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Abstract

We present the first known system to use robotic ultrasound to accurately map multiple
anatomic structures in the femoral region in 3D and choose a point for vascular needle inser-
tion that is suitable for catheter placement. The maps are presented as three-dimensional
point clouds with points labeled categorically, e.g., veins, arteries, ligaments, etc. The final
point for insertion is presented on a 3D map. We use a multi-class, multi-instance Bayesian
3D Convolutional Neural Network (CNN) to segment and identify the anatomic structures
from 2D time series ultrasound data. The 2D segmented slices are then temporally stacked
and synced with the kinematics of the robot maneuvering the ultrasound probe to create
a 3D point cloud. This 3D point cloud is analyzed based on heuristics from physicians, to
determine an ideal point to puncture with the needle, i.e., solve the needle-insertion plan-
ning problem. In particular, we determine the desired insertion point in either the common
femoral artery or vein. We achieved a Jaccard score J = 0.834 for vessel segmentation
and were able to determine safe insertion points in 46 out of 49 trials. Our system requires
minimal human intervention and is designed to be robust to changes in ultrasound imaging
settings and subject anatomy.

Keywords: Multi-class Segmentation, 3D Reconstruction, Needle Insertion, POCUS AI.

1. Introduction

Percutaneous needle-puncture procedures are used for a wide variety of anatomical targets
within the body and are associated with performing safe and minimally-invasive surgeries.
Common applications include central vascular access for resuscitation, arterial pressure
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Figure 1: Flow diagram of the overall pipeline. The robot system collects ultrasound im-
ages from scanning, sends them to the deep learning model for segmentation,
retrieves the segmentation coordinates from the generated 3D point cloud, and
then outputs suggested locations for needle insertion based on safety standards.

monitoring, dialysis catheter placement as well as rarer, more invasive, endovascular inter-
ventions, Extracorporeal Membrane Oxygenation (ECMO), and Resuscitative Endovascular
Balloon Occlusion (REBOA) (Tsui et al., 2008; Rao et al., 2008). In many of these proce-
dures, placement of a needle in the appropriate location is essential to a positive outcome.

Literature on endovascular intervention supports that percutaneous femoral arterial ac-
cess is associated with serious complications (Criado et al., 1998). Especially with older pa-
tients, complications related to insertion, such as hematomas (2-8%) and pseudoaneurysms
(1-2%), become more common with the growing number of procedures done in the femoral
area (Dudeck et al., 2004). The risks of complications increase further both in high-tempo,
stressful situations and with less experienced clinicians. Furthermore, inaccurate judgement
of mental 3D models or ultrasound images often result in multiple punctures, taking more
time in critical scenarios. Severe medical issues also arise as a result of needle insertion
in other location sites, such as transradial artery and liver access (Snelling et al., 2018).
Automated approaches using robots can reduce these risks significantly (Chen et al., 2020).

Portability is key in emergency medical scenarios. Ultrasound probes are small, cost-
effective, and field-portable, unlike the machines required for imaging techniques such as
Magnetic Resonance Imaging (MRI), Computed Tomography (CT), or X-ray. As a result,
the robot can be easily transported across locations for serving emergency medical purposes.

In this paper, we present a robotic ultrasound imaging pipeline for vascular needle
insertion in the femoral region as a major step towards real-world deployment during medical
emergencies, outlined in Figure 1. The femoral region is preferred as it allows for rapid
administration of medications critical in emergency situations (Castro et al., 2021). A
sample set-up and result is shown in Figure 5 in Appendix B. For further elucidation of
the algorithm’s results, we also generate 3D heatmap visualizations depicting the needle
insertion safety levels, along with uncertainty-based pruning of noisy segmentations. The
robot is able to collect ultrasound images on both smooth and curved surfaces while being
able to segment arteries, veins, ligaments, and nerves simultaneously. This entire pipeline
can be executed with minimal human intervention, decreasing the expertise required to
safely perform a variety of life-saving transcutaneous interventions (England et al., 2020).
As a result, we introduce the following contributions:
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1. A novel pipeline for standardizing an optimally safe location for vascular femoral-
region needle insertion by using a 3D visualization generated from deep learning-based
multi-class segmentations

