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Abstract

Graph structure learning is a core problem in graph-based machine learning, es-
sential for uncovering latent relationships and ensuring model interpretability.
However, most existing approaches are ill-suited for large-scale and dynamically
evolving graphs, as they often require complete re-learning of the structure upon
the arrival of new nodes and incur substantial computational and memory costs. In
this work, we propose GraphFLEx—a unified and scalable framework for Graph
Structure Learning in Large and Expanding Graphs. GraphFLEx mitigates the
scalability bottlenecks by restricting edge formation to structurally relevant subsets
of nodes identified through a combination of clustering and coarsening techniques.
This dramatically reduces the search space and enables efficient, incremental graph
updates. The framework supports 48 flexible configurations by integrating di-
verse choices of learning paradigms, coarsening strategies, and clustering methods,
making it adaptable to a wide range of graph settings and learning objectives.
Extensive experiments across 26 diverse datasets and Graph Neural Network archi-
tectures demonstrate that GraphFLEX achieves state-of-the-art performance with
significantly improved scalability. Our implementation is publicly available here.

1 Introduction

Graph representations capture relationships between entities, vital across diverse fields like biology,
finance, sociology, engineering, and operations research [1-4]. While some relationships, such as
social connections or sensor networks, are directly observable, many, including gene regulatory
networks, scene graph generation [5], brain networks, [6] and drug interactions, require inference [7].
Even when available, graph data often contains noise, requiring denoising and recalibration. In such
cases, inferring the correct graph structure becomes more crucial than the specific graph model or
downstream algorithm.

Graph Structure Learning (GSL) offers a solution, enabling the construction and refinement of graph
topologies. GSL has been widely studied in both supervised and unsupervised contexts [§, 9]. In
supervised GSL (s-SGL), the adjacency matrix and Graph Neural Networks (GNNs) are jointly
optimized for a downstream task, such as node classification. Notable examples of s-GSL include
NodeFormer [10], Pro — GNN [11], WSGNN [12], and SLAPS [13]. Unsupervised GSL
(u-SGL), on the other hand, focuses solely on learning the underlying graph structure, typically
through adjacency or Laplacian matrices. Methods in this category include approximate nearest
neighbours (A — N N) [14, 15], k-nearest neighbours (k — NN) [16, 17], covariance estimation
(emp.Cov.) [18], graphical lasso (G Lasso) [19], SUBLIM E [8], and signal processing techniques
like [2-model,log-model and large-model [20, 21].

Supervised structure learning (s-SGL) methods have demonstrated effectiveness in specific tasks;
however, their reliance on labeled data and optimization for downstream objectives—particularly node
classification—significantly constrains their generalizability to settings where annotations are scarce
or unavailable [8]. Unsupervised structure learning (u-SGL) methods, which constitute the focus
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Figure 2: This figure illustrates the general pipeline of GraphFLEX, designed to efficiently handle both a) large
datasets with missing structure and b) expanding graphs. Both scenarios can be modeled as expanding graphs
(details in Section 3.1). GraphFLEX processes a graph (G;) and incoming nodes (€:+41) at time ¢, newly arriving
nodes are shown with different timestamps and shades of blue to indicate their arrival time. Our framework
comprises of three main components: i) Clustering, which infers £;1 nodes to existing communities using a
pre-trained model M.y« (Go) into smaller, more manageable communities; ii) Since these communities may
still be large, a Coarsening, module is applied to further reduce their size while preserving essential structural
information; and iii) Finally, a Learning module, where the structure associated with &1 nodes are learned
using the coarsened graph, followed by projecting this structure onto the G, graph to create graph G 1.

of this work, offer broader applicability. Nevertheless, both s-SGL and u-SGL approaches exhibit
critical limitations in their ability to scale to large graphs or adapt efficiently to expanding datasets.
To address these challenges, we introduce GraphFLEX, a
unified and scalable framework for Graph Structure Learn-
ing in Large and Expanding Graphs. GraphFLEX is built
upon the coordinated integration of three foundational
paradigms in graph processing: graph clustering, graph
coarsening, and structure learning. While each of these
methodologies has been studied extensively in isolation,
their joint application within a single framework has R N T
remained largely unexplored. The novelty of GraphFLEx
lies not merely in combining these components, but in
the principled manner in which they are algorithmically Figure 1: High computational time required
aligned to reinforce one another—clustering serves to to learn graph structures using existing meth-
localize the search space, coarsening reduces structural ods, lee:,eas ?raphl?l;Ex Effe?tlvely co{%tmls
redundancy while preserving global properties, and ¢°mputational growtn, achieving near-inear
structure leyarning opI;rates eff%cigntly wil?hil? this refined  S¢ability- NOt?bly’ Vanilla KNN failed to
L. . construct graph structures for more than 10K
context. This integration enables GraphFLEx to sca?e nodes due to memory limitations.
effectively to large datasets and accommodate dynamic
graphs through incremental updates, eliminating the need for expensive re-training. Additionally,
the framework supports 48 modular configurations, enabling broad adaptability across datasets,
learning objectives, and deployment constraints. Crucially, we establish theoretical guarantees
on edge recovery fidelity and computational complexity, offering rigorous foundations for the
framework’s efficiency and reliability. As illustrated in Figure 2, GraphFLEXx significantly reduces
the candidate edge space by operating on structurally relevant node subsets. Empirical evaluations,
summarized in Figure 1, demonstrate that GraphFLEx substantially outperforms existing baselines in
both runtime and scalability.
Key contributions of this work include:

Time in Seconds
Time in Seconds

(a) GraphFLEx (b) Vanilla

* GraphFLEX unifies multiple structure learning strategies within a single flexible framework.

* GraphFLEx demonstrates effectiveness in handling growing graphs.

* GraphFLEx enhances the scalability of graph structure learning on large-scale graphs.

» GraphFLEX serves as a comprehensive framework applicable individually for clustering, coarsening,
and learning tasks.
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* We provide both empirical and theoretical results, demonstrating the effectiveness of GraphFLEx
across a range of datasets.

2 Problem Formulation and Background

A graph G is represented using G(V, A, X) where V = {v1,vq...ux} is the set of N nodes, each
node v; has a d—dimensional feature vector z; in X € RV*4 and A € RV*¥ is adjacency matrix
representing connection between i*" and ;" nodes when entry Ai; > 0. An expanding graph
&g can be considered a variant of graph G where nodes v now have an associated timestamp 7.
We can represent a expanding graph as a sequence of graphs, i.e., & = {Go,G1,...Gr} where
{Go C Gy.... C Gr}atT € {0,...T} timestamps. New nodes arriving at different timestamps are
seamlessly integrating into initial graph Gy.

Problem statement. Given a partially known or missing graph structure, our goal is to incrementally
learn the whole graph, i.e., learn adjacency or laplacian matrix. Specifically, we consider two
unsupervised GSL tasks:

Goal 1. Large Datasets with Missing Graph Structure: In this setting, the graph structure is entirely
unavailable, and existing methods are computationally infeasible for learning the whole graph in a
single step. To address this issue, we first randomly partition the dataset into exclusive subsets. We
then learn the initial graph Go(Vy, Xo) over a small subset of nodes and incrementally expand it by
integrating additional partitions, ultimately reconstructing the full graph Gr.

Goal 2. Partially Available Graph: In this case, we only have access to the graph G; at timestamp
t, with new nodes arriving over time. The goal is to update the graph incrementally to obtain Gr,
without re-learning it from scratch at each timestamp.

GraphFlex addresses these challenges with a unified framework, outlined in Section 3. Before delving
into the framework, we review some key concepts.

