
Published in Transactions on Machine Learning Research (10/2022)

On Noise Abduction for Answering Counterfactual Queries:
A Practical Outlook

Saptarshi Saha∗ saptarshi.saha_r@isical.ac.in
Computer Vision and Pattern Recognition Unit
Indian Statistical Institute, Kolkata

Utpal Garain utpal@isical.ac.in
Computer Vision and Pattern Recognition Unit
Indian Statistical Institute, Kolkata

Reviewed on OpenReview: https: // openreview. net/ forum? id= 4FU8Jz1Oyj& referrer= %5BTMLR% 5D

Abstract

A crucial step in counterfactual inference is abduction - inference of the exogenous noise
variables. Deep Learning approaches model an exogenous noise variable as a latent variable.
Our ability to infer a latent variable comes at a computational cost as well as a statistical
cost. In this paper, we show that it may not be necessary to abduct all the noise variables
in a structural causal model (SCM) to answer a counterfactual query. In a fully specified
causal model with no unobserved confounding, we also identify exogenous noises that must
be abducted for a counterfactual query. We introduce a graphical condition for noise identi-
fication from an action consisting of an arbitrary combination of hard and soft interventions.
We report experimental results on both synthetic and real-world German Credit Dataset,
showcasing the promise and usefulness of the proposed exogenous noise identification.

1 Introduction

“What if?” questions are frequent in the decision-making system in almost all realms of knowledge. These
questions evoke hypothetical conditions, usually contradicting factual evidence. For example, when a patient
dies in the hospital, a natural question is: What would have happened if the clinicians acted differently? An-
other example is that had the candidate been male instead of female, would the decision from the admissions
committee be more favorable? By and large, counterfactuals are key ingredients that go into explaining why
things happened as they did. It is not possible to answer those questions using statistical tools only, but the
method of counterfactual inference of hypothetical scenarios can prove helpful in those cases (Pearl, 2016).

Counterfactual techniques have been proposed into deep learning only in recent times (Schölkopf, 2019).
For instance, there are inquisition in fairness (Kusner et al., 2017), recourse (Karimi et al., 2021), harm
(Richens et al., 2022), mitigating bias in image classifiers (Dash et al., 2022), mitigating language bias in
VQA (Niu et al., 2021), Zero-Shot Learning and Open-Set Recognition (Yue et al., 2021), mental health care
(Marchezini et al., 2022).

The structural causal model (SCM) is the standard framework for computing the answers to the counter-
factual queries. An SCM takes two sets of variables - exogenous and endogenous, and a set of structural
assignments into account that assigns each endogenous variable a value according to the values of some
other variables in the model. The exogenous variables are external to the model. We chose not to eluci-
date how they are caused. Each endogenous variable is a descendant of an exogenous variable. One can
use the structural assignments to accurately compute the value of endogenous variables from the values of
the exogenous variables. The SCM paradigm provides a three-step procedure for answering counterfactual

∗first author

1

https://openreview.net/forum?id=4FU8Jz1Oyj&referrer=%5BTMLR%5D

Published in Transactions on Machine Learning Research (10/2022)

questions: Abduction, Action, and Prediction. Abduction is the tractable inference of the exogenous noise
variables. Action is to perform interventions. Prediction is to compute the quantities of interest. Deep
Learning approaches founded on these three steps have been recently introduced for generating counterfac-
tuals. For instance, Pawlowski et al. (2020) employ normalizing flows and variational inference for enabling
tractable counterfactual inference, Sanchez & Tsaftaris (2022) use diffusion models for counterfactual esti-
mation, Axel Sauer (2021) proposes counterfactual generative networks, Dash et al. (2022) incorporates a
structural causal model (SCM) in a variant of Adversarially Learned Inference for generating counterfactual
images. Normalizing flow-based methods for answering counterfactual queries has received a lot of attention
in no time. For example, Pawlowski et al. (2020)’s work on healthy magnetic resonance images of the brain
has been extended to account for the clinical and radiological phenotype of multiple sclerosis (MS) by Rein-
hold et al. (2021). Wang et al. (2021) perform counterfactual inference to achieve harmonization of brain
imaging data with different protocols and from different sites in a clinical study.

From a deep learning perspective, an exogenous variable might be considered as an inferred latent variable. To
infer the state of the latent noise attached to an endogenous variable, we typically model a normalizing flow,
perform amortized variational inference (in the case of very high dimensional variables) (Pawlowski et al.,
2020) or use deterministic forward diffusion(Sanchez & Tsaftaris, 2022). Our ability to infer a latent variable
comes at a computational cost as well as a statistical cost. To illustrate, the framework for counterfactual
estimation by inferring exogenous noises via normalising flows parameterizes each structural assignment of
an SCM as an invertible mechanism. Each mechanism explicitly calculates its inverse to enable efficient
abduction of exogenous noises. These invertible architectures are typically computationally heavy. For a
description of normalizing flows, see Appendix A and Papamakarios et al. (2019).

However, given an SCM, in practice, we are interested in counterfactual queries involving a few variables
(not all)! For example, Reinhold et al. (2021) studied what the brain image of the subject would look like
if the subject did not have lesions, given the observation that they have a 60 mL lesion load. While the
proposed SCM consists of age, lesion volume of the subject, duration of MS symptoms, slice number, brain
volume, biological sex, image, ventricle volume, and the expanded disability severity score. Hence, it is quite
natural to ask for noise variables that we can get rid of from abducting. While Pawlowski et al. (2020)
have mentioned (on a footnote) in the case of brain imaging example that abduction of the noise attached
to ‘sex’ is not necessary as ‘sex’ has no causal parents in the SCM1 (Figure 5, Pawlowski et al. (2020)), we
are unaware of any dedicated effort to identify the noises that must be abducted to answer a counterfactual
query.

In this context, our work shows that it may not be necessary to infer all the noise variables in the SCM and
identifies exogenous noise variables that we must infer to answer a counterfactual query in a fully specified
causal model with no unobserved confounding. We also introduce a graphical condition for noise identification
from an action consisting of an arbitrary combination of hard, soft, and semi-soft (semi-hard) interventions.
We report experimental results on both synthetic and real-world German Credit Dataset, showcasing the
promise and usefulness of the proposed exogenous noise identification. The code for reproducing the results
is available at https://github.com/Saptarshi-Saha-1996/Noise-Abduction-for-Counterfactuals.

2 Preliminaries

2.1 Background on structural causal models

A structural causal model(SCM) is defined as a tuple C := (S,P(ϵ)), where S = (f1, f2, ..., fp) is a collection
of p deterministic structural assignments,

Xj := fj(Paj , ϵj), j = 1, 2, .., p, (1)

where Paj ⊆ {X1, ..., Xp} \ {Xj} is the set of parents of Xj (its direct causes) and P(ϵ) =
∏p

i=1 P(ϵi) is
the joint distribution over mutually independent exogenous noise variables. The graph of a structural causal
model G is obtained simply by drawing directed edges pointing from causes to effects. As assignments

1This need not be the case always. For instance, example 1(d).

2

https://github.com/Saptarshi-Saha-1996/Noise-Abduction-for-Counterfactuals

Published in Transactions on Machine Learning Research (10/2022)

are assumed acyclic, the directed graph G induced by the SCM C is also acyclic. Every SCM C entails
a unique joint distribution PC

X over the variables X = (X1, ..., Xp). The graph structure, along with the
joint independence of the exogenous noises factorizes the entailed distribution PC

X canonically into causal
conditionals,

PC
X(X = x) := PG(x) =

p∏
j=1

P(xj |paG
j). (2)

It is referred as causal (or disentangled or Markov) factorization. This allows to use G for predicting the
effects of interventions, defined as substituting one or multiple of its structural assignments, written as
‘do(· · ·)’. An intervention on a set of variables {Xt : t ∈ I} is defined as substituting the respective structural
assignments by

Xt := f̃t(P̃at, ϵ̃t), t ∈ I.

