shown to approximate non-stochastic algorithms, it has not been shown for stochastic algorithms such as stochastic gradient descent. This study develops a theory on how Transformers represent stochastic algorithms in in-context learning. Specifically, we show that Transformers can generate truly random numbers by extracting the randomness inherent in the data and pseudo-random numbers by implementing pseudo-random number generators. As a direct application, we demonstrate that Transformers can implement stochastic optimizers, including stochastic gradient descent and Adam, in context.

1. Introduction

Among various strong capabilities of foundation models, their in-context learning ability is powerful and thus actively investigated. Using in-context learning, foundation models, typically large language models, can perform new tasks presented at test time without updating their parameters. Such a learning ability is not only observed empirically [\(Garg](#page-3-0) [et al.,](#page-3-0) [2022;](#page-3-0) [Von Oswald et al.,](#page-4-0) [2023;](#page-4-0) Akyürek et al., [2022\)](#page-3-1) but also analyzed theoretically [\(Li et al.,](#page-3-2) [2023;](#page-3-2) [Xie et al.,](#page-4-1) [2021;](#page-4-1) [Zhang et al.,](#page-4-2) [2023;](#page-4-2) [Bai et al.,](#page-3-3) [2023;](#page-3-3) [Lin et al.,](#page-3-4) [2023;](#page-3-4) [Ahn et al.,](#page-3-5) [2024;](#page-3-5) Raventós et al., [2024\)](#page-4-3), revealing that Transformers can approximate learning algorithms, such as least square [\(Zhang et al.,](#page-4-2) [2023\)](#page-4-2) and gradient descent (Akyürek [et al.,](#page-3-1) [2022\)](#page-3-1). In particular, [\(Bai et al.,](#page-3-3) [2023\)](#page-3-3) showed that a

Transformer layer can approximate a single step of gradient descent of linear models, and thus, Transformers can perform training of linear models. Although these results are powerful, the approximable algorithms are *non-stochastic*.

This paper unveils that Transformers can indeed approximate *stochastic* algorithms by generating random numbers in context. Specifically, we show that Transformers can construct random numbers 1. extracting randomness in randomly sampled input data; and 2. implementing pseudo-random number generators, such as Mersenne Twister. As a direct application, we extend the in-context gradient descent to in-context *stochastic* gradient descent. We further show that Transformers can represent more complex optimizers, such as Adam, which further empowers ICL.

2. Preliminary

Notation

 0_A , 1_A indicate A-dimensional vectors all of whose elements are 0 or 1. The notations for elementwise operators for vectors are often abused for brevity, *e.g*., for a vector √ $a, 1/a, a^a, \sqrt{a}$ denote elementwise division, power by a, and square root, respectively. To measure the distance between the distributions of $x, x' \in \mathbb{R}^p$, we use Kormogorov distance $\Delta(\mathbf{x}, \mathbf{x}') = \sum_{A \subset \mathbb{R}^p} |\Pr(\mathbf{x} \in A) - \Pr(\mathbf{x}' \in A)|,$ where A is taken from all measurable set in the parameter space \mathbb{R}^p .

2.1. Transformer

Define an L-layer Transformer consisting of L Transformer layers as follows. The lth Transformer layer maps an input matrix $\mathbf{H}^{(l)} \in \mathbb{R}^{D \times N}$ to $\tilde{\mathbf{H}}^{(l)} \in \mathbb{R}^{D \times N}$ and is composed of a self-attention block and a feed-forward block. The self-attention block $\text{Attn}^{(l)} : \mathbb{R}^{D \times N} \to \mathbb{R}^{D \times N}$ is parameterized by $D\times D$ matrices $\{(\boldsymbol{K}_m^{(l)},\boldsymbol{Q}_m^{(l)},\boldsymbol{V}_m^{(l)})\}_{m=1}^M,$ where M is the number of heads, and defined as

$$
Attn^{(l)}(\boldsymbol{X}) = \boldsymbol{X} + \frac{1}{N} \sum_{m=1}^{M} \boldsymbol{V}_{m}^{(l)} \boldsymbol{X} \sigma ((\boldsymbol{Q}_{m}^{(l)} \boldsymbol{X})^{\top} \boldsymbol{K}_{m}^{(l)} \boldsymbol{X}).
$$
\n(1)

 σ denotes an activation function applied elementwisely.

The feed-forward block $\text{MLP}^{(l)} : \mathbb{R}^{D \times N} \to \mathbb{R}^{D \times N}$ is a multi-layer perceptron with a skip connection, parameter-

¹RIKEN AIP, Tokyo, Japan ²The University of Tokyo, Tokyo, Japan. Correspondence to: Ryuichiro Hataya <ryuichiro.hataya@riken.jp>.

Proceedings of the 1st Workshop on In-Context Learning at the 41 st *International Conference on Machine Learning*, Vienna, Austria. 2024. Copyright 2024 by the author(s).

ized by $(\pmb{W}_1^{(l)}, \pmb{W}_2^{(l)})\in \mathbb{R}^{D'\times D}\times \mathbb{R}^{D\times D'},$ such that

$$
MLP^{(l)}(\mathbf{X}) = \mathbf{X} + \mathbf{W}_2^{(l)} \varsigma(\mathbf{W}_1^{(l)} \mathbf{X}), \tag{2}
$$

where ς is an activation function applied elementwisely. We let both σ and ς the ReLU function in this paper.

