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Abstract

The increasingly popular adoption of deep001
learning models in many critical source code002
tasks motivates the development of data aug-003
mentation (DA) techniques to enhance training004
data and improve various capabilities (e.g., ro-005
bustness and generalizability) of these models.006
Although a series of DA methods have been007
proposed and tailored for source code models,008
there is a lack of comprehensive surveys and009
examinations to understand their effectiveness010
and implications. This paper fills this gap by011
conducting a comprehensive and integrative012
survey of data augmentation for source code,013
wherein we systematically compile and encap-014
sulate existing literature to provide a compre-015
hensive overview of the field. Complementing016
this, we present a continually updated GitHub017
repository that hosts a list of up-to-date papers018
on DA for source code modeling.1019

1 Introduction020

Data augmentation (DA) is a technique used to021

increase the variety of training examples with-022

out collecting new data. It has gained popu-023

larity in recent machine learning (ML) research,024

with methods like back-translation (Sennrich et025

al., 2015), and Mixup (Zhang et al., 2018) be-026

ing widely adopted in natural language processing027

(NLP), computer vision (CV), and speech recogni-028

tion. These techniques have significantly improved029

the performance of data-centric models in low-030

resource domains. However, DA has not yet been031

fully explored in source code modeling, which is032

the intersection of ML and software engineering033

(SE). Source code modeling is an emerging area034

that applies ML techniques to solve various source035

code tasks, such as code completion, by training036

models on a vast amount of data available in open-037

source repositories. Source code data typically has038

1https://anonymous.4open.science/r/
ARR-DA4Code
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Figure 1: Yearly publications on the topic of “Source
Code DA for Deep Learning”. Data Statistics as of
November 2023.

two modalities: the programming language (e.g., 039

Python and Java code) and the natural language 040

(e.g., doc-strings and code comments), which com- 041

plement each other. Such dual-modality nature of 042

source code data presents unique challenges in tai- 043

loring DA for NLP to source code models. For 044

example, the context of a sentence can be relatively 045

standalone or derived from a few surrounding sen- 046

tences in many NLP tasks (Feng et al., 2021). How- 047

ever, in source code, the context can span across 048

multiple functions or even different files, due to the 049

widespread use of function calls, object-oriented 050

programming, and modular design. Therefore, we 051

argue that DA methods for source code would need 052

to take this extended context into account, to avoid 053

introducing errors or changing the original pro- 054

gram’s behavior. In addition, source code follows 055

strict syntactic rules that are specified using context- 056

free grammar. Consequently, conventional NLP 057

DA methods, such as token substitution with simi- 058

lar words, may make the augmented source code 059

fail to compile and introduce erroneous knowledge 060

for training models. 061

Despite such challenges, there has been increas- 062

ing interest and demand for DA for source code 063
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modeling. With the growing accessibility of large,064

off-the-shelf, pre-trained source code models via065

learning from large-scale corpora, there is a grow-066

ing focus on applying these models to real-world067

software development (Hou et al., 2023). For in-068

stance, Husain et al. (2019) observe that many pro-069

gramming languages are low-resource, emphasiz-070

ing the importance of DA to improve model perfor-071

mance and robustness on unseen data.072

Our survey aims to bring attention from both073

ML and SE communities to this emerging field.074

As depicted in Figure 1, the relevant publications075

have been increasing in the recent five years. More076

precisely, we have compiled a list of core papers077

from the past five years, mainly from premier con-078

ferences and journals in both the ML and SE disci-079

plines with most published in CORE Rank2 A/A*080

venues. Given the escalating interest and rapidly081

growing research in this domain, it is timely for our082

survey to (1) provide a comprehensive overview of083

DA for source code models, and (2) pinpoint key084

challenges and opportunities to stimulate and guide085

further exploration in this emerging field. To the086

best of our awareness, our paper constitutes the first087

comprehensive survey offering an in-depth exami-088

nation of DA techniques for source code models.089

The structure of this paper is organized as fol-090

lows:091

• Section 2 offers a thorough review of three cate-092

gories of DA for source code modeling: rule-093

based (2.1), model-based (2.2), and example094

interpolation-based (2.3) techniques.095

• Section 3 provides a summary of prevalent strate-096

gies and techniques designed to enhance the qual-097

ity of augmented data, encompassing method098

stacking (3.1) and optimization (3.2).099

• Section 4 articulates various beneficial source100

code scenarios for DA, including adversarial ex-101

amples for robustness (4.1), low-resource do-102

mains (4.2), retrieval augmentation (4.3), and103

contrastive learning (4.4).104

• Section 5 delineates DA methodologies for com-105

mon source code tasks, such as code authorship106

attribution (5.1), clone detection (5.2), defect107

detection and repair (5.3), code summarization108

(5.4), code search (5.5), code completion (5.6),109

code translation (5.7).110

2We refer to the venues listed at http://portal.core.
edu.au/conf-ranks/ and http://portal.core.edu.au/
jnl-ranks/.

