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ABSTRACT

RL-as-inference casts reinforcement learning (RL) as Bayesian inference in a
probabilistic graphical model. While this framework allows efficient variational
approximations, it is known that model-based RL-as-inference learns optimistic
dynamics and risk-seeking policies that can exhibit catastrophic behavior. By
exploiting connections between the variational objective and a well-known risk-
sensitive utility function, we adaptively adjust policy risk based on the environ-
ment dynamics. Our method, β-VMBPO, extends the variational model-based
policy optimization (VMBPO) algorithm to perform dual descent on risk param-
eter β. We provide a thorough theoretical analysis that fills gaps in the theory of
model-based RL-as-inference by establishing a generalization of policy improve-
ment, value iteration, and guarantees on policy determinism. Our experiments
demonstrate that this risk-sensitive approach yields improvements in both tabular
and complex continuous tasks, such as the DeepMind Control Suite.

1 INTRODUCTION

Casting reinforcement learning (RL) as probabilistic inference provides a useful formalism to de-
velop novel RL algorithms in complex and continuous domains (Levine, 2018; Todorov, 2008; Tou-
ssaint, 2009; Kappen et al., 2012; Rawlik et al., 2012). This so-called RL-as-inference framework
facilitates a principled solution to the exploration-exploitation trade-off by adapting the policy to
posterior uncertainty. It also yields flexible models that can incorporate task-knowledge and pro-
vides a rich toolbox for effective inference over quantities of interest (Koller & Friedman, 2009).
These properties are particularly valuable when the agent has to reason about partial observability
and data collection is expensive, making sample efficiency a priority.

A key difference between classical RL and RL-as-inference is the optimization goal. The clas-
sical setting aims to discover a policy that produces trajectories with maximum expected return.
Conversely, RL-as-inference searches to maximize the probability of optimal trajectories. Yet, de-
spite its promise it has been observed that this latter objective can produce unwanted risk-seeking
behaviour in the learned policy (Levine, 2018). This behaviour arises as the agent tends to act op-
timistically by disregarding the likelihood of low-probability transitions in favor of achieving high
potential return.

To address this risk-seeking behaviour two variational approaches dominate the field of RL-as-
inference. The first approach removes the notion of control on the variational dynamics, resulting
in model-free algorithms — methods that learn direct mappings from states to actions using only
samples. This approach, known as maximum entropy RL (MaxEnt RL), constrains the variational ap-
proximation of posterior dynamics, resulting in loose bounds on the learning objective (Ziebart et al.,
2008; Haarnoja et al., 2017; 2018; Fox et al., 2016). The constraint arises from the assumption that
an agent with full control over dynamics will preferentially assume unlikely environment transitions.
The benefit of this model-free approach is that it avoids explicit evaluation of the model dynamics,
but learning can require many environment interactions as a result. Numerous algorithms arise
from this approach including: policy search using expectation maximization (EM) (Dayan & Hin-
ton, 1997; Hachiya et al., 2009; Abdolmaleki et al., 2018b) and variational policy search (Haarnoja
et al., 2017; 2018).

The second approach does not place restrictions on the variational dynamics, allowing more flexi-
ble approximations with tighter bounds on the learning objective. These methods are model-based
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as they learn a predictive model for the posterior dynamics. An example of this approach is the
variational model-based policy optimization (VMBPO) (Chow et al., 2021), which optimizes a vari-
ational bound with an EM-style approach. Another example of this line of work is “Mismatched No
More” (MnM) (Eysenbach et al., 2022), which optimizes a similar objective to VMBPO but modi-
fies its reward function. Although these methods can be sample efficient, the learned dynamics are
optimistic and risk-seeking, often producing policies that don’t generalize to the real environment.

The development of model-based approaches such as VMBPO has stalled due to a lack of study on
the risk-seeking behaviour of learned policies. In this work, we present a comprehensive study of
risk sensitivity in the model-based RL-as-inference framework. As a practical approach we present
β-VMBPO, a generalization of VMBPO that adapts policy risk by modulating the allowable diver-
gence between posterior and prior dynamics during learning. This method comes as the result of
augmenting the log-likelihood presented in Levine (2018) with a hyperparameter β that interpo-
lates between conventional RL and the RL-as-inference objective. We rigorously study the impact
that β has on learning variational dynamics and policies that generalize to the real environment and
propose an automatic tuning method based on Lagrangian optimization. Finally, we compare the
performance of our method against other RL-as-inference algorithms such as VMBPO (Chow et al.,
2021), model-based policy optimization algorithm (MBPO) (Janner et al., 2019), and soft actor critic
(SAC) (Haarnoja et al., 2018). Another reason for the slow pace of development in model-based ap-
proaches has been the lack of implementation availability. To alleviate the issue, we provide the first
open-source implementation of VMBPO and our generalized β-VMBPO at the time of writing.

Finally, we provide a thorough analysis that establishes fundamental theoretical properties of the
risk sensitive RL-as-Inference framework. In particular, we show that the required Bellman operator
is a contraction (Theorem 4.1) and establish a generalization of the policy improvement theorem for
this setting (Theorem 4.2). Based on these results we show that there exists an optimal deterministic
policy (Theorem 4.3). We conclude by connecting our algorithm to the theory by showing that a
deterministic policy is optimal under the β-VMBPO objective (Theorem 4.4).

