Source Code Data Augmentation for Deep Learning: A Survey

Anonymous ACL submission

Abstract

The increasingly popular adoption of deep
learning models in many critical source code
tasks motivates the development of data aug-
mentation (DA) techniques to enhance training
data and improve various capabilities (e.g., ro-
bustness and generalizability) of these models.
Although a series of DA methods have been
proposed and tailored for source code models,
there is a lack of comprehensive surveys and
examinations to understand their effectiveness
and implications. This paper fills this gap by
conducting a comprehensive and integrative
survey of data augmentation for source code,
wherein we systematically compile and encap-
sulate existing literature to provide a compre-
hensive overview of the field. Complementing
this, we present a continually updated GitHub
repository that hosts a list of up-to-date papers
on DA for source code modeling.!

1 Introduction

Data augmentation (DA) is a technique used to
increase the variety of training examples with-
out collecting new data. It has gained popu-
larity in recent machine learning (ML) research,
with methods like back-translation (Sennrich et
al., 2015), and Mixup (Zhang et al., 2018) be-
ing widely adopted in natural language processing
(NLP), computer vision (CV), and speech recogni-
tion. These techniques have significantly improved
the performance of data-centric models in low-
resource domains. However, DA has not yet been
fully explored in source code modeling, which is
the intersection of ML and software engineering
(SE). Source code modeling is an emerging area
that applies ML techniques to solve various source
code tasks, such as code completion, by training
models on a vast amount of data available in open-
source repositories. Source code data typically has

1h'ctps ://anonymous. 4open.science/r/
ARR-DA4Code

Publications per Year 36

w
&

29

w
s

N
&

N
S

16

—
&

Number of Publications

«

2

2019 2020 2021 2022 2023
Year

Figure 1: Yearly publications on the topic of “Source
Code DA for Deep Learning”. Data Statistics as of
November 2023.

two modalities: the programming language (e.g.,
Python and Java code) and the natural language
(e.g., doc-strings and code comments), which com-
plement each other. Such dual-modality nature of
source code data presents unique challenges in tai-
loring DA for NLP to source code models. For
example, the context of a sentence can be relatively
standalone or derived from a few surrounding sen-
tences in many NLP tasks (Feng et al., 2021). How-
ever, in source code, the context can span across
multiple functions or even different files, due to the
widespread use of function calls, object-oriented
programming, and modular design. Therefore, we
argue that DA methods for source code would need
to take this extended context into account, to avoid
introducing errors or changing the original pro-
gram’s behavior. In addition, source code follows
strict syntactic rules that are specified using context-
free grammar. Consequently, conventional NLP
DA methods, such as token substitution with simi-
lar words, may make the augmented source code
fail to compile and introduce erroneous knowledge
for training models.

Despite such challenges, there has been increas-
ing interest and demand for DA for source code

https://anonymous.4open.science/r/ARR-DA4Code
https://anonymous.4open.science/r/ARR-DA4Code

modeling. With the growing accessibility of large,
off-the-shelf, pre-trained source code models via
learning from large-scale corpora, there is a grow-
ing focus on applying these models to real-world
software development (Hou et al., 2023). For in-
stance, Husain ef al. (2019) observe that many pro-
gramming languages are low-resource, emphasiz-
ing the importance of DA to improve model perfor-
mance and robustness on unseen data.

Our survey aims to bring attention from both
ML and SE communities to this emerging field.
As depicted in Figure 1, the relevant publications
have been increasing in the recent five years. More
precisely, we have compiled a list of core papers
from the past five years, mainly from premier con-
ferences and journals in both the ML and SE disci-
plines with most published in CORE Rank? A/A*
venues. Given the escalating interest and rapidly
growing research in this domain, it is timely for our
survey to (1) provide a comprehensive overview of
DA for source code models, and (2) pinpoint key
challenges and opportunities to stimulate and guide
further exploration in this emerging field. To the
best of our awareness, our paper constitutes the first
comprehensive survey offering an in-depth exami-
nation of DA techniques for source code models.