2.1 Graph Reduction

Graph reduction encompasses sparsification, clustering, coarsening, and condensation [22]. Graph-
Flex employs clustering and coarsening to refine the set of relevant nodes for potential connections.
Graph Clustering. Graphs often exhibit global heterogeneity with localized homogeneity, making
them well-suited for clustering [23]. Clusters capture higher-order structures, aiding graph learning.
Methods like DMoN [24] use GNNs for soft cluster assignments, while Spectral Clustering (SC) [25]
and K-means [16, 26] efficiently detect communities. DiffPool [27, 28] applies SC for pooling in
GNNG.

Graph Coarsening. Graph Coarsemng (GC) reduces a graph G(V, E, X ) with NV nodes and features

X € RV¥*4 into a smaller graph QC(V E, X) with n < N nodes and X € R"*4. This is achieved
via learning a coarsening matrix P &€ R"X , mapping similar nodes in G to super-nodes in G,

ensuring X = PX while preserving key properties [29-32].

2.2 Unsupervised Graph Structure Learning

Unsupervised graph learning spans from simple k-NN weighting [17, 33] to advanced statistical and
graph signal processing (GSP) techniques. Statistical methods, also known as probabilistic graphical
models, assume an underlying graph G governs the joint distribution of data X € RV*4[19, 34, 35].
Some approaches [36] prune elements in the inverse sample covariance matrix s = ﬁX X7 and
sparse inverse covariance estimators, such as Graphical Lasso (GLasso) [19]: maximizeg log det © —
tr(XO) — p||O||1, where O is the inverse covariance matrix. However, these methods struggle with
small sample sizes. Graph Signal Processing (GSP) techniques analyze signals on known graphs,
ensuring properties like smoothness and sparsity. Slgnal smoothness on a graph G is quantified by
the Laplacian quadratic form: Q(L) = x'Lx = 3 Z ~w;j(x(i) — x(j))?. For a set of vectors

X, smoothness is measured using the Dirichlet energy [37]. tr(XT LX). State-of-the-art methods
[20, 21, 38] optimize Dirichlet energy while enforcing sparsity or specific structural constraints.
Table 7 in Appendix D compares various graph learning methods based on their formulations and
time complexities. More recently, SUBLIME [8] learns graph structure in an unsupervised manner by
leveraging self-supervised contrastive learning to align a learnable graph with a dynamically refined
anchor graph derived from the data itself.

Remark 1. Graph Structure Learning (GSL) differs significantly from Continual Learning (CL)
[39—41] and Dynamic Graph Learning (DGL) [42-44], as discussed in Appendix C.
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3 GraphFLEXx

In this section, we introduce GraphFLEX, which has three main modules:

* Graph Clustering. Identifies communities and extracts higher-order structural information,

* Graph Coarsening. Is used to coarsen down the desired community, if the community itself is
large,

* Graph Learning. Learns the graph’s structure using a limited subset of nodes from the clustering
and coarsening modules, enabling scalability.

For pseudocode, see Algorithm | in Appendix G.

3.1 Incremental Graph Learning for Large Datasets

Real-world graph data is continuously expanding. For instance, e-commerce networks accumulate
new clicks and purchases daily [45], while academic networks grow with new researchers and
publications [46]. To manage such growth, we propose incrementally learning the graph structure
over smaller segments.

Given a large dataset £L(V;, X), where V. is the node set and X, represents node features, we
define an expanding dataset setting Le = {EX_,}. Initially, £ is split into: (i) a static dataset
Eo(Vo, Xo) and (ii) an expanding dataset £ = {E,(V;, X,)}1_,. Both Goal I (large datasets with
missing graph structure) and Goal 2 (partially available graphs with incremental updates), discussed
in Section 2, share the common objective of incrementally learning and updating the graph structure
as new data arrives. GraphFLEx handles these by decomposing the problem into two key components:

o Initial Graph G (Vp, Ao, Xo): For Goal 1, where the graph structure is entirely missing,
Eo(Vo, Xo) is used to construct Gy from scratch using structure learning methods (see Section 2.2).
For Goal 2, the initial graph Go(Vp, Ao, Xo) is already available and serves as the starting point for
incremental updates.

+ Expanding Dataset £ = {£,(V,, X,;)}1_,: In both cases, £ consists of incoming nodes and
features arriving over 1" timestamps. These nodes are progressively integrated into the existing
graph, enabling continuous adaptation and growth.

The partition is controlled by a parameter r, which determines the proportion of static nodes:

r= \‘II“;f;ll‘\ . For example, r = 0.2 implies that 20% of V. is treated as static, while the remaining 80%

arrives incrementally over 1" timestamps. In our experiments, we set 7 = 0.5 and T' = 25.

Remark 2. We can learn G, (V;, A, X;) by aggregating &, nodes in G,_1 graph. Our goal is to

learn Gr (Vr, A7, Xr) after T*"-timestamp.

3.2 Detecting Communities

From the static graph Gy, our goal is to learn higher-order structural information, identifying
potential communities to which incoming nodes (V' € V'7) may belong. We train the community
detection/clustering model M., once using Gy, allowing subsequent inference of clusters for
all incoming nodes. While our framework supports spectral and k-means clustering, our primary
focus has been on Graph Neural Network (GNN)-based clustering methods. Specifically, we use
DMoN [24, 47, 48], which maximizes spectral modularity. Modularity [49] measures the divergence
between intra-cluster edges and the expected number. These methods use a GNN layer to compute
the partition matrix C' = softmax(MLP(X, Oyp)) € RYV*E, where K is the number of clusters and
X is the updated feature embedding generated by one or more message-passing layers. To optimize
the C matrix, we minimize the loss function A(C; A) = — 5= Tr(CTBC) + ¥£|%,CT | — 1, which
combines spectral modularity maximization with regularization to prevent trivial solutions, where B
is the modularity matrix [24]. Our static graph Gy and incoming nodes £ follow Assumption 1.
Assumption 1. Based on the well-established homophily principle, which forms the basis of most
graph coarsening and learning methods. We assume that the generated graphs adhere to the Degree-
Corrected Stochastic Block Model (DC-SBM) [50], where intra-class (or intra-community) links
are more likely than inter-class links. DC-SBM, an extension of SBM that accounts for degree
heterogeneity, making it a more flexible and realistic choice for real-world networks.

For more details on DC-SBM, see Appendix A.

Lemma 1. M,y Consistency. We adopt the theoretical framework of [50] for a DC-SBM with
N nodes and k classes. The edge probability matrix is parameterized as Py = pn P, where
P ¢ R¥*F is a symmetric matrix containing the between/within community edge probabilities
and it is independent of N, py = An/N, and Ay is the average degree of the network. Let
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In = [1, U2, - - -, Un]| denote the predicted class labels, and let Cn be the corresponding N x k
one-hot matrix. Let the true class label matrix is Cn, and v is any k X k permutation matrix. Under
the adjacency matrix AN, the global maximum of the objective A A(N)) is denoted as CAYJ”Q, The
consistency of class predictions is defined as:

1. Strong Consistency.
Pn [min”éﬁ;u o= 0} —1 asN — oo,
2. Weak Consistency. !
Ve > 0, Pn {mﬂm%HC’fvu —Cn|% < 5} —las N — oo.

where || - || p is the Frobenius norm. Under the conditions of Theorem 3.1 from [50]:

* The M objective is strongly consistent if Ay / log(N) — oo, and
* It is weakly consistent when Ay — oc.

Remark 3. Structure Learning within Communities. In GraphF' L Ex, we focus on learning the
structure within each community rather than the structure of the entire dataset at once. Strong consis-
tency ensures perfect community recovery, meaning no inter-community edges exist representing
the ideal case. Weak consistency, however, allows for a small fraction (¢) of inter-community edges,
where € is controlled by p,, in P,, = p,, P, influencing graph sparsity.