2 PRELIMINARIES: RL AS PROBABILISTIC INFERENCE

The reinforcement learning framework consists of a Markov decision process (MDP) defined by a
tuple (S, A, p, r). S and A are the state and action spaces, respectively. The transition proba-
bility over the next state st+1 ∈ S given the current state st ∈ S and action at ∈ A is denoted
as p(st+1 | st, at), the initial state distribution as p(s1). A policy π specifies a probability distri-
bution over actions given a current state st. We now define the distribution over trajectory τ =
(s1, a1, s2, a2, ..., sT , aT ) for a sampling policy π as pπ(τ) = p(s1)

∏
t p(st+1 | st, at)π(at | st).

The reward function is given by r(st, at) ∈ R. The standard objective in RL is to find a policy that
maximizes expected return π∗ = argmaxπ Epπ(τ)[

∑T
t=1 r(st, at)]. Solving this control problem

becomes prohibitive in high dimensional and continuous state-action spaces. Formulating the RL
problem as probabilistic inference in a graphical model instead allows the development of a variety
of approximate inference algorithms for control in such settings.

2.1 POLICY OPTIMIZATION VIA PROBABILISTIC INFERENCE

The distribution pπ(τ) defines a generative process over trajectories, but it has no mechanism to
distinguish between preferred trajectories with higher return. We incorporate the reward into the
probabilistic model by introducing a set of binary auxiliary variables Ot ∈ {0, 1} that are indepen-
dently distributed at each time as p(Ot = 1 | st, at) ∝ exp(r(st, at)). The event Ot = 1 can
loosely be interpreted as having acted optimally at time t1. A natural objective is to find the policy
that maximizes the log-probability of generating an "optimal" trajectory:

max
π

log pπ(O1:T ) = max
π

logEpπ(τ)

[
exp

(∑
t

r(st, at)

)]
, (1)

1The optimality interpretation is a loose one stemming from the reward at time t, which increases the
probability of Ot = 1 exponentially. This interpretation has become standard in the RL-as-inference litera-
ture (Levine, 2018).
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Figure 1: Risky arm environment Left: We compute the Soft-Q values as a function of β for an MDP with 2
actions (left and right) and initial state S. Action ’right’ produces no reward and a transition to either state A or
B, with probability 0.9 and 0.1, respectively. State A and B have only one action that produces a deterministic
transition to C and D with rewards -10 and 0, respectively. Action ’left’ has a deterministic transition to L with
reward -5. We illustrate the role of β at modulating risk by observing that for small β RL-as-Inference learns
a risky policy (red region) while for large β it recovers an optimal risk neutral policy (green region). Right:
Similarly, β modulates the resulting posterior transitions for A and B. Small β produces risky dynamics (red
region) while large β recovers the true environment dynamics (green region).

where O1:T is shorthand for Ot = 1 for all times t = 1, . . . , T . This log-marginal likelihood can be
calculated via Bellman-style backup equations,

Vπ(st) = logEπ(at|st)[exp(Qπ(st, at))] (2)

Qπ(st, at) = r(st, at) + logEp(st+1|st,at)[exp(Vπ(st+1))]. (3)

These are known as soft value functions, due to the presence of operators logE[exp(·)]
that act as soft approximations to max(·). The log-marginal likelihood is then given by
log p(O1:T ) = logEp(s1)[exp(Vπ(s1))].

2.2 OPTIMISTIC DYNAMICS AND POLICY RISK

The construction in Sec. 2.1 can exhibit risk-seeking behavior in the learned policy. In fact, the
controller can be shown to optimize a policy under the assumption that dynamics are equal to the
posterior distribution over transitions (Levine, 2018):

p(st+1 | st, at,O1:T ) ∝ p(st+1 | st, at) exp(Vπ(st+1)). (4)

This can be seen as an exponential twisting of the true dynamics by the soft-value functions (Chow
et al., 2021). In stochastic environments the soft-value functions tend to be dominated by the maxi-
mum achievable reward while ignoring the probability of transitions. This reward-seeking behavior
yields overly-optimistic dynamics and risk-seeking policies. Scaling rewards by a constant factor β
modulates this risk through the corresponding soft Bellman backups:

Qπ(st, at) =
r(st, at)

β
+ logEp(st+1|st,at)[exp(Vπ(st+1))]. (5)

The state value function Vπ(st) = logEπ(at|st)[exp(Qπ(st, at))] remains unchanged from Eq. (2)
but is computed on the scaled action-value function. Note that applying a constant scale factor to
rewards does not change the optimal policy in a classic RL setting, where one aims to maximize
expected return. However, the factor β nonlinearly scales terms in the log-marginal of Eq. (5) and
therefore shifts the optimal policy. Fig. 1 illustrates the impact of β on the optimal policy in a
simple risky arm MDP. Optimizing the marginal likelihood in Eq. (1) is equivalent to β = 1 and
results in the agent choosing an optimistic action (right arm). However, for β > 2.5 we recover a
policy that maximizes expected return as in the classic RL setting. We also observe that β modulates
the posterior dynamics (Eq. (4)), as for β > 5 the posterior dynamics start to converge to the real
dynamics.
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3 RISK SENSITIVE VARIATIONAL MODEL-BASED POLICY OPTIMIZATION

The previous section showed that RL-as-inference can lead to risk-seeking policies. This property
also arises in model-based variational methods, where posterior dynamics must be approximated.
In this section, we discuss adaptive risk in this approximate setting and present the β-VMBPO
algorithm for RL under adaptive policy risk. Pseudocode for the algorithm can be found in the
Appendix.