• Section 6 expounds on the challenges and future 111

prospects in the realm of DA for source code 112

modeling. 113

In addition, we provide more details in the Ap- 114

pendix to help readers have a more comprehensive 115

understanding of source code data augmentation. 116

Through this work, we hope to emulate prior sur- 117

veys which have analyzed DA techniques for other 118

data types, such as text (Feng et al., 2021), time 119

series (Wen et al., 2020), and images (Shorten and 120

Khoshgoftaar, 2019). Our intention is to pique fur- 121

ther interest, spark curiosity, and encourage further 122

research in the field of data augmentation, specifi- 123

cally focusing on its application to source code. 124

2 Source Code Data Augmentation 125

Methods for Deep Learning 126

This section categorizes the mainstream DA tech- 127

niques specifically designed for source code mod- 128

els into three families: rule-based, model-based, 129

and example-interpolation techniques. We explain 130

studies of different families as follows. 131

2.1 Rule-based Techniques 132

A large number of DA methods utilize predeter- 133

mined rules to transform the programs without 134

breaking syntax rules and semantics. Specifically, 135

these rules mainly implicitly leverage ASTs to 136

transform the code snippets. The transformations 137

can include operations such as replacing variable 138

names, renaming method names, and inserting dead 139

code. Besides the basic program syntax, some 140

code transformations consider deeper structural in- 141

formation, such as control-flow graph (CFG) and 142

use-define chains (UDC) (Quiring et al., 2019). Ad- 143

ditionally, a small part of rule-based DA techniques 144

focuses on augmenting the natural language con- 145

text in the code snippets, including doc-strings and 146

comments (Bahrami et al., 2021). 147

Zhang et al. proposed MHM (2020a), a method 148

of iteratively renaming identifiers in the code snip- 149

pets. Considered as the approach to generate ex- 150

amples for adversarial training, MHM greatly im- 151

proves the robustness of source code models. Later, 152

Srikant et al. (2021) consider program obfusca- 153

tions as adversarial perturbations, where they re- 154

name program variables in an attempt to hide the 155

program’s intent from a reader. By applying these 156

perturbed examples to the training stage, the source 157

code models become more robust to the adver- 158

sarial attack. Instead of just renaming identifiers, 159
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BUGLAB-Aug (Allamanis et al., 2021) contains160

more rules to augment code snippets, emphasiz-161

ing both the programming language and natural162

language, such as comment deletion, comparison163

expression mirroring, and if-else branch swapping.164

Brockschmidt et al. (2019) present a generative165

source code model by augmenting the given AST166

with additional edges to learn diverse code expres-167

sions. Instead of the direct augmentation on AST,168

Quiring et al. (2019) propose three different aug-169

mentation schemes via the combination of AST170

and CFG, UDC and declaration-reference mapping171

(DRM), named as Control Transformations, Decla-172

ration Transformations and API Transformations.173

Another line of work is augmenting the natural174

language context in source code. QRA (Huang et175

al., 2021) augments examples by rewriting natu-176

ral language queries when performing code search177

and code question answering. It rewrites queries178

with minor rule-based modifications that share the179

same semantics as the original one. Specifically, it180

consists of three modifications: randomly deleting181

a word, randomly switching the position of two182

words, and randomly copying a word. Inspired by183

this approach, Park et al. (2023) devise KeyDAC184

with an emphasis on the query keywords. Key-185

DAC augments on both natural language and pro-186

gramming language. For natural language query,187

it follows the rules in QRA but only modifies non-188

keywords. In terms of programming language aug-189

mentation, KeyDAC simply uses ASTs to rename190

program variables, similar to the aforementioned191

work.192

2.2 Model-based Techniques193

A series of DA techniques for source code target194

training various models to augment data. Intu-195

itively, Mi et al. (2021) utilize Auxiliary Classi-196

fier Generative Adversarial Networks (AC-GAN)197

to generate augmented programs. To increase198

the training data for code summarization, CDA-199

CS (Song et al., 2022) uses the pre-trained BERT200

model to replace synonyms for non-keywords in201

code comments, which benefits the source code202

downstream tasks.203

While these methods largely adapt the exist-204

ing model-based DA techniques for general pur-205

poses, most DA approaches are specifically de-206

signed for source code models. Li et al. (2022e)207

introduce IRGen, a genetic-algorithm-based model208

using compiler intermediate representation (LLVM209

IR) to augment source code embeddings, where IR-210

Gen generates a piece of source code into a range 211

of semantically identical but syntactically distinct 212

IR codes for improving model’s contextual under- 213

standing. Studies like (Roziere et al., 2021) have in- 214

vestigated the suitability of the multilingual genera- 215

tive source code models for unsupervised program- 216

ming language translation via Back-translation, in 217

the similar scope of the one for NLP. However, un- 218

like the one in NLP that commonly uses English as 219

the intermediate language, Back-translation here is 220

defined as translating between two programming 221

languages via the natural language as an interme- 222

diate language. Pinku et al. (2023) exploit another 223

generative source code model, Transcoder, to per- 224

form source-to-source translation for augmenting 225

cross-language source code. 226

2.3 Example Interpolation Techniques 227

Another category of data augmentation (DA) tech- 228

niques, originated by Mixup (Zhang et al., 2018), 229

involves interpolating the inputs and labels of two 230

or more actual examples. For instance, given that a 231

binary classification task in CV and two images of 232

a dog and a cat, respectively, these DA approaches 233

like Mixup can blend these two image inputs and 234

their corresponding labels based on a randomly se- 235

lected weight. This collection of methods is also 236

termed Mixed Sample Data Augmentation. Despite 237

trials in the context of text classification problems, 238

such methods are hard to deploy in the realm of 239

source code, as each code snippet is constrained by 240

its unique program grammar and functionality. 241

In contrast to the aforementioned surface-level 242

interpolation, the majority of example-interpolation 243

DA methods are enhanced to fuse multiple real 244

examples into a single input via model embed- 245

dings (Feng et al., 2021). Dong et al. (2023b) 246

merge rule-based techniques for source code mod- 247

els with Mixup to blend the representations of the 248

original code snippet and its transformation. This 249

approach is commonly regarded as the linear inter- 250

polation technique deployed in NLP classification 251

tasks. 252

3 Strategies and Techniques 253

In real-world applications, the design and efficacy 254

of DA techniques for source code models are influ- 255

enced by a variety of factors, such as computing 256

cost, example diversity, and models’ robustness. 257

This section highlights these factors, offering in- 258

sights and techniques for devising and optimizing 259
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suitable DA methods.260

