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Abstract

Graph structure learning is a core problem in graph-based machine learning, es-1

sential for uncovering latent relationships and ensuring model interpretability.2

However, most existing approaches are ill-suited for large-scale and dynamically3

evolving graphs, as they often require complete re-learning of the structure upon4

the arrival of new nodes and incur substantial computational and memory costs. In5

this work, we propose GraphFLEx—a unified and scalable framework for Graph6

Structure Learning in Large and Expanding Graphs. GraphFLEx mitigates the7

scalability bottlenecks by restricting edge formation to structurally relevant subsets8

of nodes identified through a combination of clustering and coarsening techniques.9

This dramatically reduces the search space and enables efficient, incremental graph10

updates. The framework supports 48 flexible configurations by integrating di-11

verse choices of learning paradigms, coarsening strategies, and clustering methods,12

making it adaptable to a wide range of graph settings and learning objectives.13

Extensive experiments across 26 diverse datasets and Graph Neural Network archi-14

tectures demonstrate that GraphFLEx achieves state-of-the-art performance with15

significantly improved scalability. Our implementation is publicly available here.16

1 Introduction17

Graph representations capture relationships between entities, vital across diverse fields like biology,18

finance, sociology, engineering, and operations research [1–4]. While some relationships, such as19

social connections or sensor networks, are directly observable, many, including gene regulatory20

networks, scene graph generation [5], brain networks, [6] and drug interactions, require inference [7].21

Even when available, graph data often contains noise, requiring denoising and recalibration. In such22

cases, inferring the correct graph structure becomes more crucial than the specific graph model or23

downstream algorithm.24

Graph Structure Learning (GSL) offers a solution, enabling the construction and refinement of graph25

topologies. GSL has been widely studied in both supervised and unsupervised contexts [8, 9]. In26

supervised GSL (s-SGL), the adjacency matrix and Graph Neural Networks (GNNs) are jointly27

optimized for a downstream task, such as node classification. Notable examples of s-GSL include28

NodeFormer [10], Pro − GNN [11], WSGNN [12], and SLAPS [13]. Unsupervised GSL29

(u-SGL), on the other hand, focuses solely on learning the underlying graph structure, typically30

through adjacency or Laplacian matrices. Methods in this category include approximate nearest31

neighbours (A − NN ) [14, 15], k-nearest neighbours (k − NN ) [16, 17], covariance estimation32

(emp.Cov.) [18], graphical lasso (GLasso) [19], SUBLIME [8], and signal processing techniques33

like l2-model,log-model and large-model [20, 21].34

Supervised structure learning (s-SGL) methods have demonstrated effectiveness in specific tasks;35

however, their reliance on labeled data and optimization for downstream objectives—particularly node36

classification—significantly constrains their generalizability to settings where annotations are scarce37

or unavailable [8]. Unsupervised structure learning (u-SGL) methods, which constitute the focus38
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Figure 2: This figure illustrates the general pipeline of GraphFLEx, designed to efficiently handle both a) large
datasets with missing structure and b) expanding graphs. Both scenarios can be modeled as expanding graphs
(details in Section 3.1). GraphFLEx processes a graph (Gt) and incoming nodes (Et+1) at time t, newly arriving
nodes are shown with different timestamps and shades of blue to indicate their arrival time. Our framework
comprises of three main components: i) Clustering, which infers Et+1 nodes to existing communities using a
pre-trained model Mclust(G0) into smaller, more manageable communities; ii) Since these communities may
still be large, a Coarsening, module is applied to further reduce their size while preserving essential structural
information; and iii) Finally, a Learning module, where the structure associated with Et+1 nodes are learned
using the coarsened graph, followed by projecting this structure onto the Gt graph to create graph Gt+1.

of this work, offer broader applicability. Nevertheless, both s-SGL and u-SGL approaches exhibit39

critical limitations in their ability to scale to large graphs or adapt efficiently to expanding datasets.40
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Figure 1: High computational time required
to learn graph structures using existing meth-
ods, whereas GraphFLEx effectively controls
computational growth, achieving near-linear
scalability. Notably, Vanilla KNN failed to
construct graph structures for more than 10K
nodes due to memory limitations.

To address these challenges, we introduce GraphFLEx, a41

unified and scalable framework for Graph Structure Learn-42

ing in Large and Expanding Graphs. GraphFLEx is built43

upon the coordinated integration of three foundational44

paradigms in graph processing: graph clustering, graph45

coarsening, and structure learning. While each of these46

methodologies has been studied extensively in isolation,47

their joint application within a single framework has48

remained largely unexplored. The novelty of GraphFLEx49

lies not merely in combining these components, but in50

the principled manner in which they are algorithmically51

aligned to reinforce one another—clustering serves to52

localize the search space, coarsening reduces structural53

redundancy while preserving global properties, and54

structure learning operates efficiently within this refined55

context. This integration enables GraphFLEx to scale56

effectively to large datasets and accommodate dynamic57

graphs through incremental updates, eliminating the need for expensive re-training. Additionally,58

the framework supports 48 modular configurations, enabling broad adaptability across datasets,59

learning objectives, and deployment constraints. Crucially, we establish theoretical guarantees60

on edge recovery fidelity and computational complexity, offering rigorous foundations for the61

framework’s efficiency and reliability. As illustrated in Figure 2, GraphFLEx significantly reduces62

the candidate edge space by operating on structurally relevant node subsets. Empirical evaluations,63

summarized in Figure 1, demonstrate that GraphFLEx substantially outperforms existing baselines in64

both runtime and scalability.65

Key contributions of this work include:66

67 • GraphFLEx unifies multiple structure learning strategies within a single flexible framework.68

• GraphFLEx demonstrates effectiveness in handling growing graphs.69

• GraphFLEx enhances the scalability of graph structure learning on large-scale graphs.70

• GraphFLEx serves as a comprehensive framework applicable individually for clustering, coarsening,71

and learning tasks.72

2



• We provide both empirical and theoretical results, demonstrating the effectiveness of GraphFLEx73

across a range of datasets.74

2 Problem Formulation and Background75

A graph G is represented using G(V,A,X) where V = {v1, v2...vN} is the set of N nodes, each76

node vi has a d−dimensional feature vector xi in X ∈ RN×d and A ∈ RN×N is adjacency matrix77

representing connection between ith and jth nodes when entry Aij > 0. An expanding graph78

EG can be considered a variant of graph G where nodes v now have an associated timestamp τv.79

We can represent a expanding graph as a sequence of graphs, i.e., EG = {G0,G1, ...GT } where80

{G0 ⊆ G1.... ⊆ GT } at τ ∈ {0, ...T} timestamps. New nodes arriving at different timestamps are81

seamlessly integrating into initial graph G0.82

Problem statement. Given a partially known or missing graph structure, our goal is to incrementally83

learn the whole graph, i.e., learn adjacency or laplacian matrix. Specifically, we consider two84

unsupervised GSL tasks:85

Goal 1. Large Datasets with Missing Graph Structure: In this setting, the graph structure is entirely86

unavailable, and existing methods are computationally infeasible for learning the whole graph in a87

single step. To address this issue, we first randomly partition the dataset into exclusive subsets. We88

then learn the initial graph G0(V0, X0) over a small subset of nodes and incrementally expand it by89

integrating additional partitions, ultimately reconstructing the full graph GT .90

Goal 2. Partially Available Graph: In this case, we only have access to the graph Gt at timestamp91

t, with new nodes arriving over time. The goal is to update the graph incrementally to obtain GT ,92

without re-learning it from scratch at each timestamp.93

GraphFlex addresses these challenges with a unified framework, outlined in Section 3. Before delving94

into the framework, we review some key concepts.95

2.1 Graph Reduction96

Graph reduction encompasses sparsification, clustering, coarsening, and condensation [22]. Graph-97

Flex employs clustering and coarsening to refine the set of relevant nodes for potential connections.98

Graph Clustering. Graphs often exhibit global heterogeneity with localized homogeneity, making99

them well-suited for clustering [23]. Clusters capture higher-order structures, aiding graph learning.100

Methods like DMoN [24] use GNNs for soft cluster assignments, while Spectral Clustering (SC) [25]101

and K-means [16, 26] efficiently detect communities. DiffPool [27, 28] applies SC for pooling in102

GNNs.103

Graph Coarsening. Graph Coarsening (GC) reduces a graph G(V,E,X) with N nodes and features104

X ∈ RN×d into a smaller graph Gc(Ṽ , Ẽ, X̃) with n≪ N nodes and X̃ ∈ Rn×d. This is achieved105

via learning a coarsening matrix P ∈ Rn×N , mapping similar nodes in G to super-nodes in Gc,106

ensuring X̃ = PX while preserving key properties [29–32].107

2.2 Unsupervised Graph Structure Learning108

Unsupervised graph learning spans from simple k-NN weighting [17, 33] to advanced statistical and109

graph signal processing (GSP) techniques. Statistical methods, also known as probabilistic graphical110

models, assume an underlying graph G governs the joint distribution of data X ∈ RN×d [19, 34, 35].111