The structure of this paper is organized as fol-
lows:

* Section 2 offers a thorough review of three cate-
gories of DA for source code modeling: rule-
based (2.1), model-based (2.2), and example
interpolation-based (2.3) techniques.

* Section 3 provides a summary of prevalent strate-
gies and techniques designed to enhance the qual-
ity of augmented data, encompassing method
stacking (3.1) and optimization (3.2).

¢ Section 4 articulates various beneficial source
code scenarios for DA, including adversarial ex-
amples for robustness (4.1), low-resource do-
mains (4.2), retrieval augmentation (4.3), and
contrastive learning (4.4).

* Section 5 delineates DA methodologies for com-
mon source code tasks, such as code authorship
attribution (5.1), clone detection (5.2), defect
detection and repair (5.3), code summarization
(5.4), code search (5.5), code completion (5.6),
code translation (5.7).

2We refer to the venues listed at http://portal.core.

edu.au/conf-ranks/ and http://portal.core.edu.au/
jnl-ranks/.

* Section 6 expounds on the challenges and future
prospects in the realm of DA for source code
modeling.

In addition, we provide more details in the Ap-
pendix to help readers have a more comprehensive
understanding of source code data augmentation.
Through this work, we hope to emulate prior sur-
veys which have analyzed DA techniques for other
data types, such as text (Feng et al., 2021), time
series (Wen et al., 2020), and images (Shorten and
Khoshgoftaar, 2019). Our intention is to pique fur-
ther interest, spark curiosity, and encourage further
research in the field of data augmentation, specifi-
cally focusing on its application to source code.

2 Source Code Data Augmentation
Methods for Deep Learning

This section categorizes the mainstream DA tech-
niques specifically designed for source code mod-
els into three families: rule-based, model-based,
and example-interpolation techniques. We explain
studies of different families as follows.

2.1 Rule-based Techniques

A large number of DA methods utilize predeter-
mined rules to transform the programs without
breaking syntax rules and semantics. Specifically,
these rules mainly implicitly leverage ASTs to
transform the code snippets. The transformations
can include operations such as replacing variable
names, renaming method names, and inserting dead
code. Besides the basic program syntax, some
code transformations consider deeper structural in-
formation, such as control-flow graph (CFG) and
use-define chains (UDC) (Quiring et al., 2019). Ad-
ditionally, a small part of rule-based DA techniques
focuses on augmenting the natural language con-
text in the code snippets, including doc-strings and
comments (Bahrami et al., 2021).

Zhang et al. proposed MHM (2020a), a method
of iteratively renaming identifiers in the code snip-
pets. Considered as the approach to generate ex-
amples for adversarial training, MHM greatly im-
proves the robustness of source code models. Later,
Srikant et al. (2021) consider program obfusca-
tions as adversarial perturbations, where they re-
name program variables in an attempt to hide the
program’s intent from a reader. By applying these
perturbed examples to the training stage, the source
code models become more robust to the adver-
sarial attack. Instead of just renaming identifiers,

http://portal.core.edu.au/conf-ranks/
http://portal.core.edu.au/conf-ranks/
http://portal.core.edu.au/jnl-ranks/
http://portal.core.edu.au/jnl-ranks/

BUGLAB-Aug (Allamanis et al., 2021) contains
more rules to augment code snippets, emphasiz-
ing both the programming language and natural
language, such as comment deletion, comparison
expression mirroring, and if-else branch swapping.

Brockschmidt et al. (2019) present a generative
source code model by augmenting the given AST
with additional edges to learn diverse code expres-
sions. Instead of the direct augmentation on AST,
Quiring et al. (2019) propose three different aug-
mentation schemes via the combination of AST
and CFG, UDC and declaration-reference mapping
(DRM), named as Control Transformations, Decla-
ration Transformations and API Transformations.

