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Abstract
Knowledge Editing (KE) aims to adjust a Large001
Language Model’s (LLM) internal representa-002
tions and parameters to correct inaccuracies003
and improve output consistency without incur-004
ring the computational expense of re-training005
the entire model. However, editing common-006
sense knowledge still faces difficulties, includ-007
ing limited knowledge coverage in existing re-008
sources, the infeasibility of annotating labels009
for an overabundance of commonsense knowl-010
edge, and the strict knowledge formats of cur-011
rent editing methods. In this paper, we address012
these challenges by presenting CONCEPTEDIT,013
a framework that integrates conceptualization014
and instantiation into the KE pipeline for LLMs015
to enhance their commonsense reasoning ca-016
pabilities. CONCEPTEDIT dynamically diag-017
noses implausible commonsense knowledge018
within an LLM using another verifier LLM and019
augments the source knowledge to be edited020
with conceptualization for stronger generaliz-021
ability. Experimental results demonstrate that022
LLMs enhanced with CONCEPTEDIT success-023
fully generate commonsense knowledge with024
improved plausibility compared to other base-025
lines and achieve stronger performance across026
multiple question answering benchmarks.027

1 Introduction028

With the recent advancements in Large Language029

Models (LLMs;OpenAI, 2024b,a; Dubey et al.,030

2024), Knowledge Editing (KE;Zhang et al., 2024;031

Wang et al., 2025) methods have emerged as a032

computationally efficient strategy to correct inac-033

curate responses and update LLMs with timely or034

new knowledge by directly modifying their internal035

weights or representations, without fully re-training036

the entire model. Such methods have been applied037

to various domains, including factual reasoning (Ju038

et al., 2024; Wang et al., 2024a), medical knowl-039

edge (Xu et al., 2024), and commonsense reason-040

ing (Huang et al., 2024), and have proven effective041

in enhancing domain-specific expertise.042

Despite their success, current KE methods face 043

several challenges when applied to commonsense 044

knowledge (Davis and Marcus, 2015). First, ex- 045

isting commonsense knowledge bases (West et al., 046

2023; Fang et al., 2021; Yang et al., 2023) offer 047

only limited coverage of the extensive and diverse 048

information required for robust reasoning. They 049

often focus on isolated facts rather than forming 050

hierarchical structures that enable generalization 051

through editing (Ma et al., 2021b; Wang et al., 052

2024c). Second, the inherently unstructured and 053

wide-ranging nature of commonsense knowledge 054

complicates scaling and curation, making it infea- 055

sible to rely on human annotation alone to cor- 056

rect implausible knowledge in LLMs. Finally, 057

the flexible representation of commonsense knowl- 058

edge—where a single fact may manifest in multiple 059

formats—necessitates editing at the (relation, 060

tail) pair level rather than at individual tokens. 061

To address these issues, we present CONCEPTE- 062

DIT, a novel knowledge editing framework tai- 063

lored for editing commonsense knowledge within 064

LLMs. To handle the vast, potentially unlabeled 065

commonsense knowledge, we employ VERA (Liu 066

et al., 2023), an automated commonsense plausi- 067

bility verifier, which prompts an LLM to generate 068

commonsense knowledge and determines its plau- 069

sibility. For knowledge deemed erroneous and re- 070

quiring edits, we integrate conceptualization and 071

instantiation (Wang et al., 2023b,a) to enrich se- 072

mantic coverage and support more generalizable 073

editing, covering not only the targeted knowledge 074

but also other potentially relevant yet implausible 075

information within the LLM. To ensure flexibility, 076

CONCEPTEDIT adopts an open-ended format for 077

editing, enabling the handling of arbitrary knowl- 078

edge structures rather than focusing solely on tra- 079

ditional (h,r,t) triplets. Experimental results on 080

AbstractATOMIC (He et al., 2024a) demonstrate 081

that LLMs enhanced by CONCEPTEDIT generate 082

commonsense knowledge with improved plausibil- 083
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What effects does the event of 
Alice plays together every day have 

on others?

Others will feel the urge to sneeze 
repeatedly.

Human 
labeling

Ground truth triple in CSKB

PersonX plays together every day,
oEffect,

get to know someone

Traditional Knowledge Editing

PersonX plays together 
every day

Conceptualization & Instantiation

Commonsense Knowledge Base

1. (PersonX plays together every 
day, oEffect, get to know someone)
2. (PersonX plays together every 

day, xIntent, to be amused)
3. (PersonX plays together every 
day, xNeed, to know how to play)

1. (PersonX plays together every day, 
oEffect, get to know someone)

2. (PersonX has fun, xIntent, to be amused)
3. (PersonX engages in enjoyable group 
activities, xNeed, to know how to play)

...

