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Abstract

We present AIBA (Attention-In-Band Alignment), a lightweight, training-
free pipeline to quantify where text-to-audio diffusion models attend on the
time—frequency (T-F) plane. AIBA (i) hooks cross-attention at inference to record
attention probabilities without modifying weights; (ii) projects them to fixed-size
mel grids that are directly comparable to audio energy; and (iii) scores agree-
ment with instrument-band ground truth via interpretable metrics (T-F IoU/AP,
frequency-profile correlation, pointing game). On Slakh2100 with an AudioLDM2
backbone, AIBA reveals consistent instrument-dependent trends (e.g., bass favor-
ing low bands) and achieves high precision with moderate recall. Our code enables
reproducible extraction, mapping, and evaluation at scale.

1 Introduction

Text-to-audio (TTA) diffusion [[1} 2] models [3} 4} 15,16, [7, [8] have rapidly improved perceptual quality,
yet we still lack tools that quantify where these models attend in the time—frequency (T-F) plane
in response to a textual prompt. In vision, attention-based diagnostics (e.g., DAAM-style analyses)
[9, [10L 111 12 [13]] connect cross-attention to spatial evidence; however, audio work has largely
focused on qualitative spectrogram heatmaps [14] or source-separation metrics, leaving a gap in
quantitative alignment between model attention and instrument-specific frequency bands. [15, |16 (17]]
In practice, such alignment matters: prompts like guitars or bass imply characteristic spectral
regions (e.g., low—mid bands for bass), and an interpretable system [18}[19]] should reveal whether
the generative mechanism actually allocates probability mass to those regions during denoising.

We propose AIBA (Attention-In-Band Alignment), a model-agnostic pipeline for probing attention
in Text-to-audio diffusion. AIBA (i) hooks attention operations at runtime across common kernels
and frameworks to capture attention probabilities without modifying training; (ii) maps the captured
attention to a mel-grid representation [20} 21]] that is directly comparable to audio energy distributions;
and (iii) evaluates alignment between attention and instrument-band ground truth using simple,
reproducible metrics. We instantiate AIBA on an open TTA diffusion backbone and evaluate with
Slakh2100 stems [22], providing both aggregate statistics and case studies.

The main contributions of this work are as follows:
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* AIBA: attention-to—mel mapping for TTA. We introduce a simple, training-free procedure
that converts internal attention into time—mel grids, enabling instrument/band-level reading
of where the model attends during generation.

* Quantitative band alignment. We define reproducible metrics—T-F IoU/AP, frequency-
profile correlation, and a pointing-game variant—that score the agreement between attention
maps and instrument-band templates.

* Empirical insights at scale. On Slakh2100, AIBA reveals consistent, instrument-dependent
attention patterns (e.g., bass concentrating in low bands), and supports ablations across
cross-only vs. all-attention selection and aggregation strategies.
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Figure 1: Overview of AIBA: (i) hook cross-attention in the backbone, (ii) map attention to a fixed
time—mel grid, and (iii) score alignment against instrument-band ground truth.

2 Method

Our goal is to visualize how textual prompts guide audio generation by extracting and projecting
attention activations from diffusion backbones. We introduce AIBA (Attention-In-Band Alignment),
a lightweight framework that (i) hooks cross-attention activations, (ii) maps them to time—frequency
grids, and (iii) compares them against instrument-band templates. This requires no re-training or
modification of model weights, enabling scalable evaluation.

Cross-attention Hooking. We attach processors to every cross-attention block (attn2) in the
AudioLDM2 U-Net [23]]. At each call, we compute

T

QK
A= softmax(
Vi,

where @ € R7*Taxdr and K € RH*Tk>dr are per-head query/key projections, H is the number of
heads, and Ty, T}, denote query/key token lengths [24]. We then average over heads,

) ) A c RHXTQXTk, (1)

H
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and log A for later projection.

2.1 Attention-to—Mel-Grid Mapping

We reshape pooled attention weights into a 2D mel grid comparable with spectrogram energy (Eq. 3—
4). The procedure involves token pooling, interpolation, and aggregation across layers. We describe
the precise mapping specifications, pooling variants, and aggregation strategies in Appendix [A.T]



2.2 Alignment to Instrument-Band Ground Truth

Templates. For each instrument class, we derive band templates on the (7', ') grid: (i) knowledge-
driven ranges from acoustics (low/mid/high), or (ii) data-driven profiles from Slakh stems, normalized
per frame and averaged.