Another line of work is augmenting the natural
language context in source code. QRA (Huang et
al., 2021) augments examples by rewriting natu-
ral language queries when performing code search
and code question answering. It rewrites queries
with minor rule-based modifications that share the
same semantics as the original one. Specifically, it
consists of three modifications: randomly deleting
a word, randomly switching the position of two
words, and randomly copying a word. Inspired by
this approach, Park et al. (2023) devise KeyDAC
with an emphasis on the query keywords. Key-
DAC augments on both natural language and pro-
gramming language. For natural language query,
it follows the rules in QRA but only modifies non-
keywords. In terms of programming language aug-
mentation, KeyDAC simply uses ASTs to rename
program variables, similar to the aforementioned
work.

2.2 Model-based Techniques

A series of DA techniques for source code target
training various models to augment data. Intu-
itively, Mi et al. (2021) utilize Auxiliary Classi-
fier Generative Adversarial Networks (AC-GAN)
to generate augmented programs. To increase
the training data for code summarization, CDA-
CS (Song et al., 2022) uses the pre-trained BERT
model to replace synonyms for non-keywords in
code comments, which benefits the source code
downstream tasks.

While these methods largely adapt the exist-
ing model-based DA techniques for general pur-
poses, most DA approaches are specifically de-
signed for source code models. Li et al. (2022¢)
introduce IRGen, a genetic-algorithm-based model
using compiler intermediate representation (LLVM
IR) to augment source code embeddings, where IR-

Gen generates a piece of source code into a range
of semantically identical but syntactically distinct
IR codes for improving model’s contextual under-
standing. Studies like (Roziere et al., 2021) have in-
vestigated the suitability of the multilingual genera-
tive source code models for unsupervised program-
ming language translation via Back-translation, in
the similar scope of the one for NLP. However, un-
like the one in NLP that commonly uses English as
the intermediate language, Back-translation here is
defined as translating between two programming
languages via the natural language as an interme-
diate language. Pinku et al. (2023) exploit another
generative source code model, Transcoder, to per-
form source-to-source translation for augmenting
cross-language source code.

2.3 Example Interpolation Techniques

Another category of data augmentation (DA) tech-
niques, originated by Mixup (Zhang et al., 2018),
involves interpolating the inputs and labels of two
or more actual examples. For instance, given that a
binary classification task in CV and two images of
a dog and a cat, respectively, these DA approaches
like Mixup can blend these two image inputs and
their corresponding labels based on a randomly se-
lected weight. This collection of methods is also
termed Mixed Sample Data Augmentation. Despite
trials in the context of text classification problems,
such methods are hard to deploy in the realm of
source code, as each code snippet is constrained by
its unique program grammar and functionality.

In contrast to the aforementioned surface-level
interpolation, the majority of example-interpolation
DA methods are enhanced to fuse multiple real
examples into a single input via model embed-
dings (Feng et al., 2021). Dong et al. (2023b)
merge rule-based techniques for source code mod-
els with Mixup to blend the representations of the
original code snippet and its transformation. This
approach is commonly regarded as the linear inter-
polation technique deployed in NLP classification
tasks.

3 Strategies and Techniques

In real-world applications, the design and efficacy
of DA techniques for source code models are influ-
enced by a variety of factors, such as computing
cost, example diversity, and models’ robustness.
This section highlights these factors, offering in-
sights and techniques for devising and optimizing

suitable DA methods.

3.1 Method Stacking

As discussed in Section 2, numerous DA strategies
are proposed concurrently in a single work, aiming
to enhance the models’ performance. Typically, the
combination entails two types: same-type DA or
a mixture of different DA methods. The former
is typically applied in rule-based DA techniques,
stemming from the realization that a single code
transformation cannot fully represent the diverse
code style and implementation found in the real
world.

Several works (Shi et al., 2023; Huang et al.,
2021) demonstrate that merging multiple types of
DA techniques can enhance the performance of
source code models. Mi et al. (2021) combine rule-
based code transformation schemes with model-
based DA using AC-GAN to create an augmented
corpus for model training. Instead of augment-
ing on programming language, CDA-CS (Song et
al., 2022) encompasses two kinds of DA tech-
niques: rule-based non-keyword extraction and
model-based non-keyword replacement.