In summary, an L-layer Transformer TF_{θ} , parameterized by $\boldsymbol{\theta}_m^{(l)} := (\boldsymbol{K}_m^{(l)}, \boldsymbol{Q}_m^{(l)}, V_m^{(l)})$ and

$$
\boldsymbol{\theta} = \{(\boldsymbol{\theta}_1^{(l)}, \dots, \boldsymbol{\theta}_M^{(l)}, \boldsymbol{W}_1^{(l)}, \boldsymbol{W}_2^{(l)})\}_{l=1}^L, \tag{3}
$$

is a composition of the abovementioned layers as

$$
TF_{\theta}(X) = MLP^{(L)} \circ \text{Attn}^{(L)} \circ \cdots \circ \text{MLP}^{(1)} \circ \text{Attn}^{(1)}(X). \tag{4}
$$

In the remaining text, the superscript to indicate the number of layer (1) is sometimes omitted for brevity. In some cases, we denote the *n*th columns of $\mathbf{H}^{(l)}$, $\tilde{\mathbf{H}}^{(l)}$ as $\mathbf{h}_n^{(l)}$, $\tilde{\mathbf{h}}_n^{(l)}$. We define the following norm of a Transformer TF_{θ} :

$$
\|\boldsymbol{\theta}\|_{\text{TF}} = \max_{l \in \{1, \ldots, L\}} \left\{ \max_{m \in \{1, \ldots, M\}} \left\{ \|\boldsymbol{Q}_m^{(l)}\|, \|\boldsymbol{K}_m^{(l)}\| \right\} \right\} \tag{5}
$$

$$
+ \sum_{m=1}^M \|\boldsymbol{V}_m^{(l)}\| + \|\boldsymbol{W}_1^{(l)}\| + \|\boldsymbol{W}_2^{(l)}\| \right\}, \tag{6}
$$

where ∥·∥ for matrices indicates the operator norm in this equation.

2.2. In-context Learning

In the in-context learning (ICL), a virtual model is given a dataset $\mathcal{D} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^N \sim (P)^N$ and a test data point \boldsymbol{x}_* from a marginal distribution P_x and then predicts its label y_{*}. The dataset consists of N pairs of inputs $x_i \in \mathbb{R}^d$ and its label $y_i \in \mathbb{R}$ Our goal is to construct a fixed Transformer to perform ICL, by learning an algorithm for the virtual model to predict y_* using $(\mathcal{D}_j, \mathbf{x}_{*j})$ sampled from different distributions P_i from P .

The input dataset and the test data point are encoded into $\mathbf{H}^{(1)} \in \mathbb{R}^{D \times (N+1)}$ as follows:

$$
\boldsymbol{H}^{(1)} = \begin{bmatrix} x_1 & x_2 & \dots & x_N & x_* \\ y_1 & y_2 & \dots & y_N & 0 \\ 1 & 1 & \dots & 1 & 1 \\ t_1 & t_2 & \dots & t_N & t_{N+1} \\ 0_{D-(d+p+2)} & 0_{D-(d+p+2)} & \dots & 0_{D-(d+p+2)} & 0_{D-(d+p+2)} \\ p_1 & p_2 & \dots & p_N & p_{N+1} \end{bmatrix},
$$
(7)

where $t_n = 1$ for $n \leq N$ and $t_{N+1} = 0$ is used to indicate which data points are from $\mathcal{D}.$ $p_n \in \mathbb{R}^p$ encodes the position information. Using these notations, the goal of ICL can be rewritten as predicting y_* by $\tilde{H}_{N+}^{(L)}$ $X_{N+1,1}^{(L)}$, where $\tilde{H}^{(L)}$ = $TF_{\theta}(\mathbf{H}^{(1)})$, by the acquired algorithm.

2.3. In-context Gradient Descent

[Bai et al.](#page-3-3) demonstrated that Transformers could implement *non-stochastic* gradient descent of a linear model for a broad class of convex loss functions in an in-context way. The key ingredient is the following approximability.

Definition 1 ((ε , R, M, C)-approximability by sum of Re-LUs, [\(Bai et al.,](#page-3-3) [2023\)](#page-3-3)). For $\varepsilon > 0$ and $R > 1$, a function q: $\mathbb{R}^k \to \mathbb{R}$ is (ϵ, R, M, C) -approximabile by sum of ReLUs if there exist a function $f(z) = \sum_{m=1}^{M} c_m \sigma(a_m^{\top} z + b_m)$ with $\sum_{m=1}^{M} |c_m| \leq C$, $\max_{m \in \{1, ..., M\}} ||a||_1 + b_m \leq$ 1, where $a_m \in \mathbb{R}^k$, $b_m \in \mathbb{R}$, $c_m \in \mathbb{R}$, such that $\sup_{\boldsymbol{z}\in[-R,R]^k} |g(\boldsymbol{z})-f(\boldsymbol{z})|\leq \varepsilon.$

This notion enables the attention block [\(1\)](#page-0-0) and the MLP block [\(2\)](#page-1-0) to approximate various functions, including loss functions:

Theorem 1 (Theorem 9 of [\(Bai et al.,](#page-3-3) [2023\)](#page-3-3)). *Fix any* $B_w > 0, L > 1, \eta > 0, K > 0, \text{ and } \epsilon \leq B_w/2L.$ *Given a loss function* ℓ *that is convex in the first argument, and* $\nabla_1 \ell$ *is* (ϵ, R, M, C)*-approximable by the sum of ReLUs with* $R = \max(B_w, B_x, B_y, 1)$. Let $h_n^{(1)} =$ $[\boldsymbol{x}_n, y_n, 1, t_n, \boldsymbol{0}_{D-(d+p+3)}, \boldsymbol{p}_n]$ *for* $n = 1, 2, ..., N + 1$ *. Then, there exists an attention-only Transformer* TF_{θ} *with* $(L+1)$ *layers and* M *heads such that for any input* (D, x_*) *such that* $\sup_{\bm{w}:\|\bm{w}\|_2\le B_{w}} \lambda_{\max}(\nabla^2 \tilde{L}(\bm{w}; \mathcal{D})) \le 2/\eta$ and $\exists \boldsymbol{w}^{\star} \in \mathop{\rm argmin}_{\boldsymbol{w} \in \mathbb{R}^d} \hat{L}(\boldsymbol{w}; \mathcal{D})$ *such that* $\|\boldsymbol{w}^{\star}\|_2 \leq B_w/2$, TF^θ *approximately implements IC-GD with initialization* $\mathbf{w}_{\mathrm{GD}}^{(0)} = \mathbf{0}_d$: For every $l \in \{1, \ldots, L\}$, the lth layer's *output* $\tilde{H}^{(l)}$ *approximates l steps of IC-GD: we have* $\bm{h}_n^{(l)} \, = \, \left[\bm{x}_n, y_n, 1, t_n, \hat{\bm{w}}^{(l)}, \bm{0}_{D-(L+2d+p+2)}, \bm{p}_1 \right]$ for each $n \in \{1, \ldots, N\}$, where $\|\hat{\boldsymbol{w}}^{(l)} - \boldsymbol{w}_{\text{GD}}^{(l)}\|_2 \leq \epsilon l \eta B_x$. The *Transformer also admits norm bound* $||\boldsymbol{\theta}||_{\text{TF}} \leq 2 + R +$ 2ηC*.*

3. In-context Random Number Generation

In this section, we show that Transformers can generate random numbers in two ways.