Some approaches [36] prune elements in the inverse sample covariance matrix Σ̂ = 1
d−1XXT and112

sparse inverse covariance estimators, such as Graphical Lasso (GLasso) [19]: maximizeΘ log detΘ−113

tr(Σ̂Θ)− ρ∥Θ∥1, where Θ is the inverse covariance matrix. However, these methods struggle with114

small sample sizes. Graph Signal Processing (GSP) techniques analyze signals on known graphs,115

ensuring properties like smoothness and sparsity. Signal smoothness on a graph G is quantified by116

the Laplacian quadratic form: Q(L) = xTLx = 1
2

∑
i,j wij(x(i) − x(j))2. For a set of vectors117

X , smoothness is measured using the Dirichlet energy [37]: tr(XTLX). State-of-the-art methods118

[20, 21, 38] optimize Dirichlet energy while enforcing sparsity or specific structural constraints.119

Table 7 in Appendix D compares various graph learning methods based on their formulations and120

time complexities. More recently, SUBLIME [8] learns graph structure in an unsupervised manner by121

leveraging self-supervised contrastive learning to align a learnable graph with a dynamically refined122

anchor graph derived from the data itself.123

Remark 1. Graph Structure Learning (GSL) differs significantly from Continual Learning (CL)124

[39–41] and Dynamic Graph Learning (DGL) [42–44], as discussed in Appendix C.125
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3 GraphFLEx126

In this section, we introduce GraphFLEx, which has three main modules:127

• Graph Clustering. Identifies communities and extracts higher-order structural information,128

• Graph Coarsening. Is used to coarsen down the desired community, if the community itself is129

large,130

• Graph Learning. Learns the graph’s structure using a limited subset of nodes from the clustering131

and coarsening modules, enabling scalability.132

For pseudocode, see Algorithm 1 in Appendix G.133

3.1 Incremental Graph Learning for Large Datasets134

Real-world graph data is continuously expanding. For instance, e-commerce networks accumulate135

new clicks and purchases daily [45], while academic networks grow with new researchers and136

publications [46]. To manage such growth, we propose incrementally learning the graph structure137

over smaller segments.138

Given a large dataset L(VL, XL), where VL is the node set and XL represents node features, we139

define an expanding dataset setting LE = {ETτ=0}. Initially, L is split into: (i) a static dataset140

E0(V0, X0) and (ii) an expanding dataset E = {Eτ (Vτ , Xτ )}Tτ=1. Both Goal 1 (large datasets with141

missing graph structure) and Goal 2 (partially available graphs with incremental updates), discussed142

in Section 2, share the common objective of incrementally learning and updating the graph structure143

as new data arrives. GraphFLEx handles these by decomposing the problem into two key components:144

• Initial Graph G0(V0, A0, X0): For Goal 1, where the graph structure is entirely missing,145

E0(V0, X0) is used to construct G0 from scratch using structure learning methods (see Section 2.2).146

For Goal 2, the initial graph G0(V0, A0, X0) is already available and serves as the starting point for147

incremental updates.148

• Expanding Dataset E = {Eτ (Vτ , Xτ )}Tτ=1: In both cases, E consists of incoming nodes and149

features arriving over T timestamps. These nodes are progressively integrated into the existing150

graph, enabling continuous adaptation and growth.151

The partition is controlled by a parameter r, which determines the proportion of static nodes:152

r = ∥V0∥
∥VL∥ . For example, r = 0.2 implies that 20% of VL is treated as static, while the remaining 80%153

arrives incrementally over T timestamps. In our experiments, we set r = 0.5 and T = 25.154

Remark 2. We can learn Gτ (Vτ , Aτ , Xτ ) by aggregating Eτ nodes in Gτ−1 graph. Our goal is to155

learn GT (VT , AT , XT ) after T th-timestamp.156

3.2 Detecting Communities157

From the static graph G0, our goal is to learn higher-order structural information, identifying158

potential communities to which incoming nodes (V ∈ V τ ) may belong. We train the community159

detection/clustering model Mclust once using G0, allowing subsequent inference of clusters for160

all incoming nodes. While our framework supports spectral and k-means clustering, our primary161

focus has been on Graph Neural Network (GNN)-based clustering methods. Specifically, we use162

DMoN [24, 47, 48], which maximizes spectral modularity. Modularity [49] measures the divergence163

between intra-cluster edges and the expected number. These methods use a GNN layer to compute164

the partition matrix C = softmax(MLP(X̃, θMLP)) ∈ RN×K , where K is the number of clusters and165

X̃ is the updated feature embedding generated by one or more message-passing layers. To optimize166

the C matrix, we minimize the loss function ∆(C;A) = − 1
2mTr(CTBC)+

√
k

n |ΣiC
T
i |F −1, which167

combines spectral modularity maximization with regularization to prevent trivial solutions, where B168

is the modularity matrix [24]. Our static graph G0 and incoming nodes E follow Assumption 1.169

170 Assumption 1. Based on the well-established homophily principle, which forms the basis of most171

graph coarsening and learning methods. We assume that the generated graphs adhere to the Degree-172

Corrected Stochastic Block Model (DC-SBM) [50], where intra-class (or intra-community) links173

are more likely than inter-class links. DC-SBM, an extension of SBM that accounts for degree174

heterogeneity, making it a more flexible and realistic choice for real-world networks.175

For more details on DC-SBM, see Appendix A.176

Lemma 1. Mclust Consistency. We adopt the theoretical framework of [50] for a DC-SBM with177

N nodes and k classes. The edge probability matrix is parameterized as PN = ρNP , where178

P ∈ Rk×k is a symmetric matrix containing the between/within community edge probabilities179

and it is independent of N , ρN = λN/N , and λN is the average degree of the network. Let180
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ŷN = [ŷ1, ŷ2, . . . , ŷN ] denote the predicted class labels, and let ĈN be the corresponding N × k181

one-hot matrix. Let the true class label matrix is CN , and µ is any k × k permutation matrix. Under182

the adjacency matrix A(N), the global maximum of the objective ∆(·;A(N)) is denoted as Ĉ∗
N . The183

consistency of class predictions is defined as:184

1. Strong Consistency.185

PN

[
min
µ

∥Ĉ∗
Nµ− CN∥2F = 0

]
→ 1 as N → ∞,

2. Weak Consistency.186

∀ε > 0, PN

[
min
µ

1

N
∥Ĉ∗

Nµ− CN∥2F < ε

]
→ 1 as N → ∞.

where ∥ · ∥F is the Frobenius norm. Under the conditions of Theorem 3.1 from [50]:187

• TheMclust objective is strongly consistent if λN/ log(N)→∞, and188

• It is weakly consistent when λN →∞.189

Remark 3. Structure Learning within Communities. In GraphFLEx, we focus on learning the190

structure within each community rather than the structure of the entire dataset at once. Strong consis-191

tency ensures perfect community recovery, meaning no inter-community edges exist representing192

the ideal case. Weak consistency, however, allows for a small fraction (ϵ) of inter-community edges,193

where ϵ is controlled by ρn in Pn = ρnP , influencing graph sparsity.194

By Lemma 1 and Assumption 1, stronger consistency leads to more precise structure learning,195

whereas weaker consistency permits a limited number of inter-community edges.196

3.3 Learning Graph Structure on a Coarse Graph197

After training Mclust, we identify communities for incoming nodes, starting with τ = 1. Once198

assigned, we determine significant communities those with at least one incoming node and learn their199

connections to the respective community subgraphs. For large datasets, substantial community sizes200

may again introduce scalability issues. To mitigate this, we first coarsen the large community graph201

into a smaller graph and use it to identify potential connections for incoming nodes. This process202

constitutes the second module of GraphFLEx, denoted asMcoar, which employs LSH-based hashing203

for graph coarsening. The supernode index for ith node is given as:204

Hi = maxOccurance

{⌊
1

r
· (W ·Xi + b)

⌋}
(1)

where r (bin width) controls the coarsened graph size,W represents random projection matrix, X is205

the feature matrix, and b is the bias term. For further details, refer to UGC [32]. After coarsening the206

ith community (Ci),Mcoar(Ci) = {Pi, Si} yields a partition matrix Pi ∈ R∥Si∥×∥Ci∥ and a set of207

coarsened supernodes (Si), as discussed in Section 2.208

To identify potential connections for incoming nodes, we define their neighborhood as follows:209

Definition 1. The neighborhood of a set of nodes Ei is defined as the union of the top k most similar210

nodes in Ci for each node v ∈ Ei, where similarity is measured by the distance function d(v, u). A211

node u ∈ Ci is considered part of the neighborhood if its distance d(v, u) is among the k smallest212

distances for all u′ ∈ Ci.213

Nk(Ei) =
⋃
v∈Ei

{u ∈ Ci | d(v, u) ≤ top-k[d(v, u′) : u′ ∈ Ci]}

Goal 3. The neighborhood of incoming nodes Nk(Ei) represents the ideal set of nodes where the214

incoming nodes Ei are likely to establish connections when the entire community is provided to a215

structure learning framework.. A robust coarsening framework must reduce the number of nodes216

within each community Ci while ensuring that the neighborhood of the incoming nodes is preserved.217

3.4 Graph Learning only with Potential Nodes218

As we now have a smaller representation of the community, we can employ any graph learning219

algorithms discussed in Section 2.2 to learn a graph between coarsened supernodes Si and incoming220

nodes (V i
τ ∈ Vτ ). This is the third module of GraphFLEx, i.e., graph learning; we denote it221

as Mgl. The number of supernodes in Si is much smaller compared to the original size of the222

community, i.e., ∥Si∥ ≪ ∥Ci∥; scalability is not an issue now. We learn a small graph first223

using Mgl(Si, X
i
τ ) = G̃iτ (V c

τ , A
c
τ ) where Xi

τ represents features of new nodes belonging to ith224
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Table 1: Time complexity analysis of GraphFLEx. Here, N is the number of nodes in the graph, k is the
number of nodes in the static subgraph used for clustering (k ≪ N ), and c represents the number of detected
communities. kτ denotes the number of nodes at timestamp τ . Finally, α = ∥Si

τ∥ + ∥Ei
τ∥ is the sum of

coarsened and incoming nodes in the relevant community at τ timestamp.