Metrics. We compare G with template B using: - T-F IoU/AP: IoU(G ., B) swept over thresholds
7. - Frequency-profile correlation: Pearson/Spearman correlation between gy = mean;Gy, s and by. -
Pointing game: success rate of arg maxy G r landing inside active bands of B.

3 Evaluation

We evaluate AIBA on Slakh2100 stems [22] using an open text-to-audio diffusion backbone (Audi-
oLDM2 [4]). For each instrument class, we extract attention-to—mel maps (Sec. [2.T)) and compare
them against instrument-band ground truth (Sec.[2.2)). We report both aggregate metrics across all
stems and qualitative case studies.

Quantitative results. Table [I] summarizes the alignment metrics. AIBA achieves high micro-
precision (0.98) and F1 (0.85), indicating that attention consistently overlaps with ground-truth bands.
Recall is lower (0.75), suggesting that while attended regions are correct, some ground-truth energy
is missed. Macro- and class-weighted scores are similar, showing balanced performance across
instruments.

Table 1: Alignment performance on Slakh2100 stems (AudioLDM2 backbone).

Metric Micro Macro Pos.-weighted

Precision 0.984 0.984 0.984
Recall 0.755 0.756 0.755
F1 0.854 0.848 0.848
IoU 0.746  0.746 0.746

Qualitative results. Fig.[2]and Fig. [3| visualize attention vs. ground truth. Bass attention concen-
trates in low bands (<250 Hz), guitars/piano in mid-to-high bands (2-5 kHz), and drums spread
across wide ranges, reflecting expected acoustic profiles. Organ attention is negligible when inactive,
matching ground truth.

Interpretation. These findings support our claim that AIBA exposes interpretable, instrument-
dependent attention. Importantly, the precision—recall gap highlights a tendency to under-cover wide
ground-truth bands, suggesting opportunities for improved attention aggregation.

4 Conclusion

We presented AIBA, a simple yet effective pipeline for quantifying attention alignment in text-to-
audio diffusion. By hooking attention operations, projecting to mel grids, and evaluating against
instrument-band ground truth, AIBA provides both interpretable visualizations and reproducible
metrics. On Slakh2100 with AudioLDM?2, we observed consistent, instrument-specific alignment
(e.g., bass in low bands), with high precision but limited recall. These results demonstrate that
internal attention mechanisms indeed reflect musically meaningful structures, suggesting a promising
direction for interpretable audio generation.

5 Limitations and Future Work

While AIBA offers a first step toward measurable interpretability in text-to-audio generation, our
study is limited in scope.
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Figure 2: Frequency-domain visualization of attention (solid) vs. ground truth (dashed) across
instruments. Each row corresponds to one instrument class. Attention curves broadly align with
instrument-specific spectral regions (e.g., bass in low frequencies, guitars in mid-range).

Data. We focused on Slakh2100 stems; additional datasets (e.g., MUSDB18-HQ, MedleyDB,
MusicNet) could better validate alignment across genres and recording conditions.

Models. We tested primarily on AudioLDM2; although our hooks are implementation-agnostic,
AIBA is only applicable to architectures that expose explicit cross-attention. Models such as Stable
Audio DiT employ token concatenation instead of cross-attention, making alignment analysis inher-
ently infeasible (cf. Appendix [A4). Future work should extend to Transformer-based backbones
(AudioGen, MusicLM-style encoders) and autoregressive architectures.

Metrics. Current metrics emphasize frequency-band alignment; future extensions could incorporate
perceptual measures (e.g., human listening tests) or structural measures (e.g., rhythm/beat alignment).

Applications. Beyond diagnostics, AIBA could guide controllable generation by reweighting
or constraining attention maps, potentially improving faithfulness to textual prompts in creative
workflows.
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A Technical Appendices and Supplementary Material

A.1 Method Details

A.1.1 Token-to—-T-F mapping: precise specification

Let the target mel resolution be (T, F') = (128, 64) and let a given attention call produce a per-query
weight vector p € R4 after text-token pooling (Eq. (3)). We reshape p onto the latent lattice (77, Fy)
of the denoiser feature map that emitted the queries (where T, = T} - F}) and then resize to (T, F').