2. A Bayesian framework for performing multi-class imaging, and 3D anatomic visual-
ization all within a Bayesian framework

2. RELATED WORK

Currently, a wide variety of literature discusses robotic systems for needle insertion tasks
(Cilingiroglu et al., 2011; Jayender et al., 2008; Smistad et al., 2017; Vogt et al., 2016; Oh
et al., 2019; Castro et al., 2021; Chen et al., 2020). We can broadly categorize the approaches
by the imaging modality and anatomical landmark localization method. For the femoral
region, most of the existing works use non-ultrasound based imaging modalities, such as
flouroscopy and X-ray (Cilingiroglu et al., 2011; Jayender et al., 2008), both of which expose
the patient to ionizing radiation. In constrast, ultrasound is safe for continuous imaging
and is also more portable, making it a better choice for our intended use case of emergency
scenarios. Despite its lightweight benefits, ultrasound does have more noise in the images
compared to other modalities. We deal with these characteristics by training a deep learning
model based on the 3D U-Net (Ronneberger et al., 2015; Çiçek et al., 2016), within a
Bayesian framework (Kendall and Gal; Kwon et al.), from various augmented images -
helping it to learn discriminative features from the images.

Other existing works to localize anatomical landmarks rely on conventional methods such
as brute force searches and vessel radii measurements. The non-deep learning methods rely
on either an offline initial setup for registration of an a priori anatomic model to the images,
or a brute force search for the image processing algorithm (Jayender et al., 2008; Smistad
et al., 2017; Vogt et al., 2016; Smistad and Lindseth, 2016; Hadjerci et al., 2014). (Hadjerci
et al., 2014) does a single class segmentation for nerves. (Chen et al., 2020) employs deep
learning-based methods for vessel segmentation in a semi-automatic robotic pipeline using
two near infrared and ultrasound imaging, for phlebotomy in the arm.

Some existing approaches to determine optimal needle insertion locations use geometri-
cal models (Vogt et al., 2016). Other algorithms either don’t take into account the location
of the inguinal ligament or require manual input to obtain anatomical landmarks (Smistad
et al., 2017; Oh et al., 2019; Chen et al., 2020). In prior works that use geometric models,
the optimal insertion site is determined using a single image rather than a 3D visualization
or sequence of frames from the insertion area. For the femoral region, it is critical to have an
anatomical model of the area that considers the physical relationship of the global anatom-
ical landmarks (Castro et al., 2021). Considering the locations of the inguinal ligament and
vessel bifurcation is essential to prevent complications like retroperitoneal hematoma and
hemorrhage (Bangalore and Bhatt, 2011; Burzotta et al., 2019).

The success of the aforementioned approaches lend themselves to the advantages of
automated robotic needle insertion. However, these prior methods have limitations resulting
from the use of multiple imaging modalities, classical segmentation approaches, and global
anatomical landmark choices. These limitations preclude their portable use for real-world
emergencies. Our proposed pipeline overcomes some of these deficiencies by learning to
segment all relevant anatomical landmarks in the femoral region in a way that could be
more universal for other imaging settings or human anatomical variations.
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3. METHODS

3.1. Experimental Setup

We use the Universal Robot UR3e model for ultrasound scanning. A Fukuda Denshi
portable point-of-care ultrasound scanner (POCUS), with a 5-12 MHz 2D transducer is
used for scanning. The data was gathered from a CAE Blue Phantom anthropomorphic
gel model, blue-gel, the left and right sides of a CAE Blue Phantom lower torso ultrasound
training model BPF1500-HP having different anatomical variations, torso-left and torso-
right, and live pigs, live-pig. The IACUC-approved experiments on live pigs were done in a
controlled lab setting under clinician supervision. The deep learning pipeline for multi-class
segmentation was built using TensorFlow (Abadi et al., 2016) and Python. Our optimal
needle insertion location prediction algorithm was implemented in Python, and Robot Op-
erating System (ROS) (Quigley et al.) was used to combine all of the components.