The entailed distribution in the new SCM C̃ is called as intervention distribution, denoted by P C̃
X. The

set of exogenous variables {ϵt : t /∈ I} ∪ {ϵ̃t : t ∈ I} in C̃ are required to be mutually independent. An
intervention, where the structural assignment for a variable is modified by changing the function or the
noise term, resulting in a change in the conditional distribution given its parents, is called soft/imperfect
intervention. It is written as do(Xt := f̃t(P̃at, ϵ̃t)) (Peters et al., 2017). As the new SCM C̃ should have an
acyclic graph, the set of allowed interventions thus depends on the graph G, induced by C. In this paper, we
mainly focus on interventions with P̃at equals Pat or empty (that will be clear from the context). We use
P̃at for a different purpose described in section 3. Independent Causal Mechanisms (ICM) Principle (Peters
et al. (2017)) says that performing an intervention upon one mechanism P(Xi|Pai) does not change any of
the other mechanisms P(Xj |Paj)(i ̸= j). As a consequence, we get

P C̃
X(X = x) := PG̃(x) =

∏
j /∈I

PG(xj |paG
j)

∏
j∈I

PG̃(xj |p̃aG̃
j). (3)

When f̃(Pat, ϵ̃t) puts a point mass on a real value a, i.e., PG̃(xt|pat) = 1xt=a, we simply written it as
do(Xt = a) and call this an atomic/hard/perfect intervention. In particular, such constant reassignment
disconnects Xt from all its parents and imparts a direct manipulation disregarding its natural causes.

2.2 Counterfactuals

Given an observed outcome, counterfactuals are hypothetical retrospective interventions (cf. potential out-
come): ‘Given that we observed (Xi, Xj) = (xobs

i , xobs
j), what would Xi have been if Xj were x′j? By

assumption, the state of any observable variable is fully determined by the exogenous noises and structural
assignments/equations. The unit-level counterfactual is defined as the solution for Xi for a given situation
ϵ = ϵ, where the equation for Xj is replaced with Xj = x′j . We denote it by XiXj←x′

j
(ϵ) (Read: “The

value of Xi in situation ϵ, had Xj been x′j”). We might be able to answer unit-level (or individual-level)
counterfactual queries if we know the specific functional form of these structural equations. Mathematically,
counterfactual inference can be formulated as three-step algorithm (Pearl (2009)):

1. Abduction: Predict the exogenous noise ϵ from the observations xobs, i.e., infer P(ϵ|X = xobs).

2. Action: Perform interventions (e.g. do(Xj = x′j)) corresponding to the desired manipulations,
resulting in a modified SCM C̃ := C|X=xobs;do(Xj=x′

j
) = (S̃,P(ϵ|X = xobs)), where S̃ is the collection

of structural assignments modified by interventions.

3. Prediction: Compute the quantities of interest (e.g. XiXj←x′
j
(ϵ)) based on the distribution entailed

by the counterfactual SCM C̃, denoted by P C̃
X = P

C|X=xobs;do(Xj =x′
j

)

X .

The updated noise distribution of exogenous variables P(ϵ|X = xobs) need not be mutually independent
anymore. It is not always possible to determine the counterfactuals with probability 1. When we can’t solve

3

Published in Transactions on Machine Learning Research (10/2022)

for ϵi (e.g. function fi that maps ϵi to Xi for a fixed value of x isn’t invertible in noise term?), we assume
some prior distribution for ϵi and update P(ϵi) by observations xobs to obtain P(ϵi|xobs) (Abduction). In
general, using Bayes’ theorem,

P(ϵ = ϵ|X(ϵ) = xobs) =
1X(ϵ)=xobsP(ϵ = ϵ)∑
{ϵ′|X(ϵ′)=xobs} P(ϵ = ϵ′) . (4)

X(ϵ) emphasizes that every endogenous variable Xi is a function of ϵ. In the case of non-invertible structural
assignments, we do not get all the probabilities concentrated on one particular value of counterfactual
XiXj←x′

j
(ϵ); instead, we get a distribution. Averaging over the space of ϵ, a potential outcome XiXj←x′

j
(ϵ)

induces a random variable that is simply denoted as XiXj←x′
j
. The counterfactual distribution P(XiXj←x′

j
=

XiXj←x′
j
(ϵ)|Xj = xobs

j , Xi = xobs
i) denotes the probability that XiXj←x′

j
is equal to the value XiXj←x′

j
(ϵ) if

Xj is changed to a different value x′j , given a specific observation Xi = xobs
i and Xj = xobs

j . Let ϵ = ϵ be
one of the situation that leads to the observation X = xobs (more specifically, Xi = xobs

i , Xj = xobs
j). Then,

in particular,
P(XiXj←x′

j
= XiXj←x′

j
(ϵ)|Xj = xobs

j , Xi = xobs
i) = P(ϵ = ϵ|X = xobs).

It advances us from unit-level counterfactual to population-level counterfactual that is not specific to a
particular situation ϵ (but all the situations are considered, i.e., population), e.g., E(XiXj←x′

j
|X = xobs).

Expectation is taken over the whole population. P(ϵ) defines a probability distribution over endogenous
variables X,

P(Xi = xi) =
∑

{ϵ|Xi(ϵ)=xi}

P(ϵ = ϵ).

The probability of counterfactual statements is defined in the same manner, e.g.,

P(XiXj←x′
j

= x′i|Xj = xobs
j , Xi = xobs

i) =
∑

{ϵ|XiXj←x′
j

(ϵ)=x′
i
}

P(ϵ = ϵ|X = xobs)

=
∑

ϵ

P(XiXj←x′
j
(ϵ) = x′i)P(ϵ = ϵ|X = xobs)

(5)

With the help of such formulation, we are allowed to compute joint probabilities of every combination of
counterfactual and observable events. Natural direct and indirect effects in mediation analysis, probability
of necessity, probability of sufficiency (Pearl, 2016), harm (Richens et al., 2022), etc. are a few examples of
counterfactual quantities.

2.2.1 Identifiability of counterfactuals

One of the fundamental questions in the counterfactual analysis is the question of identification: Can the
counterfactual quantities be estimated from either observational or experimental data or both observational
and experimental data? In a fully specified causal model, i.e., if all parameters of the causal model are
known (including P(ϵ)), every counterfactual is identifiable and can be computed using the three steps -
abduction, action, and prediction. Counterfactual quantities may not be generally identifiable even if we have
interventional and observational distributions (Peters et al., 2017). For computing unit-level counterfactuals,
one needs parametric forms of structural assignments. Often, in reality, we do not know the structural
assignments and distributions of exogenous noises. Flow-based SCMs use normalizing flows to parameterize
each structural assignment of an SCM as an invertible mechanism2 and also make assumptions on the
distributions of noises. One may not require parametric forms of structural equations to answer population-
level counterfactuals. See Malinsky et al. (2019) for general identification of counterfactual quantities.

2We assume invertibility in the noise argument.

4

Published in Transactions on Machine Learning Research (10/2022)

2.2.2 Scope of interventions for counterfactual analysis

Standard tools of the SCM framework do not inherently restrict intervention. One could, at least in theory,
intervene unconditionally on any subset of variables to perform counterfactual analysis. Thus the choices of
form and feasibility in the scope of interventions are delegated to the individual and\or the institution and
made based on a semantic understanding of the modelled variables. For example, Z can not be intervened
in causal graphs in Figure 2 in Zhang et al. (2020). Throughout this paper, we do not restrict ourselves from
intervening on the variables of interest in the counterfactual query.

3 Counterfactual with different interventions

In section 2.1, we mentioned soft interventions, where the original conditional distributions of the intervened
variables are replaced with new ones without fully eliminating the causal effect of the parents. This op-
eration is also known as a mechanism change (Tian & Pearl (2013)). It presents in many settings a more
realistic model than hard or perfect interventions, where variables are forced to a fixed value. Karimi et al.
(2021) and Crupi et al. (2021) perform soft interventions (particularly an additive intervention) to generate
counterfactual explanation and recommendation in the context of algorithmic recourse.
Example 1 (adapted from Example 6.18 in Peters et al. (2017)). Consider the following SCM:

X := ϵX + 1
Y := X2 + ϵY

Z := 2Y + X + ϵZ

with ϵX , ϵY , ϵZ ∼ Uniform({−5,−4, ..., 4, 5}) idenpendently. Now, assume that we observe (X, Y, Z) =
(1, 2, 4) and we are interested in the counterfactual query (a): what would have been Z, had Y been 5?
Now we pose the question as follows:

To answer the counterfactual query, do we need to know the state of the ϵX?