3.2 Optimization

In certain scenarios such as enhancing robustness
and minimizing computational cost, optimally se-
lecting specific augmented example candidates is
crucial. We denote such goal-oriented candidate
selections in DA as optimization. Subsequently,
we introduce three types of strategies: probabilis-
tic, model-based, and rule-based selection. Prob-
abilistic selection is defined as the optimization
via sampling from a probability distribution, while
model-based selection is guided by the model to
select the most proper examples. In terms of rule-
based selection, it is an optimization strategy where
specific predetermined rules or heuristics are used
to select the most suitable examples.

3.2.1 Probabilistic Selection

We introduce three representative probabilistic se-
lection strategies, MHM, QMDP, and BUGLAB-
Aug. MHM (Zhang et al., 2020a) adopts
the Metropolis-Hastings probabilistic sampling
method, which is a Markov Chain Monte Carlo
technique, to choose adversarial examples via iden-
tifier replacement. Similarly, QMDP (Tian et al.,
2021) uses a Q-learning approach to strategically
select and execute rule-based structural transfor-
mations on the source code, thereby guiding the

generation of adversarial examples. In BUGLAB-
Aug, Allamanis et al. (2021) model the probability
of applying a specific rewrite rule at a location in a
code snippet similar to the pointer net.

3.2.2 Model-based Selection

Several DA techniques employing this strategy use
the model’s gradient information to guide the se-
lection of augmented examples. A representative
approach is the DAMP method (Yefet et al., 2020),
which optimizes based on the model loss to select
and generate adversarial examples via variable re-
naming. Another variant, SPACE (Li et al., 2022b),
performs selection and perturbation of code identi-
fiers’ embeddings via gradient ascent, targeting to
maximize the model’s performance impact while
upholding semantic and grammatical correctness of
the programming language. A more complex tech-
nique, ALERT (Yang et al., 2022b), uses a genetic
algorithm in its gradient-based selection strategy.
It evolves a population of candidate solutions itera-
tively, guided by a fitness function that calculates
the model’s confidence difference, aiming to iden-
tify the most potent adversarial examples.

3.2.3 Rule-based Selection

Rule-based selection stands as a powerful ap-
proach, featuring predetermined fitness functions
or rules. This method often relies on evaluation
metrics for decision-making. For instance, IR-
Gen (Li et al., 2022e) utilizes a Genetic-Algorithm-
based optimization technique with a fitness func-
tion based on IR similarity. On the other hand, AC-
CENT (Zhou et al., 2022) and RADAR apply eval-
uation metrics such as CodeBLEU, respectively,
to guide the selection and replacement process,
aiming for maximum adversarial impact. Finally,
STRATA (Springer, 2021) employs a rule-based
technique to select high-impact subtokens that sig-
nificantly alter the model’s interpretation of the
code.

4 Scenarios

This section delves into several commonplace
source code scenarios where DA approaches can
be applied.

4.1 Adversarial Examples for Robustness

Robustness presents a critical and complex dimen-
sion of software engineering, necessitating the cre-
ation of semantically-preserved adversarial exam-
ples to discern and mitigate vulnerabilities within

Table 1: Comparing a selection of DA methods by various aspects relating to their applicability, dependencies,
and requirements. PL, NL, EI, Prob, Tok, KWE, TA, and LA stand for Programming Language, Natural Language,
Example Interpolation, Probability, Tokenization, KeyWord Extraction, Task-Agnostic, and Language-Agnostic.
PL and NL determine if the DA method is applied to the programming language or natural language context.
Preprocess denotes preprocessing required besides the program parsing. Parsing refers to the type of feature used
by the DA method during program parsing. Level denotes the depth at which data is modified by the DA. TA and LA
represent whether the DA method can be applied to different tasks or programming languages. As most papers do
not clearly state if their DA methods are TA and LA, we subjectively denote the applicability.