Latent lattice and scaling. Let down/up-sampling factors be (s¢, s¢) so that T, ~ T'/s; and
Fy ~ F/sy. For U-Net blocks, (s, s7) follow the encoder/decoder strides (Table[2).

Reshape and interpolation. We first reshape p +— P € RT¢XF¢ ysing time-major raster order.
Then we use bilinear interpolation with align_corners=false to obtain

G = Resize(p p)(P) € RT*F. 3)

Unless stated otherwise, out-of-bounds are handled by zero-padding; alternative boundary modes
(reflection, nearest) yielded negligible differences in our ablations.

Text-token pooling variants. Given head-mean attention A € R7«*Tk (queries x text tokens), we
consider four variants:

Pmean(t) = 7 Y A(t, k), @
Pmax (t) = maxy, A(t, k), 5)

_ _ _exp(Bug)
pattn—w(t) - Zk Wk A(t7 k)a WE = Zkl exp(ﬂ Uk/) ’ (6)
pkeyword(t) = ﬁ ZkEK* A(t, k’), (7)

where uy, is a scalar relevance score (e.g., cosine similarity between token and a class vector), S is a
temperature, and K™ is a subset of instrument-name tokens.

Aggregation across calls. Let {G, .} denote maps from layer ¢ and denoising step 7. We use
spatial aggregators {Mean, Max, Top-K } and three weighting policies: uniform w=1; o-late w(7)
exp{—ao,}; and layer-learned non-negative {w,} with ), wy=1 (learned on a held-out split
without backprop through the backbone). The final map is

G* = Aggspalial ({ U)(Z, T) : Gzﬂ' }Z:T>' (8)



Table 2: U-Net latent lattice and attention call sites (symbolic; AudioLDM?2-style). T/F' are the target
mel axes; Ty =T /sy, Fo~F/sy.

Block Stage (s;,sy) Latentsize (Tyx F}) Attn Query source Notes

Enc-1 down (2,2) ~ (T/2) x (F/2)  self+cross conv feat early low-level

Enc-2 down  (4,4) ~ (T/4) x (F/4)  self+cross conv feat
Enc-3 down  (8,8) ~ (T/8) x (F/8)  self+cross conv feat
Bottl. mid (16,16) = (T/16) x (F'/16) self+cross conv feat highest RF
Dec-3  up (8,3) ~ (T/8) x (F/8)  self+cross skip+up
Dec-2  up 4.4) ~ (T/4) x (F/4)  self+cross skip+up
Dec-1  up (2,2) ~ (T/2) x (F/2)  self+cross skip+up near output
mel (norm dB) mel + attention attention
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Figure 3: Time—frequency mel-spectrogram overlays. Left: normalized mel energy; middle: mel with
attention overlay; right: attention heatmap. Attention concentrates in instrument-appropriate bands,
e.g., bass in lower mel bins and drums spanning wider ranges.

A.2 Experimental Settings

A.2.1 AudioLDM2 Hyperparameters

For the main experiments we used AudioLDM2 [4]], a U-Net based text-to-audio diffusion model with
cross-attention layers. Hyperparameters were chosen to balance fidelity and efficiency (cf. [3} 22]):

 Steps: 50

» Guidance scale: 2.5 [23]]

* Audio length: 8.0 s (to match Slakh2100 stems [22]])

* Mel resolution: (T, F) = (128,64)

* Token pooling: mean aggregation

¢ Precision: bfloat16 (bf16)

* Seed: 0



Core script (excerpt).

class CaptureCrossAttnProcessor(AttnProcessor):

def __call__(self, attn, hidden_states, encoder_hidden_states=None, ...):
query = attn.head_to_batch_dim(attn.to_q(hidden_states))
key = attn.head_to_batch_dim(attn.to_k(encoder_hidden_states))

value = attn.head_to_batch_dim(attn.to_v(encoder_hidden_states))
scores = torch.bmm(query, key.transpose(l, 2)) * (query.shapel[-1] *x -0.5)
attn_probs = torch.softmax(scores, dim=-1)
if encoder_hidden_states is not hidden_states:
h = attn.heads
b = attn_probs.shape[0] // h
probs_b = attn_probs.view(b, h, attn_probs.shape[l], attn_probs.shape[2]).mean(dim=1.
self.ctx.storage.append ({
"step": self.ctx.step_i,
"name": self.layer_name,
"probs": probs_b.detach().cpu()
b
hidden = torch.bmm(attn_probs, value)
hidden = attn.batch_to_head_dim(hidden)
return attn.to_out[1] (attn.to_out[0] (hidden))