3.1 Method Stacking261

As discussed in Section 2, numerous DA strategies262

are proposed concurrently in a single work, aiming263

to enhance the models’ performance. Typically, the264

combination entails two types: same-type DA or265

a mixture of different DA methods. The former266

is typically applied in rule-based DA techniques,267

stemming from the realization that a single code268

transformation cannot fully represent the diverse269

code style and implementation found in the real270

world.271

Several works (Shi et al., 2023; Huang et al.,272

2021) demonstrate that merging multiple types of273

DA techniques can enhance the performance of274

source code models. Mi et al. (2021) combine rule-275

based code transformation schemes with model-276

based DA using AC-GAN to create an augmented277

corpus for model training. Instead of augment-278

ing on programming language, CDA-CS (Song et279

al., 2022) encompasses two kinds of DA tech-280

niques: rule-based non-keyword extraction and281

model-based non-keyword replacement.282

3.2 Optimization283

In certain scenarios such as enhancing robustness284

and minimizing computational cost, optimally se-285

lecting specific augmented example candidates is286

crucial. We denote such goal-oriented candidate287

selections in DA as optimization. Subsequently,288

we introduce three types of strategies: probabilis-289

tic, model-based, and rule-based selection. Prob-290

abilistic selection is defined as the optimization291

via sampling from a probability distribution, while292

model-based selection is guided by the model to293

select the most proper examples. In terms of rule-294

based selection, it is an optimization strategy where295

specific predetermined rules or heuristics are used296

to select the most suitable examples.297

3.2.1 Probabilistic Selection298

We introduce three representative probabilistic se-299

lection strategies, MHM, QMDP, and BUGLAB-300

Aug. MHM (Zhang et al., 2020a) adopts301

the Metropolis-Hastings probabilistic sampling302

method, which is a Markov Chain Monte Carlo303

technique, to choose adversarial examples via iden-304

tifier replacement. Similarly, QMDP (Tian et al.,305

2021) uses a Q-learning approach to strategically306

select and execute rule-based structural transfor-307

mations on the source code, thereby guiding the308

generation of adversarial examples. In BUGLAB- 309

Aug, Allamanis et al. (2021) model the probability 310

of applying a specific rewrite rule at a location in a 311

code snippet similar to the pointer net. 312

3.2.2 Model-based Selection 313

Several DA techniques employing this strategy use 314

the model’s gradient information to guide the se- 315

lection of augmented examples. A representative 316

approach is the DAMP method (Yefet et al., 2020), 317

which optimizes based on the model loss to select 318

and generate adversarial examples via variable re- 319

naming. Another variant, SPACE (Li et al., 2022b), 320

performs selection and perturbation of code identi- 321

fiers’ embeddings via gradient ascent, targeting to 322

maximize the model’s performance impact while 323

upholding semantic and grammatical correctness of 324

the programming language. A more complex tech- 325

nique, ALERT (Yang et al., 2022b), uses a genetic 326

algorithm in its gradient-based selection strategy. 327

It evolves a population of candidate solutions itera- 328

tively, guided by a fitness function that calculates 329

the model’s confidence difference, aiming to iden- 330

tify the most potent adversarial examples. 331

3.2.3 Rule-based Selection 332

Rule-based selection stands as a powerful ap- 333

proach, featuring predetermined fitness functions 334

or rules. This method often relies on evaluation 335

metrics for decision-making. For instance, IR- 336

Gen (Li et al., 2022e) utilizes a Genetic-Algorithm- 337

based optimization technique with a fitness func- 338

tion based on IR similarity. On the other hand, AC- 339

CENT (Zhou et al., 2022) and RADAR apply eval- 340

uation metrics such as CodeBLEU, respectively, 341

to guide the selection and replacement process, 342

aiming for maximum adversarial impact. Finally, 343

STRATA (Springer, 2021) employs a rule-based 344

technique to select high-impact subtokens that sig- 345

nificantly alter the model’s interpretation of the 346

code. 347

4 Scenarios 348

This section delves into several commonplace 349

source code scenarios where DA approaches can 350

be applied. 351

4.1 Adversarial Examples for Robustness 352

Robustness presents a critical and complex dimen- 353

sion of software engineering, necessitating the cre- 354

ation of semantically-preserved adversarial exam- 355

ples to discern and mitigate vulnerabilities within 356
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Table 1: Comparing a selection of DA methods by various aspects relating to their applicability, dependencies,
and requirements. PL, NL, EI, Prob, Tok, KWE, TA, and LA stand for Programming Language, Natural Language,
Example Interpolation, Probability, Tokenization, KeyWord Extraction, Task-Agnostic, and Language-Agnostic.
PL and NL determine if the DA method is applied to the programming language or natural language context.
Preprocess denotes preprocessing required besides the program parsing. Parsing refers to the type of feature used
by the DA method during program parsing. Level denotes the depth at which data is modified by the DA. TA and LA
represent whether the DA method can be applied to different tasks or programming languages. As most papers do
not clearly state if their DA methods are TA and LA, we subjectively denote the applicability.

DA Method Category PL NL Optimization Preprocess Parsing Level TA LA

ComputeEdge (Brockschmidt et al., 2019) Rule ✓ ✗ — — AST AST ✓ ✓

RefineRepresentation (Bielik and Vechev, 2020) Rule ✓ ✗ Model — AST AST ✓ ✓

Control Transformations (Quiring et al., 2019) Rule ✓ ✗ Prob — AST+CFG+UDC Input ✓ ✗

Declaration Transformations (Quiring et al., 2019) Rule ✓ ✗ Prob — AST+DRM Input ✓ ✗