Mclust Mcoar Mgl GraphFLEx
Best (kNN-UGC-ANN) O(k2) O

(
kτ

c

)
O(α logα) O(k2 + kτ

c + α logα)

Worst (SC-FGC-GLasso) O(k3) O
((

kτ

c

)2 ∥Si
τ∥
)

O(α3) O(k3 +
(
kτ

c

)2 ∥Si
τ∥+ α3)

community at time τ , G̃iτ (V c
τ , A

c
τ ) representing the graph between supernodes and incoming nodes.225

Utilizing the partition matrix Pi obtained fromMcoar, we can precisely determine the set of nodes226

associated with each supernode. For every new node V ∈ V i
τ , we identify the connected supernodes227

and subsequently select nodes within those supernodes. This subset of nodes is denoted by ωV i
τ

, the228

sub-graph associated with ωV i
τ

represented by Giτ−1(ωV i
τ
) then undergoes an additional round of229

graph learningMgl(Giτ−1(ωV i
τ
), Xi

τ ), ultimately providing a clear and accurate connection of new230

nodes V i
τ with nodes of Gτ−1, ultimately updating it to Gτ . This multi-step approach, characterized231

by coarsening, learning on coarsened graphs, and translation to the original graph, ensures scalability.232

233

Theorem 1. Neighborhood Preservation. Let Nk(Ei) denote the neighborhood of incoming nodes234

Ei for the ith community. With partition matrix Pi andMgl(Si, X
i
τ ) = Gcτ (V c

τ , A
c
τ ) we identify the235

supernodes connected to incoming nodes Ei and subsequently select nodes within those supernodes;236

this subset of nodes is denoted by ωV i
τ

. Formally,237

ωV i
τ
=

⋃
v∈Ei

{ ⋃
s∈Si

{π−1(s)|Ac
τ (v, s) ̸= 0}

}
Then, with probability Π{c∈ϕ}p(c), it holds that Nk(Ei) ⊆ ωV i

τ
where238

p(c) ≤ 1− 2√
2π

c

r

[
1− e−r2/(2c2)

]
,

and ϕ is a set containing all pairwise distance values (c = ∥v − u∥) between every node v ∈ Ei and the nodes239

u ∈ ωV i
τ

. Here, π−1(s) denotes the set of nodes mapped to supernode s, r is the bin-width hyperparameter of240

Mcoar.241

Proof. The proof is deferred in Appendix B.242

Remark 4. Theorem 1 establishes that, with a constant probability of success, the neighborhood243

of incoming nodes Nk(Ei) can be effectively recovered using the GraphFLEx multistep approach,244

which involves coarsening and learning on the coarsened graph, i.e., Nk(Ei) ⊆ ωV i
τ

. The set245

ωV i
τ

, estimated by GraphFLEx, identifies potential candidates where incoming nodes are likely to246

connect. The probability of failure can be reduced by regulating the average degree of connectivity247

in Mgl(Si, X
i
τ ) = Gcτ (V c

τ , A
c
τ ). While a fully connected network Gcτ ensures all nodes in the248

community are candidates, it significantly increases computational costs for large communities.249

3.5 GraphFLEx: Multiple SGL Frameworks250

Figure 3: The versatility of GraphFlex in supporting
multiple GSL methods.

Each module in Figure 3 controls a distinct as-251

pect of the graph learning process: clustering in-252

fluences community detection, coarsening reduces253

graph complexity via supernodes, and the learning254

module governs structural inference. Altering any255

of these modules results in a new graph learning256

method. Currently, we support 48 different graph257

learning configurations, and this number scales ex-258

ponentially with the addition of new methods to259

any module. The number of possible frameworks260

is given by α× β × γ, where α, β, and γ represent261

the number of clustering, coarsening, and learning262

methods, respectively.263

3.6 Run Time Analysis264

GraphFLEx computational time is always bounded by existing approaches, as it operates on a265

significantly reduced set of nodes. We evaluate the run-time complexity of GraphFLEx in two266
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scenarios: (a) the worst-case scenario, where computationally intensive clustering and coarsening267

modules are selected, providing an upper bound on time complexity, and (b) the best-case scenario,268

where the most efficient modules are chosen. Table 1 presents a summary of this analysis for both269

cases. Due to space limitations, a more comprehensive analysis is provided in Appendix E.270

271
4 Experiments272

Tasks and Datasets. To validate GraphFLEx’s utility, we evaluate it across four key dimensions:273

(i) computational efficiency, (ii) scalability to large graphs, (iii) quality of learned structures, and274

(iv) adaptability to dynamically growing graphs. To validate the characteristics of GraphFLEx, we275

conduct extensive experiments on 26 different datasets, including (a) datasets that already have a276

complete graph structure (allowing comparison between the learned and the original structure), (b)277

datasets with missing graph structures, (c) synthetic datasets, (d) small datasets for visualizing the278

graph structure, and (e) large datasets, including datasets with even 2.4M nodes. More details about279

datasets and system specifications are presented in Table 8 in Appendix F.280

Table 2: Computational time(in seconds) for learning graph structures using GraphFLEx (GFlex) with existing
methods (Vanilla referred to as Van.). The experimental setup involves treating 50% of the data as static, while
the remaining 50% of nodes are treated as incoming nodes arriving in 25 different timestamps. The best times
are highlighted by color Green. OOM and OOT denote out-of-memory and out-of-time, respectively.

Data ANN KNN log-model l2-model emp-Covar. large-model Sublime
Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex

Cora 335 100 8.4 36.1 869 81.6 424 55 8.6 30 2115 18.4 7187 493
Citeseer 1535 454 21.9 75 1113 64.5 977 54.0 14.7 59.2 8319 43.9 8750 670
DBLP 2731 988 OOM 270 77000 919 OOT 1470 359 343 OOT 299 OOM 831
CS 22000 12000 OOM 789 OOT 838 32000 809 813 718 OOT 1469 OOM 1049
PubMed 770 227 OOM 164 OOT 176 OOT 165 488 299 OOT 262 OOM 914
Phy. 61000 21000 OOM 903 OOT 959 OOT 908 2152 1182 OOT 2414 OOM 2731
Syn 3 95 37 OOM 30 58000 346 859 53 88 59 5416 42 6893 780
Syn 4 482 71 OOM 73 OOT 555 OOT 145 2072 1043 OOT 392 OOM 1896

Table 3: Node classification accuracies on different GNN models using GraphFLEx (GFlex) with existing Vanilla
(Van.) methods. The experimental setup involves treating 70% of the data as static, while the remaining 30% of
nodes are treated as new nodes coming in 25 different timestamps. The best and the second-best accuracies in
each row are highlighted by dark and lighter shades of Green, respectively. GraphFLEx’s structure beats all of
the vanilla structures for every dataset. OOM and OOT denotes out-of-memory and out-of-time respectively.

Data Model ANN KNN log-model l2-model COVAR large-model Sublime Base Struct.
Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex

GAT 34.23 67.37 OOM 69.83 OOT 69.83 OOT 68.98 50.48 68.56 OOT 66.38 OOM 68.32 70.84
SAGE 34.23 69.58 OOM 70.28 OOT 70.28 OOT 70.68 51.47 70.51 OOT 69.32 OOM 70.28 72.57

DBLP GCN 34.12 69.41 OOM 73.39 OOT 73.39 OOT 73.05 51.50 71.75 OOT 68.55 OOM 69.06 74.43
GIN 34.01 69.69 OOM 68.19 OOT 68.19 OOT 73.08 52.77 72.03 OOT 71.18 OOM 71.87 73.92

GAT 12.47 60.89 OOM 61.09 OOT 60.95 18.64 61.06 58.96 88.06 OOT 86.22 OOM 64.21 60.75
SAGE 12.70 78.81 OOM 79.43 OOT 79.06 19.24 78.94 56.97 93.30 OOT 92.79 OOM 78.94 80.33

CS GCN 12.59 63.81 OOM 67.94 OOT 69.33 19.21 66.01 58.35 91.07 OOT 84.85 OOM 68.92 67.43
GIN 13.07 77.62 OOM 78.41 OOT 78.55 19.24 77.61 58.26 92.07 OOT 86.03 OOM 77.61 55.65