By Lemma 1| and Assumption 1, stronger consistency leads to more precise structure learning,
whereas weaker consistency permits a limited number of inter-community edges.

3.3 Learning Graph Structure on a Coarse Graph

After training M., We identify communities for incoming nodes, starting with 7 = 1. Once
assigned, we determine significant communities those with at least one incoming node and learn their
connections to the respective community subgraphs. For large datasets, substantial community sizes
may again introduce scalability issues. To mitigate this, we first coarsen the large community graph
into a smaller graph and use it to identify potential connections for incoming nodes. This process
constitutes the second module of GraphFLEX, denoted as M ,;, which employs LSH-based hashing
for graph coarsening. The supernode index for i** node is given as:

H, = maxOccurance { U“ - (W X; + b)J } 1)

where 7 (bin width) controls the coarsened graph size, WV represents random projection matrix, X is
the feature matrix, and b is the bias term. For further details, refer to UGC [32]. After coarsening the
it" community (C;), Meoar(Ci) = {P;, S;} yields a partition matrix P; € RIS 1%l and a set of
coarsened supernodes (S;), as discussed in Section 2.

To identify potential connections for incoming nodes, we define their neighborhood as follows:

Definition 1. The neighborhood of a set of nodes E; is defined as the union of the top k most similar
nodes in C; for each node v € &;, where similarity is measured by the distance function d(v,u). A
node u € C; is considered part of the neighborhood if its distance d(v,u) is among the k smallest
distances for all v’ € C;.

Ni() = |J{u e Ci|d(v,u) < top-kld(v,u') : v’ € Ci]}

vEE;

Goal 3. The neighborhood of incoming nodes Ny, (E;) represents the ideal set of nodes where the
incoming nodes &; are likely to establish connections when the entire community is provided to a
structure learning framework.. A robust coarsening framework must reduce the number of nodes
within each community C; while ensuring that the neighborhood of the incoming nodes is preserved.

3.4 Graph Learning only with Potential Nodes

As we now have a smaller representation of the community, we can employ any graph learning
algorithms discussed in Section 2.2 to learn a graph between coarsened supernodes S; and incoming
nodes (V! € V,). This is the third module of GraphFLEX, i.e., graph learning; we denote it
as Mg;. The number of supernodes in S; is much smaller compared to the original size of the
community, i.e., ||S;|| < ||C;]|; scalability is not an issue now. We learn a small graph first

using M (Si, X2) = GL(V,, AS) where X represents features of new nodes belonging to ;"
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Table 1: Time complexity analysis of GraphFLEx. Here, IV is the number of nodes in the graph, k is the
number of nodes in the static subgraph used for clustering (k < N), and c represents the number of detected
communities. k, denotes the number of nodes at timestamp 7. Finally, « = ||S%|| + [|EZ]| is the sum of
coarsened and incoming nodes in the relevant community at 7 timestamp.

Miust M oar My GraphFLEx
Best (kNN-UGC-ANN) O(k?) 0 (k) O(aloga) O(k* + & + alog )
Worst SC-FGC-GLasso) ~ O(k*) O ((%)°Isi1) 0@ o0+ (%) |ISi] +a?)

community at time 7, G¢ (V,¢, A) representing the graph between supernodes and incoming nodes.
Utilizing the partition matrix P; obtained from M,:, We can precisely determine the set of nodes
associated with each supernode. For every new node V' € V!, we identify the connected supernodes
and subsequently select nodes within those supernodes. This subset of nodes is denoted by wyi, the

sub-graph associated with wy: represented by giq(w\/:) then undergoes an additional round of
graph learning M, (G%_, (ww), X), ultimately providing a clear and accurate connection of new

nodes V! with nodes of G, _1, ultimately updating it to G,. This multi-step approach, characterized
by coarsening, learning on coarsened graphs, and translation to the original graph, ensures scalability.

Theorem 1. Neighborhood Preservation. Let Ni,(E;) denote the neighborhood of incoming nodes
& for the i™ community. With partition matrix P; and M g(S;, X1) = GE(V,E, AS) we identify the
supernodes connected to incoming nodes &; and subsequently select nodes within those supernodes;
this subset of nodes is denoted by wyi. Formally,

wyy = U { U tr ' @)145(0,5) # 0} }

veEE; SES;

Then, with probability T1{.c 4yp(c), it holds that N, (E;) C Wy where

2 c —r2/(202)
p(c Slf—f[lfe ],
(c) o
and ¢ is a set containing all pairwise distance values (¢ = ||v — u||) between every node v € &; and the nodes
u € wys. Here, a ! (s) denotes the set of nodes mapped to supernode s, r is the bin-width hyperparameter of

Mcoar-

Proof. The proof is deferred in Appendix B. O

Remark 4. Theorem 1 establishes that, with a constant probability of success, the neighborhood
of incoming nodes N (&;) can be effectively recovered using the GraphFLEx multistep approach,
which involves coarsening and learning on the coarsened graph, i.e., Ni(&;) C wy:. The set
wyi, estimated by GraphFLEX, identifies potential candidates where incoming nodes are likely to
connect. The probability of failure can be reduced by regulating the average degree of connectivity
in My (S;, X)) = GE(VE, AS). While a fully connected network G¢ ensures all nodes in the
community are candidates, it significantly increases computational costs for large communities.

3.5 GraphFLEx: Multiple SGL Frameworks ( )
Each module in Figure 3 controls a distinct as- 5| UGC | (| Logmodel
pect of the graph. learning.process: clpstering in- Ll ke | | r2mos
fluences community detection, coarsening reduces Kmeans
graph complexity via supernodes, and the learning S 5 LVE | P W
module governs structural inference. Altering any Clustering LVN  |«>—<>| Empirical
of these modules results in a new graph learning IV e | St
method. Currently, we support 48 different graph : M| GLasso
learning configurations, and this number scales ex- 2ikoc R L W

. - .. ge model
ponentially with the addition of new methods to G| Goond |
any module. The number of possible frameworks il
is given by a X 8 X y, where a, 3, and y represent \_____/ —/ —
the number of clustering, coarsening, and learning ~ Graph Clustering Graph Coarsening Graph Learning

methods, respectively. Figure 3: The versatility of GraphFlex in supporting

3.6 Run Time Analysis multiple GSL methods.
GraphFLEx computational time is always bounded by existing approaches, as it operates on a
significantly reduced set of nodes. We evaluate the run-time complexity of GraphFLEx in two
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scenarios: (a) the worst-case scenario, where computationally intensive clustering and coarsening
modules are selected, providing an upper bound on time complexity, and (b) the best-case scenario,
where the most efficient modules are chosen. Table 1 presents a summary of this analysis for both
cases. Due to space limitations, a more comprehensive analysis is provided in Appendix E.

4 Experiments

Tasks and Datasets. To validate GraphFLEX’s utility, we evaluate it across four key dimensions:
(i) computational efficiency, (ii) scalability to large graphs, (iii) quality of learned structures, and
(iv) adaptability to dynamically growing graphs. To validate the characteristics of GraphFLEx, we
conduct extensive experiments on 26 different datasets, including (a) datasets that already have a
complete graph structure (allowing comparison between the learned and the original structure), (b)
datasets with missing graph structures, (c) synthetic datasets, (d) small datasets for visualizing the
graph structure, and (e) large datasets, including datasets with even 2.4 nodes. More details about
datasets and system specifications are presented in Table 8 in Appendix F.