3.1 RISK-ADAPTIVE EVIDENCE LOWER BOUND (ELBO)

In Sec. 2.2 we showed that scaling the rewards by a factor β modulates the policy risk through the
assumed posterior dynamics. The corresponding soft-value functions yield a log-marginal likelihood
for this re-scaled model:

β log pπ(O1:T ;β) = β logEpπ(τ)
[
exp

(∑
t r(st, at)

β

)]
. (6)

We have scaled both sides by a factor β to show that the r.h.s. of Eq. (6) is the well-known risk
sensitive exponentiated utility2 from Safe RL (García & Fernández, 2015). The risk-sensitive log-
marginal lacks a closed-form so we consider a variational approach with the risk-sensitive ELBO:

β log pπ(O1:T ;β) ≥ max
q

Eq(τ)

[∑
t

rt(st, at)

]
− βKL(q(τ) ∥ pπ(τ)). (7)

where q(τ) = p(s1)
∏
t q(st+1 | st, at)q(at | st). From Eq. (7) it is clear how risk-seeking arises as

the expectation is taken w.r.t. the variational distribution, which approaches the posterior dynamics
q(st+1 | st, at) ≈ p(st+1 | st, at,O1:T ). Although the penalty KL(q(τ) ∥ pπ(τ)) discourages large
deviations from the prior, the controller may learn optimistic dynamics that do not reflect those of
the true environment. Observe that Eq. (7) reflects the Lagrangian of the following constrained
optimization,

max
q

Eq(τ)

[∑
t

r(st, at)

]
s.t. KL(q(τ) ∥ pπ(τ)) ≤ ϵ. (8)

The use of ϵ suggests that the allowable divergence should be small, to ensure that the learned policy
is applicable in the real environment. Model-free methods such as soft actor critic (SAC) remove this
penalty and impose the hard constraint that q(st+1 | st, at) = p(st+1 | st, at), namely variational
dynamics equal the true environment dynamics (Haarnoja et al., 2017; 2018; Levine, 2018). With
this constraint model terms cancel in the resulting objective, which is known as MaxEnt RL.

Dual Optimization Our approach allows tighter bounds than MaxEnt RL by learning the allowable
deviation through the β risk parameter. For this we recognize β as a Lagrange multiplier and perform
dual-descent via the loss function:

J(β) = βϵ− βKL(q(st+1 | st, at) ∥ p(st+1 | st, at)). (9)

Observe that the constraint in the primal problem of Eq. (8) suggests optimizing the dual parameter
β w.r.t. the entire trajectory KL(q(τ) ∥ p(τ)). This can lead to high variance for long trajectories. We
instead impose the constraint only on the variational dynamics, which yields more stable learning.
We emphasize that the role of risk parameter β is not to perform Safe RL, but rather is a dual variable
that is adaptively learned with the policy and value functions online.

3.2 DYNAMICS OPTIMIZATION

We model the prior pθ and variational qϕ dynamics using an ensemble of probabilistic neural net-
works such that outputs of each member parameterize a Gaussian. This model has been widely used
in model-based RL for its ability of handling uncertainty that can reduce policy exploitation (Janner
et al., 2019). We also distinguish between samples coming from interactions with the real environ-
ment Denv and samples coming from our variational model Dmodel. We learn the parameters for the
prior dynamics pθ using only samples from the environment by minimizing the cross-entropy loss,

J(θ) = −E(st,at,st+1,rt)∼Denv [log pθ(st+1, rt | st, at)] , (10)

2A related discussion is given in the Appendix of Eysenbach et al. (2022).
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where rt = r(st, at). To learn the parameters for the variational dynamics qϕ, we observe that the
lower bound is tight when the variational dynamics are equal to the posterior dynamics Eq. (4).
Hence, we minimize the forward KL divergence KL(p(st+1 | st, at,O1:T ) ∥ qϕ(st+1 | st, at)),
which simplifies to:

J(ϕ) = −E(st,at,st+1,rt)∼Denv

[
exp

(
1

β
(rt + V ′

ψ(st+1)−Qψ(st, at))
)
log qϕ(st+1 | st, at)

]
,

(11)
In stochastic environments this objective can be risk seeking as it inflates the densities where a tran-
sition to st+1 is unlikely but the target rt+V ′

ψ(st+1) is larger than Qψ(st, at). Conversely, in deter-
ministic environments it exponentially prioritizes learning transitions where the TD error is positive,
which leads to risk-seeking. Our risk parameter β directly modulates this behaviour prioritizing tran-
sitions with high potential without complete blindness to unlikely events. Both Eq. (10) and (11) are
optimized by stochastic gradient descent using samples from the experience buffer Denv.

3.3 ACTOR-CRITIC OPTIMIZATION

We approximate the soft-critics Vψ and Qψ in Eq. (11) using function approximators for an
MDP with variational dynamics qϕ, variational policy qω , and augmented rewards r(st, at) −
β log

qϕ(st+1|st,at)
pθ(st+1|st,at) where we estimate the log term using our two learned dynamics models, pθ

and qϕ. We learn the parameters for the critic Qψ by minimizing the squared TD error:

J(ψ) = E(st,at,st+1,rt)∼Dmodel

[(
Qψ(st, at)− rt − V ′

ψ(st+1) + β log
qϕ(st+1 | st, at)
pθ(st+1 | st, at)

)2
]
,

(12)
which we optimize by stochastic gradient descent using samples from our variational replay buffer
— we produce rollouts from our variational dynamics and policy and store them in a replay buffer
Dmodel — and Vψ(st+1) is implicitly represented by Eat+1∼qω(at+1|st+1)[Q

′
ψ(st+1, at+1)] which we

approximate by sampling from the posterior policy qω .