GAT 49.49 83.71 OOM 84.60 OOT 84.60 OOT 84.04 72.63 83.97 OOT 81.15 OOM 82.15 84.04
SAGE 50.43 87.27 OOM 87.34 OOT 87.34 OOT 87.42 73.57 86.68 OOT 87.34 OOM 83.45 88.88

Pub. GCN 50.45 82.06 OOM 83.56 OOT 83.56 OOT 83.74 73.14 82.39 OOT 78.03 OOM 70.94 85.54
GIN 51.82 83.13 OOM 84.31 OOT 84.07 OOT 82.93 73.15 83.51 OOT 82.85 OOM 80.72 86.50

GAT 29.18 88.06 OOM 88.47 OOT 88.47 OOT 88.68 58.96 88.06 OOT 86.22 OOM 86.12 88.58
SAGE 29.57 93.47 OOM 93.47 OOT 93.47 OOT 93.78 56.97 93.60 OOT 92.79 OOM 89.58 94.19

Phy. GCN 27.84 91.27 OOM 91.08 OOT 91.08 OOT 91.78 58.35 91.07 OOT 84.85 OOM 88.46 91.48
GIN 28.38 92.69 OOM 92.04 OOT 92.04 OOT 92.27 58.26 92.07 OOT 86.03 OOM 87.20 88.89

281

4.1 Computational Efficiency.282

Existing methods like k-NN and log-model struggle to learn graph structures even for 20k nodes due283

to out-of-memory (OOM) or out-of-time (OOT) issues, while l2-model and large-model struggle284

beyond 50k nodes. Although A-NN and emp-Covar. are faster, GraphFLEx outperforms them on285

sufficiently large graphs (Table 2). While traditional methods may be efficient for small graphs,286

GraphFLEx scales significantly better, excelling on large datasets like Pubmed and Syn 5, where most287

methods fail. It accelerates structure learning, making A-NN 3× faster and emp-Covar. 2× faster.288

4.2 Node Classification Accuracy289

Experimental Setup. We now evaluate the prediction performance of GNN models when trained on290

graph structures learned from three distinct scenarios: 1) Original Structure: GNN models trained291
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on the original graph structure, which we refer to as the Base Structure, 2) GraphFLEx Structure:292

GNN models trained on the graph structure learned from GraphFLEx, and 3)Vanilla Structure:293

GNN models trained on the graph structure learned from other existing methods.294

For each scenario, a unique graph structure is obtained. We trained GNN models on each of these295

three structure. For more details on GNN model parameters, see Appendix H.296

GNN Models. Graph neural networks (GNNs) such as GCN [51], GraphSage [52], GIN [53], and297

GAT [54] rely on accurate message passing, dictated by the graph structure, for effective embedding.298

We use these models to evaluate the above-mentioned learned structures. Table 3 reports node299

classification performance across all methods. Notably, GraphFLEx outperforms vanilla structures300

by a significant margin across all datasets, achieving accuracies close to those obtained with the301

original structure. Figure 8 in Appendix H illustrates GraphSage classification results, highlighting302

GraphFLEx’s superior performance. For the CS dataset, GraphFLEx (large-model) and GraphFLEx303

(empCovar.-model) even surpass the original structure, demonstrating its ability to preserve key304

structural properties while denoising edges, leading to improved accuracy.305

4.3 Scalability of GraphFLEx on Large-Scale Graphs.306

To comprehensively evaluate GraphFLEx’s scalability to large-scale graphs, we consider four datasets307

with a high number of nodes: (a) Flickr(89k nodes) [55], (b) Reddit (233k nodes) [55], (c) Ogbn-arxiv308

(169k nodes) [46], and (d) Ogbn-products (2.4M nodes) [56]. As shown in Table 4, GraphFLEx309

consistently demonstrates superior scalability across all datasets, outperforming all baseline methods310

in runtime. In particular, methods such as log-model, l2-model, and large-model fail to run even on311

Flickr, while GraphFLEx successfully scales them on Flickr, Ogbn-arxiv, and Reddit, enabling struc-312

ture learning where others cannot. For the most computationally demanding dataset, Ogbn-products,313

these methods remain prohibitively expensive even for GraphFLEx. Nonetheless, GraphFLEx ef-314

ficiently supports scalable structure learning on Ogbn-products using the Covar, ANN, and KNN315

modules. Table 4 also reports node classification accuracy, demonstrating that GraphFLEx maintains316

performance comparable to the original (base) structure across all datasets. These results confirm that317

GraphFLEx not only scales effectively, but also preserves the quality of learned structures.

Table 4: Runtime (sec) and Node Classification Accuracy (%) across large datasets. Each cell shows: Time /
Accuracy. Van = Vanilla, GFlex = GraphFLEx. OOM = Out of Memory, OOT = Out of Time.

Method ogbn-arxiv (60.13) ogbn-products (73.72) Flickr (44.92) Reddit (94.15)
Van. GFlex Van. GFlex Van. GFlex Van. GFlex

Covar OOM | – 3.7k | 60.26 OOM | – 83.1k | 68.23 2.3k | 44.65 682 | 44.34 OOM | – 6.6k | 94.13
ANN 7.8k | 60.14 4.8k | 60.22 OOM | – 89.3k | 67.91 2.5k | 44.09 705 | 44.92 12.6k | 94.14 6.1k | 94.18
knn 8.3k | 60.09 6.1k | 60.23 OOM | – 91.8k | 68.47 2.7k | 43.95 920 | 44.73 15.6k | 94.14 6.9k | 94.15
l2 OOT | – 9.1k | 58.39 OOT | – OOT | – 93.3k | 44.90 1.2k | 44.32 OOT | – 5.1 | 93.47
log OOT | – 45.6k | 58.72 OOT | – OOT | – OOT | – 18.7k | 44.59 OOT | – 60.3k | 94.13
large OOT | – 5.6k | 60.20 OOT | – OOT | – OOT | – 2.2k | 44.45 OOT | – 9.3k | 93.71318

4.4 GraphFLEx for Link Prediction and Graph Classification.319

To further validate the generalization of our framework, we evaluate GraphFLEx on the link prediction320

task. The results are presented in Table 5, following the same setting as Table 3. The structure learned321

by GraphFLEx demonstrates strong predictive performance, in some cases even outperforming the322

base structure. This highlights the effectiveness of GraphFLEx in preserving and even enhancing323

relational information relevant for link prediction. While our primary focus is on structure learning

Table 5: Link predication accuracy (%) across different datasets. The best and the second-best accuracies in
each row are highlighted by dark and lighter shades of Green, respectively.

Data ANN KNN log-model l2-model COVAR large-model Base Struct.
Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex

DBLP 96.57 96.61 OOM 94.23 OOT 97.59 OOT 97.59 97.22 97.59 OOT 96.24 95.13
Citeseer 80.12 96.32 85.17 96.24 80.48 96.24 80.48 96.48 82.05 96.24 84.50 94.38 90.78
Cora 84.47 95.30 79.23 95.14 90.63 95.45 90.81 95.14 86.05 95.30 90.63 94.67 89.53
Pubmed 94.24 96.91 OOM 97.42 OOT 97.42 OOT 97.37 94.89 94.64 OOT 94.41 94.64
CS 94.21 95.73 OOM 96.02 OOT 93.17 OOT 93.17 93.52 92.31 OOT 95.73 95.00
Physics 95.77 91.34 OOM 94.63 OOT 90.79 OOT 94.63 92.03 90.79 OOT 92.97 93.96

324
for node-level tasks, we briefly discuss the applicability of GraphFLEx to graph classification. In325

such tasks, especially in domains like molecule or drug discovery, each data point often corresponds326

to a small individual subgraph. For these cases, applying clustering and coarsening is typically327

redundant and may introduce unnecessary computational overhead. Nevertheless, GraphFLEx328
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(a) 10 incoming
nodes

(b) 20 incoming
nodes

(c) 30 incoming
nodes

(d) ANN as Mgl (e) Emp. Covr. as
Mgl

(f) kNN as Mgl

Figure 4: Figures (a), (b), and (c) illustrate the growing structure learned using GraphFLEx for HE synthetic
dataset. Figures (d), (e), and (f) illustrate the learned structure on Zachary’s karate dataset when existing methods
are employed with GraphFLEx. New nodes are denoted using black color.

remains flexible—its learning module can be directly used without the clustering or coarsening steps,329

making it suitable for graph classification as well. This adaptability reinforces GraphFLEx’s utility330

across a broad range of graph learning tasks.331

4.5 Clustering Quality332

Table 6: Clustering (NMI, C, Q) and node classification
accuracy using GCN, GraphSAGE, GIN, and GAT.