3.2. Multi-Class Segmentation of Arteries, Veins, Ligaments, and Nerves

The deep learning model we use is a Bayesian formulation of the 3D U-Net encoder-decoder
architecture, inspired by (Kendall and Gal; Çiçek et al., 2016). We use a sequence of 8 two-
dimensional ultrasound images as input to the model, where the temporal aspect is treated
as the third dimension. Due to memory limits, the encoder side of the network consists of
four encoder blocks, with each block consisting of 3D convolution, batch normalization, and
ReLU layers as described in (Çiçek et al., 2016). The decoder side of the network consists
of the encoder-paired decoder blocks (Çiçek et al., 2016). We formulate a Bayesian version
(Kendall and Gal) of this 3D U-Net by placing a distribution over its weights with a single
dropout layer at the output of each encoder and decoder block, which we empirically found
to produce the best results. The model then consists of two outputs, one for the predictive
mean, µ̂, and another for the predictive variance, σ̂2, as represented in (Kendall and Gal):

[µ̂, σ̂2] = fŴ (x) (1)

where f is the Bayesian 3D U-Net, in this case, parameterised by model weights Ŵ . The
model is trained using the stochastic cross entropy loss formulated in (Kendall and Gal) that
accounts for aleatoric uncertainty in the data. Epistemic uncertainty maps, which represent
the model uncertainty, are obtained using test-time stochastic forward passes, also referred
to as Monte Carlo dropout (Çiçek et al., 2016):

1

T

T∑
t=1

(µ̂t − µ̄)
⊗

2 (2)

where T is the total number of Monte Carlo samples and µ̄ =
∑T

t=1

µ̂t

T
. Empirical trials

and (Kendall and Gal) both illustrated that computing the logits variance output, σ̂2 was

necessary, in spite of not actively using σ̂2 for computing the aleatoric uncertainty (which
represents statistical uncertainty inherent in the data). We found that epistemic uncertainty
overcompensates if the aleatoric uncertainty is not accounted for separately and we obtain
poor performance.

To further account for variability in ultrasound imaging, data was augmented with
rotations, translations, flipping, mirroring, zooming (in and out), filtering, and blurring
prior to model training.
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Figure 2: Diagram of our Bayesian 3D U-Net
model.

Figure 3: Diagram of ideal femoral arterial
puncture site [15].

For training of the model, we used the Adam optimizer (Kingma and Ba, 2014), a
learning rate value of 1e-4, which is dropped to 5e-5 after 30 epochs, a sequence length of 8
frames, and a batch size of 8. Our image resolution is 256x256. For obtaining the epistemic
uncertainty maps, we use T = 2 Monte Carlo samples as it gave the best results. The model
is shown in Figure 2.

3.3. 3D Visualization of Multi-Class Segmentation

We generate the 3D point cloud visualizations from the segmentation and uncertainty maps.
The false-positive segmentations are filtered by: (1) calculating the average uncertainty
values, υi, within every segmentation contour, (2) filtering υi by class, c, and calculating
uncertainty thresholds, τc, with:

τc = υ̂c + σ̂c ∗ δ (3)

where υ̂c and σ̂c are the average and standard deviation, respectively, of υi taken for class c,
and δ is a manually tuned parameter representing the number of standard deviations away
from the mean to filter out. In practice, we found that the PERT statistical distribution
(Clark, 1962) provided the best approximation to the uncertainty values υi.