(a) (b) (c) (d)

Figure 1: Left-most directed acyclic graph (dag) G is the causal graph induced by the SCM in example 1.
The rest four are causal graphs induced by counterfactual SCMs for queries in (a),(b),(c) & (d). Noises that
must be abducted are filled in pink.

Note that, given observation (X, Y, Z) = (1, 2, 4), inferring ϵZ = −1 is sufficient to answer ZY←5(ϵ) = 10.
Furthermore, We do not even need to know the structural equations of X and Y. However, the scenario
would be a bit different if we change the counterfactual question (b): What would have been Z, had Y
followed Y := X + ϵY ? In this case, given observation (X, Y, Z) = (1, 2, 4), we need to infer ϵZ = −1 and
ϵY = 1 to answer that Z would have been 4, had Y followed the structural equation Y := X + ϵY . Further,
for computing ZY←Y +2(ϵ) = 8 (c), we do not even need to infer ϵY . Only ϵZ suffices. Here, an interesting
observation to make is that the dag G̃ of the manipulated SCM C̃ remains the same as G for the counterfactual
quarries in (b) and (c) (figure 1). To illustrate more, consider the counterfactual question (d): What would

5

Published in Transactions on Machine Learning Research (10/2022)

have been Z, had Y been 5 and X followed X := ϵ2
X + 2? It is sufficient to infer (ϵX , ϵZ) = (0,−1) to answer

(d). Had Y been 5 and X followed X := ϵ2
X + 2, Z would have been 11.

The above example motivates us to define semi-hard\semi-soft intervention, an intermediate scenario where
we technically do not force a constant value but disregard the interventions on the ancestor variables (of
the intervened variable) when we intervene. Semi-hard\semi-soft intervention is defined as taking a unique
functional form and, as a result, it is not required to know intervened variable’s parents and corresponding
noise variable for computing the value of the intervention if we are given the observed value.

Definition 1 (semi-soft\semi-hard intervention). An intervention on Xt of the form Xt ← f̃(Pat, ϵt) =
h(f(Pat, ϵt)), where h is any arbitrary function, is called semi-soft\semi-hard intervention.

Pat emphasizes the fact that we disregard any intervention on ancestors of Xt. If we consider the intervention
on ancestors, we would have written it with P̃at, which coincides with soft intervention. A concrete example
is given in Appendix B.1. An typical additive interventions is an example of a semi-soft intervention (h(f) =
f + c, where c is a constant). Hard interventions are also a special case of semi-soft interventions (h(f) = c)
but in this article, we strictly differentiate between a hard intervention, a soft intervention and a semi-soft
intervention. One may argue that since we are denying interventional changes on ancestors when we are
intervening, we could disconnect a semi-hard intervened variable from its parents in the graph induced by
interventions. We resort to this argument for the rest of the paper.

4 Notations and problem setup

A path in G is a sequence of (at least two) distinct vertices Xi1 , ..., Xim
, such that there is an edge between

Xik
and Xik+1 for all k = 1, ..., (m − 1). If Xik

→ Xik+1 for all k, we speak of a directed path from Xi1 to
Xim , denoted as Pi1→im . We will use the following standard kinship relations for sets of vertices in a directed
acyclic graph G:

DeG
i = {Xj : ∃ a directed path from Xi to Xj in G}

DeG
A = {Xj : ∃ a directed path to Xj from Xi in G, for any i ∈ A}

AnG
i = {Xj : ∃ a directed path from Xj to Xi in G}

AnG
A = {Xj : ∃ a directed path from Xj to Xi in G, for any i ∈ A}

Given an index set C ⊆ {1, 2, ...p}, XC denotes the random vector (Xi)i∈C and X−C = (Xi)i/∈C . Let us
formally state the problem we want to address. Assume C := (S,P(ϵ)) be a structural causal model. The
graph of C is G. For ensuring identifiability, we assume that C satisfies four standard assumptions: the Markov
property, causally sufficiency (i.e., no hidden confounders), causal minimality, and causal faithfulness (Peters
et al. (2017)). Assume AH to be the index set of random variables on which we perform hard interventions
in the action stage. Similarly, {Xi : i ∈ AS} and {Xi : i ∈ AT } be the set of random variables on which we
act soft interventions and semi-hard\semi-soft interventions, respectively. A = AS ∪ AH ∪ AT is the index
set of intervened variables. Let the counterfactual query we want to answer be Q:

What would XC have been if XAH
were xAH

and for each i ∈ AS∪AT , mechanism fi was changed
to f̃i, given that we observe X = xobs?

For the sake of simplicity, we denote the intervention

do
(

Xj = xj for j ∈ AH ; Xj = f̃j(Paj , ϵj) for j ∈ AS ∪AT

)

as do(A ← a). G̃ be the graph of counterfactual SCM C̃, modified by intervention do(A ← a). For i ∈ C, let
XiA←a denotes an answer to the counterfactual query Q. Set of all directed paths from XA to XC in G is
defined as PG(XA → XC) = {Pi→j is in G : i ∈ A, j ∈ C}.

6

Published in Transactions on Machine Learning Research (10/2022)

5 Noises that are essential to Q

Observation 1. If we intervene on Xj, following the causal flow in the DAG G, only Xj and the descendants
of Xj, DeG

j will get affected3.

Theorem 1. XiA←a = xobs
i almost surely, for i ∈ C \ {k : Xk ∈ DeG

A ∪XA}.

Proof. Consider the subgraph G of G, obtained by deleting the vertices in {Xk : Xk ∈ DeG
A} ∪ XA. G̃

be the graph induced by the SCM C̃, modified by the intervention do(A ← a). By observation 1, for any
i ∈ {k : Xk ∈ G}, the triplet (fi, PaGi , AnGi)C is same as (fi, PaG̃

i , AnG̃
i)C̃, where (fi, PaGi , AnGi)C denotes

the triplet of the structural assignment fi in the SCM C, parents and ancestors of Xi in a subgraph G of
G, respectively. Let ϵ = ϵ be one of the situations that leads to the observation X = xobs, in particular
Xi = xobs

i . Then, following a topological order in G,

Xi(ϵ) = xobs
i = fi(pai, ϵi) = XiA←a(ϵ), ∀i ∈ {k : Xk ∈ G}.

Hence,
{ϵ : Xi(ϵ) = xobs

i } = {ϵ′ : XiA←a(ϵ′) = xobs
i }, ∀i ∈ {k : Xk ∈ G}.

Using (4) and (5), we get

P(XiA←a = xobs
i |X = xobs) = 1, ∀i ∈ {k : Xk ∈ G}.

We get the desired result as C \ {k : Xk ∈ DeG
A ∪XA} ⊆ {k : Xk ∈ G} .

As an immediate consequence, we do not need to infer noises attached to the variables outside the action set
XA and its descendants DeG

A , as we are about to modify the SCM C by acting on variables in A. For example,
in the causal graph of figure 2a, if we intervene (hypothetically, in theory) on ‘gender’, a counterfactual answer
about ‘age’ will not be a diversion from what we observe, which is pretty much intuitive from the causal
graph and indeed ‘causal’ in nature. On the other hand, we are interested in counterfactual queries about
XC . We do not need to oversee all the variables in DeG

A ∪XA.

gender

age

credit amount repayment duration

risk

(a) (b)

Figure 2: (a) Causal graph for the German credit dataset. (b) Causal graph of the synthetic dataset.

Theorem 2. Assume that Xj has not been intervened. Then counterfactual prediction on Xj may differ
from its observed value xobs

j iff at least an ancestor of Xj has been intervened.
3By ‘get affected’, we mean a possibility of distributional change.

7

Published in Transactions on Machine Learning Research (10/2022)

Proof. If we intervene on an ancestor of Xj , from observation 1, counterfactual prediction on Xj may differ
from its observed value xobs

j . For the only if part, assume none of the ancestors of Xj has been intervened.
Let I be the index set of intervened variables, then Xj /∈ DeG

I . Moreover, as Xj hasn’t been intervened
on, by theorem 1, the counterfactual value of Xj remains the same as its observed value, contradicting the
hypothesis.