3.1. Generating *Truly* Random Numbers

First, we demonstrate that a single layer Transformer can generate a truly random number on $[0, 1]$ using the stochasticity in data. The key idea is to estimate the density function of data using some training data points and then evaluate it with a held-out data point.

Theorem 2 (Generating a Random Number). *For any* ϵ > 0 *and* $B_x > 0$, there exists a self-attention block Attn θ *with two heads and* $||\boldsymbol{\theta}||_{\text{TF}} \leq \frac{7}{2} + \max\{\frac{1}{4\epsilon} + 2, (B_x + B_y)\}$ $1)$ $\frac{1}{4\epsilon}$ } *such that, for any input* (D, x_*) *,* TF θ *approximately implements the cumulative distribution function* $\hat{P}_z(z)$ *of* $\{z_1, \ldots, z_{N-1}\}\,$, where $z_n = x_{n,1} \sim P_{x,1}$, such that, for

,

 $z_N = \boldsymbol{x}_{N,1}$

$$
\Delta(\hat{P}_z(z_N), u) \le \epsilon + \mathcal{O}(\frac{1}{\sqrt{N}}),\tag{8}
$$

for $u \sim \mathcal{U}(0, 1)$ *.*

3.2. Generating *Pseudo* Random Numbers

Next, we show that Transformers can implement pseudo-random number generators, including Mersenne Twister [\(Matsumoto & Nishimura,](#page-4-4) [1998\)](#page-4-4), which is a popular pseudo-random number generator: for example, Python's random module adopts it^{[1](#page-2-0)}.

Definition 2 (Pseudo Random Number Generator over \mathbb{F}_2). The following linear generator over the finite field of order 2, \mathbb{F}_2 , outputs a pseudo-random number $o_t \in \mathbb{F}_2^w$ given a state $s_t \in \mathbb{F}_2^k$

$$
\begin{aligned} \boldsymbol{s}_t &= \boldsymbol{A}\boldsymbol{s}_{t-1}, \\ \boldsymbol{o}_t &= \boldsymbol{B}\boldsymbol{s}_t, \end{aligned}
$$

where $A \in \mathbb{F}_2^{k \times k}$, and $B \in \mathbb{F}_2^{k \times m}$, for $t \in \mathbb{N}$. s_0 is the seed.

By selecting \vec{A} and \vec{B} appropriately, this generalized generator obtains several pseudo-random number generators, such as Mersenne Twister.

Theorem 3 (Implementing Pseudo-random Number Generator). *For any state* $s_0 \in \mathbb{F}_2^k$, a single self-attention block *with* M heads can generate (o_1, \ldots, o_M) *exactly using the pseudo-random number generators in Definition [2.](#page-2-1)*

We can generate pseudo-random numbers by using a random number generated in Theorem [2](#page-1-1) as an initial seed. This is basically the same as what we do in numerical experiments.

4. In-context *Stochastic* Gradient Descent

In this section, we extend in-context gradient descent in Theorem [1](#page-1-2) to in-context *stochastic* gradient descent. We assume that the following function can be constructed in context.

Assumption 1. *Fix a sequence of (pseudo-)* random numbers (u_1, \ldots, u_K) . There ex*ists a Transformer* TF_{θ} *such that maps input* $\bm{h}_n^{(1)}$ $n = \left[x_n, y_n, 1, t_n, u, \mathbf{0}_n, \mathbf{0}_{D-(d+p+3)}, \mathbf{p}_n \right]$ *to* $\bm{h}_n^{(1)}$ $n = \left[x_n, y_n, 1, t_n, u, \mathbf{b}_n, \mathbf{0}_{D-(d+p+3)}, \mathbf{p}_n \right]$ *for* $n = 1, 2, \ldots, N$, where $\mathbf{b}_n \in \{0, 1\}^L$ determines a *minibatch of size* K *such that* $b_{n,l} = 1$ *indicates that the* n*th data point is in the minibatch at the* l*th iteration.*

Here, the positional information p_n is used to assign b_n to each n.

For the approximation, we define a sequence of parameters $\{w_{\text{SGD}}^{(l)}\}_{l=1,\dots,L}$ generated by stochastic gradient descent:

$$
\boldsymbol{w}_{\text{SGD}}^{(l+1)} = \boldsymbol{w}_{\text{SGD}}^{(l)} - \frac{\eta}{K} \sum_{(\boldsymbol{x},y) \in \mathcal{B}_l} \nabla_{\boldsymbol{w}} \ell(\boldsymbol{w}_{\text{SGD}}^{(l)\top} \boldsymbol{x}, y), \quad (9)
$$

where η is a learning rate, \mathcal{B}_l is a minibatch of size K for the *l*th iteration, and $\ell : \mathbb{R} \times \mathbb{R} \to \mathbb{R}^{\geq 0}$ is a loss function. The trained model is evaluated by $f(x; w) = w^{\top}x$. We suppose that $x_n \leq B_w$, $y \leq B_v$, and $w^{(l)} \leq B_w$, for each n and l .