DA Method ‘ Category PL NL Optimization Preprocess Parsing Level TA LA
ComputeEdge (Brockschmidt et al., 2019) Rule v X — — AST AST v /
RefineRepresentation (Bielik and Vechev, 2020) Rule v X Model — AST AST v /
Control Transformations (Quiring et al., 2019) Rule v X Prob — AST+CFG+UDC Input v X
Declaration Transformations (Quiring et al., 2019) Rule v X Prob — AST+DRM Input v X
API Transformations (Quiring et al., 2019) Rule v X Prob — AST+CFG+DRM Input v X
DAMP (Yefet et al., 2020) Rule v X Model — AST Input v /
IBA (Huang et al., 2021) Rule X v — Tok — Embed X V/
QRA (Huang et al., 2021) Rule v X — Tok — Input X /
MHM (Zhang et al., 2020a) Rule X v Prob — AST Input v X
AugmentedCode (Bahrami et al., 2021) Rule v X — Tok — Input X /
QMDP (Tian et al., 2021) Rule v X Prob Tok AST Input v X
Transpiler (Jain ef al., 2021) Rule v X Prob — AST Input v X
BUGLAB-Aug (Allamanis et al., 2021) Rule v X Prob Tok AST Input X v
SPAT (Yu et al., 2022) Rule v X Model — AST Input v X
RoPGen (Li et al., 2022¢) Rule v X Model — AST Input v X
ACCENT (Zhou et al., 2022) Rule v X Rule — AST Input v /
SPACE (Li e al., 2022b) Rule v X Model Tok AST Embed v vV
ALERT (Yang et al., 2022b) Rule v X Model Tok AST Input v /
IRGen (Li et al., 2022¢) Rule v X Rule — AST+IR IR v /
Linear Extrapolation (Li et al., 2022a) EI v / — — — Embeb v vV
Gaussian Scaling (Li et al., 2022a) Rule v / Model — — Embeb v V/
CodeTransformator (Zubkov et al., 2022) Rule v X Rule — AST Input v X
RADAR (Yang et al., 2022a) Rule v X Rule — AST Input v X
AC-GAN (Mi et al., 2021) Model v X — — — Input v /
CDA-CS (Song et al., 2022) Model X v Model KWE — Input X /
srcML-embed (Li et al., 2022d) Rule v X — — AST Embed Vv X
ProgramTransformer (Rabin and Alipour, 2022) Rule v X — — AST Input v X
Back-translation (Ahmad et al., 2023) Model v X — Tok — Input X /
MixCode (Dong et al., 2023b) Rule+EI v / — — — Embed v V
NP-GD (Shen et al., 2023) Model v X Model Tok — Embed v vV
ExploitGen (Yang et al., 2023) Rule X v — — — Input v X
SoDa (Shi et al., 2023) Model v / — — AST Input v /
Transcompiler (Pinku et al., 2023) Model v X — — — Input v X
STRATA (Springer, 2021) Rule o X Model Tok AST Input v
KeyDAC (Pack et al., 2023) Rule v / — KWE AST Embed X v
Simplex Interpolation (Zhang ef al., 2022) EI v X — — AST+IR Embed X V/

source code models. There is a surge in designing
more effective DA techniques for generating these
examples in recent years. Several studies (Yefet et
al., 2020; Li et al., 2022c¢; Srikant et al., 2021; Li et
al., 2022b; Anand et al., 2021) have utilized vari-
ous DA methods for testing and enhancing model
robustness. Wang et al. (2023) have gone a step
further to consolidate universally accepted code
transformation rules to establish the first bench-
mark for source code model robustness.

4.2 Low-Resource Domains

In the domain of software engineering, the re-
sources of programming languages are severely im-
balanced (Orlanski et al., 2023). While some of the
most popular programming languages like Python

and Java play major roles in the open-source repos-
itories, many languages like Rust are starkly low-
resource. As source code models are trained on
open-source repositories and forums, the program-
ming language resource imbalance can adversely
impact their performance on the resource-scarce
programming languages. Furthermore, the applica-
tion of DA methods within low-resource domains is
a recurrent theme within the CV and NLP commu-
nities (Shorten and Khoshgoftaar, 2019; Feng et al.,
2021). Yet, this scenario remains underexplored
within the source code discipline.