We model the prior and variational policy using Gaussian distributions with their mean and variance
represented by neural networks, πκ and qω . To learn the parameters for the variational policy qω ,
we observe that the ELBO in Eq. (7) is tight when the variational policy is equal to the posterior
policy, p(at|st, O1:T ) ∝ π(at|st) exp(Q(st, at)). Hence, we minimize the backward KL divergence
KL(qω(at | st) ∥ p(at | st,O1:T )):

J(ω) = Est∼Dmodel

[
Eat∼qω(·|st)

[
log qω(at|st)−Q′

ψ(st, at)− log πκ(at|st)
]]
. (13)

This expectation is taken w.r.t. the variational policy. We use the reparameterization trick to obtain
a lower variance estimator. The prior policy πκ acts as a trust region constraint on the optimization
steps taken by the variational policy. Optimization of the ELBO Eq. (7) w.r.t. the prior policy πκ
only involves the term KL(qω ∥πκ), so the loss function is:

J(κ) = −E(st,at)∼Dmodel [log πκ(at|st)] . (14)

In our implementation, we use the same network architectures to represent, both the prior and pos-
terior policy. Hence, the KL can be minimized by setting the parameters of the network for πκ equal
to those of qω .

4 THEORETICAL ANALYSIS

Model-based algorithms for RL-as-inference lack the fundamental theoretical analysis of classi-
cal methods. We provide a thorough theoretical analysis of our risk-sensitive Bellman operator
beginning with a policy evaluation theorem that shows the Bellman operator is a contraction (The-
orem 4.1). Our policy improvement Theorem 4.2 shows the greedy policy monotonically improves
value function estimates. We then establish a policy iteration theorem showing that repeated appli-
cation of policy evaluation and improvement converges to an optimal deterministic policy (Theo-
rem 4.3). Finally, connecting the theory to our algorithm, we show that the β-VMBPO objective has
an optimum at a pair of policies under the prior and posterior that are deterministic and equivalent
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(Theorem 4.4). All proofs can be found in the Appendix. Our analysis begins with the risk-sensitive
Bellman operator T :

T Q(st, at) =
r(st, at)

β
+ γ logEst+1,at+1∼pπ(·|st,at) [exp(Q(st+1, at+1))] . (15)

Starting with some random function Q0 we iteratively apply this operator, T Qk = Qk+1. Using
the following theorem, we conclude that the operator is a contraction, and repeated application
converges to the true value function.
Theorem 4.1. (Risk Sensitive Policy Evaluation) Let T be the risk sensitive operator w.r.t. some
policy π, T Q(st, at) = r(st,at)

β + γ logEst+1,at+1∼pπ(·|st,at)[exp(Q(st+1, at+1))]. Then T is a
contraction and limk→∞Qk = Qπ .

Once the iterative process has converged we have obtained the action-value functions Qπ . Now we
present the policy improvement step which monotonically produces a better policy π′. We consider
the greedy policy w.r.t. the Qπ . This new policy is guaranteed to be at least as good as π by,
Theorem 4.2. (Risk Sensitive Policy Improvement) Let π be a policy and π′ the greedy policy
w.r.t. the action-value function Qπ , π′(st) = argmaxat Qπ(st, at). Then, Vπ′(st) ≥ Vπ(st) for
all states st ∈ S.

Combining our two results leads to a policy iteration algorithm composed of alternating between
Qπ estimation and policy improvement by it taking the greedy policy w.r.t. Qπ . This process stops
when the greedy policy does not produce an improvement. Moreover, the process converges to a
deterministic policy.
Theorem 4.3. (Risk Sensitive Policy Iteration) Given any initial policy π repeated application of
risk sensitive policy evaluation (Thm. 4.1) and policy improvement (Thm. 4.2) converges to a deter-
ministic optimal policy π∗.

The previous theorem guarantees that there exist a deterministic optimal policy π∗ as we can always
obtain one by producing a policy from any optimal Q∗ function. But we also know that w.r.t. any
policy π the optimal variational policy has the form q(at|st) ∝ π(at|st) exp(Q(st, at)). Therefore,
q(at|st) must be equal to the optimal policy π∗(at|st).
Theorem 4.4. There exist an optimal pair of policies π∗ and q∗ which are equal and deterministic
for the β-VMBPO objective:

argmax
π,q

Eq(τ)
[∑

t r(st, at)

β

]
−KL(q(τ) ∥ pπ(τ))

Related results for a variant of the soft-Q-learning policy evaluation are presented in Fox et al.
(2016) and Haarnoja et al. (2017). While related those results apply in the MaxEnt RL framework
and differ from our more general setting. Given that soft-updates is commonly used to refer to soft-Q
learning policy iteration we distinguish our results with the "Risk Sensitive" nomenclature.

5 RELATED WORK

The duality between optimal control and posterior inference dates back to Kalman (1960). Todorov
(2006) showed that this duality holds for the class of Linearly solvable MDPs. Levine & Koltun
(2013); Levine (2018) showed RL can be formulated as inference with the formulation that we use
in this work, but inference is intractable in general (Todorov, 2008). Variational approximate RL-as-
inference by maximizing a lower bound on the marginal likelihood. Maximum likelihood policies
for the PGM formulation correspond to policies that maximize the exponential utility (Eysenbach
et al., 2022; Noorani & Baras, 2022) — a utility with a long history in the risk-sensitive control
literature (García & Fernández, 2015; Von Neumann & Morgenstern, 1947; Jacobson, 1973; Mi-
hatsch & Neuneier, 2002). This approach simultaneously maximizes expected return and variance,
resulting in risk-seeking policies (Levine, 2018; Depeweg et al., 2018).