Data NMI C Q GCN SAGE GIN GAT

Bar. M. 0.716 0.057 0.741 91.2 96.2 95.1 94.9
Seger. 0.678 0.102 0.694 91.0 93.9 94.2 92.3
Mura. 0.843 0.046 0.706 96.9 97.4 97.5 96.4

Bar. H. 0.674 0.078 0.749 95.3 96.4 97.2 95.8
Xin 0.741 0.045 0.544 98.6 99.3 98.9 99.8

MNIST 0.677 0.082 0.712 92.9 94.5 94.9 82.6

We measure three metrics to evaluate the re-333

sulting clusters or community assignments: a)334

Normalized Mutual Information (NMI) [24]335

between the cluster assignments and original la-336

bels; b) Conductance (C) [57] which measures337

the fraction of total edge volume that points out-338

side the cluster; and c) Modularity (Q) [49]339

which measures the divergence between the340

intra-community edges and the expected one.341

Table 6 illustrates these metrics for single-cell342

RNA and the MNIST dataset (where the whole structure is missing), and Figure 12 in Appendix K343

shows the PHATE [58] visualization of clusters learned using GraphFLEx’s clustering module344

Mclust. We also train the aforementioned GNN models for the node classification task in order to345

illustrate the efficacy of the learned structures; the accuracy values presented in Table 6, clearly346

highlight the significance of the learned structures, as reflected by the high accuracy values.347

4.6 Structure Visualization348

Figure 5: Effectiveness of our framework in learning
structure between similar MNIST digits and GloVe em-
beddings.

We evaluate the structures generated by Graph-349

FLEx through visualizations on four small350

datasets: (i) MNIST [59], consisting of hand-351

written digit images, where Figure 5(a) shows352

that images of the same digit are mostly con-353

nected; (ii) Pre-trained GloVe embeddings [60]354

of English words, with Figure 5(b) revealing that355

frequently used words are closely connected;356

(iii) A synthetic H.E dataset (see Appendix F),357

demonstrating GraphFLEx’s ability to handle358

expanding networks without requiring full relearning. Figure 4(a-c) shows the graph structure evolv-359

ing as 30 new nodes are added over three timestamps; and (iv) Zachary’s karate club network [61],360

which highlights GraphFLEx’s multi-framework capability. Figure 4(d-f) shows three distinct graph361

structures after altering the learning module. For a comprehensive ablation study, refer to Appendix L.362

5 Conclusion363

Large or expanding graphs challenge the best of graph learning approaches. GraphFLEx, introduced364

in this paper, seamlessly adds new nodes into an existing graph structure. It offers diverse methods for365

acquiring the graph’s structure. GraphFLEx consists of three key modules: Clustering, Coarsening,366

and Learning which empowers GraphFLEx to serves as a comprehensive framework applicable367

individually for clustering, coarsening, and learning tasks. Empirically, GraphFLEx outperforms368

state-of-the-art baselines, achieving up to 3× speedup while preserving structural quality. It achieves369

accuracies close to training on the original graph, in most instances. The performance across multiple370

real and synthetic datasets affirms the utility and efficacy of GraphFLEx for graph structure learning.371

Limitations and Future Work. GraphFLEx is designed assuming minimal inter-community connec-372

tivity, which aligns well with many real-world scenarios. However, its applicability to heterophilic373

graphs may require further adaptation. Future work will focus on extending the framework to374

supervised GSL methods and heterophilic graphs, broadening its scalability and versatility.375
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Appendix564

A Degree-Corrected Stochastic Block Model(DC-SBM)565

The DC-SBM is one of the most commonly used models for networks with communities and
postulates that, given node labels c = c1, ...cn, the edge variables A′

ijs are generated via the formula

E[Aij ] = θiθjPciPcj

, where θi is a "degree parameter" associated with node i, reflecting its individual propernsity to566

form ties, and P is a K × K symmetric matrix containing the between/withincommunity edge567

probabilities and PciPcj denotes the edge probabilities between community ci and cj .568

For DC-SBM model [50] assumed Pn on n nodes with k classes, each node vi is given a label/degree569

pair(ci, θi), drawn from a discrete joint distribution ΠK×m which is fixed and does not depend on n.570

This implies that each θi is one of a fixed set of values 0 ≤ x1 ≤ .... ≤ xm. To facilitate analysis of571

asymptotic graph sparsity, we parameterize the edge probability matrix P as Pn = ρnP where P is572

independent of n, and ρn = λn/n where λn is the average degree of the network.573

574

B Neighbourhood Preservation575

Theorem 2. Neighborhood Preservation. Let Nk(Ei) denote the neighborhood of incoming nodes576

Ei for the ith community. With partition matrix Pi andMgl(Si, X
i
τ ) = Gcτ (V c

τ , A
c
τ ) we identify the577

supernodes connected to incoming nodes Ei and subsequently select nodes within those supernodes;578

this subset of nodes is denoted by ωV i
τ

. Formally,579

ωV i
τ
=

⋃
v∈Ei

{ ⋃
s∈Si

{π−1(s)|Ac
τ (v, s) ̸= 0}

}
Then, with probability Π{c∈ϕ}p(c), it holds that Nk(Ei) ⊆ ωV i

τ
where580

p(c) ≤ 1− 2√
2π

c

r

[
1− e−r2/(2c2)

]
,

and ϕ is a set containing all pairwise distance values (c = ∥v − u∥) between every node v ∈ Ei and the nodes581

u ∈ ωV i
τ

. Here, π−1(s) denotes the set of nodes mapped to supernode s, r is the bin-width hyperparameter of582

Mcoar.583

Proof: The probability that LSH random projection [32, 62] preserves the distance between two584

nodes v and u i.e., d(u, v) = c, is given by:585

p(c) =

∫ r

0

1

c
f2

(
t

c

)(
1− t

r

)
dt,

where f2(x) =
2√
2π

e−x2/2 represents the Gaussian kernel when the projection matrix is randomly586

sampled from p-stable(p = 2) distribution [62].587

The probability p(c) can be decomposed into two terms:588

p(c) = S1(c)− S2(c),

S1(c) and S2(c) are defined as follows:589

S1(c) =
2√
2π

∫ r

0

e−(t/c)2/2dt ≤ 1,

590

S2(c) =
2√
2π

∫ r

0

e−(t/c)2/2 t

r
dt.

591

S2(c) =
2√
2π
· c
r

∫ r

0

e−(t/c)2/2 t

c2
dt

Expanding S2(c) :592

S2(c) =
2√
2π
· c
r

∫ r2/(2c2)

0

e−ydy
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593

S2(c) =
2√
2π
· c
r

[
1− e−r2/(2c2)

]
Thus, the probability p(c) can be bounded as:594

p(c) ≤ 1− 2√
2π

c

r

[
1− e−r2/(2c2)

]
.

Now, let ϕ be the set of all pairwise distances d(u, v), where v ∈ Ei and nodeωV i
τ

. The probability595

that all nodes inNk(Ei) are preserved within ωV i
τ

, requires that all distances c ∈ ϕ are also preserved.596

The probability is then given by:597 ∏
c∈ϕ

p(c).

∏
c∈ϕ

p(c) ≤
∏
c∈ϕ

(
1− 2√

2π

c

r

[
1− e−r2/(2c2)

])
.

C Continual Learning and Dynamic Graph Learning598

In this subsection, we highlight the key distinctions between Graph Structure Learning (GSL) and599

related fields to justify our specific selection of related works in Section 2.2. GSL is often confused600

with topics such as Continual Learning (CL) and Dynamic Graph Learning (DGL).601

CL [39–41] addresses the issue of catastrophic forgetting, where a model’s performance on previously602

learned tasks degrades significantly after training on new tasks. In CL, the model has access only to603

the current task’s data and cannot utilize data from prior tasks. Conversely, DGL [42–44] focuses604

on capturing the evolving structure of graphs and maintaining updated graph representations, with605

access to all prior information.606

While both CL and DGL aim to enhance model adaptability to dynamic data, GSL is primarily607

concerned with generating high-quality graph structures that can be leveraged for downstream tasks608

such as node classification [51], link prediction [63], and graph classification [64]. Moreover, in609

CL and DGL, different tasks typically involve distinct data distributions, whereas GSL assumes a610

consistent data distribution throughout.611

D Related Work612

Table 7 presents the formulations and associated time complexities of various unsupervised Graph613

Structure Learning methods.614

Table 7: Unsupervised Graph Structure Learning Methods

Method Time Complexity Formulation

GLasso O(N3) maxΘ log detΘ− tr(Σ̂Θ)− ρ∥Θ∥1

log-model O(N2) minW∈W ∥W ◦ Z∥1,1 − α1T log(W1) + β
2
∥W∥2F

l2-model O(N2) minW∈W ∥W ◦ Z∥1,1 + α∥W1∥2 + α∥W∥2F + 1{∥W∥1,1 = n}

large-model O(N log(N)) minW∈W̃ ∥W ◦ Z∥1,1 − α1T log(W1) + β
2
∥W∥2F

E Run Time Analysis615

In the context of clustering module, k − NN is the fastest algorithm, while Spectral Clustering616

is the slowest. Suppose we aim to learn the structure of a graph with N nodes. The clustering617

module, however, is only applied to a randomly sampled, smaller, static subgraph with k nodes, where618

k ≪ N . In the worst-case scenario, spectral clustering requires O(k3) time, whereas in the best case,619

k −NN requires O(k2) time. For coarsening module, LSH-based coarsening framework [30], has620

the best time complexity of O(kτ

c ) while FGC denotes the worst case with a time-complexity of621

O((kτ

c )2∥Si
τ∥) where c is the number of communities detected by clustering moduleMclust, ∥Si