The coordinates of the segmented vessels with respect to the robot base are calculated
as follows:

roPim/px = roTtr ∗ trTim/mm ∗ im/mmSim/px ∗ pim/px (4)

where pim/px is the segmented region in the image, im/mmSim/px is the scaling factor from
pixels to millimeters (mm), trTim/mm is the transformation from mm units into the ultra-
sound transducer’s frame, and roTtr is the transformation from the ultrasound transducer’s
frame to robot’s fixed base frame. trTim/mm is obtained from the manual calibration pro-
cedure described in (Mercier, 2004) and roTtr is obtained from the tf ROS package.

3.4. Optimal Needle Insertion Location Prediction Algorithm

The femoral artery is our target vessel, but our pipeline can be easily extended to other
vessels. A diagram of the anatomy is displayed in Figure 3. The ideal site for femoral arterial
puncture is generally accepted to be over the femoral head, below the inguinal ligament,
and above the femoral arterial bifurcation (Cilingiroglu et al., 2011), (Rupp et al., 1993).
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Specifically, recent literature points towards safest insertion being at points lying within
58-92% of the way down from the top of the femoral head (femoral head divided cranio-
caudally). In this region, the inguinal ligament and arterial bifurcation are typically 33%
and 100% from the top of the femoral head, respectively (Gopalakrishnan et al., 2017).
Even in cases where doctors are aware of the arterial bifurcation point through ultrasound
imaging, they tend to aim at least 1 cm cranially from the bifurcation (Oǧuzkurt et al.,
2012). These practices are reflected in our algorithm. To further account for noise in the
segmentation outputs, we filter out segmentation predictions for class c which have pixel-
areas smaller than ϕc pixels. After gauging average pixel-areas of segmented vessels, we used
100, 300, and 1000 for ϕartery, ϕvein, and ϕligament, respectively, in the algorithm below:
(1) Detection of the femoral arterial bifurcation point: We implement this by
checking for a gap, at least, of size g between the two detected contours from the artery
class. We then assume the location with the smallest gap as the point of bifurcation and
refer to this as point α. To account for noise in the segmentation results, we check that at
least γ% of the image frames caudal to that point also contain at least 2 contours. From
multiple experiments, we determined the values of g and γ to be 3 and 95% respectively.
(2) Detect the caudal end of the inguinal ligament: If a ligament was detected in
the scan, we determine the closest point on the ligament to point α. If the ligament was not
scanned/detected, we account for 2 scenarios: (a) the femoral artery follows a straight path,
and (b) there exists a gradual curve in the femoral artery, referring to where the artery is
crossing under the ligament. For (a), we currently assume the ligament’s location to be
immediately off the cranial edge of the scan. For (b), we iterate over each arterial contour
at index i and calculate the angles between vectors u and v, with opposing endpoints at
i − k and i + k, respectively, using the following: cos θ = ⟨uk, vk⟩/|uk||vk|. An illustration
is depicted in Figure 7 in Appendix C. We then assume the location at index i with the
smallest angle θ as the ligament landmark, which we will refer to as point λ. We account
for noise similar to the previous step, except by checking for a count of 1.
(3) Determine a safe region in between the two anatomical landmarks: We do
this by shifting α and λ towards each other by δα% and δλ%, respectively. We denote these
shifted safe boundaries as αs and λs, respectively. We do this (1) to account for noise in the
deep learning segmentation outputs and (2) to incorporate common medical practices as
mentioned above. We used 15 for the value of δα and δλ, accounting for the 1 cm minimum
distance to the arterial bifurcation given an average common femoral artery segment length
of ∼7 cm (Garrett et al., 2005).
(4) Calculate the overlap percentage between the femoral vein and artery at all
points: We do this by calculating the percentage of overlapping pixels when viewing the
contours from a posterior angle. We refer to this as Vo.
(5) Compute scores and determine optimal insertion location: We use the following
relations:

Ph(ζ) =

{
σα

1+∥ζ−α∥2 + σλ
1+∥ζ−λ∥2 , if ζ ∈ [λs, αs]