Maximum Entropy RL avoids risk-seeking behavior by removing the controller’s ability to modify
the posterior dynamics, resulting in model-free learning and high-entropy policies. This penaliza-
tion of determinism has shown effective in high-dimensional tasks (Ziebart et al., 2008; Haarnoja

6



Under review as a conference paper at ICLR 2024

et al., 2017; 2018). However, stochastic MaxEnt RL policies can lead to undesirable behavior as
established by Fellows et al. (2019). Another example is that of KL-regularized RL where a penalty
is included for policies that diverged from an old policy (Schulman et al., 2015; 2017; Noorani
& Baras, 2021). These problems can also be optimized by EM-like algorithms, which alternate
optimization of the posterior and prior policies (Abdolmaleki et al., 2018b;a).

Our work generalizes VMBPO (Chow et al., 2021) allowing for more flexible variational approx-
imations. All previously-mentioned methods require tuning of a hyperparameter similar to our β
parameter—typically learned through costly repeated training runs. Our β-VMBPO approach is
most similar to the dual optimization in SAC (Haarnoja et al., 2018). However, the β parame-
ter in our present work directly impacts policy risk through the risk-sensitive exponentiated utility
function. The same is not true for SAC, where the hyperparameter serves as a weighting coefficient
controlling policy entropy. Our work is the first to explore the role of β as a risk parameter in model-
based RL-as-inference, propose a mechanism for tuning this parameter simultaneously with agent
learning, and to provide an open-source implementation of VMBPO and our extension β-VMBPO.

6 EXPERIMENTS

The goals of our experiments are threefold: first, to study the impact of risk parameter β on modu-
lating optimism in the posterior dynamics; second, verify robustness of our dual optimization; third,
evaluate performance of β-VMBPO on benchmark reinforcement learning tasks compared to other
model-based and RL-as-inference algorithms. We were unable to obtain source code associated
with the original VMBPO paper Chow et al. (2021). Thus our experiments are based on a reimple-
mentation of VMBPO with every attempt to respect the original algorithm. Our code will be made
available in the supplement and will be open-source with publication.

6.1 RISK IN TABULAR ENVIRONMENTS

We begin with an examination of the gridworld environment presented in Eysenbach et al. (2022).
We modify the original environment to incorporate risk by including a cliff region. Falling into the
cliff incurs a large negative reward and transition to the initial state. The agent can choose from four
actions (up, left, down and right) which can result in a transition to the chosen direction or moving
randomly to one of the four directions with equal probability (See Fig. 2a). We first consider the
posterior dynamics and policies learned for two fixed β values, Fig. 2b and 2c. The dynamics
learned under small β demonstrate an alarming behaviour — transitions almost deterministically
lead toward the goal. Then the posterior policy exploits this belief and chooses to move as close as
possible to the cliff ignoring any chance of falling down. In contrast, the posterior dynamics under
large β obey the prior dynamics which allows the agent to learn a safer policy that reaches the goal.

Now, we test the performance and robustness of our algorithm β-VMBPO. We consider two tabular
algorithms: VMBPO (Chow et al., 2021) which is equivalent to our algorithm for fixed β = 1,
and Q-learning (Watkins & Dayan, 1992). We defer comparison to Mismatch No More (MnM)
(Eysenbach et al., 2022) to the Appendix as negative rewards are a limitation of that method. Our
algorithm outperforms both methods by converging faster to the goal (Fig. 3a). To test robustness,
we initialize β at different values. For all our experiments, our algorithm learns a near-optimal
policy (Fig. 3b) and our risk parameter converges to the same value (Fig. 3c).

6.2 OPTIMISM IN DETERMINISTIC CONTINUOUS ENVIRONMENTS

The use of function approximators can lead to unrealistically optimistic dynamics, even in determin-
istic environments. Note that in non-stochastic environments the KL penalty (Eq. 7) forces posterior
dynamics to equal the true prior dynamics. However, the use of flexible function approximators can
fail to learn realistic dynamics without adapting the β parameter during learning. To demonstrate
this behavior we consider Continuous Mountain Car; a low-dimensional and continuous environ-
ment where a car is positioned randomly over a valley. The car must reach the top of the hill, but is
under powered and so must build momentum. This experiment presents an opportunity to introduce
function approximators into the optimization of β-VMBPO, but keeps the problem simple enough
to study the effects of β over the learning algorithm.
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(a) Dynamics for action ’right’. (b) Behavior β = 0.1. (c) Behavior β = 1000.

Figure 2: Left: In this figure, we show the real dynamics in the grid for the action ’right’ at each state, where
we represent a transition probability between two states as a vectors with its magnitude proportional to the
probability. Middle: Small β leads to variational dynamics that are close to deterministic and ignore the prior
direction of the dynamics. Policies learn under these dynamics ignore the risk of falling off the cliff (red path).
Right: Large β leads to variational dynamics that imitate the real environment. Hence, policies learn under
these dynamics can be optimal (green path).

(a) Stochastic Cliff Performance (b) Beta robustness (c) Beta convergence

Figure 3: Left: We compare the expected return for 5 independent runs for different algorithms. β-VMBPO
outperforms both Q-learning and VMBPO both by learning the task quicker and finding a better return even
after 40000 episodes. Middle: We demonstrate that our algorithm is robust to β initialization. Leading to
high return over the course of learning. Right: We show that β optimization eventually converges to the same
optimal value for the different initialization.