In order to increase data in the low-resource do-
main for representation learning, Li et al. (2022¢)
tend to add more training data to enhance source
code model embeddings by unleashing the power

of compiler IR. Ahmad et al. (2023) propose to use
source code models to perform Back-translation
DA, taking into consideration the scenario of low-
resource programming languages. Meanwhile,
(Chen and Lampouras, 2023) underscore the fact
that source code datasets are markedly smaller than
their NLP equivalents, which often encompass mil-
lions of instances. As a result, they commence
investigations into code completion tasks under
this context and experiment with Back-translation
and variable renaming. Shen et al. (2023) contend
that the generation of bash comments is hampered
by a dearth of training data and thus explore model-
based DA methods for this task.

4.3 Retrieval Augmentation

Increasing interest has been observed in the applica-
tion of DA for retrieval augmentation within NLP
and source code (Lu et al., 2022). These retrieval
augmentation frameworks for source code models
incorporate retrieval-augmented examples from the
training set when pre-training or fine-tuning source
code models. This form of augmentation enhances
the parameter efficiency of models, as they are able
to store less knowledge within their parameters and
instead retrieve it. It is shown as a promising appli-
cation of DA in various source code downstream
tasks, such as code summarization (Zhang et al.,
2020b) and program repair (Nashid et al., 2023).

4.4 Contrastive Learning

Another source code scenario to deploy DA meth-
ods is contrastive learning, where it enables models
to learn an embedding space in which similar sam-
ples are close to each other while dissimilar ones
are far apart (Wang et al., 2022; Zhang et al., 2022).
As the training datasets commonly contain limited
sets of positive samples, DA methods are preferred
to construct similar samples as the positive ones.
Liu et al. (2023b) make use of contrastive learning
with DA to devise superior pre-training paradigms
for source code models, while some works study
the advantages of this application in some source
code tasks like defect detection (Cheng et al., 2022)
and clone detection (Zubkov et al., 2022).

5 Downstream Tasks

While many aforementioned DA methods are
deemed task-agnostic, most of them have been only
applied to specific tasks. Therefore, we share an
overview of how these methods work for common
source code tasks and evaluation datasets.

5.1 Code Authorship Attribution

Code authorship attribution is the process of identi-
fying the author of a given code, usually achieved
by source code models. Yang et al. (2022b) initially
investigate generating adversarial examples on the
Google Code Jam (GCJ) dataset, which effectively
fools source code models to identify the wrong
author of a given code snippet. By training with
these augmented examples, the model’s robustness
can be further improved. Li et al. (2022c) propose
another DA method called RoPGen for the adver-
sarial attack and demonstrate its efficacy on GCJ.
Dong et al. (2023a) empirically study the effective-
ness of several existing DA approaches for NLP
on several source code tasks, including authorship
attribution on GCJ.

5.2 Clone Detection

Code clone detection refers to the task of identi-
fying if the given code snippet is syntactically or
semantically similar to the original sample Jain et
al. (2021) propose correct-by-construction DA via
compiler information to generate many variants
with equivalent functionality of the training sample
and show its effectiveness of improving the model
robustness on BigCloneBench and a self-collected
JavaScript dataset. Pinku er al. (2023) later use
Transcompiler to translate between limited source
code in Python and Java and increase the training
data for cross-language code clone detection.

5.3 Program Repair

Program repair, in other words, bug or vulnera-
bility fix, captures the bugs in given code snip-
pets and generates repaired versions. Allamanis
et al. (2021) implement BUGLAB-Aug, a DA
framework of self-supervised bug detection and
repair. BUGLAB-Aug has two sets of code trans-
formation rules, one is a bug-inducing rewrite and
the other one is rewriting as DA. Their approach
boosts the performance and robustness of source
code models simultaneously. Cheng et al. (2022)
present a path-sensitive code embedding technique
called ContraFlow, which uses self-supervised con-
trastive learning to detect defects based on value-
flow paths. ContraFlow utilizes DA to gener-
ate contrastive value-flow representations of three
datasets (namely D2A, Fan and FFMPeg+Qemu) to
learn the (dis)-similarity among programs. Ding et
al. (2021) present a novel self-supervised model fo-
cusing on identifying (dis)similar functionalities of

source code, which outperforms the state-of-the-art
models on REVEAL and FFMPeg+Qemu. Specifi-
cally, they design code transformation heuristics to
automatically create bugged programs and similar
code for augmenting pre-training data.