∞, otherwise

Ts = Ph + Vo (5)
where Ph is the Proximity Hazard Score to account for distance from α and λ, ζ is the
3D coordinate for the center of an arterial segmentation contour, σα and σλ are values for
weighing the importance of sufficient distance from α and λ, respectively. We reflect the
aforementioned insertion percentiles commonly used in practice with σα and σλ. Arterial
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Figure 4: Segmentation results on images collected with different imaging settings and
anatomy. Left to right: blue-gel, torso-left, torso-right, live-pig.

contours not within the safe region or of an area smaller than ϕartery are assigned a maximum
score. The Total Site Score, Ts, is then obtained by adding Vo and Ph together, taking
into account overflow and underflow. For the final insertion location, we select the artery
corresponding to the lowest value of Ts. If there are multiple such values, we choose the
largest-sized artery cross-section.

To enhance clinical viability and explainability, we generate a second 3D visualization
illustrating a heatmap of Ts. We do this using the same steps described in the previous
section, except with the following color encoding scheme: non-artery/vein structures and
regions with values of ∞ are colored with RGB value (128,128,128), i.e., grey, and arteries
are shaded with RGB values of (255,η,η) where η = min(Ts−min(Ts)∗255, 255). Therefore,
regions with higher values of Ts appear white, whereas lower values appear bright red.

4. ANALYSIS AND RESULTS

4.1. Multi-Class Segmentation

To validate the robustness of our multi-class segmentation network, we evaluate its per-
formance on blue-gel, torso-left, and torso-right phantoms, and on live-pig datasets, all of
which (except for live-pig which was just with ima) are compared across 3 varying imaging
settings: (ima) depth of 5 cm and gain value of 15 units, (imb) depth of 10 cm and gain
value of 15 units, and (imc) a depth of 10 cm with a gain value of 10 units. Each of the
phantom datasets contained a train/valid/test split of 320/128/256 images, whereas the
live-pig dataset contained a split of 1360/240/320 images, sourced from 8 different pigs.
The images were split into sequential groups of 8 frames each. After applying data augmen-
tation to the training images, as in (Mathai et al., 2019), the cardinality of each set grew
by a factor of ∼ 20. The outputs from the final layers were converted to color-coded masks
using a threshold value of 0.50. Erosion is used to convert the dense segmentation mask
into just the border of the circle. Image samples are shown in Figure 5 in Appendix B.

For baseline comparisons, we evaluated the results against those of a vanilla 3D U-Net,
which we refer to as 3DU , (Çiçek et al., 2016) and a different variation of the Bayesian 3D
U-Net similar to that in (Kwon et al.), which we refer to as B3DUk. The metrics we used are
region similarity, J , and contour accuracy, F , (Clark, 1962). We evaluate the spatial region
and contour segmentation performance of estimated segmentation, S and ground-truth
mask, G, using region similarity and contour accuracy. The multi-class segmentation model
performances are described in Table 1. As can be seen, our model obtains the most accurate
boundary contours for the blue-gel and torso-right phantoms. Across all 4 anatomies, our
model is the most consistent. Sample segmentation outputs are shown in Figure 4.
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4.2. Optimal Needle Insertion Location Prediction

To test for robustness, 9 trials of 3D visualization and the optimal needle insertion location
prediction algorithm were performed across blue-gel, torso-left, and torso-right phantoms,
with one scan from each imaging setting ima, imb, and imc. We also performed 8 trials
for different sequences of live-pig scans. We assumed a venous insertion in torso-left and
torso-right due to anatomical differences in the phantoms, whereas blue-gel and live-pig
were arterial insertions. For live-pig data, we tune k, the gap of arterial contours for the
endpoints of −→u and −→v (Figure 7 in Appendix C), to be within 1-5.