As shown in Fig. 4, optimizing VMBPO can result in a optimistic environment where the agent ig-
nores the constraint of momentum leading to bad policies. We claim that this risk-seeking behaviour
comes as the result of optimizing Eq. (12). Transitions with high positive TD error are exponen-
tiated, forcing the approximator to prioritized them in the loss function. β-VMBPO resolves these
issues by finding some appropiate regularization and re-scaling these TD-error. Hence, the learned
model produces similar trajectories to those from the real environment (Fig. 4).

6.3 HIGH-DIMENSIONAL BENCHMARKS

We compare our method to two RL-as-inference algorithms, SAC (Haarnoja et al., 2018), a model-
free RL algorithm that optimizes a trade-off between return and policy entropy and model-based
VMBPO (Chow et al., 2021), which optimizes a risk-seeking objective (β = 1). This creates a
nice comparison to our method’s risk modulation via β optimization. Finally, we consider a well-
established baseline for model-based RL algorithms, MBPO (Janner et al., 2019), an algorithm that
also learns a maximum likelihood dynamics model. For the latter method, we have modified the
optimization of its dynamics model to a fixed number of iterations (For more implementation details
see the Appendix).

We evaluate these baselines on three high-dimensional continuous tasks from OpenAI gym bench-
mark suite (Hopper, Walker2D, HalfCheetah). For consistency we use the same network archi-
tectures and update schedule across all algorithms including the actor-critic and dynamics model.
Similarly, we have the same schedule to generate model rollouts. We perform five runs of each
algorithm with different random seeds and report average and STDEV every 1k environment steps.
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(a) True Dynamics (b) Optimistic / Risky Dynamics (c) Adaptive Risk Dynamics

Figure 4: Mountain Car Variational Dynamics. We compute an average over trajectories for different learned
dynamics and policies. Left: This figure illustrates the known strategy for this game by using the real dynamics
and a learned policy. The car generates momentum by moving back and forward until it can reach the goal.
Middle: This figure uses an optimistic dynamics learned by VMBPO (β = 1). The agent learns a policy in
which it accelerates directly into the goal. Unfortunately, applying this policy in the real environment will result
in the car getting stuck in the mountain. Right: Finally, we have the dynamics learned by our β-VMBPO. These
dynamics respect the constraints impose by prior dynamics, and thus policies learned under these dynamics can
be transferred into the original environment.
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Figure 5: Training curves of β-VMBPO and other baselines for OpenAI Gym benchmarks. The solid curves
correspond to the mean and shaded regions to the standard deviation over 5 random trials. β-VMBPO out-
performs the other methods in HalfCheetah and Walker2d while performing consistently in the simplest task,
Hopper. We also provide asymptotic SAC performance (dashed line) which requires many more environment
interactions (in the millions) compared to our more sample-efficient methods.

The results show that β-VMBPO outperformed VMBPO across all tasks (Fig. 5). One can attribute
VMBPO’s subpar performance to the degradation of its variational dynamics — the exponential-TD
error in its dynamics objective can result in instabilities towards the end of learning. In contrast, our
method modulates this exponential term resulting in stable learning. β-VMBPO also outperformed
MBPO (Fixed iterations) in both HalfCheetah and Walker2D environments demonstrating that β
modulation can improve learning by prioritizing certain transitions using its variational model. Per-
formance is similar between MBPO (Fixed iterations) and β-VMBPO for Hopper–we hypothesize
that this task is near saturation as evidenced by the asymptotic performance of SAC.

7 CONCLUSION

We provided a comprehensive exploration of risk-ssensitivity in model-based RL-as-inference along
with a practical algorithm, β-VMBPO, that adaptively modulates risk during learning. Our exper-
imental results support our claims that β-VMBPO is effective in learning for a range of tasks and
yields superior sample efficiency to model-free baselines. Most importantly, we show uniform im-
provement over baseline VMBPO when accurately matching the published configuration of that
work. Our theoretical analysis establishes fundamental properties of RL-as-inference learning in the
risk-sensitive regime. We emphasize that our general theoretical results specialize to the standard
RL-as-inference regime when setting β = 1. A limitation of our methodology is that one is required
to tune the constraint parameter ϵ. However, unlike traditional regularization coefficients, ϵ has a
straightforward interpretation of allowable posterior deviation (in nats) and can be more easily tuned.
Furthermore, we find performance less sensitive to this parameter than the alternative of tuning β as
a regularization coefficient. All code for this work will be publicly accessible upon publication.
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APPENDIX

A RISK SENSITIVE POLICY ITERATION PROOFS

Theorem 4.1. (Risk Sensitive Policy Evaluation) Let T be the risk sensitive operator w.r.t. some
policy π, T Q(st, at) = r(st,at)

β + γ logEst+1,at+1∼pπ(·|st,at)[exp(Q(st+1, at+1))]. Then T is a
contraction and limk→∞Qk = Qπ .

Proof. Let Q1 and Q2 be two action value functions. We define ϵ = ||Q1 − Q2||∞ =
max(st,at)∈S×A |Q1(st, at) − Q2(st, at)|. Then for all pairs (st, at) we have that, Q1(st, at) ≤
Q2(st, at) + ϵ. Then,

logEst+1,at+1∼pπ [exp(Q1(st+1, at+1))] ≤ logEst+1,at+1∼pπ [exp(Q2(st+1, at+1) + ϵ)]

= logEst+1,at+1∼pπ [exp(Q2(st+1, at+1))] + ϵ,

where we use the monotonicity of the exp, expectation and log operations. Analogously, we have
that logEπ [exp(Q2(st, at))] ≤ logEπ [exp(Q1(st, at))]+ ϵ. Therefore, ||T Q1−T Q2||∞ ≤ γϵ =
γ||Q1 − Q2||∞. This proof generalizes a result by Haarnoja et al. (2017); Fox et al. (2016) for the
soft-Q learning framework.