Theorem 2 says we need to worry about noises attached to variables in AnG
C ∪XC only, as we are interested

in a counterfactual query about XC . For example, if we are concerned about only ‘repayment duration’ in
the causal graph of figure 2a, we need to take care of its ancestors’ exogenous noise. Furthermore, theorem
1 and theorem 2 allow us to constrain the search space to all the exogenous noises corresponding to the
variables lying on a directed path from XA to XC in G. Continuing with the example of figure 2a, if we
are interested in ‘repayment duration’ and we are intervening on ‘gender’ in the action step, we only need
to infer ϵ3 and ϵ4 as they are attached to the variables that lie on the directed path (coloured in pink) from
‘gender’ to ‘repayment duration’. Then why do we exclude ϵ1 from abduction?
Theorem 3. XjXj←x′

j
= x′j.

Proof. Immediate from property 2 (Effectiveness) in Pearl (2009).

Effectiveness property releases us from inferring ϵAH
. By definition of semi-soft intervention, we do not need

to infer ϵAT
. As the hard interventions and the semi-soft\semi-hard disconnect parents from the intervened

variables, we further filter out exogenous disturbances by looking at G̃ instead of G.

Theorem 4. XCA←a(ϵ) = XCA←a;do∗A
(ϵ), where do∗A = do

(
Xi = xobs

i for Xi ∈ AnG̃
C \ {DeG̃

A ∪XA}
)

.

Proof. Immediate from theorem 1 and property 1 (Composition) in Pearl (2009) .

Theorem 4 allows us to intervene on the variables outside DeG̃
A ∪ XA with their observed values. This

intervention do∗A depends on the intervention do(A = a). Theorem 4 also guarantees that do∗A doesn’t
change unit-level counterfactuals. We discuss this idea of intervention with the observation in Appendix B.2
in more detail. The set of noises that lie on a path from XA to XC in G̃, i.e., {ϵi}i∈p, where p is the index
set

p = {i : Xi lies on a path P such that P ∈ PG̃(XA → XC) and ϵi is exogenous parent of Xi in G̃},

is sufficient to answer Q. We next define the sufficient and the essential set of exogenous noises to answer Q
and then we prove that {ϵi}i∈p is essential.
Definition 2 (sufficient and essential set of exogenous noises). ϵ̄ ⊆ {ϵi}n

i=1 is said to be sufficient to
a counterfactual query Q if Q can be answered (or computed) by inferring ϵ̄ only, using the three-step
(abduction, action and prediction) algorithm (as described in subsection 2.2). If the sufficient set ϵ̄ is minimal,
i.e., any proper subset of ϵ̄ is not sufficient, then ϵ̄ is called essential.
Theorem 5. {ϵi}i∈p is essential to Q.

Proof. Assume that we do not infer ϵj , j ∈ p. If j ∈ p ∩ AS , i.e., Xj has been soft intervened on, then the
prediction step on Xj based on C̃ isn’t possible as it requires to compute f̃j(paG

j A→a
, ϵj) and ϵj is unknown.

Similarly, if j ∈ p \ AS , i.e., Xj has not been intervened on (but at least one of its ancestors has been
intervened), then also the prediction step on Xj is not possible as unknown ϵj creates the bottleneck in
computing fj(paG̃

j A→a
, ϵj). Note that, Xj ∈ AnG

C ∪XC . If j ∈ C, since counterfactual prediction about Xj

isn’t possible, we are done. If Xj ∈ AnG
C , i.e., Xj is ancestor of at least one variable Xi for i ∈ C, following

the recursiveness of SCM, counterfactual prediction about Xi, i ∈ C is not possible.

8

Published in Transactions on Machine Learning Research (10/2022)

We devise the following four-step procedure (adding one more to Pearl (2009)) for computing a counterfactual
query Q in the SCM framework:

1. Pre-abduction: Identify the acting interventions, do(A ← a). Identify the essential set of exoge-
nous noises {ϵi}i∈p for Q.

2. Abduction: Predict the essential exogenous noises, ϵi’s from the observations xobs, i.e., infer
P(πA(ϵ)|X = xobs), where πA is a projection operator depending on do(A ← a), maps ϵ to ϵp.

3. Action: Perform the desired interventions do(A ← a), do∗A.

4. Prediction: Compute the quantities of interest in Q.

What pre-abduction says is that - we know the interventions we will perform. Hence a priori, we know causal
graph modified by the interventions. So it suggests exploiting this a priori knowledge for noise abduction since
we ultimately perform prediction following these interventions and modified causal graph. This exploitation
reduces the number of noises needed to abduct from the number of nodes in G to the total number of nodes
in all directed paths from XA to XC in G̃. This is quite effective in causal graph G consists of a moderate
or large number of nodes (variables).

6 Experiments

6.1 Case study 1: synthetic dataset

For the synthetic setting, we generate data following the model in figure 2b, where we assume

X6 = ϵ6 − 1, X5 = 3X6 + ϵ5 − 1, X4 = 2ϵ4 + 1,

X3 = −3X4 + ϵ3 − 3, X2 = X5 − ϵ2, X1 = X6 −X5 + 3ϵ1,

Y = X1 + 2X2 − 3X3 + ϵY ,

and ϵY , ϵi ∼ N (0, 1) independently, for i = 1, 2..., 6. We generate 20000 data points from the SCM. This
simple dataset allows for a comparison of generated counterfactuals in a controlled and measurable environ-
ment. We consider two models to answer: “What would have happened to Y , if X5 was different than what
we observed: X = xobs, Y = yobs. The full model infers all the exogenous noises, whereas the partial model
only infers ϵ1, ϵ2, and ϵY (following pre-abduction). We use this setting to study the importance of noise
identification for abduction.

We use affine coupling flows (Dinh et al., 2017) for X4 and X6 and conditional affine coupling transform
for other dependent variables. In the full model, seven flows are implemented - two linear flows and five
conditional flows. In the partial model, only three conditional flows are used for X1, X2, and Y . respectively.
We model base densities with standard gaussian.

We use the Pyro (Bingham et al., 2019) probabilistic programming language (PPL) framework for the
implementation of the flow-based SCM. A PPL is a programming language in which probabilistic models are
specified and inference for these models is performed automatically with terms corresponding to sampling
and conditioning. Pyro is a PPL based on PyTorch (Paszke et al., 2019). For a detailed overview of PPLs,
see van de Meent et al. (2018). Adam (Kingma & Ba, 2015) with batch-size 128, an initial learning rate of
10−3 is used for optimization purposes. Both models are trained for 1000 epochs using 12th Gen Intel(R)
Core(TM) i9-12900KF CPU.

Figure 3a shows the counterfactual distribution P(YX5←5|X = xobs, Y = yobs) estimated by the full and
partial models (for one particular seed) along with the true counterfactual distribution. We quantitatively
compare the associative capabilities of both models by log-likelihoods (validation) as shown in the table 1.
Figures depicting the goodness of noise estimation and sampling capabilities of both models are provided in

9

Published in Transactions on Machine Learning Research (10/2022)

75 50 25 0 25 50 75 100
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200
D

en
si

ty
P(YX5 5.00|X = xobs, Y = yobs)

True
full model
partial model

(a)

30 20 10 0 10 20 30
Intervention value on X5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

m
ea

n
sq

ua
re

d
er

ro
r

partial model
full model

(b)

Figure 3: (a) The red curve is the kernel density estimate (KDE) plot of the true counterfactual distribution.
The solid green and black dashed lines are the KDE plots of the distributions estimated (for one particular
seed) by the full and partial models. (b) Average (over ten different seeds) mean squared errors in estimating
counterfactual values of Y . The x-axis represents the values we intervene on X5 Black circles are average
errors in the partial model. Green dots are average errors in the full model.

Appendix C. We run the same experiment for ten different seeds. We intervene X5 with 200 different values4

uniformly sampled from -30 to 30. Average (over ten different seeds) mean squared errors in counterfactual
estimation (on seen datapoints5) for each model for the 200 different intervention values have been depicted
in figure 3b. We report the average time to train 1000 epochs for both models in table 1.

Table 1: Best validation log-likelihood and average training time for the full and partial model.

Model Log-likelihood Training time
X6 X5 X4 X3 X2 X1 Y (in min.)