Table 2: Computational time(in seconds) for learning graph structures using GraphFLEx (GFlex) with existing
methods (Vanilla referred to as Van.). The experimental setup involves treating 50% of the data as static, while
the remaining 50% of nodes are treated as incoming nodes arriving in 25 different timestamps. The best times

are highlighted by color . OOM and OOT denote out-of-memory and out-of-time, respectively.
Data ANN KNN log-model 12-model emp-Covar. large-model Sublime
Van. GFlex | Van.  GFlex Van. GFlex Van. GFlex ‘ Van. GFlex | Van. GFlex Van.  GFlex
Cora 335 100 8.4 36.1 869 81.6 424 55 8.6 30 2115 18.4 7187 493
Citeseer 1535 454 21.9 75 1113 64.5 977 54.0 14.7 59.2 8319 43.9 8750 670
DBLP 2731 988 OOM 270 77000 919 ooT 1470 359 343 Oo0T 299 OOM 831
CS 22000 12000 | OOM 789 ooT 838 32000 809 813 718 ooT 1469 OOM 1049
PubMed 770 227 OOM 164 ooT 176 ooT 165 488 299 ooT 262 OOM 914
Phy. 61000 21000 | OOM 903 00T 959 00T 908 2152 1182 | OOT = 2414 | OOM = 2731
Syn 3 95 37 OOM 30 58000 346 859 53 88 59 5416 42 6893 780
Syn 4 482 71 OOM 73 ooT 555 ooT 145 2072 1043 ooT 392 OOM 1896

Table 3: Node classification accuracies on different GNN models using GraphFLEx (GFlex) with existing Vanilla
(Van.) methods. The experimental setup involves treating 70% of the data as static, while the remaining 30% of
nodes are treated as new nodes coming in 25 different timestamps. The best and the second-best accuracies in
each row are highlighted by dark and lighter shades of , respectively. GraphFLEX’s structure beats all of
the vanilla structures for every dataset. OOM and OOT denotes out-of-memory and out-of-time respectively.

Data  Model ANN KNN log-model 12-model COVAR large-model Sublime Base Struct.
Van. GFlex | Van. GFlex | Van. GFlex | Van. GFlex | Van. GFlex | Van. GFlex | Van. GFlex
GAT |34.23 67.37 | OOM 69.83 | OOT | 69.83 | OOT 68.98 | 50.48 68.56 | OOT 66.38 | OOM 68.32 70.84

SAGE | 34.23 69.58 | OOM 70.28 | OOT 70.28 | OOT | 70.68 | 51.47 70.51 | OOT 69.32 | OOM 70.28 72.57
DBLP GceN | 3412 69.41 | OOM | 73.39 | OOT | 73.39 | OOT 73.05 | 51.50 71.75 | OOT 68.55 | OOM 69.06 74.43
GIN | 34.01 69.69 | OOM 68.19 | OOT 68.19 | OOT  73.08 | 52.77 72.03 | OOT 71.18 | OOM 71.87 73.92

GAT | 1247 60.89 | OOM 61.09 | OOT 60.95 | 18.64 61.06 | 58.96 88.06 | OOT 86.22 | OOM 64.21 60.75
SAGE | 12.70 78.81 | OOM 79.43 | OOT 79.06 | 19.24 78.94 | 56.97 93.30 | OOT 92.79 | OOM 78.94 80.33
CS GCN | 12,59 63.81 | OOM 6794 | OOT 69.33 | 19.21 66.01 | 58.35 ' 91.07 | OOT 84.85 | OOM 68.92 67.43
GIN | 13.07 77.62 | OOM 7841 | OOT 78.55 | 1924 77.61 | 5826 92.07 | OOT 86.03 | OOM 77.61 55.65

GAT | 4949 83.71 | OOM | 84.60 | OOT 84.60 | OOT 84.04 | 72.63 83.97 | OOT 81.15 | OOM 82.15 84.04

SAGE | 50.43 87.27 | OOM 87.34 | OOT 87.34 | OOT ' 8742 | 73.57 86.68 | OOT 87.34 | OOM 83.45 88.88

Pub. GCN | 50.45 82.06 | OOM 83.56 | OOT 83.56 | OOT = 83.74 | 73.14 82.39 | OOT 78.03 | OOM 70.94 85.54
GIN | 51.82 83.13 | OOM  84.31 | OOT 84.07 | OOT 8293 | 73.15 83.51 | OOT 82.85 | OOM 80.72 86.50

GAT |29.18 88.06 | OOM 88.47 | OOT 88.47 | OOT @ 88.68 | 58.96 88.06 | OOT 86.22 | OOM 86.12 88.58
SAGE | 29.57 93.47 | OOM 93.47 | OOT 93.47 | OOT 93.78 | 56.97 93.60 | OOT 92.79 | OOM 89.58 94.19
Phy. GCN | 27.84  91.27 | OOM  91.08 | OOT 91.08 | OOT = 91.78 | 58.35 91.07 | OOT 84.85 | OOM 88.46 91.48
GIN | 28.38 | 92.69 | OOM 92.04 | OOT 92.04 | OOT 9227 | 58.26 92.07 | OOT 86.03 | OOM 87.20 88.89

4.1 Computational Efficiency.

Existing methods like k-NN and log-model struggle to learn graph structures even for 20k nodes due
to out-of-memory (OOM) or out-of-time (OOT) issues, while [2-model and large-model struggle
beyond 50k nodes. Although A-NN and emp-Covar. are faster, GraphFLEx outperforms them on
sufficiently large graphs (Table 2). While traditional methods may be efficient for small graphs,
GraphFLEXx scales significantly better, excelling on large datasets like Pubmed and Syn 5, where most
methods fail. It accelerates structure learning, making A-NN 3x faster and emp-Covar. 2x faster.

4.2 Node Classification Accuracy
Experimental Setup. We now evaluate the prediction performance of GNN models when trained on
graph structures learned from three distinct scenarios: 1) Original Structure: GNN models trained
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on the original graph structure, which we refer to as the Base Structure, 2) GraphFLEXx Structure:
GNN models trained on the graph structure learned from GraphFLEX, and 3)Vanilla Structure:
GNN models trained on the graph structure learned from other existing methods.

For each scenario, a unique graph structure is obtained. We trained GNN models on each of these
three structure. For more details on GNN model parameters, see Appendix H.

GNN Models. Graph neural networks (GNNs) such as GC'N [51], GraphSage [52], GIN [53], and
G AT [54] rely on accurate message passing, dictated by the graph structure, for effective embedding.
We use these models to evaluate the above-mentioned learned structures. Table 3 reports node
classification performance across all methods. Notably, GraphFLEx outperforms vanilla structures
by a significant margin across all datasets, achieving accuracies close to those obtained with the
original structure. Figure 8 in Appendix H illustrates GraphSage classification results, highlighting
GraphFLEX’s superior performance. For the C'S dataset, GraphFLEx (large-model) and GraphFLEx
(empCovar.-model) even surpass the original structure, demonstrating its ability to preserve key
structural properties while denoising edges, leading to improved accuracy.

4.3 Scalability of GraphFLEx on Large-Scale Graphs.

To comprehensively evaluate GraphFLEX’s scalability to large-scale graphs, we consider four datasets
with a high number of nodes: (a) Flickr(89k nodes) [55], (b) Reddit (233k nodes) [55], (c) Ogbn-arxiv
(169k nodes) [46], and (d) Ogbn-products (2.4M nodes) [56]. As shown in Table 4, GraphFLEx
consistently demonstrates superior scalability across all datasets, outperforming all baseline methods
in runtime. In particular, methods such as log-model, [2-model, and large-model fail to run even on
Flickr, while GraphFLEx successfully scales them on Flickr, Ogbn-arxiv, and Reddit, enabling struc-
ture learning where others cannot. For the most computationally demanding dataset, Ogbn-products,
these methods remain prohibitively expensive even for GraphFLEx. Nonetheless, GraphFLEx ef-
ficiently supports scalable structure learning on Ogbn-products using the Covar, ANN, and KNN
modules. Table 4 also reports node classification accuracy, demonstrating that GraphFLEx maintains
performance comparable to the original (base) structure across all datasets. These results confirm that
GraphFLEx not only scales effectively, but also preserves the quality of learned structures.