τ∥622

is the number of coarsened node in the relevant community at τ timestamp and kτ denotes number623

of nodes at τ timestamp. For learning module, A−NN is the most efficient algorithm with time624
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complexity as O(NlogN), while GLasso has the worst computational cost of O(N3). So, the625

effective time complexity of GraphFLEx is upper bounded by O(k3 + (kτ

c )2∥Si
τ∥+ α3) and lower626

bounded by O(k2 + kτ

c + αlogα) where α = ∥Si
τ∥ + ∥E iτ∥. GraphFLEx’s efficiency in term of627

computational time is evident in Figure 1 and further quantified in Table 2.628

Out of the three modules of GraphFLEx first module(Mclust) is trained once, and hence its run time is629

always bounded; computational time for second module(Mcoar) can also be controlled because some630

of the methods either needs training once [65] or have linear time complexity [30]. Consequently,631

both the clustering and coarsening modules contribute linearly to the overall time complexity, denoted632

asO(N). Thus, the effective time complexity of GraphFLEx is given byO(N+O(Mgl(∥Si, X
i
τ∥)).633

The overall complexity scales either linearly or sub-linearly, depending on α and theMgl module.634

For instance, when Mgl is A-NN the complexity remains linear, if α log(α) ≈ N , whereas for635

GLasso, a linear behavior is observed when α3 ≈ N .636

F Datasets637

Datasets used in our experiments vary in size, with nodes ranging from 1k to 60k. Table 8 lists638

all the datasets we used in our work. We evaluate our proposed framework GraphF lex on real-639

world datasets Cora ,Citeseer, Pubmed [66], CS, Physics [67], DBLP [68], all of which include graph640

structures. These datasets allow us to compare the learned structures with the originals. Additionally,641

we utilize single-cell RNA pancreas datasets [69], including Baron, Muraro, Segerstolpe, and Xin,642

where the graph structure is missing. The Baron dataset was downloaded from the Gene Expression643

Omnibus (GEO) (accession no. GSE84133). The Muraro dataset was downloaded from GEO644

(accession no. GSE85241). The Segerstolpe dataset was accessed from ArrayExpress (accession645

no. E-MTAB-5061). The Xin dataset was downloaded from GEO (accession no. GSE81608). We646

simulate the expanding graph scenario by splitting the original dataset across different T timestamps.647

We assumed 50% of the nodes were static, with the remaining nodes arriving as incoming nodes at648

different timestamps.649

Synthetic datasets: Different data generation techniques validate that our results are generalized to650

different settings. Please refer to Table 8 for more details about the number of nodes, edges, features,651

and classes, Syn denotes the type of synthetic datasets. Figure 6 shows graphs generated using652

different methods. We have employed three different ways to generate synthetic datasets which are653

mentioned below:654

• PyGSP(PyGsp): We used synthetic graphs created by PyGSP [70] library. PyG-G and PyG-S655

denotes grid and sensor graphs from PyGSP.656

• Watts–Strogatz’s small world(SW): [71] proposed a generation model that produces graphs with657

small-world properties, including short average path lengths and high clustering.658

• Heterophily(HE): We propose a method for creating synthetic datasets to explore graph behavior659

across a heterophily spectrum by manipulating heterophilic factor α, and classes. α is determined660

by dividing the number of edges connecting nodes from different classes by the total number of661

edges in the graph.662

Visulization Datasets: To evaluate, the learned graph structure, we have also included three datasets:663

(i) MNIST [59], consisting of handwritten digit images; (ii) Pre-trained GloVe embeddings [60] of664

English words; and (iii) Zachary’s karate club network [61].665

Large Datasets: To comprehensively evaluate GraphFLEx’s scalability to large-scale graphs, we666

consider four datasets with a high number of nodes: (a) Flickr(89k nodes) [55], (b) Reddit (233k667

nodes) [55], (c) Ogbn-arxiv (169k nodes) [46], and (d) Ogbn-products (2.4M nodes) [56].668

669

System Specifications: All the experiments conducted for this work were performed on an Intel Xeon670

W-295 CPU with 64GB of RAM desktop using the Python environment.671
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Category Data Nodes Edges Feat. Class Type

Original
Structure
Known

Cora 2,708 5,429 1,433 7 Citation network
Citeseer 3,327 9,104 3,703 6 Citation network
DBLP 17,716 52.8k 1,639 4 Research paper

CS 18,333 163.7k 6,805 15 Co-authorship network
PubMed 19,717 44.3k 500 3 Citation network
Physics 34,493 247.9k 8,415 5 Co-authorship network

Original
Structure

Not Known

Xin 1,449 NA 33,889 4 Human Pancreas
Baron Mouse 1,886 NA 14,861 13 Mouse Pancreas

Muraro 2,122 NA 18,915 9 Human Pancreas
Segerstolpe 2,133 NA 22,757 13 Human Pancreas

Baron Human 8,569 NA 17,499 14 Human Pancreas

Synthetic

Syn 1 2,000 8,800 150 4 SW
Syn 2 5,000 22k 150 4 SW
Syn 3 10,000 44k 150 7 SW
Syn 4 50,000 220k 150 7 SW
Syn 5 400 1,520 100 4 PyG-G
Syn 6 2,500 9,800 100 4 PyG-S
Syn 7 1,000 9,990 150 4 HE
Syn 8 2,000 40k 150 4 HE

Visulization Datasets
MNIST 60,000 NA 784 10 Images

Zachary’s karate 34 156 34 4 Karate club network
Glove 2,000 NA 50 NA GloVe embeddings

Large dataset
Flickr 89,250 899,756 500 7 -
Reddit 232,965 11.60M 602 41 -

Ogbn-arxiv 169,343 1.16M 128 40 -
Ogbn-products 2,449,029 61.85M 100 47 -

Table 8: Summary of the datasets.

(a) PyGSP-Sensor, N = 50, α=3 (b) PyGSP-Grid, N = 80, α=3 (c) SW, N = 50, α=3 (d) HE, N = 50, α=3

Figure 6: This figure illustrates different types of synthetic graphs generated using i)PyGSP, ii) Watts–Strogatz’s
small world(SW), and iii) Heterophily(HE). N denotes the number of nodes, while α denotes the number of
classes.
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G Algorithm672

Algorithm 1 GraphFlex: A Unified Structure Learning framework for expanding and Large Scale
Graphs
Input: Graph G0(X0, A0), expanding nodes set ET1 = {Eτ (Vτ ,Xτ )}Tτ=1
Parameter: GClust, GCoar, GL← Clustering, Coarsening and Learning Module
Output: Graph GT (XT , AT )

1: Train clustering module train(Mclust, GClust, G0)
2: for each Et(Vt, Xt) in ET1 do
3: Ct = infer(Mclust, Xt), Ct ∈ RNt denotes the communities of Nt nodes at time t.
4: It = unique(Ct).
5: for each Iit in It do
6: Gi

t−1 = subgraph(Gt−1, Iit )
7: {Si

t−1, P
i
t−1} =Mcoar(G

i
t−1), S

i
t−1 ∈ Rk×d are features of k supernodes, P i

t−1 ∈ Rk×Ni
t

is the partition matrix.
8: Gcit−1(S

i
t−1, A

i
t−1) =Mgl(S

i
t−1, X

i
t), Gcit−1 is the learned graph on super-nodes Si

t−1

and new node Xi
t .

9: ωi
t ← []

10: for x ∈ Xi
t do

11: ωi
t.append(x)

12: np = {n | Ai
t−1[n] > 0}

13: ωi
t.append(np)

14: end for
15: Gt−1 = update(Gt−1,Mgl(ω

i
t))

16: end for
17: Gt = Gt−1

18: end for
19: return GT (XT , AT )

H Other GNN models673

We used four GNN models, namely GCN, GraphSage, GIN, and GAT. Table 9 contains parameter674

details we used to train GraphFlex. We have used these parameters across all methods.675
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Figure 8: GraphSage accuracies when structure is learned or given with 3 different scenarios(Vanilla, GraphFlex,
Original) across different datasets, highlighting performance with 30% node growth over 25 timestamps.

Figure 7 illustrates the pipeline for training our GNN models. Graph structures were learned using676

both existing methods and GraphFlex, and GNN models were subsequently trained on both structures.677

Results across all datasets are presented in Table 10 and Table 3.678

Table 9: GNN model parameters.