API Transformations (Quiring et al., 2019) Rule ✓ ✗ Prob — AST+CFG+DRM Input ✓ ✗

DAMP (Yefet et al., 2020) Rule ✓ ✗ Model — AST Input ✓ ✓

IBA (Huang et al., 2021) Rule ✗ ✓ — Tok — Embed ✗ ✓

QRA (Huang et al., 2021) Rule ✓ ✗ — Tok — Input ✗ ✓

MHM (Zhang et al., 2020a) Rule ✗ ✓ Prob — AST Input ✓ ✗

AugmentedCode (Bahrami et al., 2021) Rule ✓ ✗ — Tok — Input ✗ ✓

QMDP (Tian et al., 2021) Rule ✓ ✗ Prob Tok AST Input ✓ ✗

Transpiler (Jain et al., 2021) Rule ✓ ✗ Prob — AST Input ✓ ✗

BUGLAB-Aug (Allamanis et al., 2021) Rule ✓ ✗ Prob Tok AST Input ✗ ✓

SPAT (Yu et al., 2022) Rule ✓ ✗ Model — AST Input ✓ ✗

RoPGen (Li et al., 2022c) Rule ✓ ✗ Model — AST Input ✓ ✗

ACCENT (Zhou et al., 2022) Rule ✓ ✗ Rule — AST Input ✓ ✓

SPACE (Li et al., 2022b) Rule ✓ ✗ Model Tok AST Embed ✓ ✓

ALERT (Yang et al., 2022b) Rule ✓ ✗ Model Tok AST Input ✓ ✓

IRGen (Li et al., 2022e) Rule ✓ ✗ Rule — AST+IR IR ✓ ✓

Linear Extrapolation (Li et al., 2022a) EI ✓ ✓ — — — Embeb ✓ ✓

Gaussian Scaling (Li et al., 2022a) Rule ✓ ✓ Model — — Embeb ✓ ✓

CodeTransformator (Zubkov et al., 2022) Rule ✓ ✗ Rule — AST Input ✓ ✗

RADAR (Yang et al., 2022a) Rule ✓ ✗ Rule — AST Input ✓ ✗

AC-GAN (Mi et al., 2021) Model ✓ ✗ — — — Input ✓ ✓

CDA-CS (Song et al., 2022) Model ✗ ✓ Model KWE — Input ✗ ✓

srcML-embed (Li et al., 2022d) Rule ✓ ✗ — — AST Embed ✓ ✗

ProgramTransformer (Rabin and Alipour, 2022) Rule ✓ ✗ — — AST Input ✓ ✗

Back-translation (Ahmad et al., 2023) Model ✓ ✗ — Tok — Input ✗ ✓

MixCode (Dong et al., 2023b) Rule+EI ✓ ✓ — — — Embed ✓ ✓

NP-GD (Shen et al., 2023) Model ✓ ✗ Model Tok — Embed ✓ ✓

ExploitGen (Yang et al., 2023) Rule ✗ ✓ — — — Input ✓ ✗

SoDa (Shi et al., 2023) Model ✓ ✓ — — AST Input ✓ ✓

Transcompiler (Pinku et al., 2023) Model ✓ ✗ — — — Input ✓ ✗

STRATA (Springer, 2021) Rule ✓ ✗ Model Tok AST Input ✓ ✓

KeyDAC (Pack et al., 2023) Rule ✓ ✓ — KWE AST Embed ✗ ✓

Simplex Interpolation (Zhang et al., 2022) EI ✓ ✗ — — AST+IR Embed ✗ ✓

source code models. There is a surge in designing357

more effective DA techniques for generating these358

examples in recent years. Several studies (Yefet et359

al., 2020; Li et al., 2022c; Srikant et al., 2021; Li et360

al., 2022b; Anand et al., 2021) have utilized vari-361

ous DA methods for testing and enhancing model362

robustness. Wang et al. (2023) have gone a step363

further to consolidate universally accepted code364

transformation rules to establish the first bench-365

mark for source code model robustness.366

4.2 Low-Resource Domains367

In the domain of software engineering, the re-368

sources of programming languages are severely im-369

balanced (Orlanski et al., 2023). While some of the370

most popular programming languages like Python371

and Java play major roles in the open-source repos- 372

itories, many languages like Rust are starkly low- 373

resource. As source code models are trained on 374

open-source repositories and forums, the program- 375

ming language resource imbalance can adversely 376

impact their performance on the resource-scarce 377

programming languages. Furthermore, the applica- 378

tion of DA methods within low-resource domains is 379

a recurrent theme within the CV and NLP commu- 380

nities (Shorten and Khoshgoftaar, 2019; Feng et al., 381

2021). Yet, this scenario remains underexplored 382

within the source code discipline. 383

In order to increase data in the low-resource do- 384

main for representation learning, Li et al. (2022e) 385

tend to add more training data to enhance source 386

code model embeddings by unleashing the power 387
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of compiler IR. Ahmad et al. (2023) propose to use388