Partial — — — — -1.4160 -2.5050 -1.4415 6.46± 0.033
Full -1.4198 -1.4166 -2.1126 -1.4229 -1.4163 -2.5050 -1.4418 11.22± 0.081

Next, we experiment with training time progression (for 100 epochs) with different batch and sample sizes
for both partial and full models. Samples are generated from the same SCM. We run both models for
ten different seeds. Figure 4 depictures the average (over ten different seeds) training time ratios (partial
model/full model) with different sample sizes and four different batch sizes.

512 8192

25
6
10

24
40

96
16

38
4

32
76

8

sample size

0.54

0.56

0.58

0.60

0.62

0.64

0.66

tr
ai

ni
ng

 t
im

e
ra

ti
o

batch size
32
64

128
256

Figure 4: Training time ratio (partial model/full model) vs. sample size for four different batch sizes.

4These 200 values remain the same across ten different seeds.
5By ‘seen datapoints’, we mean these are the datapoints used in training and validation. MSE in estimation of counterfactuals

on unseen data points(test MSE) is given in Appendix C

10

Published in Transactions on Machine Learning Research (10/2022)

Age Credit amount Duration

linear neural

spline flow

affine transformation

spline

spline autoregressive

spline

spline autoregressive

*have same order

Independent flows Conditional flows

Figure 5: Combinations of flows used in the experiment. Flows’ combinations are identified by the phrases
inside the ellipse. Flows inside the light grey rectangle are used in the partial model, i.e., we don’t model
any flow for age in the case of the partial model. We have the same order (i.e., either linear or quadratic)
for the flows in red.

6.2 Case study 2: german credit dataset

As a real-world setting, we consider a subset of the features in the german credit dataset. This subset
includes gender (X1), age (X2), credit amount (X3), and repayment duration (X4). In figure 2a, we see an
example of DAG representing the causal relationships (Karimi et al. (2021)) in the german credit dataset
(Dua & Graff (2017)). We do not consider the risk variable in our experiment. We are interested in studying
the counterfactual query: Had the person been male instead of female (or female instead of male), would
the person has been offered more (or less) credit amount for a larger (or shorter) duration?

First, flow-based SCM is trained using the observed data. Next, the states of exogenous noises are inferred
with the estimated structural assignments that are invertible (abduction step). Then we intervene upon the
sex by replacing the sex variable with a specific value ‘male’ or ‘female’; this is denoted by do(sex = male) or
do(sex=female). We use the modified flow-based SCM to compute counterfactual quantities. Similar to the
synthetic data experiment, we consider two models. The full model infers all the exogenous noise variables
except ϵ1 since we model the mechanisms of gender\sex(X1) as x1 = f1(ϵ1) = ϵ1. Age X2, Credit amount
X3 and repayment duration X4 are modelled as

x2 = f2(ϵ2) = (Splineθ ◦AffineNormalisation ◦ exp)(ϵ2),
x3 = f3(ϵ3; x1, x2) = (ConditionalTransformθ([x1, x2]) ◦AffineNormalisation ◦ exp)(ϵ3),
x4 = f4(ϵ4; x3) = (ConditionalTransformθ([x3]) ◦AffineNormalisation ◦ exp)(ϵ4).

The modules highlighted by θ are parameterized using neural networks. We use a categorical distribution
for sex (X1) and directly learn the binary probability of sex (X1). The densities of exogenous noises (except
ϵ1) are standard gaussians. For other structural assignments, we use real-valued normalizing flows. A linear
flow and two conditional flows (conditioned on activations of a fully-connected network, one takes age and
sex as input for credit amount and another takes credit amount as input for the duration) are used as
structural assignments for age, credit amount, and duration features, respectively. We constrain age (X1),
credit amount (X3), and repayment duration (X4) variables with lower bound (exponential transform) and
rescale them using a fixed affine transform for normalization. The partial model infers only ϵ3 and ϵ4 as
suggested by pre-abduction (described in section 5). We model flows for credit amount (X4) and repayment
duration (X3) similar to the full model. However, we do not model a flow for the age variable. Combinations
of flows used in the experiment are depicted in figure 5.

Splineθ transformation stands for the linear neural spline flows (Dolatabadi et al. (2020).)
ConditionalTransformθ(·) can be conditional affine or conditional spline transform. We use linear (Dolatabadi
et al. (2020)) and quadratic (Durkan et al. (2019)) order, autoregressive and linear neural spline flows for
the conditional spline transform. These are more expressive in comparison to the affine flows. Taking · as
input, a context neural network estimates the transformation parameters of the ConditionalTransformθ(·).
We implement the context networks as fully-connected networks for spline and affine flows. Adam (Kingma

11

Published in Transactions on Machine Learning Research (10/2022)

0 5000 10000 15000 20000
Credit amount

0

1

2

3

4

5

6

7

8
De

ns
ity

1e 5 do(Sex=Female)

partial full observed
model

0

5000

10000

15000

Cr
ed

it
am

ou
nt

female
male

model
partial
full
observed

0 5000 10000 15000 20000
Credit amount

0

2

4

6

8

De
ns

ity

1e 5 do(Sex=Male)

partial full observed
model

0

5000

10000

15000

20000

Cr
ed

it
am

ou
nt

male
female

model
partial
full
observed

0 20 40 60 80
Duration

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

De
ns

ity

do(Sex=Female)

partial full observed
model

20

40

60

Du
ra

tio
n

female
male

model
partial
full
observed

10 0 10 20 30 40 50 60 70
Duration

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

De
ns

ity

do(Sex=Male)

partial full observed
model

20

40

60

Du
ra

tio
n

male
female

model
partial
full
observed

flowtype: affine, floworder: linear

Figure 6: On the left, KDE plots of the observed distributions P (Credit amount|Sex =
male) and P (Repayment duration|Sex = male) are given in red. Counterfactual distributions
P (Credit amountdo(Sex=female)|Sex = male), P (Repayment durationdo(Sex=female)|Sex = male) estimated
by full and partial models are presented in gray and black, respectively. On the right, KDE
plots of the observed distributions P (Credit amount|Sex = female) and P (Repayment duration|Sex =
female) are given in red. Counterfactual distributions, P (Credit amountdo(Sex=male)|Sex = female) and
P (Repayment durationdo(Sex=male)|Sex = female), estimated by full and partial models, are presented in
gray and black, respectively. The upper panel is for distributions related to credit amounts. The lower panel
is for distributions related to payment duration. Box plots at the right-hand corner of each subplot are
self-explanatory.

& Ba, 2015) with a batch-size of 64, an initial learning rate of 3× 10−4, and weight decay of 10−4 are used
in training. We use a staircase learning rate schedule with decay milestones at 50% and 75% of the training
duration. All instances of both models are trained for 500 epochs using NVIDIA RTX A5000 GPU. Training
times are reported in Appendix D.

Figure 6 depicts how observed distributions of credit amounts and repayment duration would have changed
to the corresponding counterfactual distributions if we hypothetically set the gender of the loanees different
from what is reported. While we present the result of counterfactual estimation via ‘affine’ flow combinations
of linear order in figure 6, the results of other flow combinations are in Appendix D. We also quantitatively
compare the associative capabilities of all instances of both models by log-likelihoods (validation) as given
in Appendix D.

7 Discussion

This paper tackles the problem of identifying exogenous noises that must be abducted for counterfactual
inference. We demonstrate that explicitly identifying noises is an important task for counterfactual inference
as we empirically show that identifying noise variables can reduce the computational load of counterfac-
tual inference without compromising in performance. Identifying exogenous noise variables for answering

12

Published in Transactions on Machine Learning Research (10/2022)

a counterfactual query also reduces the burden of modelling too many normalizing flows. Our work makes
Pawlowski et al. (2020)’s framework applicable to partially specified causal graphs in the setting where we
observe all variables that lie in a directed path from XA to XC along with their parents. The causal relations
among these variables are needed to be fully specified. For example, consider the causal graph in figure 2b. If
we are interested in YX5←x′5

(ϵ), it does not matter whether X4 is observed or not. Sub-graph inside the pink
region will suffice. Note that we haven’t really used X4 in the partial model of synthetic data experiment as
we conditioned on X3 for answering YX5←x′5

(ϵ).