Model Hidden Layers L.R Decay Epoch

GCN {64, 64} 0.003 0.0005 500
GraphSage {64, 64} 0.003 0.0005 500
GIN {64, 64} 0.003 0.0005 500
GAT {64, 64} 0.003 0.0005 500

We randomly split data in 60%, 20%, 20% for training-validation-test. The results for these models679

on synthetic datasets are presented in Table 10.680

Figure 7 illustrates the pipeline for training our GNN models. Graph structures were learned using681

both existing methods and GraphFlex, and GNN models were subsequently trained on both structures.682

I Computational Efficiency683

Table 11 illustrates the remaining computational time for learning graph structures using GraphFLEx684

with existing Vanilla methods on Synthetic datasets. While traditional methods may be efficient for685

small graphs, GraphFLEx scales significantly better, excelling on large datasets like Pubmed and Syn686

5, where most methods fail.687

J Visualization of Growing graphs688

This section helps us visualize the phases of our growing graphs. We have generated a synthetic graph689

of 60 nodes using PyGSP-Sensor and HE methods mentioned in Appendix F. We then added 40 new690

nodes denoted using black color in these existing graphs at four different timestamps. Figure 9 and691

Figure 10 shows the learned graph structure after each timestamp for two different Synthetic graphs.692

K Clustering Quality693

Figure 12 shows the PHATE [58] visualization of clusters learned using GraphFLEx’s clustering694

moduleMclust for 6 single-cell RNA datasets, namely Xin, MNIST , Baron−Human, Muraro,695

BaronMouse, and Segerstolpe datasets.696
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Table 10: Node classification accuracies on different GNN models using GraphFLEx (GFlex) with existing
Vanilla (Van.) methods. The experimental setup involves treating 70% of the data as static, while the remaining
30% of nodes are treated as new nodes coming in 25 different timestamps. The best and the second-best
accuracies in each row are highlighted by dark and lighter shades of Green, respectively. GraphFLEx’s structure
beats all of the vanilla structures for every dataset. OOM and OOT denotes out-of-memory and out-of-time
respectively.

Dataset Model ANN KNN log-model l2-model COVAR large-model Base Struc.
Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex

GAT 18.73 73.84 20.96 73.65 16.14 72.36 18.74 73.10 49.72 77.55 14.28 76.43 79.77
SAGE 17.25 77.37 18.00 76.99 19.48 77.40 19.85 75.51 49.35 76.99 14.28 77.55 82.37

Cora GCN 17.99 78.11 17.81 77.92 18.55 77.74 20.41 79.22 47.31 80.52 14.28 79.03 84.60
GIN 16.69 76.44 18.74 80.52 17.44 76.25 19.29 76.62 48.79 78.85 14.28 76.06 81.63

GAT 16.51 61.82 25.00 62.27 19.24 64.70 18.18 63.48 20.91 62.73 16.67 62.27 66.42
SAGE 16.66 68.48 16.67 68.64 22.12 69.39 22.42 69.85 22.88 71.52 16.67 69.39 72.57

Citeseer GCN 28.18 60.00 16.67 61.97 20.45 65.45 19.70 64.24 21.06 64.70 16.67 63.18 68.03
GIN 16.66 64.39 16.67 63.94 20.15 59.85 18.64 63.64 22.12 60.30 16.67 61.81 67.38

GAT 29.55 92.07 OOM 90.86 OOT 91.64 OOT 91.64 35.79 92.52 OOT 93.74 89.49
SAGE 26.75 87.89 OOM 91.05 OOT 86.64 OOT 86.64 32.92 90.44 OOT 86.01 90.03

Syn 4 GCN 28.85 51.97 OOM 19.58 OOT 18.29 OOT 18.92 33.80 26.60 OOT 36.85 21.43
GIN 28.50 65.61 OOM 31.06 OOT 26.51 OOT 26.56 34.03 46.40 OOT 47.10 29.35

GAT 44.00 86.80 43.60 86.60 30.00 78.75 55.40 92.80 36.20 93.60 31.80 92.80 97.20
SAGE 41.00 93.80 41.40 93.60 33.75 88.75 57.60 94.00 35.20 94.80 28.20 95.60 97.40

Syn 6 GCN 43.60 88.80 42.20 87.40 26.25 81.25 55.60 92.40 31.40 94.40 25.20 94.00 99.40
GIN 39.60 89.00 40.40 86.60 21.25 82.50 55.20 91.80 30.00 94.60 30.40 92.00 98.80

GAT 29.55 99.75 33.75 88.75 88.25 99.25 88.25 99.25 26.00 85.50 94.00 96.00 98.50
SAGE 26.75 100.0 32.50 100.0 88.75 99.50 88.75 99.50 26.75 100.0 92.50 100.0 100.0

Syn 8 GCN 28.85 98.75 31.75 99.75 88.75 99.00 88.75 99.00 28.50 99.25 95.00 100.0 100.0
GIN 28.50 50.00 30.50 91.00 82.25 91.50 82.25 91.50 27.25 81.75 91.75 92.25 78.25

Table 11: Computational time for learning graph structures using GraphFLEx (GFlex) with existing methods
(Vanilla referred to as Van.). The experimental setup involves treating 50% of the data as static, while the
remaining 50% of nodes are treated as incoming nodes arriving in 25 different timestamps. The best times are
highlighted by color Green. OOM and OOT denote out-of-memory and out-of-time, respectively.

Data ANN KNN log-model l2-model COVAR large-model
Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex

Syn 1 19.4 9.8 2.5 10.5 2418 56.4 37.2 8.8 3.5 8.3 205 9.4
Syn 2 47.3 16.9 6.6 18.3 14000 144 214 22.6 20.3 18.6 1259 16.4
Syn 5 5.1 11.5 0.8 7.3 57.4 28 1.1 5.8 0.2 4.8 3.2 5.3
Syn 6 16.6 9.9 2.8 11.4 1766 96.3 193 101 5.3 8.9 324 9.6
Syn 7 10.6 7.4 1.4 8.9 704 85.2 10.3 7.9 0.9 6.4 36.5 8.2
Syn 8 19.6 11.2 2.5 11.7 2416 457 37.2 17.0 3.4 10.9 204 11.7

PyGsp

(a) Initial graph G0 (b) α= 10, G1 (c) α= 20, G2 (d) α = 30, G3 (e) α = 40, G4

Figure 9: This figure illustrates the growing structure learned using GraphFlex for dynamic nodes. New nodes
are denoted using black color, and α denotes number of new nodes. PyGsp denotes type synthetic graph.

L Ablation Study697

In this section, we present an ablation study to analyze the role of individual modules within698

GraphFLEx and their influence on the final graph structure. Specifically, we focus on two aspects: (i)699

the significance of the clustering module, and (ii) the effect of varying module configurations on the700

learned graph topology.701

20



HE

(a) Initial graph G0 (b) α = 10, G1 (c) α = 20, G2 (d) α= 30, G3 (e) α = 40, G4

Figure 10: This figure illustrates the growing structure learned using GraphFlex for dynamic nodes. New nodes
are denoted using black color, and α denotes the number of new nodes. HE denotes the type of synthetic graph.

Figure 11: Original Karate Graph

(a) Xin (b) MNIST (c) Baron Human

(d) Muraro (e) Baron Mouse (f) Segerstolpe

Figure 12: PHATE visualization of clusters learnt using GraphFlex clustering module for scRNA-seq datasets.

L.1 Clustering Module Evaluation702

To evaluate the effectiveness of the clustering module, we compute standard metrics such as Normal-703

ized Mutual Information (NMI), Conductance (C), and Modularity (Q) across various datasets (see704

Table 6 in Section 4.5). These metrics collectively validate the quality of the discovered clusters,705

thereby justifying the use of a clustering module as a foundational step in GraphFLEx. Since cluster-706

ing in GraphFLEx is applied only once on a randomly sampled small set of nodes, selecting the right707
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Vanilla

(a) ANN (b) Emp. Cov. (c) KNN (d) L2 model (e) Log model

GraphFlex

(f) ANN (g) Emp Cov. (h) KNN (i) L2 model (j) Log model

Figure 13: This figure compares the structures learned on Zachary’s karate dataset when existing methods are
employed with GraphFlex and when existing methods are used individually. We consider six nodes, denoted in
black, as dynamic nodes.

method can be considered as part of hyperparameter tuning, where these clustering measures can708

guide the optimal choice based on dataset characteristics.709

L.2 Impact of Module Choices on Learned Graph Structure710

This section involves a comparison of the graph structure learned from GraphFlex with existing711

methods. Six nodes were randomly selected and considered as new nodes. Figure 13 visually depicts712

the structures learned using GraphFlex compared to other methods. It is evident from the figure that713

the structure known with GraphFlex closely resembles the original graph structure. Figure 11 shows714

the original structure of Zachary’s karate club network [61]. We assumed six random nodes to be715

dynamic nodes, and the structure learned using GraphFlex compared to existing methods is shown in716

Figure 13.717
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1. Claims719

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s720

contributions and scope?721

Answer: [Yes]722

Justification: Yes, all the claims are reflected in paper. See Section 4 and Appendix.723

Guidelines:724

• The answer NA means that the abstract and introduction do not include the claims made in the725

paper.726

• The abstract and/or introduction should clearly state the claims made, including the contributions727

made in the paper and important assumptions and limitations. A No or NA answer to this728

question will not be perceived well by the reviewers.729

• The claims made should match theoretical and experimental results, and reflect how much the730

results can be expected to generalize to other settings.731

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not732

attained by the paper.733

2. Limitations734

Question: Does the paper discuss the limitations of the work performed by the authors?735

Answer: [Yes]736

Justification: See Section 5.737

Guidelines:738

• The answer NA means that the paper has no limitation while the answer No means that the739

paper has limitations, but those are not discussed in the paper.740

• The authors are encouraged to create a separate "Limitations" section in their paper.741

• The paper should point out any strong assumptions and how robust the results are to violations of742