Table 4: Runtime (sec) and Node Classification Accuracy (%) across large datasets. Each cell shows: Time /
Accuracy. Van = Vanilla, GFlex = GraphFLEx. OOM = Out of Memory, OOT = Out of Time.

Method ogbn-arxiv (60.13) ogbn-products (73.72) Flickr (44.92) Reddit (94.15)
Van. GFlex Van. GFlex Van. GFlex Van. GFlex

Covar OOM | - 3.7k 160.26 | OOM |- 83.1k168.23 | 2.3k44.65 682 144.34 OOM | - 6.6k 194.13
ANN 7.8k 160.14  4.8k160.22 | OOM |- 89.3k167.91 | 2.5k 144.09 705 144.92 12.6k 194.14 6.1k 194.18
knn 8.3k160.09 6.1k160.23 | OOM |- 91.8k168.47 | 2.7k 143.95 920 144.73 15.6k194.14 6.9k 194.15
12 OOT | - 9.1k 158.39 OOT | - OO0T | - 93.3k 14490 1.2k 144.32 OO0T | - 5.1193.47
log OOT | - 45.6k158.72 | OOT |- OOT | - OOT | - 18.7k 1 44.59 OOT | - 60.3k 194.13
large OOT | - 5.6k160.20 | OOT |- OOT | - OOT | - 2.2k 144.45 OOT | - 9.3k 193.71

4.4 GraphFLEXx for Link Prediction and Graph Classification.

To further validate the generalization of our framework, we evaluate GraphFLEX on the link prediction
task. The results are presented in Table 5, following the same setting as Table 3. The structure learned
by GraphFLEx demonstrates strong predictive performance, in some cases even outperforming the
base structure. This highlights the effectiveness of GraphFLEXx in preserving and even enhancing
relational information relevant for link prediction. While our primary focus is on structure learning

Table 5: Link predication accuracy (%) across different datasets. The best and the second-best accuracies in
each row are highlighted by dark and lighter shades of , respectively.

Data ANN KNN log-model 12-model COVAR large-model | Base Struct.
Van. GFlex | Van. GFlex | Van. GFlex | Van. GFlex | Van. GFlex | Van. GFlex

DBLP | 96.57 96.61 | OOM 9423 | OOT 97.59 | OOT | 97.59 | 97.22 97.59 | OOT 96.24 95.13
Citeseer | 80.12 96.32 | 85.17 96.24 | 80.48 96.24 | 80.48 | 96.48 | 82.05 96.24 | 8450 94.38 90.78
Cora 84.47 9530 | 7923 95.14 | 90.63 = 9545 | 90.81 95.14 | 86.05 95.30 | 90.63 94.67 89.53
Pubmed | 9424 9691 | OOM | 97.42 | OOT ' 97.42 | OOT 9737 | 9489 94.64 | OOT 94.41 94.64
CS 9421 95.73 | OOM | 96.02 | OOT 93.17 | OOT 93.17 | 93.52 9231 | OOT 95.73 95.00
Physics | 95.77 91.34 | OOM 94.63 | OOT 90.79 | OOT 94.63 | 92.03 90.79 | OOT 9297 93.96

for node-level tasks, we briefly discuss the applicability of GraphFLEx to graph classification. In
such tasks, especially in domains like molecule or drug discovery, each data point often corresponds
to a small individual subgraph. For these cases, applying clustering and coarsening is typically
redundant and may introduce unnecessary computational overhead. Nevertheless, GraphFLEx
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Figure 4: Figures (a), (b), and (c) illustrate the growing structure learned using GraphFLEx for HE synthetic
dataset. Figures (d), (e), and (f) illustrate the learned structure on Zachary’s karate dataset when existing methods
are employed with GraphFLEx. New nodes are denoted using black color.

remains flexible—its learning module can be directly used without the clustering or coarsening steps,
making it suitable for graph classification as well. This adaptability reinforces GraphFLEx’s utility
across a broad range of graph learning tasks.

4.5 Clustering Quality

We measure three metrics to evaluate the re- Table 6: Clustering (NMI, C, Q) and node classification
sulting clusters or community assignments: a) accuracy using GCN, GraphSAGE, GIN, and GAT.
Normalized Mutual Information (NMI) [24]
between the cluster assignments and original la-
bels; b) Conductance (C) [57] which measures Bar. M. | 0.716 | 0.057 | 0.741 | 91.2 | 962 | 95.1 | 94.9
the fraction of total edge volume that points out- IS\ZE:; 8'24712 8'322 8'33‘6‘ 3(1)'8 gg'z Zf/‘% Zé.z
side the cluster; and ¢) Modularity (Q) [49] gy | 0674 | 0078 | 0749 | 953 | 964 | 972 | 958
which measures the divergence between the Xin | 0.741 | 0.045 | 0.544 | 98.6 | 99.3 | 989 | 99.8
intra-community edges and the expected one. MNIST | 0.677 | 0.082 | 0.712 | 929 | 945 | 94.9 | 82.6
Table 6 illustrates these metrics for single-cell

RNA and the MNIST dataset (where the whole structure is missing), and Figure 12 in Appendix K
shows the PHATE [58] visualization of clusters learned using GraphFLEX’s clustering module
M iust- We also train the aforementioned GNN models for the node classification task in order to
illustrate the efficacy of the learned structures; the accuracy values presented in Table 6, clearly
highlight the significance of the learned structures, as reflected by the high accuracy values.

Data |[NMI| C | Q |GCN|SAGE | GIN | GAT

4.6 Structure Visualization

We evaluate the structures generated by Graph- NS .
FLEx through visualizations on four small N i /
datasets: (i) MNIST [59], consisting of hand- W<_ﬁ ‘ng;;)
written digit images, where Figure 5(a) shows ) //Q /

that images of the same digit are mostly con-
nected; (ii) Pre-trained GloVe embeddings [60]
of English words, with Figure 5(b) revealing that
frequently used words are closely connected; Figure 5: Effectiveness of our framework in learning
(i) A synthetic H.FE dataset (see Appendix F), strucFure between similar MNIST digits and GloVe em-
demonstrating GraphFLEX’s ability to handle beddings.

expanding networks without requiring full relearning. Figure 4(a-c) shows the graph structure evolv-
ing as 30 new nodes are added over three timestamps; and (iv) Zachary’s karate club network [61],
which highlights GraphFLEx’s multi-framework capability. Figure 4(d-f) shows three distinct graph
structures after altering the learning module. For a comprehensive ablation study, refer to Appendix L.

S Conclusion

Large or expanding graphs challenge the best of graph learning approaches. GraphFLEXx, introduced
in this paper, seamlessly adds new nodes into an existing graph structure. It offers diverse methods for
acquiring the graph’s structure. GraphFLEX consists of three key modules: Clustering, Coarsening,
and Learning which empowers GraphFLEx to serves as a comprehensive framework applicable
individually for clustering, coarsening, and learning tasks. Empirically, GraphFLEx outperforms
state-of-the-art baselines, achieving up to 3x speedup while preserving structural quality. It achieves
accuracies close to training on the original graph, in most instances. The performance across multiple
real and synthetic datasets affirms the utility and efficacy of GraphFLEXx for graph structure learning.
Limitations and Future Work. GraphFLEx is designed assuming minimal inter-community connec-
tivity, which aligns well with many real-world scenarios. However, its applicability to heterophilic
graphs may require further adaptation. Future work will focus on extending the framework to
supervised GSL methods and heterophilic graphs, broadening its scalability and versatility.
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Appendix

A Degree-Corrected Stochastic Block Model(DC-SBM)

The DC-SBM is one of the most commonly used models for networks with communities and
postulates that, given node labels ¢ = ¢y, ...c,, the edge variables A’ ; are generated via the formula

E[A”] = HlGJPCZ ch

, where 6; is a "degree parameter" associated with node 4, reflecting its individual propernsity to
form ties, and P is a K x K symmetric matrix containing the between/withincommunity edge
probabilities and P, PP.; denotes the edge probabilities between community ¢; and c¢;.