Though our work is heavily inspired by Pawlowski et al. (2020)’s framework, it is very general to apply to
other frameworks for generating counterfactuals. Our work does come with limitations to be investigated
further. For example, we do not study the scenario when a hidden (unobserved) variable lies in a path from
the intervened variable to the variable we are interested in. We fundamentally do not restrict ourselves from
intervening on the variables. In scenarios where we can not intervene on a variable fundamentally, i.e., when
we try to answer the counterfactual queries from observed or a combination of observed and experimental
data only, identification of counterfactual questions itself is the first priority. It would be interesting to
investigate the roles of the noises in such settings. Another limitation is that reducing the noise abduction
set might restrict the generative power of the model6.

A noted limitation in counterfactual inference is that counterfactuals are usually unverifiable for real datasets.
Evaluation is not possible except in a few constrained settings, as true counterfactuals are never usually
noticed. Counterfactual speculation is what some variable would be in a parallel universe where all but
the intervened variables and their descendants were the same. However, the machinery of counterfactual
inference provides scientists with better schemes for controlling the known confounders. As a result, the
SCM framework is widely applicable to enhance trust and the performance of ML\AI systems.

Acknowledgments

This research is partially supported by Science and Engineering Research Board (SERB), Dept. of Science
and Technology (DST), Govt. of India through Grant File No. SPR/2020/000495.

References
Andreas Geiger Axel Sauer. Counterfactual generative networks. In International Conference on Learning

Representations (ICLR), 2021.

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos,
Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman. Pyro: Deep universal probabilistic
programming. J. Mach. Learn. Res., 20(1):973–978, jan 2019. ISSN 1532-4435.

Riccardo Crupi, Alessandro Castelnovo, Daniele Regoli, and Beatriz San Miguel Gonzalez. Counterfactual
explanations as interventions in latent space. arXiv preprint arXiv:2106.07754, 2021.

Saloni Dash, Vineeth N. Balasubramanian, and Amit Sharma. Evaluating and mitigating bias in image
classifiers: A causal perspective using counterfactuals. In IEEE/CVF Winter Conference on Applications
of Computer Vision, WACV 2022, Waikoloa, HI, USA, January 3-8, 2022, pp. 3879–3888. IEEE, 2022.
doi: 10.1109/WACV51458.2022.00393. URL https://doi.org/10.1109/WACV51458.2022.00393.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In 5th Interna-
tional Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?id=HkpbnH9lx.

Hadi Mohaghegh Dolatabadi, Sarah Erfani, and Christopher Leckie. Invertible generative modeling using
linear rational splines. In The 23rd International Conference on Artificial Intelligence and Statistics
(AISTATS), pp. 4236–4246, 2020.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.ics.uci.edu/
ml.
6Discussed in Appendix C

13

https://doi.org/10.1109/WACV51458.2022.00393
https://openreview.net/forum?id=HkpbnH9lx
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Published in Transactions on Machine Learning Research (10/2022)

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/7ac71d433f282034e088473244df8c02-Paper.pdf.

Amir-Hossein Karimi, Bernhard Schölkopf, and Isabel Valera. Algorithmic recourse: from counterfactual
explanations to interventions. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and
Transparency, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and
Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf.

Daniel Malinsky, Ilya Shpitser, and Thomas Richardson. A potential outcomes calculus for identifying
conditional path-specific effects, 2019. URL https://arxiv.org/abs/1903.03662.

Guilherme F. Marchezini, Anisio M. Lacerda, Gisele L. Pappa, Wagner Meira, Debora Miranda, Marco A.
Romano-Silva, Danielle S. Costa, and Leandro Malloy Diniz. Counterfactual inference with latent variable
and its application in mental health care. Data Min. Knowl. Discov., 36(2):811–840, mar 2022. ISSN
1384-5810. doi: 10.1007/s10618-021-00818-9. URL https://doi.org/10.1007/s10618-021-00818-9.

Yulei Niu, Kaihua Tang, Hanwang Zhang, Zhiwu Lu, Xiansheng Hua, and Ji rong Wen. Counterfactual
vqa: A cause-effect look at language bias. 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 12695–12705, 2021.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshmi-
narayanan. Normalizing flows for probabilistic modeling and inference. 2019. doi: 10.48550/ARXIV.1912.
02762. URL https://arxiv.org/abs/1912.02762.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library. Curran
Associates Inc., Red Hook, NY, USA, 2019.

Nick Pawlowski, Daniel Coelho de Castro, and Ben Glocker. Deep structural causal models for
tractable counterfactual inference. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 857–
869. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
0987b8b338d6c90bbedd8631bc499221-Paper.pdf.

Judea Pearl. Causality. Cambridge University Press, 2 edition, 2009. doi: 10.1017/CBO9780511803161.

Judea Pearl. Causal inference in statistics : a primer. John Wiley & Sons Ltd, Chichester, West Sussex,
UK, 2016. ISBN 1119186854.

J. Peters, D. Janzing, and B. Schölkopf. Elements of Causal Inference - Foundations and Learning Algorithms.
Adaptive Computation and Machine Learning Series. The MIT Press, Cambridge, MA, USA, 2017.

Jacob C. Reinhold, Aaron Carass, and Jerry L. Prince. A structural causal model for mr images of multiple
sclerosis. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, pp. 782–792,
Cham, 2021. Springer International Publishing.

14

https://proceedings.neurips.cc/paper/2019/file/7ac71d433f282034e088473244df8c02-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7ac71d433f282034e088473244df8c02-Paper.pdf
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2017/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
https://arxiv.org/abs/1903.03662
https://doi.org/10.1007/s10618-021-00818-9
https://arxiv.org/abs/1912.02762
https://proceedings.neurips.cc/paper/2020/file/0987b8b338d6c90bbedd8631bc499221-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/0987b8b338d6c90bbedd8631bc499221-Paper.pdf

Published in Transactions on Machine Learning Research (10/2022)

Jonathan G. Richens, Rory Beard, and Daniel H. Thompson. Counterfactual harm, 2022. URL https:
//arxiv.org/abs/2204.12993.

Pedro Sanchez and Sotirios A. Tsaftaris. Diffusion causal models for counterfactual estimation. CoRR,
abs/2202.10166, 2022. URL https://arxiv.org/abs/2202.10166.

Bernhard Schölkopf. Causality for machine learning, 2019. URL https://arxiv.org/abs/1911.10500.

Jin Tian and Judea Pearl. Causal discovery from changes, 2013. URL https://arxiv.org/abs/1301.2312.

Brian Loeber Trippe and Richard E. Turner. Conditional density estimation with bayesian normalising flows.
arXiv: Machine Learning, 2018.

Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. An introduction to probabilistic
programming, 2018. URL https://arxiv.org/abs/1809.10756.

Rongguang Wang, Pratik Chaudhari, and Christos Davatzikos. Harmonization with flow-based causal in-
ference. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, pp. 181–190,
Cham, 2021. Springer International Publishing. ISBN 978-3-030-87199-4.

Zhongqi Yue, Tan Wang, Hanwang Zhang, Qianru Sun, and Xiansheng Hua. Counterfactual zero-shot and
open-set visual recognition. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 15399–15409, 2021.

Cheng Zhang, Kun Zhang, and Yingzhen Li. A causal view on robustness of neural networks. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing
Systems, volume 33, pp. 289–301. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/02ed812220b0705fabb868ddbf17ea20-Paper.pdf.

15

https://arxiv.org/abs/2204.12993
https://arxiv.org/abs/2204.12993
https://arxiv.org/abs/2202.10166
https://arxiv.org/abs/1911.10500
https://arxiv.org/abs/1301.2312
https://arxiv.org/abs/1809.10756
https://proceedings.neurips.cc/paper/2020/file/02ed812220b0705fabb868ddbf17ea20-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/02ed812220b0705fabb868ddbf17ea20-Paper.pdf

Published in Transactions on Machine Learning Research (10/2022)

A Normalizing Flows

Normalizing flows learn complex probability distributions of real data using a sequence of diffeomorphic
transformations from simpler base distributions with the same dimensionality. For an observed variable Xi,
diffeomorphic transformations gi

1, gi
2, ..., gi

iK
and base variable ϵi ∼ P(ϵi) such that Xi = (gi

iK
◦...◦gi

2◦gi
1)(ϵi) =

fi(ϵi), the target density P(xi) can be calculated as

P(xi) = P(ϵi) | det∇fi(ϵi) |−1,

evaluated at ϵi = f−1
i (xi). Assuming gi

0 as identity function,

logP(xi) = logP(ϵi) + log | det∇fi(ϵi) |−1

= logP(ϵi) + log | det
iK∏

j=1
∇gi

j |(gi
j−1◦...◦g

i
2◦gi

1)(ϵi)|−1

= logP(ϵi)−
iK∑

j=1
log | det∇gi

j |(gi
j−1◦...◦g

i
2◦gi

1)(ϵi)| .