5.4 Code Summarization

Code summarization is considered as a task that
generates a comment for a piece of the source
code, and is thus also named code comment gener-
ation. Zhang et al. (2020c) apply MHM to perturb
training examples and mix them with the original
ones for adversarial training, which effectively im-
proves the robustness of source code models in
summarizing the adversarial code snippets. Zhang
et al. (2020b) develop a retrieval-augmentation
framework for code summarization, relying on
similar code-summary pairs to generate the new
summary on PCSD and JCSD datasets. Based on
this framework, Liu et al. (2020) leverage Hybrid
GNN to propose a novel retrieval-augmented code
summarization method and use it during model
training on the self-collected CCSD dataset. Zhou
et al. (2022) generate adversarial examples of a
Python dataset (Wan et al., 2018) and JSCD to
evaluate and enhance the source code model ro-
bustness.

5.5 Code Search

Code search, or code retrieval, is a text-code task
that searches code snippets based on the given nat-
ural language queries. The source code models on
this task need to map the semantics of the text to
the source code (Li ef al., 2022a, 2023; Huang et
al., 2023; Ma et al., 2023). Bahrami et al. (2021)
increase the code search queries by augmenting the
natural language context such as doc-string, code
comments and commit messages. Shi et al. (2022)
use AST-focused DA to replace the function and
variable names of the data in CodeSearchNet and
CoSQA (Huang et al., 2021). Specifically, Shi et
al. introduce soft data augmentation (SoDa), with-
out external transformation rules on code and text.
With SoDa, the model predicts tokens based on
dynamic masking or replacement when process-
ing CodeSearchNet. Instead of applying rule-based
DA techniques, Li ef al. (2022a) manipulate the
representation of the input data by interpolating
examples of CodeSearchNet.

5.6 Code Completion

Code completion requires source code models to
generate lines of code to complete given program-
ming tasks. Anand et al. (2021) suggest that source
code models are vulnerable to adversarial examples
which are perturbed with transformation rules. Lu
et al. (2022) propose a retrieval-augmented code
completion framework composed of the rule-based
DA module to generate on PYI/50 and GitHub
Java Corpus datasets (Allamanis and Sutton, 2013).
Wang et al. (2023) customize over 30 transforma-
tions specifically for code on docstrings, function
and variable names, code syntax, and code format
and benchmark generative source code models on
HumanEval and MBPP. Yang et al. (2022a) devise
transformations on functional descriptions and sig-
natures to attack source code models and show that
their performances are susceptible.

5.7 Code Translation

Similar to neural machine translation in
NLP (Stahlberg et al., 2020), the task is to
translate source code written in a specific program-
ming language to another one. Ahmad et al. (2023)
apply data augmentation through back-translation
to enhance unsupervised code translation. They
use pre-trained sequence-to-sequence models to
translate code into natural language summaries and
then back into code in a different programming
language, thereby creating additional synthetic
training data to improve model performance. Chen
et al. (2023) utilize Back-translation and variable
augmentation techniques to yield the improvement
in code translation on CodeTrans (Lu et al., 2021).

6 Challenges and Opportunities

When it comes to source code, DA faces significant
challenges. Nonetheless, it’s crucial to acknowl-
edge that these challenges pave the way for new
possibilities and exciting opportunities in this area
of work.