Theorem 4 (Implementation of In-context *Stochastic* Gradient Descent). *Fix any* $B_w > 0$, $L > 1$, $\eta > 0$, $K > 0$, *and* $\epsilon \leq B_w/2L$ *. Given a loss function* ℓ *that is convex in the first argument, and* $\nabla_1 \ell$ *is* (ϵ, R, M, C)-*approximable by the sum of ReLUs with* $R = \max(B_w, B_w, B_y, 1)$ *.* $\emph{Let }~\bm{h}_{n}^{(1)}=[\bm{x}_{n},y_{n},1,t_{n},u,\bm{b}_{n},\bm{0}_{D-(d+p+3)},\bm{p}_{n}]\emph{ for }n=0$ $1, 2, \ldots, N$. Then, there exists a Transformer TF_{θ} with $(L + 1)$ *layers and* M *heads such that for any input* (D, x_*) *such that* $\sup_{\bm{w}:\|\bm{w}\|_2 \le B_w} \lambda_{\max}(\nabla^2 \hat{L}(\bm{w}; \mathcal{B})) \le 2/\eta$ and $\exists w^* \in \operatorname{argmin}_{w \in \mathbb{R}^d} \hat{L}(w; \mathcal{B})$ *such that* $||w^*||_2 \leq B_w/2$ *for any* $\mathcal{B} \sim \mathcal{D}$ *with a minibatch size of* K, TF $_{\theta}$ *approxi*mately implements SGD with initialization $\bm{w}_{\rm SGD}^{(0)} = \bm{0}_d$:

For every $l \in \{1, \ldots, L\}$ *, the lth layer's output* $\tilde{H}^{(l)}$ approximates l steps of SGD: we have $\mathbf{h}_n^{(l)}$ = $[x_n, y_n, t_n, 1, u, b_n, \hat{w}^{(l)}, \mathbf{0}_{D-(L+2d+p+2)}, p_n]$ *for each* $n \in \{1, \ldots, N\}$ *, where*

$$
\Delta(\hat{\boldsymbol{w}}^{(l)}, \boldsymbol{w}_{\text{SGD}}^{(l)}) \le \epsilon l \eta B_x.
$$
 (10)

As a result, it approximates the output for a test data point as

$$
\Delta(f(\boldsymbol{x}_{*}, \boldsymbol{w}_{\text{SGD}}^{(L)}), \text{TF}_{\boldsymbol{\theta}}(\boldsymbol{H}^{(1)})) \le \epsilon L \eta B_{x}^{2}.
$$
 (11)

Such a Transformer admits $||\boldsymbol{\theta}||_{\text{TF}} \leq 2 + R + 2\eta C$.

Additionally, we present that Transformers can approximate some (adaptive) first-order stochastic optimizers, such as Adam [\(Kingma & Ba,](#page-3-6) [2015\)](#page-3-6).

Let a sequence of parameters $\{\boldsymbol{w}_{\text{Adam}}^{(l)}\}_{l=1,...,L}$ generated by Adam as follows:

$$
\mathbf{w}_{\text{Adam}}^{(l+1)} = \mathbf{w}_{\text{Adam}}^{(l)} - \eta \frac{\mathbf{m}^{(l)}/(1-\beta_1^l)}{\sqrt{\mathbf{v}^{(l)}/(1-\beta_2^l) + \varepsilon \mathbf{1}}},\qquad(12)
$$

$$
\boldsymbol{m}^{(l)} = \beta_1 \boldsymbol{m}^{(l-1)} + (1 - \beta_1) \boldsymbol{g}, \tag{13}
$$

$$
\boldsymbol{v}^{(l)} = \beta_2 \boldsymbol{v}^{(l-1)} + (1 - \beta_2) \boldsymbol{g}^2, \tag{14}
$$

$$
\boldsymbol{g} = \frac{1}{K} \sum_{(\boldsymbol{x}, y) \in \mathcal{B}_l} \nabla_{\boldsymbol{w}} \ell(\boldsymbol{w}_{\text{Adam}}^{(l) \top} \boldsymbol{x}, y), \tag{15}
$$

¹[https://docs.python.org/3/library/random.](https://docs.python.org/3/library/random.html) [html](https://docs.python.org/3/library/random.html)

where $\eta > 0$ is a learning rate, $\beta_1, \beta_2 \in [0, 1)$ are decay rates, $\varepsilon > 0$ is a small constant to avoid division by zero, and $\boldsymbol{m}^{(l)}$, $\boldsymbol{v}^{(l)} \in \mathbb{R}^d$ are buffers, initialized by zeros.

Theorem 5 (Implementation of Adam). *Fix any* $B_w > 0$, $L > 1, \eta > 0, K > 0, \text{ and } \epsilon \leq B_w/2L.$ Given a loss function and $\mathbf{h}_n^{(1)}$ in Theorem [4.](#page-2-2) Then, there exists a Trans*former* TF_{θ} *with* $2L + 1$ *layers with* M *heads self-attention blocks and feed-forward blocks with width* D′ *such that for any inputs* (D, x_*) *in Theorem [4,](#page-2-2)* TF_{θ} *approximately implements IC-Adam with initialization* $\hat{\bm{w}}_{\text{Adam}}^{(0)} = \bm{0}_d$: *For every* $l \in \{2, ..., L\}$, the 2lth layer's output $\tilde{H}^{(2l)}$ approximates l steps of IC-Adam: we have $h_n^{(2l)} =$ $[\bm{x}_n, y_n, 1, u, \bm{b}_n, \hat{\bm{w}}^{(l)}, \beta_1 \hat{\bm{m}}^{(l)}, \beta_2 \hat{\bm{v}}^{(l)}, \bm{0}_{D-(L+4d+p+2)}, \bm{p}_n]$ *for every* $n \in \{1, \ldots, N\}$ *, where*

$$
\Delta(\hat{\boldsymbol{w}}^{(l)}, \boldsymbol{w}_{\text{Adam}}^{(l)}) \le \epsilon l \eta B_x.
$$
 (16)

The norm of the Transformer admits $||\boldsymbol{\theta}||_{\text{TF}} \leq \max\{5 + \epsilon\}$ $R + 2C + \beta_2 + \frac{2}{M_2} + (1 - \beta_2)C_2$, $\frac{1}{1 - \max(\beta_1, \beta_2)} + \eta C_3$. Remark 1. By using Theorem [5,](#page-3-7) we can show that Transformers can implement other optimizers, such as Momentum SGD, Adagrad, and RMSProp.

5. Proof Outline

Proof outline of Theorem [2](#page-1-1) We can construct the cumulative distribution function $\hat{P}_z(t) = \frac{1}{N-1} \sum_{n=1}^{N-1} \mathbb{1}_{z \le t}$. This function can be approximated by the sum of ReLUs as

$$
\hat{P}_z(t) = \frac{1}{N-1} \sum_{n=1}^{N-1} \{ \sigma(a(z_n-t) + 0.5) + \sigma(a(z-t) - 0.5) \},\tag{17}
$$

where $a = \frac{1}{4\epsilon} > 0$. This function can be represented by a self-attention block.