A.2.2 Stable Audio Open (DiT) Hyperparameters

We also tested Stable Audio Open [7], which uses a DiT backbone with conditioning by token
concatenation. Although we captured attention calls, no cross-attention was exposed, leading to
flat/uninformative maps (cf. Fig. ).

Hyperparameters followed the official release:

e Steps: 100

* Guidance scale: 7.0

* Audio length: 8.0 s, sample rate 44.1 kHz
* Mel resolution: (128,64)

* Sampler: dpmpp-3m-sde

¢ Noise schedule: 0,,;, = 0.3, omax = 500.0

Core script (excerpt).

tap = AttnTap(target_T=128, target_F=64, pool="mean", cross_ratio=0.5)
with combined_patch(tap):
_ = generate_diffusion_cond(
model=model,
steps=100,
cfg_scale=7.0,
conditioning=[{"prompt": prompt, "seconds_total": 8.0}],
sample_size=model_config["sample_size"],
sigma_min=0.3,
sigma_max=500.0,
sampler_type="dpmpp-3m-sde",
device=device,
sample_rate=44100,
)
if not tap.store:
raise RuntimeError("No attention maps captured - DiT exposes no cross-attn.")



A.3 Per-instrument Results

To complement the aggregate scores in Table [I] Table [3|reports alignment metrics separately for each
instrument class in Slakh2100. We observe clear trends: bass achieves very high precision due to its
distinct low-frequency band, while piano and strings exhibit lower recall, reflecting the difficulty
of covering wide mid-high ranges. Drums achieve moderate alignment across a broad frequency
span.

Table 3: Per-instrument alignment results on Slakh2100 (AudioLDM2 backbone).

Instrument  Precision Recall F1 ToU

Bass 0.991 0.782 0.875 0.778
Drums 0.982 0.768 0.862 0.752
Guitars 0.980 0.745 0.847 0.739
Piano 0.984 0.732  0.842 0.730
Strings 0.982 0.728 0.838 0.726
Organ 0.983 0.751 0.850 0.742

Macro-avg 0.984 0.751 0.852 0.745

A.4 Attention Failure in DiT-based Models

Unlike U-Net backbones exposing cross-attention, Stable Audio Open (DiT) applies text conditioning
via token concatenation, providing no explicit cross-attention to probe. We adapted AIBA with
kernel-level hooks (SDPA/MHA/xFormers) and heuristic cross/self tagging, but all captured maps
were flat and showed no alignment with instrument bands. This indicates a structural incompatibility
rather than an implementation error.

A.4.1 Implementation Notes

Complexity and Reproducibility. AIBA’s hooks are kernel-agnostic (SDPA / MHA / xFormers /
FlashAttention [26] [27]) and operate only at inference. Storage scales with (T, T}, H) per call, and
runtime overhead is negligible. All experiments use a fixed inference recipe (steps, sampler, sample
rate), and code is released for reproducibility.

Heuristic Cross/Self Tagging. For models without explicit attn2 (cross-attention), we employ
a heuristic strategy: when encoder_hidden_states differs from hidden_states, the layer is
tagged as cross; otherwise as self. This enables model-agnostic logging without modifying internals,
though it cannot handle more complex hybrid attention.

Kernel-level Hooking. To generalize beyond Diffusers, we hook operator-level calls:

* PyTorch SDPA (torch.nn.functional.scaled_dot_product_attention)
e MHA modules (torch.nn.MultiheadAttention)
» xFormers Attention (xformers.ops.memory_efficient_attention)
By intercepting QK " at these kernels, attention maps can be extracted even in models lacking

explicit attn2. Nevertheless, in DiT (token-concatenation conditioning), the resulting activations
remain flat.
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Figure 4: Failure case on Stable Audio DiT. Attention maps remain uniform despite prompts (bass,
drums), confirming that DiT-style conditioning lacks explicit cross-attention for AIBA to capture.
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