Abstract Commonsense Knowledge Base

PersonX 
has fun

PersonX engages in 
enjoyable group activities

ConceptEdit (Ground truth triple in augmented abstract KB)

VERA

Figure 1: An overview of CONCEPTEDIT, which pipelines conceptualization and instantiation, knowledge editing,
and LLM verification together for automated and scalable knowledge editing over commonsense knowledge.

ity. Further evaluations across five commonsense084

question-answering benchmarks also show perfor-085

mance improvements. We will release our data,086

models, and code publicly upon acceptance.087

2 Related Works088

2.1 Knowledge Editing089

Knowledge editing (Cao et al., 2021) aims to up-090

date an LLM’s internal knowledge without full091

retraining or relying solely on prompt engineer-092

ing, is becoming increasingly crucial. Meng et al.093

(2022) propose ROME, which identifies and up-094

dates factual associations within specific MLP lay-095

ers, achieving precise single-fact edits guided by096

causal mediation analysis. MEMIT (Meng et al.,097

2023) extends ROME’s principles to handle large-098

scale edits simultaneously. By distributing updates099

across multiple layers and parameters, MEMIT effi-100

ciently integrates thousands of facts while maintain-101

ing specificity and fluency. GRACE (Hartvigsen102

et al., 2023), on the other hand, avoids internal103

parameter changes by integrating external dictio-104

naries and adapters as a modular memory source.105

This approach allows flexible, inference-time ac-106

cess to new knowledge, though it may sacrifice107

some internal coherence and interpretability. In108

our work, we build upon these methods to enhance109

editing commonsense knowledge in LLMs.110

2.2 Conceptualization in Commonsense111

Conceptualization abstracts entities or events into112

general concepts, forming abstract commonsense113

knowledge (Murphy, 2004), while instantiation114

grounds these concepts into new instances, intro-115

ducing additional commonsense knowledge. Pre-116

vious work largely focused on entity-level con-117

ceptualization (Durme et al., 2009; Song et al.,118

2011, 2015; Liu et al., 2022; Peng et al., 2022),119

with He et al. (2024b); Wang et al. (2023b,a) pio- 120

neering event-level conceptualization from Word- 121

Net (Miller, 1995) and Probase (Wu et al., 2012). 122

For instantiation, Allaway et al. (2023) introduced 123

a controllable generative framework that automat- 124

ically identifies valid instances. In this work, we 125

leverage the conceptualization distillation frame- 126

work proposed by Wang et al. (2024b) to augment 127

the knowledge being edited, ensuring broader se- 128

mantic coverage and thereby improving the gener- 129

alizability of edited knowledge. 130

3 The CONCEPTEDIT Framework 131

An overview of CONCEPTEDIT is presented in 132

Figure 1. Our framework consists of three main 133

components: (1) automated knowledge verification 134

with VERA (Liu et al., 2023), (2) abstract knowl- 135

edge acquisition via conceptualization and instan- 136

tiation, and (3) LLM knowledge editing. We use 137

the AbstractATOMIC (He et al., 2024a) and CAN- 138

DLE (Wang et al., 2024b) datasets for training and 139

evaluation as two rich sources of abstract knowl- 140

edge with conceptualization and instantiation. The 141

training set of both datasets are used for editing 142

and the testing sets are used for evaluation. 143

3.1 Automated Knowledge Verification 144

Since commonsense knowledge is vast, traditional 145

human-in-the-loop methods for detecting and cor- 146

recting erroneous outputs in LLMs are neither eas- 147

ily scalable nor adaptable. Inspired by recent ad- 148

vances in using LLMs as automated judges (Raina 149

et al., 2024), we propose a fully automated verifi- 150

cation strategy to assess an LLM’s internal com- 151

monsense knowledge. We use VERA (Liu et al., 152

2023), a discriminative LLM trained to score the 153

plausibility of arbitrary commonsense statements, 154

as our evaluation tool. For each triple in the Ab- 155

stractATOMIC (He et al., 2024a) training set, we 156
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prompt the LLM with the head event and request157