As the exact log-likelihood of input data becomes tractable, the loss function is simply the negative log-
likelihood, and the model explicitly learns the data distribution. Moreover, It is possible to make flows as
expressive as needed. In particular, for any pair of well-behaved distributions P(xi) and P(ϵi), there exists a
diffeomorphism fi that can turn P(ϵi) into P(xi) (Papamakarios et al., 2019). Trippe & Turner (2018) has
extended normalizing flows to conditional densities by parametrising the transformation as xi = fi(ϵi; pai).
Note that invertibility is assumed in the first argument.

B A deeper look

B.1 Semi-hard intervention

Consider the following SCM

X = fX(ϵX) = ϵX , ϵX ∼ N (0, 1),
Y = fY (X; ϵY) = X2 + ϵY , ϵY ∼ N (0, 1),
Z = fZ(Y, X, ϵZ) = X + Y 2 + ϵz, ϵZ ∼ N (0, 1).

Consider the mechanism change do
(

X = f̃X(ϵX) = ϵX + 1, Y = f̃Y (X; ϵY) = X + ϵY + 1
)

. Now the
fundamental question is - In the intervention Y ← f̃Y (X; ϵY) = X + ϵY + 1, which structural equation of
X we should consider? fX or f̃X? If f̃X is taken into account, then it can be interpreted as a standard
soft intervention. This mechanism change may be seen as a combination of sequential interventions. If we
consider fX , then we are disregarding the intervention on its parent, i.e., do

(
X = f̃X(ϵX) = ϵX + 1

)
. In

general, we disregard interventions on ancestors. We can think of this mechanism change as a combination
of simultaneous interventions. To emphasize which structural assignment of X has been taken into account
when we intervene on Y , we write it as Y ← f̃Y (P̃ aY , ϵY) and Y ← f̃Y (PaY , ϵY) for f̃X and fX , respectively.

Semi-hard\semi-soft intervention on a variable Xt is just a soft intervention with f̃ = h(f(Pat, ϵt)), disre-
garding interventions on Xt’s ancestors. For example, Y ← Y 2 + 2 in the given SCM.

B.2 What pre-abduction is doing? Intervene with observation?

In an SCM C with the graph G,

Xi(ϵ) = fi(paG
i , ϵi),

16

Published in Transactions on Machine Learning Research (10/2022)

where Xi(ϵ) expresses Xi’s dependency on exogenous noises ϵ only. The functional form of the Xi(ϵ) can be
obtained by substituting variables with their structural assignments following a reverse topological order in G
starting from fi(paG

i , ϵi). From the computational perspective, the difference between Xi(ϵ) and fi(paG
i , ϵi)

is what you need to know for computing Xi. Further incorporating a projection map ϵi = πi(ϵ), we can
write it as

Xi(ϵ) = fi(paG
i , ϵi) = fi(paG

i , πi(ϵ)).

Let ϵ be a situation that leads to xobs. Note that, ∀ϵ′ ∈ π−1
i (ϵi), the following statement may not hold

Xi(ϵ′) = fi(paG
i , ϵi) = fi(paG;obs

i , ϵi) = fi(paG;obs
i , πi(ϵ′)). (6)

Why do we even want such a thing to hold true? Because then it does not matter whether we know ϵj , j ̸= i
or not. This can be best understood with the following example.
Example 2. Consider the following SCM,

X = ϵ2
X

Y = (X − 1)2 + ϵ2
Y

and observation (xobs, yobs) = (1, 0). This observation could have arrived in situations ϵ = (ϵX , ϵY) =
{(1, 0), (−1, 0)}. π−1

Y ({0}) = R× {0}. Let (r, 0) ∈ π−1
Y ({0}) and r2 ̸= 1.

X((r, 0)) = fY (x(r), 0) = (r2 − 1)2 ̸= 0 = fY (x = xobs, πY (r, 0)).

Expression in 6 holds ∀ϵ′ ∈ π−1
i (ϵi), if we intervene on PaG

i with paG;obs
i . In particular, this intervention

induce the graph G̃ and ∀ϵ′ ∈ π−1
i (ϵi),

Xi(ϵ′) = fi(paG̃
i , ϵi) = fi(paG;obs

i , ϵi) = fi(paG;obs
i , πi(ϵ′)).

For any given intervention set I ⊆ X \Xi, Xi can be expressed as

Xi(ϵ) = gi

(
I ∩AnG̃

i , B, πI(ϵ)
)

,

where B ⊆ AnG̃
i \ (DeI ∪ I). If I = ϕ, then G̃ = G, gi = fi, B = PaG

i , πI = πi. Such an expression can
be obtained by traversing reverse on the directed paths from I to Xi in G̃ and replacing visiting nodes with
their structural assignment.

Consider the intervention I = A with index set A. Counterfactual inference with the pre-abduction step
comes with an inherent intervention - do

(
Ani \ (DeA ∪ XA) = (ani \ (deA ∪ xA))obs

)
. For the sake of

simplicity, we refer to this as do∗A.

17

Published in Transactions on Machine Learning Research (10/2022)

C Synthetic data experiment

C.1 Goodness of abduction (specific to one particular seed)

4 2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Y

full model
partial model
True

4 2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1
full model
partial model
True

4 2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

2
full model
partial model
True

Figure 7: KDE plots of true exogenous noise data (ϵY , ϵ1, ϵ2) are in red. KDE plots of the exogenous noises
estimated by the partial and the full model are in black and green, respectively.

4 2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

3
full model
True

4 2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

4
full model
True

4 2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

5
full model
True

4 2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

6
full model
True

Figure 8: KDE plots of true exogenous noise data (ϵ3, ϵ4, ϵ5, ϵ6) are in red. KDE plots of the exogenous
noises estimated by the full model are in green.

The full model abducts all the noise variables. On the other hand, the partial model abducts only
ϵY , ϵ1, and ϵ2. Here, we compare both models in terms of their ability to infer ϵY , ϵ1, and ϵ2 in figure
7. For the sake of completeness, the full model’s ability to infer ϵ3, ϵ4, ϵ5, and ϵ6 is given in figure 8.

C.2 Sampling abilities of the partial and the full model (specific to one particular seed)

75 50 25 0 25 50 75 100
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

Y
full model
partial model
True

15 10 5 0 5 10 15 20
0.00

0.02

0.04

0.06

0.08

0.10

X1
full model
partial model
True

20 15 10 5 0 5 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

X2
full model
partial model
True

Figure 9: KDE plots of observed data (Y , X1, and X2) are in red. KDE plots of the generated samples
(1000 points) from the full and the partial model are in black and green, respectively.

As we do not estimate flows for X3, X4, X5, and X6 in the partial model, we can not sample for any variable
from the SCM using the partial model. Given X3, X4, X5, and X6, we can sample only for X1, X2, and Y
using partial model. The full model does not have such limitations. The sampling abilities of both models
for X1, X2 and Y are depicted in figure 9. The sampling ability of full model for X3, X4, X5, and X6 is given
in figure 10. Note that, if we want to sample from a particular variable from the SCM, we can take care of
that variable in the pre-abduction step. For example, if we do not want to lose the sampling ability for X4
from the SCM in figure 2b, we will estimate flows for X3 and X4 in addition to X1, X2, and Y .

18

Published in Transactions on Machine Learning Research (10/2022)

30 20 10 0 10 20
0.00

0.01

0.02

0.03

0.04

0.05

0.06

X3

full model
True

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

X4
full model
True

20 15 10 5 0 5 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

X5
full model
True

6 4 2 0 2
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

X6
full model
True

Figure 10: KDE plots of observed data (X3, X4, X5 and X6) are in red. KDE plots of the generated samples
(1000 points) from the full model are in green. Partial model isn’t able to generate samples for these variables.