Proof outline of Theorem [3](#page-2-3) The mth head of the selfattention block can contain $\boldsymbol{B} \boldsymbol{A}^m$ for $m = 1, \ldots, M$, outputting $o_m = BA^m s_0$.

Proof outline of Theorem [4](#page-2-2) We use the (ϵ, R, M, C) approximability of $(s, t) \mapsto \partial_1 \ell(s, t)$ at the lth iteration by the sum of ReLUs to approximate $\partial_1 \ell(w^\top x, y)$ as $f(\boldsymbol{w}^\top \boldsymbol{x}, y) = \sum_{m=1}^M c_m \sigma(a_m \boldsymbol{w}^\top \boldsymbol{x} + b_m y + d_m R(1 - b_{n,l})$, where $R = \max(B_x B_w, B_y, 1)$, so that $f(\boldsymbol{w}^\top \boldsymbol{x}, y) = 0$ if $b_{n,l} = 0$.

Proof outline of Theorem [5](#page-3-7) We use the (ϵ, R, M, C) approximability of $(s, t) \mapsto \partial_1 \ell(s, t)$,s $\mapsto s^2$, and $(s, t) \mapsto$ $\frac{s/(1-\beta_1^l)}{\sqrt{(1-\beta_1^l)}$. $t/(1-\beta_2^l)+\varepsilon$

6. Conclusion and Discussion

In this work, we have demonstrated the capabilities of the in-context learning framework to implement random number generation and stochastic gradient descent algorithms. Our findings broaden the applications of in-context learning, extending its reach to stochastic algorithms, which possess unique advantages over their non-stochastic counterparts. Notably, stochastic algorithms can solve certain problems that non-stochastic algorithms cannot address effectively. For instance, stochastic gradient descent has an asymptotic global convergence guarantee for sufficiently regular non-convex objectives [\(Raginsky et al.,](#page-4-5) [2017\)](#page-4-5), a property that non-stochastic gradient descent methods lack. While our work showcases the potential of in-context learning for stochastic algorithms, exploring its application to more complex scenarios remains an intriguing avenue for future research.

Theorem [2](#page-1-1) constructs an empirical distribution function using $N - 1$ training data points and generates a random number with another data point. As a result, if the order of training data changes, the generated random number also changes. This aligns with the empirical observation that the order of prompts alters the performance [\(Lu et al.,](#page-4-6) [2022\)](#page-4-6). Further investigation of this line is also an interesting direction.

References

- Ahn, K., Cheng, X., Daneshmand, H., and Sra, S. Transformers learn to implement preconditioned gradient descent for in-context learning. *Advances in Neural Information Processing Systems*, 36, 2024.
- Akyurek, E., Schuurmans, D., Andreas, J., Ma, T., and ¨ Zhou, D. What learning algorithm is in-context learning? investigations with linear models. *arXiv preprint arXiv:2211.15661*, 2022.
- Bai, Y., Chen, F., Wang, H., Xiong, C., and Mei, S. Transformers as statisticians: Provable in-context learning with in-context algorithm selection. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL [https://openreview.net/forum?](https://openreview.net/forum?id=liMSqUuVg9) [id=liMSqUuVg9](https://openreview.net/forum?id=liMSqUuVg9).
- Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. What can transformers learn in-context? a case study of simple function classes. *Advances in Neural Information Processing Systems*, 35:30583–30598, 2022.
- Kingma, D. P. and Ba, J. L. Adam: a Method for Stochastic Optimization. In *ICLR*, 2015.
- Li, Y., Ildiz, M. E., Papailiopoulos, D., and Oymak, S. Transformers as algorithms: Generalization and implicit model selection in in-context learning. *arXiv preprint arXiv:2301.07067*, 2023.
- Lin, L., Bai, Y., and Mei, S. Transformers as decision makers: Provable in-context reinforcement learning via

supervised pretraining. In *NeurIPS 2023 Foundation Models for Decision Making Workshop*, 2023.

- Lu, Y., Bartolo, M., Moore, A., Riedel, S., and Stenetorp, P. Fantastically ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity. In Muresan, S., Nakov, P., and Villavicencio, A. (eds.), *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 8086–8098, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.556. URL [https:](https://aclanthology.org/2022.acl-long.556) [//aclanthology.org/2022.acl-long.556](https://aclanthology.org/2022.acl-long.556).
- Matsumoto, M. and Nishimura, T. Mersenne twister: a 623 dimensionally equidistributed uniform pseudo-random number generator. *ACM Transactions on Modeling and Computer Simulation (TOMACS)*, 8(1):3–30, 1998.
- Raginsky, M., Rakhlin, A., and Telgarsky, M. Non-convex learning via stochastic gradient langevin dynamics: a nonasymptotic analysis. In Kale, S. and Shamir, O. (eds.), *Proceedings of the 2017 Conference on Learning Theory*, volume 65 of *Proceedings of Machine Learning Research*, pp. 1674–1703. PMLR, 07–10 Jul 2017. URL [https://proceedings.mlr.press/v65/](https://proceedings.mlr.press/v65/raginsky17a.html) [raginsky17a.html](https://proceedings.mlr.press/v65/raginsky17a.html).
- Raventós, A., Paul, M., Chen, F., and Ganguli, S. Pretraining task diversity and the emergence of non-bayesian in-context learning for regression. *Advances in Neural Information Processing Systems*, 36, 2024.
- Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento, J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov, M. Transformers learn in-context by gradient descent. In *International Conference on Machine Learning*, pp. 35151–35174. PMLR, 2023.
- Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An explanation of in-context learning as implicit bayesian inference. In *International Conference on Learning Representations*, 2021.
- Zhang, R., Frei, S., and Bartlett, P. Trained transformers learn linear models in-context. In *R0-FoMo: Robustness of Few-shot and Zero-shot Learning in Large Foundation Models*, 2023.