To evaluate our proposed insertion location prediction algorithm, we asked 3 doctors to
judge the accuracy of the results. We initially only showed the doctors the unmarked 3D
visualizations, (without insertion points depicted), and asked them mark safe regions for
arterial/venous insertion along with the respective vessel bifurcation and ligament points.
We then presented to them the 3D visualizations and heatmaps, with safe insertion points,
bifurcation, and ligament points depicted, and asked them to confirm the correctness. On
blue-gel, torso-left, and torso-right, our algorithm determined the anatomical landmarks and
insertion points correctly 9/9 times. On live-pig, our algorithm correctly determined the
ligament 8/8 times, the arterial bifurcation 7/8 times, and a safe insertion point 6/8 times.
The 2 sequences without a safe insertion point were instead deemed slightly too close to
the arterial bifurcation. Overall, our algorithm detected the proper arterial bifurcation and
ligament landmarks 31/32 times, while detecting a safe insertion point 15/17 times. For
additional validation, we also displayed plots illustrating the range and general distribution
of proximity hazard scores, overlap scores, and total site scores. Computationally, just the
insertion planning algorithm takes ≈ 0.0500 seconds to complete, averaged over 10 runs.
Figures 5, 6, 7, and 8 in Appendices B and C illustrate our results.

5. CONCLUSION AND FUTURE WORK

We present a novel pipeline (Figure 1) for predicting safe needle insertion points in femoral
vessels based on 3D visualizations built using multi-class segmentation in a Bayesian frame-
work. In our model, arteries, veins, and ligaments can be accurately segmented and used as
anatomical landmarks for guiding needle insertion. For clinicians, this frees up the cognitive
burden of determining them manually. Our 3D visualization produces explainable visual
results. Our validation across several anatomical and scanning variations demonstrates that
our pipeline is generalizable. We obtained safe insertion locations 93% of the time.

In the future, we will extend the current segmentation framework to the longitudinal
view of the ultrasound scan. We also want to test our pipeline on more data from diverse
anatomies.
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Appendix A. Tables

Table 1: Evaluation with region similarity, computed as the Jaccard score (J) and contour
accuracy, computed as the F measure over precision and recall (F ) with the ob-
tained segmentations and the ground truth annotations. Arrows indicate optimal
direction for avg ± std across ima, imb, imc (ima for live-pig).

.

Model J ↑ F ↑
blue-gel

3DU .775 ± .035 .291 ± .050

B3DUk .785 ± .015 .316 ± .064

Ours .834 ± .008 .516 ± .008

torso-left

3DU .663 ± .014 .442 ± .025

B3DUk .793 ± .107 .656 ± .140

Ours .788 ± .114 .662 ± .140

torso-right

3DU .706 ± .076 .402 ± .007

B3DUk .807 ± .041 .571 ± .032

Ours .816 ± .057 .657 ± .013

live-pig

3DU .84 ± .132 .693 ± .071

B3DUk .795 ± .170 .667 ± .071

Ours .828 ± .153 .768 ± .054
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Appendix B. Segmentation Results

Figure 5: Examples of the variety in images we validated our methods on, with the labels
overlaid. From left to right: blue-gel, torso-left, torso-right, live-pig. Each row
shows the 3 different imaging settings with which we varied for each subject,
except for live-pig. Color Key: Arteries - Red, Veins - Blue, Ligaments - Green,
Nerves - Yellow.
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Appendix C. Visualization of 3D Reconstructions

This section represents visualization of blue gel, live pig and torso right. The optimal
insertion point is shown by the white dot, whereas the ligament and arterial bifurcation
points are the grey dots.

Figure 6: 3D visualization of blue-gel. The image on the bottom illustrates a heatmap of
the Total Site Scores for the needle planning algorithm (unsafe to safe goes from
gray to red).

Figure 7: 3D visualization of live-pig. The top image shows the method we use for detecting
the ligament. The image on the bottom illustrates a heatmap of the Total Site
Scores for the needle planning algorithm (unsafe to safe goes from gray to red).
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Figure 8: 3D visualization of torso-right. The image on the bottom illustrates a heatmap
of the Total Site Scores for the needle planning algorithm (unsafe to safe goes
from gray to red).
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