Lemma 4.1. (Optimal Risk Sensitive Operator) Let T ∗ be the optimal risk sensitive operator,
T ∗Q(st, at) = r(st,at)

β + γ logEst+1∼p(·|st,at)[maxat+1 exp(Q(st+1, at+1))]. Then T ∗ is a con-
traction.

Proof. The proof follows the same argument as Theorem 4.1, but the expectation over st+1 and
at+1 is replaced by an expectation over st+1 and maximization over at+1. These operations are also
monotonic so the result follows.

Theorem 4.2. (Risk Sensitive Policy Improvement) Let π be a policy and π′ the greedy policy w.r.t.
the action-value function Qπ , π′(st) = argmaxat Qπ(st, at). Then, Vπ′(st) ≥ Vπ(st) for all states
st ∈ S.

Proof. We start by assuming a finite-horizon problem. We prove the improvement by induction. We
consider the base case, Vπ(sT ) ≤ Vπ′(sT ), where sT is the last state on an episode. By definition,
Qπ(sT , aT ) = r(sT , aT ) = Qπ′(sT , aT ) for all actions aT . Now we prove the base,

Vπ(sT ) = logEaT∼π[expQπ(sT , aT )]

≤ max
aT

Qπ(sT , aT )

= logEaT∼π′ [expQπ(sT , aT )]

= logEaT∼π′ [expQπ′(sT , aT )]

= Vπ′(sT ),

where we use the fact that max operator bounds the softmax operator, and the equality,
Qπ(sT , aT ) = Qπ′(sT , aT ). We now demonstrate the induction step — Vπ(st+1) ≤ Vπ′(st+1)
implies Vπ(st) ≤ Vπ′(st). We have that

Qπ(st, at) = r(st, at) + γ logEst+1∼p(·|st,st)[expVπ(st+1)]

≤ r(st, at) + γ logEst+1∼p(·|st,st)[expVπ′(st+1)]

= Qπ′(st, at).

where we use the induction hypothesis. Thus, Qπ(st, at) ≤ Qπ′(st, at) for every actions at. Now
we prove the induction step,

Vπ(st) = logEat∼π[expQπ(st, at)]
≤ max

a
Qπ(st, a)

= logEat∼π′ [expQπ(st, at)]

≤ logEat∼π′ [expQπ′(st, at)]

= Vπ′(st).
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where again we use that max bounds the softmax, and the inequality for Qπ and Qπ′ shown in the
previous statement. This completes our induction, showing that Vπ′(st) ≥ Vπ(st) for every state
st ∈ S.

Theorem 4.3. (Risk Sensitive Policy Iteration) Repeated application of risk sensitive policy eval-
uation and policy improvement to any initial policy π converges to a deterministic optimal policy
π∗.

Proof. Theorem 4.1 demonstrates that repeated application of the backup recovers the action-values
Qπ . Theorem 4.2 demonstrates that the policy improves or remains fixed. Finally, Lemma 4.1
demonstrates that improvement reaches a fixed point at an optimal policy and the result holds. Note
that Theorem 4.2 assumes a finite-horizon, thus the assumption carries to the present result. Exten-
sion to the infinite-horizon setting is being explored.

Theorem 4.4. There exist an optimal pair of policies π∗ and q∗c which are equal and deterministic
for the β-VMBPO objective:

argmax
π,q

Eq(τ)
[∑

t r(st, at)

β

]
−KL(q(τ) ∥ pπ(τ))

Proof. Theorem 4.3 demonstrates that there exist an optimal policy π∗. By applying policy im-
provement to an optimal policy we can always obtain a deterministic optimal policy. On the other
hand, we know that the optimal variational policy is equal to the posterior policy, p(at|st,O1:T ) ∝
π(at|st) exp(Qπ(st, at)) Chow et al. (2021). Therefore, a deterministic optimal policy π∗ has a
determistic optimal variational policy q∗(at|st).

B ADDITIONAL EXPERIMENTS

B.1 TABULAR EXPERIMENTS

In Fig. 3a, we compare the performance of β-VMBPO to other algorithms in a tabular setting. We
compare to VMBPO and Q-learning in the gridworld environment presented in Eysenbach et al.
(2022). We also include Mismatched No More (MnM) Eysenbach et al. (2022), an algorithm that
optimizes the same objective as VMBPO with log-transformed rewards. Particularly, we consider
two different initializations of the Q-values (Fig. 6).

(a) Initialize Q-values with ones. (b) Initialize Q-values with zeroes.

Figure 6: Left: This an optimistic initialization that results in high exploration — the reward is 0.001 for almost
every state and action. Q-learning and β-VMBPO perform the best. We believe this is the result of VMBPO and
MnM optimizing a sub-optimal objective. Right: This initialization is optimistic for MnM — the log-operation
transforms the reward to negative — but pessimistic for the other methods. Q-learning and VMBPO struggle
at learning any good policy, but β modulation combats these effects by scaling its rewards. This permits β-
VMBPO to learn an optimal policy that outperforms MnM’s return.
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B.2 OPEN AI GYM BENCHMARK

In Fig. 7, we compare the performance of β-VMBPO to other algorithms in the environment Ant-v4
from OpenAI Gym benchmarks. Again we observe that β-VMBPO out-performs other baselines in
this environment.
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Figure 7: Training curves of β-VMBPO and other baselines for Ant-v4 from OpenAI Gym benchmarks. The
solid curves correspond to the mean and shaded regions to the standard deviation over 5 random trials.