it to generate the corresponding relation and tail.158

VERA then evaluates the plausibility of the gener-159

ated knowledge by producing a score in the range160

[0, 1], where values above 0.5 are considered plau-161

sible, and those below 0.5 are deemed implausible.162

By iterating over all triples, this process provides163

both the LLM’s generated responses and VERA’s164

discrimination results, pinpointing which portions165

of the generated knowledge are incorrect. Conse-166

quently, we can identify the exact “areas” within167

the LLM’s internal knowledge that require editing.168

This automated pipeline eliminates the dependence169

on costly human annotations for error detection,170

enabling scalable and efficient improvements of171

the LLM’s commonsense understanding.172

3.2 Conceptualization and Instantiation173

While existing approaches primarily integrate174

decontextualized commonsense knowledge into175

LLMs through KE techniques, we hypothesize that176

capturing the diverse patterns that the same piece177

of knowledge can exhibit under different contexts178

is equally important. To this end, we augment the179

knowledge to be edited by implementing both con-180

ceptualization and instantiation, following Wang181

et al. (2024b). For each triple targeted for edit-182

ing, we first abstract its instances into more general183

concepts by prompting GPT-4o, producing abstract184

knowledge triples (Figure 1). We then instantiate185

these abstract concepts into novel, context-specific186

instances, again using GPT-4o, thereby forming a187

rich knowledge base. This process yields approxi-188

mately 160,000 commonsense knowledge triples,189

substantially improving the semantic coverage and190

contextual adaptability of the edited knowledge.191

3.3 LLM Knowledge Editing192

Finally, we apply knowledge editing to the LLM193

using the enriched knowledge base generated194

through our conceptualization and instantiation pro-195

cesses, correcting errors identified by VERA. To196

accomplish this, we experiment with three estab-197

lished knowledge editing methods: MEMIT (Meng198

et al., 2023), ROME (Meng et al., 2022), and199

GRACE (Hartvigsen et al., 2023). For GRACE,200

which relies on adapters to determine whether201

and how to use an external dictionary, we adopt202

the original deferral mechanism implementation.203

We evaluate our framework with these edit-204

ing methods on four representative LLM back-205

bones: Mistral-7B-Instruct-v0.2(Jiang et al.,206
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Figure 2: Average plausible rate and expert acceptance
rate of LLMs’ generation after CONCEPTEDIT.

2023), Meta-Llama-3-8B-Instruct(Dubey et al., 207

2024), Chatglm2-6b(Zeng et al., 2024), and 208

GPT-J-6B(Wang and Komatsuzaki, 2021). 209

4 Experiments and Analyses 210

In this section, we first evaluate the LLMs after 211

applying CONCEPTEDIT using both expert and 212

automated assessments. We then illustrate their 213

improved performance on downstream tasks and 214

present several ablation studies. 215

4.1 LLMs-After-Editing Evaluation 216

We first evaluate LLMs after editing via two mea- 217

sures. First, we prompt these LLMs with head 218

events in the testing set of AbstractATOMIC and 219

ask it to complete the commonsense knowledge. 220

With the generations on the testing set, we ask 221

VERA to score them again and we calculate the 222

plausible ratio whose scores are above 0.5. Then, 223

we sample a subset of 200 generations and recruit 224

two expert annotators to conduct a manual analyses 225

on the acceptance ratio of the plausible assertions 226

that passed VERA’s filtering. We compare mod- 227

els after being edited with MEMIT, GRACE, and 228

ROME, and set another vanilla group as baseline 229

comparison. As shown in Figure 2, both VERA 230

and human evaluations exhibit consistent trends. 231

For instance, while human raters tend to assign 232

higher scores compared to VERA, their evaluations 233

align directionally, with both methods identifying 234

similar patterns of improvement. When applying 235

MEMIT-based editing, both VERA and human 236

evaluations show notable enhancements over the 237

Vanilla baseline. Similarly, GRACE and ROME 238

edits enhance plausibility scores, with MEMIT and 239

GRACE achieving the highest overall performance. 240

The strong results from expert annotations further 241

validate the reliability of VERA’s judgments, sup- 242

porting the use of VERA in our framework as an 243
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Figure 3: Performance of the best LLM after editing on
five downstream tasks compared to the vanilla baseline.