For DC-SBM model [50] assumed P,, on n nodes with k classes, each node v; is given a label/degree
pair(c;, 0;), drawn from a discrete joint distribution I y,,, which is fixed and does not depend on n.
This implies that each 6; is one of a fixed set of values 0 < x; < .... < x,,. To facilitate analysis of
asymptotic graph sparsity, we parameterize the edge probability matrix P as P,, = p, P where P is
independent of n, and p,, = A,,/n where \,, is the average degree of the network.

B Neighbourhood Preservation

Theorem 2. Neighborhood Preservation. Let Ny, (E;) denote the neighborhood of incoming nodes
& for the i™ community. With partition matrix P; and My (S;, X1) = GE(V,E, AC) we identify the
supernodes connected to incoming nodes E; and subsequently select nodes within those supernodes;
this subset of nodes is denoted by wy.i. Formally,

wvy = U { U ()45 (w,5) # 01}
veEE; SES;
Then, with probability I1{.c 51 p(c), it holds that Ni(&) C wyi where
2 c 77“2/(2(:2)
<1-—°l1-
MOS1-—=Ti-e E

and ¢ is a set containing all pairwise distance values (c = ||v — ul|) between every node v € &; and the nodes
U € wyi. Here, 71 (s) denotes the set of nodes mapped to supernode s, r is the bin-width hyperparameter of

Mcoar~

Proof: The probability that LSH random projection [32, 62] preserves the distance between two
nodes v and u i.e., d(u,v) = ¢, is given by:

o= [20() ()
where fo(z) = 2—¢

Ton represents the Gaussian kernel when the projection matrix is randomly

sampled from p-stable(p = 2) distribution [62].
The probability p(c) can be decomposed into two terms:

p(c) = Si(e) — Sa(c),
S1(c) and Sy(c) are defined as follows:

2 T
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Thus, the probability p(c) can be bounded as:

2 C 2 /(902
ple) <1 — —- [1—6_7" /(°)].
V2T

Now, let ¢ be the set of all pairwise distances d(u,v), where v € &; and nodewy . The probability
that all nodes in A (&;) are preserved within wy:, requires that all distances ¢ € ¢ are also preserved.
The probability is then given by:

1.

cEP

[Ir <11 (1 - Zi- erqu) |

cEP cEP

C Continual Learning and Dynamic Graph Learning

In this subsection, we highlight the key distinctions between Graph Structure Learning (GSL) and
related fields to justify our specific selection of related works in Section 2.2. GSL is often confused
with topics such as Continual Learning (CL) and Dynamic Graph Learning (DGL).

CL [39-41] addresses the issue of catastrophic forgetting, where a model’s performance on previously
learned tasks degrades significantly after training on new tasks. In CL, the model has access only to
the current task’s data and cannot utilize data from prior tasks. Conversely, DGL [42—44] focuses
on capturing the evolving structure of graphs and maintaining updated graph representations, with
access to all prior information.

While both CL and DGL aim to enhance model adaptability to dynamic data, GSL is primarily
concerned with generating high-quality graph structures that can be leveraged for downstream tasks
such as node classification [51], link prediction [63], and graph classification [64]. Moreover, in
CL and DGL, different tasks typically involve distinct data distributions, whereas GSL assumes a
consistent data distribution throughout.

D Related Work

Table 7 presents the formulations and associated time complexities of various unsupervised Graph
Structure Learning methods.

Table 7: Unsupervised Graph Structure Learning Methods

Method Time Complexity Formulation

GLasso O(N?) maxe logdet © — tr(£0) — p||O||1

log-model O(N?) minwew |[W o Z|[1,1 — a1 log(W1) + £ |W||%
12-model ON?)  mimwew IW o Zli1 + al W12 + ol W& + 1{W]hs = n}
large-model ~ O(N log(N)) miny,cy |[Wo Z|11 — al” log(W1) + g”WH%

E Run Time Analysis

In the context of clustering module, ¥ — NN is the fastest algorithm, while Spectral Clustering
is the slowest. Suppose we aim to learn the structure of a graph with N nodes. The clustering
module, however, is only applied to a randomly sampled, smaller, static subgraph with k£ nodes, where
k < N. In the worst-case scenario, spectral clustering requires (’)(k:3) time, whereas in the best case,
k — NN requires O(k?) time. For coarsening module, LSH-based coarsening framework [30], has
the best time complexity of O(’%) while FGC denotes the worst case with a time-complexity of

O((£2)2||S2||) where c is the number of communities detected by clustering module My, || S2 ||
is the number of coarsened node in the relevant community at 7 timestamp and k&, denotes number
of nodes at 7 timestamp. For learning module, A — N N is the most efficient algorithm with time
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complexity as O(NlogN), while G'Lasso has the worst computational cost of O(N?). So, the
effective time complexity of GraphFLEx is upper bounded by O(k3 + (’%)2 |SE|| + o) and lower
bounded by O(k? + %= + aloga) where a = ||S%|| + ||€X]|. GraphFLEx’s efficiency in term of
computational time is evident in Figure 1 and further quantified in Table 2.

Out of the three modules of GraphFLEX first module(M ) is trained once, and hence its run time is
always bounded; computational time for second module(M_,:) can also be controlled because some
of the methods either needs training once [65] or have linear time complexity [30]. Consequently,
both the clustering and coarsening modules contribute linearly to the overall time complexity, denoted
as O(N). Thus, the effective time complexity of GraphFLEx is given by O(N + O(M 4(||S;, X1]))).
The overall complexity scales either linearly or sub-linearly, depending on o and the M ; module.
For instance, when M; is A-NN the complexity remains linear, if alog(a) = N, whereas for
GLasso, a linear behavior is observed when o ~ N.

F Datasets

Datasets used in our experiments vary in size, with nodes ranging from 1k to 60k. Table 8 lists
all the datasets we used in our work. We evaluate our proposed framework GraphF'lex on real-
world datasets Cora , Citeseer, Pubmed [66], CS, Physics [67], DBLP [68], all of which include graph
structures. These datasets allow us to compare the learned structures with the originals. Additionally,
we utilize single-cell RNA pancreas datasets [69], including Baron, Muraro, Segerstolpe, and Xin,
where the graph structure is missing. The Baron dataset was downloaded from the Gene Expression
Omnibus (GEO) (accession no. GSE84133). The Muraro dataset was downloaded from GEO
(accession no. GSE85241). The Segerstolpe dataset was accessed from ArrayExpress (accession
no. E-MTAB-5061). The Xin dataset was downloaded from GEO (accession no. GSE81608). We
simulate the expanding graph scenario by splitting the original dataset across different 7 timestamps.
We assumed 50% of the nodes were static, with the remaining nodes arriving as incoming nodes at
different timestamps.

Synthetic datasets: Different data generation techniques validate that our results are generalized to
different settings. Please refer to Table 8 for more details about the number of nodes, edges, features,
and classes, Syn denotes the type of synthetic datasets. Figure 6 shows graphs generated using
different methods. We have employed three different ways to generate synthetic datasets which are
mentioned below:

* PyGSP(PyGsp): We used synthetic graphs created by PyGSP [70] library. PyG-G and PyG-S
denotes grid and sensor graphs from PyGSP.