B.3 ABLATION STUDY

In Fig. 8, we study the robustness of β-VMBPO w.r.t. the initialization and learning rate of β in a
high dimensional task (Hopper-v4). The solid curves correspond to the mean and shaded regions to
the standard deviation over 5 random trials.
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Figure 8: Left: We demonstrate that our algorithm is robust to β initialization (1, 10, 100, 1000). Right: We
demonstrate that our algorithm is robust to different learning rates for β optimization (0.1, 0.01, 0.001, 0.0003).

14



Under review as a conference paper at ICLR 2024

C IMPLEMENTATION DETAILS

C.1 NETWORK ARCHITECTURES

We implement VMBPO on top of Pytorch reimplementations for MBPO and SAC. For MBPO we
use a re-implementation of that algorithm made available by other authors3, which we found to
give good results. Originally, the optimization of the MBPO dynamics architecture stops when the
validation set sees no improvement for five epochs. To reduce computational time, we train the
dynamics model for five epochs and only use the validation set to choose the elite networks. The
variational dynamics uses the same dynamics architecture as MBPO, but an objective augmented
with the exponential TD-error, exp(rt + V (st+1) − Q(st, at)). We clamp the TD-error between
(-4,4) to avoid large gradients and numerical issues. The same actor-critic architecture is kept from
SAC with two major changes: entropy term is removed from the critic optimization and the prior
policy appears on the variational policy objective as regularizer. A hard-update of the prior policy
to the variational policy is done after every actor optimization. Finally, we remove the log-term
from the critic update (Eq. 12) as the variance in this estimator hurts the critic’s convergence. For
β-VMBPO, we found that including the entropy regularizer into its critic helped on the exploration
of the more challenging environments.

C.2 HYPERPARAMETERS

Table 1 lists the hyperparameters used for the OpenAI Gym benchmarks.

Table 1: Hyperparameters for OpenAI Gym benchmark

Schedule details
Environment steps before training 5000 steps
Environment steps per epoch 1000 steps
Model optimization every 250 steps
Number of model rollouts 100,000 rollouts
Rollout length 1 step
Actor-critic updates per environment step 20 updates

Network details
Discount factor 0.99
Soft target update 0.005
Ensemble size 7
Number of elites 5
Experience buffer Denv 1,000,000
Model buffer Dmodel 400,000
Dynamics Network Architecture MLP with 4 hidden layers of size 200
Actor Network Architecture MLP with 2 hidden layers of size 256
Critic Network Architecture MLP with 2 hidden layers of size 256
Network optimizer Adam
Non-linear layers ReLU
Learning rate 0.0003
ϵ constraint 0.1
β initialization 100

C.3 STABLE CRITIC OBJECTIVE FOR β-VMBPO

Optimizing objective (Eq. 7) can result in slower convergence for function approximators. Hence,
we learn value functions w.r.t. a scaled objective resulting in the squared approximation:

E(st,at,st+1,rt)∼Dmodel

[(
rt + V2(st+1)−Q2(st, at)− β log q(st+1|st,at)

p(st+1|st,at)

)2]
. To recover the orig-

3https://github.com/Xingyu-Lin/mbpo_pytorch
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inal value functions, we scale the learned value functions by β: Q1(st, at) = Q2(st,at)
β and

V1(st) =
V2(st)
β .

C.4 SETTING THE KL CONSTRAINT ϵ

For environments with deterministic dynamics, the KL term should be tight at zero. In practice, this
never happens when using function approximators in high-dimensional spaces. We found that using
ϵ = 10 was sufficient for our more simple environments. For more complicated environments, we
clamp β whenever it becomes too large (above 10,000,000).

D PSEUDOCODE OF β-VMBPO

This section contains the pseudocode for our algorithm, β-VMBPO.

Algorithm 1 β-VMBPO

Initialize networks, parameters and replay buffers.
for each epoch do

for each environment step do
at ∼ πκ(·|st) ▷ Sample action from prior policy.
st+1 ∼ p(·|st, at) ▷ Sample next state from environment.
Denv ← Denv ∪ {(st, at, st+1, r(st, at))} ▷ Add tuple to experience buffer.
if model optimization then
{(sit, ait, sit+1, r

i
t)}Ni=1 ∼ Denv ▷ Sample every tuple in experience buffer.

θ ← θ −∇J(θ) ▷ Update prior dynamics pθ.
ϕ← ϕ−∇J(ϕ) ▷ Update variational dynamics qϕ.
for m = 1, 2, ...,M do ▷ Generate rollouts using variational model.

st ∼ Denv ▷ Sample state from experience buffer Denv.
at ∼ qω(·|st) ▷ Sample action using variational policy.
st+1 ∼ qϕ(·|st, at) ▷ Sample next state using variational dynamics.
rt ∼ pθ(·|st, at) ▷ Sample reward using prior model.
Dmodel ← Dmodel ∪ {(st, at, st+1, rt)} ▷ Add tuple to model buffer.

end for
end if
for k = 1, 2, ...,K do
{(sit, ait, sit+1, r

i
t)}Bi=1 ∼ Dmodel ▷ Sample mini-batch from model buffer Dmodel.

ψ ← ψ −∇J(ψ) ▷ Update critic Qψ .
ω ← ω −∇J(ω) ▷ Update variational policy qω .
ψ′ ← τψ + (1− τ)ψ′ ▷ Update target critic Q′

ψ .
κ← ω ▷ Update prior policy πκ.

end for
β ← β −∇J(β) ▷ Update dual variable β.

end for
end for
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