source code models to perform Back-translation389

DA, taking into consideration the scenario of low-390

resource programming languages. Meanwhile,391

(Chen and Lampouras, 2023) underscore the fact392

that source code datasets are markedly smaller than393

their NLP equivalents, which often encompass mil-394

lions of instances. As a result, they commence395

investigations into code completion tasks under396

this context and experiment with Back-translation397

and variable renaming. Shen et al. (2023) contend398

that the generation of bash comments is hampered399

by a dearth of training data and thus explore model-400

based DA methods for this task.401

4.3 Retrieval Augmentation402

Increasing interest has been observed in the applica-403

tion of DA for retrieval augmentation within NLP404

and source code (Lu et al., 2022). These retrieval405

augmentation frameworks for source code models406

incorporate retrieval-augmented examples from the407

training set when pre-training or fine-tuning source408

code models. This form of augmentation enhances409

the parameter efficiency of models, as they are able410

to store less knowledge within their parameters and411

instead retrieve it. It is shown as a promising appli-412

cation of DA in various source code downstream413

tasks, such as code summarization (Zhang et al.,414

2020b) and program repair (Nashid et al., 2023).415

4.4 Contrastive Learning416

Another source code scenario to deploy DA meth-417

ods is contrastive learning, where it enables models418

to learn an embedding space in which similar sam-419

ples are close to each other while dissimilar ones420

are far apart (Wang et al., 2022; Zhang et al., 2022).421

As the training datasets commonly contain limited422

sets of positive samples, DA methods are preferred423

to construct similar samples as the positive ones.424

Liu et al. (2023b) make use of contrastive learning425

with DA to devise superior pre-training paradigms426

for source code models, while some works study427

the advantages of this application in some source428

code tasks like defect detection (Cheng et al., 2022)429

and clone detection (Zubkov et al., 2022).430

5 Downstream Tasks431

While many aforementioned DA methods are432

deemed task-agnostic, most of them have been only433

applied to specific tasks. Therefore, we share an434

overview of how these methods work for common435

source code tasks and evaluation datasets.436

5.1 Code Authorship Attribution 437

Code authorship attribution is the process of identi- 438

fying the author of a given code, usually achieved 439

by source code models. Yang et al. (2022b) initially 440

investigate generating adversarial examples on the 441

Google Code Jam (GCJ) dataset, which effectively 442

fools source code models to identify the wrong 443

author of a given code snippet. By training with 444

these augmented examples, the model’s robustness 445

can be further improved. Li et al. (2022c) propose 446

another DA method called RoPGen for the adver- 447

sarial attack and demonstrate its efficacy on GCJ. 448

Dong et al. (2023a) empirically study the effective- 449

ness of several existing DA approaches for NLP 450

on several source code tasks, including authorship 451

attribution on GCJ. 452

5.2 Clone Detection 453

Code clone detection refers to the task of identi- 454

fying if the given code snippet is syntactically or 455

semantically similar to the original sample Jain et 456

al. (2021) propose correct-by-construction DA via 457

compiler information to generate many variants 458

with equivalent functionality of the training sample 459

and show its effectiveness of improving the model 460

robustness on BigCloneBench and a self-collected 461

JavaScript dataset. Pinku et al. (2023) later use 462

Transcompiler to translate between limited source 463

code in Python and Java and increase the training 464

data for cross-language code clone detection. 465

5.3 Program Repair 466

Program repair, in other words, bug or vulnera- 467

bility fix, captures the bugs in given code snip- 468

pets and generates repaired versions. Allamanis 469

et al. (2021) implement BUGLAB-Aug, a DA 470

framework of self-supervised bug detection and 471

repair. BUGLAB-Aug has two sets of code trans- 472

formation rules, one is a bug-inducing rewrite and 473

the other one is rewriting as DA. Their approach 474

boosts the performance and robustness of source 475

code models simultaneously. Cheng et al. (2022) 476

present a path-sensitive code embedding technique 477

called ContraFlow, which uses self-supervised con- 478

trastive learning to detect defects based on value- 479

flow paths. ContraFlow utilizes DA to gener- 480

ate contrastive value-flow representations of three 481

datasets (namely D2A, Fan and FFMPeg+Qemu) to 482

learn the (dis)-similarity among programs. Ding et 483

al. (2021) present a novel self-supervised model fo- 484

cusing on identifying (dis)similar functionalities of 485
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source code, which outperforms the state-of-the-art486

models on REVEAL and FFMPeg+Qemu. Specifi-487

cally, they design code transformation heuristics to488

automatically create bugged programs and similar489

code for augmenting pre-training data.490

5.4 Code Summarization491

Code summarization is considered as a task that492

generates a comment for a piece of the source493

code, and is thus also named code comment gener-494

ation. Zhang et al. (2020c) apply MHM to perturb495

training examples and mix them with the original496

ones for adversarial training, which effectively im-497

proves the robustness of source code models in498

summarizing the adversarial code snippets. Zhang499

et al. (2020b) develop a retrieval-augmentation500

framework for code summarization, relying on501

similar code-summary pairs to generate the new502

summary on PCSD and JCSD datasets. Based on503

this framework, Liu et al. (2020) leverage Hybrid504

GNN to propose a novel retrieval-augmented code505

summarization method and use it during model506

training on the self-collected CCSD dataset. Zhou507

et al. (2022) generate adversarial examples of a508

Python dataset (Wan et al., 2018) and JSCD to509

evaluate and enhance the source code model ro-510

bustness.511

5.5 Code Search512

Code search, or code retrieval, is a text-code task513

that searches code snippets based on the given nat-514

ural language queries. The source code models on515

this task need to map the semantics of the text to516

the source code (Li et al., 2022a, 2023; Huang et517

al., 2023; Ma et al., 2023). Bahrami et al. (2021)518

increase the code search queries by augmenting the519

natural language context such as doc-string, code520

comments and commit messages. Shi et al. (2022)521

use AST-focused DA to replace the function and522

variable names of the data in CodeSearchNet and523

CoSQA (Huang et al., 2021). Specifically, Shi et524

al. introduce soft data augmentation (SoDa), with-525

out external transformation rules on code and text.526

With SoDa, the model predicts tokens based on527

dynamic masking or replacement when process-528

ing CodeSearchNet. Instead of applying rule-based529

DA techniques, Li et al. (2022a) manipulate the530

representation of the input data by interpolating531

examples of CodeSearchNet.532

5.6 Code Completion 533

Code completion requires source code models to 534

generate lines of code to complete given program- 535

ming tasks. Anand et al. (2021) suggest that source 536

code models are vulnerable to adversarial examples 537

which are perturbed with transformation rules. Lu 538

et al. (2022) propose a retrieval-augmented code 539

completion framework composed of the rule-based 540

DA module to generate on PY150 and GitHub 541

Java Corpus datasets (Allamanis and Sutton, 2013). 542

Wang et al. (2023) customize over 30 transforma- 543

tions specifically for code on docstrings, function 544

and variable names, code syntax, and code format 545

and benchmark generative source code models on 546

HumanEval and MBPP. Yang et al. (2022a) devise 547

transformations on functional descriptions and sig- 548

natures to attack source code models and show that 549

their performances are susceptible. 550

5.7 Code Translation 551

Similar to neural machine translation in 552

NLP (Stahlberg et al., 2020), the task is to 553

translate source code written in a specific program- 554

ming language to another one. Ahmad et al. (2023) 555

apply data augmentation through back-translation 556

to enhance unsupervised code translation. They 557

use pre-trained sequence-to-sequence models to 558

translate code into natural language summaries and 559

then back into code in a different programming 560

language, thereby creating additional synthetic 561

training data to improve model performance. Chen 562

et al. (2023) utilize Back-translation and variable 563

augmentation techniques to yield the improvement 564

in code translation on CodeTrans (Lu et al., 2021). 565

6 Challenges and Opportunities 566

When it comes to source code, DA faces significant 567

challenges. Nonetheless, it’s crucial to acknowl- 568

edge that these challenges pave the way for new 569

possibilities and exciting opportunities in this area 570

of work. 571

Discussion on theory. Currently, there is a no- 572

ticeable gap in the in-depth exploration and the- 573

oretical understanding of DA methods in source 574

code. Most existing research on DA is centered 575

around image processing and natural language 576

fields, viewing data augmentation as a way of ap- 577

plying pre-existing knowledge about data or task in- 578

variance (Wu et al., 2020). When shifting to source 579

code, much of the previous work introduces new 580

methods or demonstrates how DA techniques can 581
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be effective for subsequent tasks. However, these582