* Watts—Strogatz’s small world(SW): [71] proposed a generation model that produces graphs with
small-world properties, including short average path lengths and high clustering.

* Heterophily(HE): We propose a method for creating synthetic datasets to explore graph behavior
across a heterophily spectrum by manipulating heterophilic factor «, and classes. « is determined
by dividing the number of edges connecting nodes from different classes by the total number of
edges in the graph.

Visulization Datasets: To evaluate, the learned graph structure, we have also included three datasets:
(i) MNIST [59], consisting of handwritten digit images; (ii) Pre-trained GloVe embeddings [60] of
English words; and (iii) Zachary’s karate club network [61].

Large Datasets: To comprehensively evaluate GraphFLEX’s scalability to large-scale graphs, we
consider four datasets with a high number of nodes: (a) Flickr(89 nodes) [55], (b) Reddit (233k
nodes) [55], (¢) Ogbn-arxiv (169k nodes) [46], and (d) Ogbn-products (2.4M nodes) [56].

System Specifications: All the experiments conducted for this work were performed on an Intel Xeon
W-295 CPU with 64GB of RAM desktop using the Python environment.
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Category Data Nodes Edges  Feat. Class Type

Cora 2,708 5,429 1,433 7 Citation network
Citeseer 3,327 9,104 3,703 6 Citation network
Original DBLP 17,716 52.8k 1,639 4 Research paper
Structure CS 18,333 163.7k 6,805 15  Co-authorship network
Known PubMed 19,717 44.3k 500 3 Citation network
Physics 34,493 2479k 8,415 5 Co-authorship network
Xin 1,449 NA 33,889 4 Human Pancreas
Original Baron Mouse 1,886 NA 14,861 13 Mouse Pancreas
Structure Muraro 2,122 NA 18,915 9 Human Pancreas
Not Known Segerstolpe 2,133 NA 22,757 13 Human Pancreas
Baron Human 8,569 NA 17,499 14 Human Pancreas
Syn 1 2,000 8,800 150 4 SW
Syn 2 5,000 22k 150 4 SW
Syn 3 10,000 44k 150 7 SW
Synthetic Syn 4 50,000 220k 150 7 SW
Syn 5 400 1,520 100 4 PyG-G
Syn 6 2,500 9,800 100 4 PyG-S
Syn7 1,000 9,990 150 4 HE
Syn 8 2,000 40k 150 4 HE
MNIST 60,000 NA 784 10 Images
Visulization Datasets Zachary’s karate 34 156 34 4 Karate club network
Glove 2,000 NA 50 NA GloVe embeddings
Flickr 89,250 899,756 500 7 -
Large dataset Reddit 232965 11.60M 602 41 -

Ogbn-arxiv 169,343  1.16M 128 40 -
Ogbn-products 2,449,029 61.85M 100 47 -

Table 8: Summary of the datasets.

/\/

OINININ )/

(a) PyGSP-Sensor, N = 50, a=3 (b) PyGSP-Grid, N = 80, a=3 (¢) SW,N =50, =3 (d) HE, N =50, a=3

N

Figure 6: This figure illustrates different types of synthetic graphs generated using i)PyGSP, ii) Watts—Strogatz’s
small world(SW), and iii) Heterophily(HE). N denotes the number of nodes, while « denotes the number of

classes.
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G Algorithm

Algorithm 1 GraphFlex: A Unified Structure Learning framework for expanding and Large Scale
Graphs
Input: Graph G(Xo, Ag), expanding nodes set T = {&, (V,, X))},
Parameter: GClust, GCoar, GL <— Clustering, Coarsening and Learning Module
Output: Graph G (X, Ar)
1: Train clustering module train(M .y st, GClust, Gp)
2: for each E;(V;, X;) in & do

3 Cy = infer(Mpyst, Xt), Ct € RN denotes the communities of N; nodes at time .

4: I, = unique(Cy).

5. foreach I} in I; do A

6: G;_, = subgraph(G;_1, I})

7: {Si_ |, Pl 1} = Meoar(Gi_y), Si_, € RF*9 are features of k supernodes, P}, € RF*N:
is the partition matrix.

8: Gel_((Si_q, Al_y) = My (Si_,, X}), Gci_, is the learned graph on super-nodes S;_,
and new node X7.

9: wy + [

10: for z € X} do

11: wj.append(z)

12: n, ={n| Aj_;[n] > 0}

13: wi.append(n,)

14: end for '

15: Gi—1 = update(Gy_1, M 5 (w}))

16:  end for

17: Gi =Gy

18: end for

19: return G (X1, Ar)

H Other GNN models
We used four GNN models, namely GCN, GraphSage, GIN, and GAT. Table 9 contains parameter
details we used to train GraphFlex. We have used these parameters across all methods.

GNN Models

Dynamic Nodes \

Compare
Accuracy

GraphFlex

Figure 7: GNN training pipeline.
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Figure 8: GraphSage accuracies when structure is learned or given with 3 different scenarios(Vanilla, GraphFlex,
Original) across different datasets, highlighting performance with 30% node growth over 25 timestamps.

Figure 7 illustrates the pipeline for training our GNN models. Graph structures were learned using
both existing methods and GraphFlex, and GNN models were subsequently trained on both structures.
Results across all datasets are presented in Table 10 and Table 3.

Table 9: GNN model parameters.

Model Hidden Layers L.R  Decay Epoch
GCN {64,064} 0.003 0.0005 500
GraphSage {64,064} 0.003 0.0005 500
GIN {64,064} 0.003 0.0005 500
GAT {64,64} 0.003 0.0005 500

We randomly split data in 60%, 20%, 20% for training-validation-test. The results for these models
on synthetic datasets are presented in Table 10.

Figure 7 illustrates the pipeline for training our GNN models. Graph structures were learned using
both existing methods and GraphFlex, and GNN models were subsequently trained on both structures.

I Computational Efficiency

Table 11 illustrates the remaining computational time for learning graph structures using GraphFLEx
with existing Vanilla methods on Synthetic datasets. While traditional methods may be efficient for
small graphs, GraphFLEXx scales significantly better, excelling on large datasets like Pubmed and Syn
5, where most methods fail.

J Visualization of Growing graphs

This section helps us visualize the phases of our growing graphs. We have generated a synthetic graph
of 60 nodes using PyGSP-Sensor and HE methods mentioned in Appendix F. We then added 40 new
nodes denoted using black color in these existing graphs at four different timestamps. Figure 9 and
Figure 10 shows the learned graph structure after each timestamp for two different Synthetic graphs.

K Clustering Quality

Figure 12 shows the PHATE [58] visualization of clusters learned using GraphFLEx’s clustering
module M., for 6 single-cell RNA datasets, namely Xin, M NIST, Baron— Human, Muraro,
BaronMouse, and Segerstolpe datasets.
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Table 10: Node classification accuracies on different GNN models using GraphFLEx (GFlex) with existing
Vanilla (Van.) methods. The experimental setup involves treating 70% of the data as static, while the remaining
30% of nodes are treated as new nodes coming in 25 different timestamps. The best and the second-best
accuracies in each row are highlighted by dark and lighter shades of , respectively. GraphFLEX’s structure
beats all of the vanilla structures for every dataset. OOM and OOT denotes out-of-memory and out-of-time
respectively.