Proof of Theorem [2.](#page-1-1) The empirical cumulative distribution function $P_z(t)$ can be defined as $P_z(t) = \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}_{x_{n,0} \le t}$. This function can be approximated by sum of ReLU functions as

$$
\hat{P}_z(t) = \frac{1}{N} \sum_{n=1}^{N} \{ \sigma(a(\boldsymbol{x}_{n,1} - t) + 0.5) + \sigma(a(\boldsymbol{x}_{n,1} - t) - 0.5) \},
$$
\n(18)

where $a = \frac{1}{4\epsilon} > 0$. Equation [\(18\)](#page-5-0) can be represented by self-attention block with matrices Q_m, K_m, V_m for $m = \pm$, such that

$$
Q_m \mathbf{h}_i = \begin{bmatrix} a\mathbf{x}_{i,0} \pm 0.5 \\ 1 \\ -2 \\ \mathbf{0}_{D-3} \end{bmatrix}, \quad \mathbf{K}_m \mathbf{h}_j = \begin{bmatrix} 1 \\ -a\mathbf{x}_{j,0} \\ (aB_x \pm 0.5)t_j \\ \mathbf{0}_{D-3} \end{bmatrix}, \quad \text{and } \mathbf{V}_m \mathbf{h}_j = \begin{bmatrix} \mathbf{0}_{d+3} \\ (N+1)/N \\ \mathbf{0}_{D-(d+4)} \end{bmatrix}, \quad (19)
$$

For $h_i = [x_{i}, y_i, 1, t_i, 0, p_i]$, such matrices exist and can be bounded as $\max_m ||Q_m|| \le a + \frac{7}{2}$, and $\max_m ||K_m|| \le$ $(B_x + 1)a + \frac{3}{2}$, $\sum_m ||V_m|| \leq 2$, and thus $||\theta||_{\text{TF}} \leq \frac{7}{2} + \max\{\frac{1}{4\epsilon} + 2, (B_x + 1)\frac{1}{4\epsilon}\}\.$ Then,

$$
\sigma(\langle \boldsymbol{Q}_m \boldsymbol{h}_i, \boldsymbol{K}_m \boldsymbol{h}_j \rangle) \tag{20}
$$

$$
= \sigma(a(\mathbf{x}_{i,1} - \mathbf{x}_{j,1} \pm 0.5) - (aB_x \pm 0.5)t_j)
$$
\n(21)

$$
= \begin{cases} 0 & \text{if } j \le N \\ \sigma(a(\mathbf{x}_{i,1} - \mathbf{x}_{*,1}) \pm 0.5) \end{cases}
$$
 (22)

Consequently, we get

$$
\sum_{i=1}^{N+1} \sum_{m=\pm} \sigma(\langle \boldsymbol{Q}_m \boldsymbol{h}_i, \boldsymbol{K}_m \boldsymbol{h}_j \rangle) \boldsymbol{V}_m \boldsymbol{h}_j
$$
\n(23)

$$
=\frac{N+1}{N}\sum_{i=1}^{N+1}\{\sigma(a(\boldsymbol{x}_{i,1}-\boldsymbol{x}_{*,1})+0.5)+\sigma(a(\boldsymbol{x}_{i,1}-\boldsymbol{x}_{*,1})-0.5)\},\tag{24}
$$

which results in

$$
\tilde{\boldsymbol{h}}_j = \boldsymbol{h}_j + \frac{1}{N+1} \sum_{i=1}^{N+1} \sum_{m=\pm} \sigma(\langle \boldsymbol{Q}_m \boldsymbol{h}_i, \boldsymbol{K}_m \boldsymbol{h}_j \rangle) \boldsymbol{V}_m \boldsymbol{h}_j
$$
(25)

$$
=[\boldsymbol{x}_j, y_j, 1, t_j, u, \mathbf{0}, \boldsymbol{p}_j], \tag{26}
$$

 \Box

where $u = \hat{P}_z(t)(x_{*,1})$, which can be regarded as a random variable sampled from $\mathcal{U}(0, 1)$.

Proof of Theorem [5.](#page-3-7) We divide a single update of Adam into the following three steps:

$$
\boldsymbol{h}_n^{(2l)} = \begin{bmatrix} \boldsymbol{x}_i \\ y_i \\ 1 \\ \boldsymbol{u} \\ \boldsymbol{v}_n^{(l)} \\ \boldsymbol{v}_n^{(l)} \\ \boldsymbol{p}_n \end{bmatrix} \xrightarrow{\text{Step 1}} \begin{bmatrix} \boldsymbol{x}_i \\ y_i \\ 1 \\ \boldsymbol{u} \\ \boldsymbol{v}_n^{(l)} \\ \boldsymbol{p}_n^{(l)} \\ \boldsymbol{p}_n \end{bmatrix} \xrightarrow{\text{Step 2}} \begin{bmatrix} \boldsymbol{x}_i \\ y_i \\ 1 \\ \boldsymbol{u} \\ \boldsymbol{v}_n^{(l)} \\ \boldsymbol{v}_n^{(l)} \\ \boldsymbol{p}_n^{(l)} \\ \boldsymbol{p}_n^{(l)} \end{bmatrix} \xrightarrow{\text{Step 2}} \begin{bmatrix} \boldsymbol{x}_i \\ y_i \\ 1 \\ \boldsymbol{u} \\ \boldsymbol{v}_n^{(l)} \\ \boldsymbol{v}_n^{(l)} \\ \boldsymbol{v}_n^{(l)} \\ \boldsymbol{p}_n^{(l)} \end{bmatrix} \xrightarrow{\text{Step 3}} \begin{bmatrix} \boldsymbol{x}_i \\ y_i \\ 1 \\ \boldsymbol{v}_n^{(l)} \\ \boldsymbol{v}_n^{(l)} \\ \boldsymbol{v}_n^{(l)} \\ \boldsymbol{v}_n^{(l)} \\ \boldsymbol{p}_n^{(l)} \end{bmatrix} \xrightarrow{\text{Step 3}} \begin{bmatrix} \boldsymbol{x}_i \\ y_i \\ 1 \\ \boldsymbol{v}_n^{(l)} \\ \boldsymbol{v}_n^{(l)} \\ \boldsymbol{v}_n^{(l+1)} \end{bmatrix} = \tilde{\boldsymbol{h}}_i^{(2l+1)},
$$
\n
$$
\boldsymbol{v}_i^{(2l+1)} = \begin{bmatrix} \boldsymbol{x}_i \\ \boldsymbol{v}_i^{(2l+1)} \\ \boldsymbol{v}_i^{(2l+1)} \\ \boldsymbol{v}_n^{(l+1)} \\ \boldsymbol{v}_n^{(l+1)} \end{bmatrix} \xrightarrow{\text{Step 3}} \begin{bmatrix} \boldsymbol{x}_i \\ \boldsymbol{v}_i^{(l)} \\ \boldsymbol{v}_i^{(l)} \\ \boldsymbol{v}_i^{(l+1)} \\ \boldsymbol{v}_n^{(l+1)} \end{bmatrix} = \tilde{\boldsymbol{h}}_i^{(2l+1)},
$$
\n
$$
\boldsymbol{v}_i^{(2l+1)} = \begin{bmatrix} \boldsymbol{x}_i \\ \boldsymbol{v}_i^{(l)} \\
$$