C.3 Average Mean squared error in the estimation of counterfactuals on unseen data

We generate 20000 datapoints from the same SCM for ten different seeds. These datapoints have not been
used in training and validation. We try to estimate counterfactuals on these points using the trained model.
We intervene X5 with 200 different values7 uniformly sampled from -30 to 30. Average (over ten different
seeds) mean squared errors in counterfactual estimation for each model for the 200 different intervention
values have been depicted in figure 11.

30 20 10 0 10 20 30
Intervention value on X5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

m
ea

n
sq

ua
re

d
er

ro
r

partial model
full model

Figure 11: Average (over ten different seeds) mean squared errors in estimating counterfactual values of Y .
The x-axis represents the values we intervene on X5. Black circles are average errors in the partial model.
Green dots are average errors in the full model.

7These 200 values remain the same across ten different seeds.

19

Published in Transactions on Machine Learning Research (10/2022)

D German credit dataset

Table 2: Best validation -ve log-likelihood and training time for each model.

Combination of Flows Flow Order Model -ve Log-likelihood Training time
Age Sex Amount Duration (in min)

Affine
linear partial — 0.6519 9.0625 3.5161 1.63

full 3.8448 0.6519 8.9190 3.3912 1.98

quadratic partial — 0.6520 9.0989 3.3936 1.58
full 3.8492 0.6519 8.9196 3.4403 1.93

Spline
linear partial — 0.6531 8.8849 3.4650 1.92

full 3.8461 0.6520 8.9240 3.5144 2.29

quadratic partial — 0.6545 8.8973 3.3828 1.78
full 3.8453 0.6519 8.8776 3.4565 2.15

Autoregressive
linear partial — 0.6519 8.9177 3.3728 1.95

full 3.8481 0.6519 8.9161 3.4557 2.31

quadratic partial — 0.6518 8.9095 3.4662 1.81
full 3.8454 0.6519 8.8820 3.4468 2.19

2500 0 2500 5000 7500 10000 12500 15000 17500
Credit amount

0

1

2

3

4

5

6

7

8

De
ns

ity

1e 5 do(Sex=Female)

partial full observed
model

0

5000

10000

15000

Cr
ed

it a
mo

un
t

female
male

model
partial
full
observed

0 5000 10000 15000 20000
Credit amount

0

1

2

3

4

5

6

7

8

De
ns

ity
1e 5 do(Sex=Male)

partial full observed
model

0

5000

10000

15000

Cr
ed

it a
mo

un
t

male
female

model
partial
full
observed

0 20 40 60 80
Duration

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

De
ns

ity

do(Sex=Female)

partial full observed
model

20

40

60

Du
rat

ion

female
male

model
partial
full
observed

10 0 10 20 30 40 50 60 70
Duration

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

De
ns

ity

do(Sex=Male)

partial full observed
model

20

40

60

Du
rat

ion

male
female

model
partial
full
observed

flowtype: spline, floworder: linear

Figure 12: Flows’ combination: spline, flow-order: linear

20

Published in Transactions on Machine Learning Research (10/2022)

0 5000 10000 15000 20000
Credit amount

0

1

2

3

4

5

6

7

8

De
ns

ity
1e 5 do(Sex=Female)

partial full observed
model

0

5000

10000

15000

Cr
ed

it
am

ou
nt

female
male

model
partial
full
observed

0 5000 10000 15000 20000
Credit amount

0

2

4

6

8

De
ns

ity

1e 5 do(Sex=Male)

partial full observed
model

0

5000

10000

15000

20000

Cr
ed

it
am

ou
nt

male
female

model
partial
full
observed

0 20 40 60 80
Duration

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

De
ns

ity

do(Sex=Female)

partial full observed
model

20

40

60

Du
ra

tio
n

female
male

model
partial
full
observed

10 0 10 20 30 40 50 60 70
Duration

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

De
ns

ity

do(Sex=Male)

partial full observed
model

20

40

60

Du
ra

tio
n

male
female

model
partial
full
observed

flowtype: affine, floworder: quadratic

Figure 13: Flows’ combination: affine, flow-order: quadratic

2500 0 2500 5000 7500 10000 12500 15000 17500
Credit amount

0

1

2

3

4

5

6

7

8

De
ns

ity

1e 5 do(Sex=Female)

partial full observed
model

0

5000

10000

15000

Cr
ed

it
am

ou
nt

female
male

model
partial
full
observed

0 5000 10000 15000 20000
Credit amount

0

1

2

3

4

5

6

7

8

De
ns

ity

1e 5 do(Sex=Male)

partial full observed
model

0

5000

10000

15000

Cr
ed

it
am

ou
nt

male
female

model
partial
full
observed

0 20 40 60 80
Duration

0.000

0.002

0.004

0.006

0.008

0.010

0.012

De
ns

ity

do(Sex=Female)

partial full observed
model

20

40

60

Du
ra

tio
n

female
male

model
partial
full
observed

10 0 10 20 30 40 50 60 70
Duration

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

De
ns

ity

do(Sex=Male)

partial full observed
model

20

40

60

Du
ra

tio
n

male
female

model
partial
full
observed

flowtype: autoregressive, floworder: linear

Figure 14: Flows’ combination: autoregressive, flow-order: linear

21

Published in Transactions on Machine Learning Research (10/2022)

2500 0 2500 5000 7500 10000 12500 15000 17500
Credit amount

0

2

4

6

8

De
ns

ity
1e 5 do(Sex=Female)

partial full observed
model

0

5000

10000

15000

Cr
ed

it
am

ou
nt

female
male

model
partial
full
observed

0 5000 10000 15000 20000
Credit amount

0

1

2

3

4

5

6

7

8

De
ns

ity

1e 5 do(Sex=Male)

partial full observed
model

0

5000

10000

15000

Cr
ed

it
am

ou
nt

male
female

model
partial
full
observed

0 20 40 60 80
Duration

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

De
ns

ity

do(Sex=Female)

partial full observed
model

20

40

60

Du
ra

tio
n

female
male

model
partial
full
observed

10 0 10 20 30 40 50 60 70
Duration

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

De
ns

ity

do(Sex=Male)

partial full observed
model

20

40

60

Du
ra

tio
n

male
female

model
partial
full
observed

flowtype: autoregressive, floworder: quadratic

Figure 15: Flows’ combination: autoregressive, flow-order: quadratic

2500 0 2500 5000 7500 10000 12500 15000 17500
Credit amount

0

1

2

3

4

5

6

7

8

De
ns

ity

1e 5 do(Sex=Female)

partial full observed
model

0

5000

10000

15000

Cr
ed

it
am

ou
nt

female
male

model
partial
full
observed

0 5000 10000 15000 20000
Credit amount

0

1

2

3

4

5

6

7

8

De
ns

ity

1e 5 do(Sex=Male)

partial full observed
model

0

5000

10000

15000

20000

Cr
ed

it
am

ou
nt

male
female

model
partial
full
observed

0 20 40 60 80
Duration

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

De
ns

ity

do(Sex=Female)

partial full observed
model

20

40

60

Du
ra

tio
n

female
male

model
partial
full
observed

10 0 10 20 30 40 50 60 70
Duration

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

De
ns

ity

do(Sex=Male)

partial full observed
model

20

40

60

Du
ra

tio
n

male
female

model
partial
full
observed

flowtype: spline, floworder: quadratic

Figure 16: Flows’ combination: spline, flow-order: quadratic

22

	Introduction
	Preliminaries
	Background on structural causal models
	Counterfactuals
	Identifiability of counterfactuals
	Scope of interventions for counterfactual analysis

	Counterfactual with different interventions
	Notations and problem setup
	Noises that are essential to Q
	Experiments
	Case study 1: synthetic dataset
	Case study 2: german credit dataset

	Discussion
	Normalizing Flows
	A deeper look
	Semi-hard intervention
	What pre-abduction is doing? Intervene with observation?

	Synthetic data experiment
	Goodness of abduction (specific to one particular seed)
	Sampling abilities of the partial and the full model (specific to one particular seed)
	Average Mean squared error in the estimation of counterfactuals on unseen data

	German credit dataset