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,743

asymptotic approximations only holding locally). The authors should reflect on how these744

assumptions might be violated in practice and what the implications would be.745

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested746

on a few datasets or with a few runs. In general, empirical results often depend on implicit747

assumptions, which should be articulated.748

• The authors should reflect on the factors that influence the performance of the approach. For749

example, a facial recognition algorithm may perform poorly when image resolution is low or750

images are taken in low lighting. Or a speech-to-text system might not be used reliably to751

provide closed captions for online lectures because it fails to handle technical jargon.752

• The authors should discuss the computational efficiency of the proposed algorithms and how753

they scale with dataset size.754

• If applicable, the authors should discuss possible limitations of their approach to address755

problems of privacy and fairness.756

• While the authors might fear that complete honesty about limitations might be used by reviewers757

as grounds for rejection, a worse outcome might be that reviewers discover limitations that758

aren’t acknowledged in the paper. The authors should use their best judgment and recognize759

that individual actions in favor of transparency play an important role in developing norms that760

preserve the integrity of the community. Reviewers will be specifically instructed to not penalize761

honesty concerning limitations.762

3. Theory assumptions and proofs763

Question: For each theoretical result, does the paper provide the full set of assumptions and a764

complete (and correct) proof?765

Answer: [Yes]766

Justification: See Appendix.767

Guidelines:768

• The answer NA means that the paper does not include theoretical results.769

• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.770

• All assumptions should be clearly stated or referenced in the statement of any theorems.771

• The proofs can either appear in the main paper or the supplemental material, but if they appear772

in the supplemental material, the authors are encouraged to provide a short proof sketch to773

provide intuition.774

• Inversely, any informal proof provided in the core of the paper should be complemented by775

formal proofs provided in appendix or supplemental material.776
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• Theorems and Lemmas that the proof relies upon should be properly referenced.777

4. Experimental result reproducibility778

Question: Does the paper fully disclose all the information needed to reproduce the main experi-779

mental results of the paper to the extent that it affects the main claims and/or conclusions of the780

paper (regardless of whether the code and data are provided or not)?781

Answer: [Yes]782

Justification: See Section 4 and Appendix.783

Guidelines:784

• The answer NA means that the paper does not include experiments.785

• If the paper includes experiments, a No answer to this question will not be perceived well by the786

reviewers: Making the paper reproducible is important, regardless of whether the code and data787

are provided or not.788

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make789

their results reproducible or verifiable.790

• Depending on the contribution, reproducibility can be accomplished in various ways. For791

example, if the contribution is a novel architecture, describing the architecture fully might792

suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary793

to either make it possible for others to replicate the model with the same dataset, or provide794

access to the model. In general. releasing code and data is often one good way to accomplish795

this, but reproducibility can also be provided via detailed instructions for how to replicate the796

results, access to a hosted model (e.g., in the case of a large language model), releasing of a797

model checkpoint, or other means that are appropriate to the research performed.798

• While NeurIPS does not require releasing code, the conference does require all submissions799

to provide some reasonable avenue for reproducibility, which may depend on the nature of the800

contribution. For example801

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to802

reproduce that algorithm.803

(b) If the contribution is primarily a new model architecture, the paper should describe the804

architecture clearly and fully.805

(c) If the contribution is a new model (e.g., a large language model), then there should either806

be a way to access this model for reproducing the results or a way to reproduce the model807

(e.g., with an open-source dataset or instructions for how to construct the dataset).808

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are809

welcome to describe the particular way they provide for reproducibility. In the case of810

closed-source models, it may be that access to the model is limited in some way (e.g.,811

to registered users), but it should be possible for other researchers to have some path to812

reproducing or verifying the results.813

5. Open access to data and code814

Question: Does the paper provide open access to the data and code, with sufficient instructions to815

faithfully reproduce the main experimental results, as described in supplemental material?816

Answer: [Yes]817

Justification: All datasets used are publicly available. See Abstract for codebase.818

Guidelines:819

• The answer NA means that paper does not include experiments requiring code.820

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/821

guides/CodeSubmissionPolicy) for more details.822

• While we encourage the release of code and data, we understand that this might not be possible,823

so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless824

this is central to the contribution (e.g., for a new open-source benchmark).825

• The instructions should contain the exact command and environment needed to run to reproduce826

the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/827

guides/CodeSubmissionPolicy) for more details.828

• The authors should provide instructions on data access and preparation, including how to access829

the raw data, preprocessed data, intermediate data, and generated data, etc.830

• The authors should provide scripts to reproduce all experimental results for the new proposed831

method and baselines. If only a subset of experiments are reproducible, they should state which832

ones are omitted from the script and why.833

• At submission time, to preserve anonymity, the authors should release anonymized versions (if834

applicable).835
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• Providing as much information as possible in supplemental material (appended to the paper) is836

recommended, but including URLs to data and code is permitted.837
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how they were chosen, type of optimizer, etc.) necessary to understand the results?840
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• It should be clear whether the error bar is the standard deviation or the standard error of the864
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• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably866

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of867

errors is not verified.868
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symmetric error bars that would yield results that are out of range (e.g. negative error rates).870

• If error bars are reported in tables or plots, The authors should explain in the text how they were871

calculated and reference the corresponding figures or tables in the text.872

8. Experiments compute resources873

Question: For each experiment, does the paper provide sufficient information on the computer874

resources (type of compute workers, memory, time of execution) needed to reproduce the experi-875

ments?876

Answer: [Yes]877

Justification: See Appendix.878

Guidelines:879

• The answer NA means that the paper does not include experiments.880

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud881

provider, including relevant memory and storage.882

• The paper should provide the amount of compute required for each of the individual experimental883

runs as well as estimate the total compute.884

• The paper should disclose whether the full research project required more compute than the885

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it886

into the paper).887

9. Code of ethics888

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS889

Code of Ethics https://neurips.cc/public/EthicsGuidelines?890

Answer: [Yes]891

Justification: Research conducted in the paper conform, in every respect, with the NeurIPS Code892

of Ethics.893

Guidelines:894
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.895

• If the authors answer No, they should explain the special circumstances that require a deviation896

from the Code of Ethics.897

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due898

to laws or regulations in their jurisdiction).899

10. Broader impacts900
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impacts of the work performed?902
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• The answer NA means that there is no societal impact of the work performed.906
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12. Licenses for existing assets942

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the943

paper, properly credited and are the license and terms of use explicitly mentioned and properly944

respected?945

Answer: [Yes]946

Justification: Assets are properly credited and publicly available.947

Guidelines:948

• The answer NA means that the paper does not use existing assets.949

• The authors should cite the original paper that produced the code package or dataset.950

• The authors should state which version of the asset is used and, if possible, include a URL.951

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.952

26



• For scraped data from a particular source (e.g., website), the copyright and terms of service of953

that source should be provided.954

• If assets are released, the license, copyright information, and terms of use in the package should955

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for956

some datasets. Their licensing guide can help determine the license of a dataset.957

• For existing datasets that are re-packaged, both the original license and the license of the derived958

asset (if it has changed) should be provided.959

• If this information is not available online, the authors are encouraged to reach out to the asset’s960

creators.961

13. New assets962

Question: Are new assets introduced in the paper well documented and is the documentation963

provided alongside the assets?964

Answer: [NA]965

Justification: The paper does not release new assets.966

Guidelines:967

• The answer NA means that the paper does not release new assets.968

• Researchers should communicate the details of the dataset/code/model as part of their sub-969

missions via structured templates. This includes details about training, license, limitations,970

etc.971

• The paper should discuss whether and how consent was obtained from people whose asset is972

used.973

• At submission time, remember to anonymize your assets (if applicable). You can either create974

an anonymized URL or include an anonymized zip file.975

14. Crowdsourcing and research with human subjects976

Question: For crowdsourcing experiments and research with human subjects, does the paper977

include the full text of instructions given to participants and screenshots, if applicable, as well as978

details about compensation (if any)?979

Answer: [NA]980

Justification: The paper does not involve crowdsourcing nor research with human subjects.981

Guidelines:982

• The answer NA means that the paper does not involve crowdsourcing nor research with human983

subjects.984

• Including this information in the supplemental material is fine, but if the main contribution of985

the paper involves human subjects, then as much detail as possible should be included in the986

main paper.987

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other988

labor should be paid at least the minimum wage in the country of the data collector.989

15. Institutional review board (IRB) approvals or equivalent for research with human subjects990

Question: Does the paper describe potential risks incurred by study participants, whether such991

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals992

(or an equivalent approval/review based on the requirements of your country or institution) were993

obtained?994

Answer: [NA]995

Justification: The paper does not involve crowdsourcing nor research with human subjects.996

Guidelines:997

• The answer NA means that the paper does not involve crowdsourcing nor research with human998

subjects.999

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be1000

required for any human subjects research. If you obtained IRB approval, you should clearly1001

state this in the paper.1002

• We recognize that the procedures for this may vary significantly between institutions and1003

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for1004

their institution.1005

• For initial submissions, do not include any information that would break anonymity (if applica-1006

ble), such as the institution conducting the review.1007

16. Declaration of LLM usage1008

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-1009

standard component of the core methods in this research? Note that if the LLM is used only for1010

27

paperswithcode.com/datasets
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