effective commonsense evaluator to identify im-244

plausible knowledge requiring further editing. This245

approach reduces reliance on manual annotations246

while preserving robust assessment capabilities.247

4.2 Downstream Improvements248

To assess whether enhanced internal commonsense249

reasoning improves downstream task performance,250

we evaluate the edited models on multiple com-251

monsense reasoning benchmarks. Following Ma252

et al. (2021a), we test our framework on the val-253

idation splits of five widely-used commonsense254

QA benchmarks: Abductive NLI (aNLI; Bhagavat-255

ula et al., 2020), CommonsenseQA (CSQA; Tal-256

mor et al., 2019), PhysicalIQA (PIQA; Bisk et al.,257

2020), SocialIQA (SocialIQA; Sap et al., 2019),258

and WinoGrande (WG; Sakaguchi et al., 2021).259

These benchmarks are designed to evaluate a range260

of knowledge types crucial for robust common-261

sense reasoning (Kim et al., 2022; Wang and Song,262

2024).263

We compare the performance of the best LLM264

edited with CONCEPTEDIT against its correspond-265

ing vanilla baseline across all benchmarks, with the266

results visualized in Figure 3. The results show that267

models edited with CONCEPTEDIT achieve signifi-268

cant performance improvements across all bench-269

marks, with particularly notable gains in aNLI and270

SocialIQA. These findings demonstrate the effec-271

tiveness of CONCEPTEDIT in enhancing common-272

sense reasoning capabilities and suggest its poten-273

tial for broader applications in improving LLM274

performance on real-world reasoning tasks.275

4.3 Ablation Study276

Finally, to validate the effect of conceptualization,277

we conducted an ablation study on MEMIT by re-278

moving the conceptualization step and comparing279
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Figure 4: VERA evaluation scores of edited LLMs with
and without integrating conceptualization.

performance. In this setup, we edit LLMs both with 280

and without the integration of conceptualization 281

and instantiation, and evaluate their performance by 282

examining the average VERA scores of the gener- 283

ated outputs on the testing set. The conceptualized 284

variant leveraged enriched commonsense triples 285

generated via abstraction and instantiation prior to 286

the editing process, while the non-conceptualized 287

variant directly applied MEMIT without these pre- 288

processing steps. 289

Figure 4 demonstrates that the conceptual- 290

ized variants consistently outperform their non- 291

conceptualized counterparts, achieving higher plau- 292

sibility and improved downstream task accuracy. 293

These results suggest that the enriched conceptual 294

patterns introduced before editing not only enhance 295

plausibility but also enable the model to generalize 296

commonsense knowledge to more complex reason- 297

ing tasks, ultimately boosting overall performance. 298

5 Conclusions 299

In this paper, we introduce CONCEPTEDIT, a novel 300

knowledge editing framework designed to enhance 301

commonsense reasoning in LLMs by addressing 302

the challenges of limited knowledge coverage, scal- 303

ability, and flexible representation. By integrat- 304

ing automated verification through VERA and se- 305

mantic enrichment via conceptualization and in- 306

stantiation, CONCEPTEDIT enables more effective 307

and generalizable editing of commonsense knowl- 308

edge. Experimental results demonstrate significant 309

improvements in both knowledge plausibility and 310

downstream task performance, validating the effec- 311

tiveness of our approach. We envision that CON- 312

CEPTEDIT will inspire future research on scalable 313

and context-aware knowledge editing, paving the 314

way for LLMs to better handle the complexity and 315

diversity of commonsense reasoning. 316
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Limitations317

Our approach, CONCEPTEDIT, advances LLM318

commonsense reasoning through conceptualization319

and iterative knowledge editing, yet several chal-320

lenges persist. First, editing one piece of knowl-321

edge can cascade through related concepts, creat-322

ing non-linear interactions that are difficult to de-323

tect and manage, especially as the knowledge base324

scales up. Second, iterative updates risk knowl-325

edge drift, where successive edits subtly conflict326

with or overwrite prior facts, emphasizing the need327

for robust frameworks to maintain consistency. Fi-328

nally, the lack of stable ground truth for common-329

sense, which is often context-sensitive and cultur-330

ally variable, complicates standardization. Address-331

ing these challenges will require globally coordi-332

nated editing mechanisms, improved theoretical333

frameworks, and systematic human-in-the-loop val-334

idation to ensure edits align with broader consensus335

and expert judgment.336

Ethics Statement337

In this paper, all datasets and models used are free338

and accessible for research purposes, aligning with339

their intended usage. The expert annotators are340

graduate students with extensive experience in NLP341

and commonsense reasoning research, and they342

voluntarily agreed to participate without compen-343

sation. Therefore, we believe there are no ethical344

concerns associated with our work.345
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