where g indicates gradient. Step 1 is achieved in a single self-attention block, Step 2 is computed in a single feed-forward block, and finally, Step 3 is calculated in a feed-forward block. Thus, we need a two-layer Transformer for a single Adam step. Fix $\epsilon_1, \epsilon_2, \epsilon_3$ that are determined later.

Step 1 As $\partial_1 \ell$ is $(\epsilon_1, R_1, M_1, C_1)$ -approximable by sum of ReLUs, there exists a function $f : [-R_1, R_1]^2 \to \mathbb{R}$ of form

$$
f(s,t) = \sum_{m=1}^{M_1} c_m \sigma(a_m s + b_m t + d_m),
$$
\n(28)

with $\sum_{m=1}^{M_1} |c_m| \leq C, |a_m| + |b_m| + |d_m| \leq \frac{1}{\forall m}$, such that $\sup_{(s,t) \in [-R_1,R_1]^2} |f(s,t) - \nabla_1 \ell(s,t)| \leq \epsilon_1$. Then, there exist matrices \mathbf{Q}_m , \mathbf{K}_m , \mathbf{V}_m for $m \in \{1, \dots, M_1\}$ such that

$$
\boldsymbol{Q}_{m}\boldsymbol{h}_{i} = \begin{bmatrix} a_{m}\boldsymbol{w} \\ b_{m} \\ d_{m} \\ -2 \\ \boldsymbol{0} \end{bmatrix}, \quad \boldsymbol{K}_{m}\boldsymbol{h}_{j} = \begin{bmatrix} x_{j} \\ y_{j} \\ 1 \\ R(1 - b_{j,l}) \\ \boldsymbol{0} \end{bmatrix}, \text{and } \boldsymbol{V}_{m}\boldsymbol{h}_{j} = \frac{(N+1)c_{m}}{N} \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{x}_{j} \\ \boldsymbol{0} \end{bmatrix}, \tag{29}
$$

and $Q_{M_1+1}, K_{M_1+1}, V_{M_1+1}$ such that

$$
\boldsymbol{Q}_{M_1+1}\boldsymbol{h}_i=\begin{bmatrix}1\\ \mathbf{0}\end{bmatrix}, \boldsymbol{K}_{M_1+1}\boldsymbol{h}_j=\begin{bmatrix}1\\ \mathbf{0}\end{bmatrix}, \boldsymbol{V}_{M_1+1}\boldsymbol{h}_j=\begin{bmatrix}\mathbf{0}\\ \beta_1\hat{\boldsymbol{m}}^{(l)}\\ \beta_2\hat{\boldsymbol{v}}^{(l)}\\ \mathbf{0}\end{bmatrix},
$$
\n(30)

These matrices have norm bonds $\max_m ||Q_m|| \leq 3$, $\max_m ||K_m|| \leq 2 + R$, $\sum_m ||V_m|| \leq 2C + (\beta_1 + \beta_2)$, for $m \in$ $\{1, \ldots, M_1\}$. With these matrices, we get, for $m \in \{1, \ldots, M_1\}$,

$$
\sigma(\langle \mathbf{Q}_m \mathbf{h}_i, \mathbf{K}_m \mathbf{h}_j \rangle) = \sigma(a_m \mathbf{w}^\top \mathbf{x}_j + b_m y_j + d_m) \mathbb{1}_{\mathbf{b}_{j,l} = 1},\tag{31}
$$

and thus,

$$
\frac{1}{N+1}\sum_{m=1}^{M_1+1}\sigma(\langle \boldsymbol{Q}_m\boldsymbol{h}_i, \boldsymbol{K}_m\boldsymbol{h}_j \rangle) \boldsymbol{V}_m \boldsymbol{h}_j
$$
\n(32)

$$
= \frac{1}{N} f(\boldsymbol{w}^{\top} \boldsymbol{x}_{j}, y_{j}) \mathbb{1}_{\boldsymbol{b}_{j,l}=1} [\boldsymbol{0}, \boldsymbol{x}_{j}, \boldsymbol{0}] + [\boldsymbol{0}, \beta_{1} \hat{\boldsymbol{m}}^{(l)}, \beta_{2} \hat{\boldsymbol{v}}^{(l)} \boldsymbol{0}]
$$
\n(33)

$$
= [\mathbf{0}, \mathbf{g}, \beta_1 \hat{\mathbf{m}}^{(l)}, \beta_2 \hat{\mathbf{v}}^{(l)}, \mathbf{0}]. \tag{34}
$$

Finally, we get

$$
\bar{h}_n^{(2l)} \coloneqq \text{Attn}(h_n^{(2l)}) \tag{35}
$$

$$
= [\boldsymbol{x}_n, y_n, 1, u, \boldsymbol{b}_n, \hat{\boldsymbol{w}}^{(l)}, \boldsymbol{g}, \beta_1 \hat{\boldsymbol{m}}^{(l)}, \beta_2 \hat{\boldsymbol{v}}^{(l)}, \boldsymbol{p}_n].
$$
\n(36)