studies often overlook why and how particularly583

from a mathematical perspective. By exploring DA584

in this way, we can better understand its underly-585

ing principles without being solely dependent on586

experimental validation.587

More study on pre-trained models. In recent588

years, pre-trained source code models have been589

widely applied in source code, containing rich590

knowledge through self-supervision on a huge scale591

of corpora (Feng et al., 2020; Guo et al., 2021).592

Numerous studies have been conducted utilizing593

pre-trained source code models for the purpose594

of DA, yet, most of these attempts are confined595

to mask token replacement (Shi et al., 2023), and596

direct generation after fine-tuning (Ahmad et al.,597

2023; Pinku et al., 2023). An emergent research598

opportunity lies in exploring the potential of DA599

in the source code domain with the help of large600

language models (LLMs) trained on a large amount601

of text and source code. LLMs have the capabil-602

ity of context generation based on prompted in-603

structions and provided examples, making them a604

choice to automate the DA process in NLP (Yoo et605

al., 2021; Wang et al., 2021a). Different from the606

previous usages of pre-trained models in DA, these607

works open the era of “prompt-based DA”. In con-608

trast, the exploration of prompt-based DA in source609

code domains remains a relatively untouched re-610

search area. Another direction is to harness the611

internal knowledge encoded in pre-trained source612

code models. For example, previous work (Kar-613

makar and Robbes, 2021; Wan et al., 2022) shows614

that ASTs and code semantics can be induced from615

these models without the static analysis tools.616

More exploration on project-level source code617

and low-resource programming languages.618

The existing methods have made sufficient progress619

in function-level code snippets and common pro-620

gramming languages. The emphasis on code snip-621

pets at the function level fails to capture the intri-622

cacies and complexities of programming in real-623

world scenarios, where developers often work with624

multiple files and folders simultaneously. There-625

fore, we highlight the importance of exploring626

DA approaches on the project level. The DA627

on source code projects can be distinct from the628

function-level DA, as it may involve more infor-629

mation such as the interdependencies between dif-630

ferent code modules, high-level architectural con-631

siderations, and the often intricate relationship be-632

tween data structures and algorithms used across 633

the project (Mockus et al., 2002). At the same 634

time, limited by data resources (Husain et al., 2019; 635

Orlanski et al., 2023), augmentation methods of 636

low-resource languages are scarce, although they 637

have more demand for DA. Exploration in these 638

two directions is still limited, and they could be 639

promising directions. 640

Lack of unification. The current body of liter- 641

ature on data augmentation (DA) for source code 642

presents a challenging landscape, with the most 643

popular methods often being portrayed in a supple- 644

mentary manner. A handful of empirical studies 645

have sought to compare DA methods for source 646

code models (Rodrigues et al., 2023; Dong et 647

al., 2023a). However, none of these works lever- 648

ages most of the existing advanced DA methods 649

for source code models. Whereas there are well- 650

accepted frameworks for DA for CV and DA for 651

NLP, a corresponding library of generalized DA 652

techniques for source code models is conspicuously 653

absent. Furthermore, as existent DA methods are 654

usually evaluated with various datasets, it is hard to 655

determine the efficacy. Therefore, we posit that the 656

progression of DA research would be significantly 657

facilitated by the establishment of standardized and 658

unified benchmark tasks, along with datasets, for 659

the purpose of contrasting and evaluating the effec- 660

tiveness of different augmentation methods. This 661

would pave the way towards a more systematic 662

and comparative understanding of the benefits and 663

limitations of these methods. 664

7 Conclusion 665

Our paper comprehensively analyzes data augmen- 666

tation techniques in the context of source code. 667

We first explain the concept of data augmentation 668

and its function. We then examine the primary 669

data augmentation methods commonly employed 670

in source code research and explore augmentation 671

approaches for typical source code applications and 672

tasks. Finally, we conclude by outlining the cur- 673

rent challenges in the field and suggesting potential 674

directions for future source code research. In pre- 675

senting this paper, we aim to assist researchers in 676

selecting appropriate data augmentation techniques 677

and encourage further exploration and advance- 678

ment in this field. 679
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Limitations680

While the work presented in this paper has its681

merits, we acknowledge the several limitations.682

Firstly, our work only surveys imperative program-683

ming languages used for general-purpose program-684

ming. Therefore, some DA methods for declar-685

ative languages (Zhuo et al., 2023b) or minor686

downstream tasks like cryptography misuse detec-687

tion (Rodrigues et al., 2023), including SQL. Sec-688

ondly, our focus has been primarily on function-689

level DA within the source code context. As such,690

future development in project-level DA methods691

remains needed. Nonetheless, this paper offers a692

valuable collection of general-purpose DA tech-693

niques for source code models, and we hope that694

it can serve as an inspiration for further research695

in this area. Thirdly, given the page limits, the de-696

scriptions presented in this survey are essentially697

brief in nature. Our approach has been to offer the698

works in meaningful structured groups rather than699

unstructured sequences, to ensure comprehensive700

coverage. This work can be used as an index where701

more detailed information can be found in the corre-702

sponding works. Lastly, it is worth noting that this703

survey is purely qualitative and does not include704

any experiments or empirical results. To provide705

more meaningful guidance, it would be helpful to706

conduct comparative experiments across different707

DA strategies. We leave this as a suggestion for708

future work.709
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A Literature Selection 1091

we employ the “Quasi-Gold Standard” 1092

(QGS) (Zhang et al., 2011) approach for pa- 1093

per search. We conduct a manual search to identify 1094

a set of relevant studies and extracted a search 1095

string from them. This search string is then used to 1096

perform an automated search, and subsequently, 1097
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Figure 2: Venue Distribution of the collected publica-
tions.