Dataset Model ANN KNN log-model 12-model COVAR large-model Base Struc.
Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex

GAT 18.73 73.84 20.96 73.65 16.14 72.36 18.74 73.10 49.72 77.55 14.28 76.43 79.77
SAGE 17.25 77.37 18.00 76.99 19.48 77.40 19.85 75.51 49.35 76.99 14.28 77.55 82.37
Cora GeN 1799 78.11 17.81 77.92 18.55 77.74 20.41 79.22 47.31 80.52 14.28 79.03 84.60
GIN 16.69 76.44 18.74 80.52 17.44 76.25 19.29 76.62 48.79 78.85 14.28 76.06 81.63

GAT 16.51 61.82 25.00 62.27 19.24  64.70 18.18 63.48 20.91 62.73 16.67 62.27 66.42
SAGE 16.66 68.48 16.67 68.64 22.12 69.39 22.42 69.85 22.88 71.52 16.67 69.39 72.57
Citeseer GCN 28.18 60.00 16.67 61.97 20.45 65.45 19.70 64.24 21.06 64.70 16.67 63.18 68.03
GIN 16.66 64.39 16.67 63.94 20.15 59.85 18.64 63.64 22.12 60.30 16.67 61.81 67.38

GAT 29.55 92.07 OOM 90.86 OOT 91.64 OOT 91.64 35.79 92.52 OOT 93.74 89.49
SAGE 26.75 87.89 OOM 91.05 OOT 86.64 OOT 86.64 32.92 90.44 OOT 86.01 90.03
Syn 4 GeN 28.85 0 51.97 OOM 19.58 OOT 18.29 OOT 18.92 33.80 26.60 OOT 36.85 21.43
GIN 28.50 65.61 OOM 31.06 OOT 26.51 OOT 26.56 34.03 46.40 OOT 47.10 29.35

GAT 44.00 86.80 43.60 86.60 30.00 78.75 55.40 92.80 36.20 93.60 31.80 92.80 97.20
SAGE 41.00 93.80 41.40 93.60 33.75 88.75 57.60 94.00 3520 94.80 28.20 95.60 97.40
Syn 6 GCN 43.60 88.80 42.20 87.40 26.25 81.25 55.60 92.40 31.40 94.40 25.20 94.00 99.40
GIN 39.60 89.00 40.40 86.60 21.25 82.50 55.20 91.80 30.00 94.60 30.40 92.00 98.80

GAT 29.55 99.75 33.75 88.75 88.25 99.25 88.25 99.25 26.00 85.50 94.00 96.00 98.50
SAGE 26.75 100.0 32.50 100.0 88.75 99.50 88.75 99.50 26.75 100.0 92.50 ' 100.0 100.0
Syn 8 GeN 2885 98.75 31.75 99.75 88.75 99.00 88.75 99.00 28.50 99.25 95.00 100.0 100.0
GIN 28.50 50.00 30.50 91.00 82.25 91.50 82.25 91.50 27.25 81.75 91.75 92.25 78.25

Table 11: Computational time for learning graph structures using GraphFLEx (GFlex) with existing methods
(Vanilla referred to as Van.). The experimental setup involves treating 50% of the data as static, while the
remaining 50% of nodes are treated as incoming nodes arriving in 25 different timestamps. The best times are
highlighted by color . OOM and OOT denote out-of-memory and out-of-time, respectively.

Data ANN KNN log-model 12-model COVAR large-model
Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex

Synl 194 9.8 2.5 10.5 2418 56.4 372 8.8 3.5 8.3 205 9.4
Syn2 473 16.9 6.6 18.3 14000 144 214 226 203 18.6 1259 164
Syn5 @ 5.1 11.5 0.8 7.3 574 28 1.1 5.8 0.2 4.8 32 53
Syn6 16.6 9.9 2.8 114 1766 96.3 193 101 5.3 8.9 324 9.6
Syn7 10.6 7.4 1.4 8.9 704 852 103 7.9 0.9 6.4 36.5 8.2
Syn8 19.6 = 112 2.5 11.7 2416 457 372~ 17.0 3.4 10.9 204 11.7

(a) Initial graph G (b) =10, G1 (c) =20, G2 (d) a=30,G3 (e) «=40,G4

Figure 9: This figure illustrates the growing structure learned using GraphFlex for dynamic nodes. New nodes
are denoted using black color, and o denotes number of new nodes. PyGsp denotes type synthetic graph.

L Ablation Study

In this section, we present an ablation study to analyze the role of individual modules within
GraphFLEXx and their influence on the final graph structure. Specifically, we focus on two aspects: (i)
the significance of the clustering module, and (ii) the effect of varying module configurations on the
learned graph topology.

20



702
703
704

706
707

N

(a) Initial graph G (b) a=10,G1 (¢) =20, G2 (d) =30, G3 (e) «=40,G4

Figure 10: This figure illustrates the growing structure learned using GraphFlex for dynamic nodes. New nodes
are denoted using black color, and o denotes the number of new nodes. HE denotes the type of synthetic graph.
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Figure 12: PHATE visualization of clusters learnt using GraphFlex clustering module for scRNA-seq datasets.

L.1 Clustering Module Evaluation

To evaluate the effectiveness of the clustering module, we compute standard metrics such as Normal-
ized Mutual Information (NMI), Conductance (C), and Modularity (Q) across various datasets (see
Table 6 in Section 4.5). These metrics collectively validate the quality of the discovered clusters,
thereby justifying the use of a clustering module as a foundational step in GraphFLEX. Since cluster-
ing in GraphFLEKx is applied only once on a randomly sampled small set of nodes, selecting the right
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Figure 13: This figure compares the structures learned on Zachary’s karate dataset when existing methods are
employed with GraphFlex and when existing methods are used individually. We consider six nodes, denoted in
black, as dynamic nodes.

method can be considered as part of hyperparameter tuning, where these clustering measures can
guide the optimal choice based on dataset characteristics.

L.2 TImpact of Module Choices on Learned Graph Structure

This section involves a comparison of the graph structure learned from GraphFlex with existing
methods. Six nodes were randomly selected and considered as new nodes. Figure 13 visually depicts
the structures learned using GraphFlex compared to other methods. It is evident from the figure that
the structure known with GraphFlex closely resembles the original graph structure. Figure 11 shows
the original structure of Zachary’s karate club network [61]. We assumed six random nodes to be
dynamic nodes, and the structure learned using GraphFlex compared to existing methods is shown in
Figure 13.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope?

Answer: [Yes]

Justification: Yes, all the claims are reflected in paper. See Section 4 and Appendix.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

* The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a

complete (and correct) proof?

Answer: [Yes]

Justification: See Appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

» The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.
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* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Section 4 and Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]

Justification: All datasets used are publicly available. See Abstract for codebase.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

» While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).
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* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,

how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: See Section 4 and Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate

information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Section 4 and Appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer

resources (type of compute workers, memory, time of execution) needed to reproduce the experi-

ments?

Answer: [Yes]

Justification: See Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics.

Guidelines:
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11.

12.

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal

impacts of the work performed?

Answer: [NA|

Justification: There is no societal impact of the work performed.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of

data or models that have a high risk for misuse (e.g., pretrained language models, image generators,

or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the

paper, properly credited and are the license and terms of use explicitly mentioned and properly

respected?

Answer: [Yes]

Justification: Assets are properly credited and publicly available.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

16.

For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for

some datasets. Their licensing guide can help determine the license of a dataset.

For existing datasets that are re-packaged, both the original license and the license of the derived

asset (if it has changed) should be provided.

If this information is not available online, the authors are encouraged to reach out to the asset’s

creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation

provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

» At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper

include the full text of instructions given to participants and screenshots, if applicable, as well as

details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the

main paper.

According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other

labor should be paid at least the minimum wage in the country of the data collector.

. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for

their institution.

For initial submissions, do not include any information that would break anonymity (if applica-

ble), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-

standard component of the core methods in this research? Note that if the LLM is used only for
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writing, editing, or formatting purposes and does not impact the core methodology, scientific

rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Declaration is not required as LLM is only used for writing, editing, or formatting

purposes.

Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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