Step 2. As $s \mapsto s^2$ is $(\epsilon_2, R_2, M_2, C_2)$ -approximable by sum of ReLUs, there exists a function $f : [-R_2, R_2] \to \mathbb{R}$ of form

$$
f(s) = \sum_{m=1}^{M_2} c_m \sigma(a_m s + b_m),
$$
\n(37)

with $\sum_{m=1}^{M_2} |c_m| \leq C, |a_m| + |b_m| \leq 1(\forall m)$ such that $\sum_{s \in [-R_2, R_2]} |f(s) - s^2| \leq \epsilon_2$

With matrices $W_1 \in \mathbb{R}^{3dM_2 \times D}$ and $W_2 \in \mathbb{R}^{D \times 3dM_2}$, we get $W_{1,m} \bar{h}_n^{(2l)} = [a_m g + b_m 1, \frac{1}{M_2} g, -\frac{1}{M_2} g]$ and $\bm{W}_2\sigma(\bm{W}_1\bar{\bm{h}}_n^{(2l)})=[\bm{0}, -\bm{g}', (1-\beta_1)\bm{g}', (1-\beta_2)\sum_{m=1}^{M_2}c_m\sigma(a_m\bm{g}+b_m\bm{1}),\bm{0}],$ where $\bm{g}'=\sum_{m=1}^{M_2}\frac{1}{M_2}\{\sigma(\bm{g})-\sigma(-\bm{g})\}=\bm{g}.$ These matrices have norm bound of $||W_1|| + ||W_2|| \leq 3 + \frac{2}{M_2} - \beta_1 + (1 - \beta_2)C_2$. Consequently, we obtain

$$
\tilde{\mathbf{h}}_n^{(2l)} = \text{MLP}(\bar{\mathbf{h}}_n^{(2l)})
$$
\n(38)

$$
= [\mathbf{x}_n, y_n, 1, u, \mathbf{b}_n, \hat{\mathbf{w}}^{(l)}, \mathbf{g} - \mathbf{g}, \beta_1 \hat{\mathbf{m}}^{(l)} + (1 - \beta_1) \mathbf{g}, \beta_2 \hat{\mathbf{v}}^{(l)} + (1 - \beta_2) f(\mathbf{g}), \mathbf{p}_n],
$$
\n(39)

where $|| f(g) - g^2 || \leq d\epsilon_3$. $\beta_1 \hat{m}^{(l)} + (1 - \beta_1)g$ and $\beta_2 \hat{v}^{(l)} + (1 - \beta_2)g^2$ are $m^{(l+1)}$ and $v^{(l+1)}$.

Step 3. As $(s, t) \mapsto \frac{s/(1-\beta_1^{(l)})}{\sqrt{t/(1-\beta_2^l)+\varepsilon}}$ is $(\epsilon_3, R_3, M_3, C_3)$ -approximable by the sum of ReLUs, there exists a function f as Equation [\(28\)](#page-6-0) such that $\sum_{(s,t)\in[-R_3,R_3]^2}|f(s,t)-\frac{s/(1-\beta_1^{(l+1)})}{\sqrt{t/(1-\beta_2^l)+\varepsilon}}|\leq \epsilon_3$. With matrices $W_1\in\mathbb{R}^{dM_3\times D}$ and $W_2\in\mathbb{R}^{D\times dM_3}$, we obtain

$$
\mathbf{W}_{1,m}\bar{\mathbf{h}}_n^{(2l+1)} = [a_m \frac{\hat{\mathbf{m}}^{(l+1)}}{1 - \beta_1^{(l+1)}} + b_m \frac{\hat{\mathbf{v}}^{(l+1)}}{1 - \beta_2^{(l+1)}} + d_m \mathbf{1}]
$$
(40)

and

$$
\mathbf{W}_2 \sigma(\mathbf{W}_1 \bar{\mathbf{h}}_n^{(2l+1)}) = [\mathbf{0}, -\eta \sum_{m=1}^{M_3} c_m \sigma(a_m \frac{\hat{\mathbf{m}}^{(l+1)}}{1 - \beta_1^{(l+1)}} + b_m \frac{\hat{\mathbf{v}}^{(l+1)}}{1 - \beta_2^{(l+1)}} + d_m \mathbf{1}), \mathbf{0}].
$$
\n(41)

These matrices have norm bound of $||W_1|| + ||W_2|| \le \frac{1}{1 - \max(\beta_1^{(l+1)}, \beta_2^{(l+1)})} + \eta C_3$.

Finally, we get

$$
\tilde{\boldsymbol{h}}_{n}^{(2l+1)} = \text{MLP}(\bar{\boldsymbol{h}}_{n}^{(2l+1)})
$$
\n
$$
= [\boldsymbol{x}_{n}, y_{n}, 1, u, \boldsymbol{b}_{n}, \hat{\boldsymbol{w}}^{(l)} - \boldsymbol{z}^{(l+1)}, \boldsymbol{0}, \hat{\boldsymbol{m}}^{(l+1)}, \hat{\boldsymbol{v}}^{(l+1)}, \boldsymbol{0}, \boldsymbol{p}_{n}],
$$
\n(42)

where
$$
\mathbf{z}^{(l)} = \eta f(\hat{\mathbf{m}}^{(l+1)}, \hat{\mathbf{v}}^{(l+1)})
$$
 and $||f(\hat{\mathbf{m}}^{(l+1)}, \hat{\mathbf{v}}^{(l+1)}) - \frac{\hat{\mathbf{m}}^{(l+1)}/(1-\beta_1^{(l)})}{\sqrt{\hat{\mathbf{v}}^{(l+1)}/(1-\beta_2^{l})+\varepsilon_1}}|| \leq d\epsilon_3$.

To sum up, a single Adam step can be approximated with a two-layer Transformer with M_1 heads, $\max(3dM_2, dM_3)$ width MLP, and a norm of $||\boldsymbol{\theta}||_{\text{TF}} \leq \max\{5 + R + 2C + \beta_2 + \frac{2}{M_2} + (1 - \beta_2)C_2, \frac{1}{1 - \max(\beta_1, \beta_2)} + \eta C_3\}$. By appropriately selecting $\epsilon_1, \epsilon_2, \epsilon_3$, we have $\|\hat{\bm{w}}^{(l)} - \bm{w}_{\text{Adam}}^{(l)}\| \le \epsilon l \eta B_x$. \Box