a snowballing search is employed to further1098

supplement the search results. This approach1099

ensures both search efficiency and maximum1100

coverage, minimizing the risk of omission.1101

During the manual search, we manually verify1102

the papers containing two sets of keywords: one1103

pertaining to software engineering, and the other1104

related to deep learning. The complete set of search1105

keywords is as follows:1106

• Keywords related to software engineering: Pro-1107

gram Transformation, Robustness, Adversarial1108

Robustness, Adversarial Attack.1109

• Keywords related to deep learning: Code Model,1110

Code Language Model, Data Augmentation,1111

Augmented, Contrastive Learning, Low Re-1112

source.1113

To this end, we have compiled a list of 89 core1114

papers from the past five years, mainly from pre-1115

mier conferences and journals in both the ML and1116

SE disciplines as shown in Figure 2 (with 62 out of1117

89 papers published in Core Rank A/A* venues3).1118

B Background1119

B.1 What are source code models?1120

Source code models are trained on large-scale cor-1121

pora of source code and therefore able to model1122

3We refer to the venues listed at http://portal.core.
edu.au/conf-ranks/ and http://portal.core.edu.au/
jnl-ranks/.

the contextual representations of given code snip- 1123

pets (Allamanis et al., 2017). In the early stage, 1124

researchers have attempted to leverage deep learn- 1125

ing architectures like LSTM (Gu et al., 2016) and 1126

Seq2Seq (Yin and Neubig, 2017) to model the 1127

source code like plain text, and shown that these 1128

models can achieve great performance on specific 1129

downstream tasks of source code. With the de- 1130

velopment of pre-trained language models in NLP, 1131

many pre-trained source code models are proposed 1132

to enhance the source code representations and effi- 1133

ciently be scaled to any downstream tasks (Feng et 1134

al., 2020; Guo et al., 2021; Nijkamp et al., 2023). 1135

Some of these models incorporate the inherent 1136

structure of code. For example, instead of tak- 1137

ing the syntactic-level structure of source code like 1138

ASTs, Guo et al. (2021) consider program data 1139

flow in the pre-training stage, which is a semantic- 1140

level structure of code that encodes the relation of 1141

“where-the-value-comes-from” between variables. 1142

In this survey, we focus DA methods designed for 1143

all the deep-learning-based source code models. 1144

B.2 What is data augmentation? 1145

Data augmentation (DA) techniques aim to im- 1146

prove the model’s performance in terms of various 1147

aspects (e.g., accuracy and robustness) via increas- 1148

ing training example diversity with data synthesis. 1149

Besides, DA techniques can help avoid model over- 1150

fitting in the training stage, which maintains the 1151

generability of the model. In CV, DA techniques 1152

with predefined rules are commonly adopted when 1153

training models, such as image cropping, image 1154

flipping, and color jittering (Shorten and Khosh- 1155

goftaar, 2019). These techniques can be classi- 1156

fied as rule-based DA. Furthermore, some attempts 1157

like Mixup have been made to create new exam- 1158

ples by fusing multiple examples together, which 1159

is categorized as example interpolation DA. Com- 1160

pared to CV, DA techniques for NLP greatly rely 1161

on language models that can help paraphrase the 1162

given context by word replacing or sentence rewrit- 1163

ing (Feng et al., 2021). As most of these language 1164

models are pre-trained and can capture the seman- 1165

tics of inputs, they serve as reasonable frameworks 1166

to modify or paraphrase the plain text. We denote 1167

such DA methods as model-based DA. 1168

B.3 How does data augmentation work in 1169

source code? 1170

Compared to images and plain texts, source code 1171

is less flexible to be augmented due to the nature 1172
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of strict programming syntactic rules. Hence, we1173

observe that most DA approaches in source code1174

must follow the predetermined transformation rules1175

in order to preserve the functionality and syntax of1176

the original code snippets. To enable the complex1177

processing of the given source code, a common ap-1178

proach is to use a parser to build a concrete syntax1179

tree from the code, which represents the program1180

grammar in a tree-like form. The concrete syntax1181

tree will be further transformed into an abstract1182

syntax tree (AST) to simplify the representation1183

but maintain the key information such as identi-1184

fiers, if-else statements, and loop conditions. The1185

parsed information is utilized as the basis of the1186

rule-based DA approaches for identifier replace-1187

ment and statement rewrite (Quiring et al., 2019).1188

From a software engineering perspective, these DA1189

approaches can emulate more diverse code repre-1190

sentation in real-world scenarios and thus make1191

source code models more robust by training with1192

the augmented data (Yefet et al., 2020).1193

C More Scenarios1194

C.1 Method Name Prediction1195

The goal of method name prediction is to predict1196

the name of a method given the program. Yefet et1197

al. (2020) attack and defense source code models1198

by using variable-name-replaced adversarial pro-1199

grams on the Code2Seq dataset (Alon et al., 2019).1200

Pour et al. (2021) propose a search-based testing1201

framework specifically for adversarial robustness.1202

They generate adversarial examples of Java with1203

ten popular refactoring operators widely used in1204

Java. (Rabin et al., 2021) and (Yu et al., 2022) both1205

implement data augmentation frameworks and vari-1206

ous transformation rules for processing Java source1207

code on the Code2Seq dataset.1208

C.2 Type Prediction1209

Type prediction, or type interference, aims to pre-1210

dict parameter and function types in programs.1211

Bielik and Vechev (2020) conduct adversarial at-1212

tacks on source code models with examples of1213

transformed ASTs. They instantiate the attack1214

to type prediction on JavaScript and TypeScript.1215

Jain et al. (2021) apply compiler transforms to1216

generates many variants of programs in Deep-1217

Typer (Hellendoorn et al., 2018), with equivalent1218

functionality with 11 rules. Li et al. (2022d) incor-1219

porate srcML (Collard et al., 2013) meta-grammar1220

embeddings to augment the syntactic features of ex-1221

amples in three datasets, DeepTyper, Typilus Data 1222

and CodeSearchNet. 1223

C.3 Code Question Answering (CQA) 1224

CQA can be formulated as a task where the source 1225

code models are required to generate a textual an- 1226

swer based on a given code snippet and a question. 1227

Huang et al. (2021) incorporate two rule-based DA 1228

methods on code and text to create examples for 1229

contrastive learning. Li et al. (2022b) explore the 1230

efficacy of adversarial training on the continuous 1231

embedding space with rule-based DA on CodeQA, 1232

a free-form CQA dataset. Park et al. (2023) eval- 1233

uate KeyDAC, a framework using query writing 1234

and variable renaming as DA, on WebQueryTest of 1235

CodeXGLUE. Different from CodeQA, WebQuery- 1236

Test is a CQA benchmark only containing Yes/No 1237

questions. 1238

C.4 Code Classification 1239

The task performs the categorization of programs 1240

regarding their functionality or readability. Wang 1241

et al. (2022) propose a novel AST hierarchy rep- 1242

resentation for contrastive learning with the graph 1243

neural network. Specifically, they augment the 1244

node embeddings in AST paths on OJ, a dataset 1245

containing 104 classes of programs. Zhang et 1246

al. (2022) incorporate simplex interpolation, an 1247

example-interpolation DA approach on IR, to cre- 1248

ate intermediate embeddings on POJ-104 from 1249

CodeXGLUE. Dong et al. (2023b) also explore 1250

the example-interpolation DA to fuse the embed- 1251

dings of code snippets. They evaluate the method 1252

on two datasets, JAVA250 and Python800. 1253

D More Challenges and Opportunities 1254

Working with domain-specific data. Our pa- 1255

per focuses on surveying DA techniques for com- 1256

mon downstream tasks involving processing source 1257

code. However, we are aware that there are a few 1258

works on other task-specific data in the field of 1259

source code. For instance, API recommendation 1260

and API sequence generation can be considered a 1261

part of source code tasks (Huang et al., 2018; Gu et 1262

al., 2016). DA methods covered by our survey can 1263

not be directly generalized to these tasks, as most 1264

of them only target program-level augmentation but 1265

not API-level. We observe a gap of DA techniques 1266

between these two different layers (Treude and Ro- 1267

billard, 2016; Xu et al., 2020; Wang et al., 2021b), 1268

which provides opportunities for future works to 1269

explore. Additionally, the source code modeling 1270
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has not fully justified DA for out-of-distribution1271

generalization. Previous studies (Hajipour et al.,1272

2022; Hu et al., 2022) assume the domain as the1273

programs with different complexity, syntax, and1274

semantics. We argue that this definition is not nat-1275

ural enough. Similar to the subdomains in NLP,1276

like biomedical and financial texts, the application1277

subdomains of source code can be diverse. For1278

example, the programs to solve data science prob-1279

lems can significantly differ from those for web1280

design. We encourage SE and ML communities to1281

study the benefits of DA when applied to various1282

application subdomains of source code.1283

Mitigating social bias. As source code models1284

have advanced software development, they may be1285

used to develop human-centric applications such1286

as human resources and education, where biased1287

programs may result in unjustified and unethical1288

decisions for underrepresented people (Zhuo et al.,1289

2023a). While social bias in NLP has been well1290

studied and can be mitigated with DA (Feng et1291

al., 2021), the social bias in source code has not1292

been brought to attention. For example, Liu et1293

al. (2023c) find that LLMs have severe biases in1294

various demographics such as gender, sexuality,1295

and occupation when performing code generation1296

based on the natural language queries. To make1297

these models more responsible in source code, we1298

urge more research on mitigating bias. As prior1299

works in NLP suggested, DA may be an effective1300

technique to make source code models more re-1301

sponsible.1302

Few-shot learning. In few-shot scenarios, mod-1303

els are required to achieve performance that rivals1304

that of traditional machine learning models, yet1305

the amount of training data is extremely limited.1306

DA methods provide a direct solution to the prob-1307

lem. However, limited works in few-shot scenarios1308

have adopted DA methods (Nashid et al., 2023).1309

Mainstream pre-trained source code models obtain1310

rich semantic knowledge through language model-1311

ing. Such knowledge even covers, to some extent,1312

the semantic information introduced by traditional1313

paraphrasing-based DA methods. In other words,1314

the improvement space that traditional DA meth-1315

ods bring to pre-trained source code models has1316

been greatly compressed. Therefore, it is an inter-1317

esting question how to provide models with fast1318

generalization and problem-solving capability by1319

generating high-quality augmented data in few-shot1320

scenarios.1321

Multimodal applications. It is important to note 1322

that the emphasis on function-level code snippets 1323

does not accurately represent the intricacies and 1324

complexities of real-world programming situations. 1325

In such scenarios, developers often work with mul- 1326

tiple files and folders simultaneously.s have also 1327

been developed. Wang et al. (2021b) and Liu et 1328

al. (2023a) explore the chart derendering with an 1329

emphasis on source code and corresponding APIs. 1330

Surís et al. (2023) propose a framework to gener- 1331

ate Python programs to solve complex visual tasks 1332

including images and videos. Although such mul- 1333

timodal applications are more and more popular, 1334

no study has yet been conducted on applying DA 1335

methods to them. A potential challenge for the mul- 1336

timodal source code task technique is to effectively 1337

bridge between the embedding representations for 1338

each modality in source code models, which has 1339

been investigated in vision-language multimodal 1340

tasks (Ray et al., 2019; Tang et al., 2020; Hao et 1341

al., 2023). 1342
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