Discussion on theory. Currently, there is a no-
ticeable gap in the in-depth exploration and the-
oretical understanding of DA methods in source
code. Most existing research on DA is centered
around image processing and natural language
fields, viewing data augmentation as a way of ap-
plying pre-existing knowledge about data or task in-
variance (Wu et al., 2020). When shifting to source
code, much of the previous work introduces new
methods or demonstrates how DA techniques can

be effective for subsequent tasks. However, these
studies often overlook why and how particularly
from a mathematical perspective. By exploring DA
in this way, we can better understand its underly-
ing principles without being solely dependent on
experimental validation.

More study on pre-trained models. In recent
years, pre-trained source code models have been
widely applied in source code, containing rich
knowledge through self-supervision on a huge scale
of corpora (Feng et al., 2020; Guo et al., 2021).
Numerous studies have been conducted utilizing
pre-trained source code models for the purpose
of DA, yet, most of these attempts are confined
to mask token replacement (Shi et al., 2023), and
direct generation after fine-tuning (Ahmad et al.,
2023; Pinku et al., 2023). An emergent research
opportunity lies in exploring the potential of DA
in the source code domain with the help of large
language models (LLMs) trained on a large amount
of text and source code. LLMs have the capabil-
ity of context generation based on prompted in-
structions and provided examples, making them a
choice to automate the DA process in NLP (Yoo et
al., 2021; Wang et al., 2021a). Different from the
previous usages of pre-trained models in DA, these
works open the era of “prompt-based DA”. In con-
trast, the exploration of prompt-based DA in source
code domains remains a relatively untouched re-
search area. Another direction is to harness the
internal knowledge encoded in pre-trained source
code models. For example, previous work (Kar-
makar and Robbes, 2021; Wan et al., 2022) shows
that ASTs and code semantics can be induced from
these models without the static analysis tools.

More exploration on project-level source code
and low-resource programming languages.
The existing methods have made sufficient progress
in function-level code snippets and common pro-
gramming languages. The emphasis on code snip-
pets at the function level fails to capture the intri-
cacies and complexities of programming in real-
world scenarios, where developers often work with
multiple files and folders simultaneously. There-
fore, we highlight the importance of exploring
DA approaches on the project level. The DA
on source code projects can be distinct from the
function-level DA, as it may involve more infor-
mation such as the interdependencies between dif-
ferent code modules, high-level architectural con-
siderations, and the often intricate relationship be-

tween data structures and algorithms used across
the project (Mockus et al., 2002). At the same
time, limited by data resources (Husain et al., 2019;
Orlanski et al., 2023), augmentation methods of
low-resource languages are scarce, although they
have more demand for DA. Exploration in these
two directions is still limited, and they could be
promising directions.

Lack of unification. The current body of liter-
ature on data augmentation (DA) for source code
presents a challenging landscape, with the most
popular methods often being portrayed in a supple-
mentary manner. A handful of empirical studies
have sought to compare DA methods for source
code models (Rodrigues et al., 2023; Dong et
al., 2023a). However, none of these works lever-
ages most of the existing advanced DA methods
for source code models. Whereas there are well-
accepted frameworks for DA for CV and DA for
NLP, a corresponding library of generalized DA
techniques for source code models is conspicuously
absent. Furthermore, as existent DA methods are
usually evaluated with various datasets, it is hard to
determine the efficacy. Therefore, we posit that the
progression of DA research would be significantly
facilitated by the establishment of standardized and
unified benchmark tasks, along with datasets, for
the purpose of contrasting and evaluating the effec-
tiveness of different augmentation methods. This
would pave the way towards a more systematic
and comparative understanding of the benefits and
limitations of these methods.

7 Conclusion

Our paper comprehensively analyzes data augmen-
tation techniques in the context of source code.
We first explain the concept of data augmentation
and its function. We then examine the primary
data augmentation methods commonly employed
in source code research and explore augmentation
approaches for typical source code applications and
tasks. Finally, we conclude by outlining the cur-
rent challenges in the field and suggesting potential
directions for future source code research. In pre-
senting this paper, we aim to assist researchers in
selecting appropriate data augmentation techniques
and encourage further exploration and advance-
ment in this field.

Limitations

While the work presented in this paper has its
merits, we acknowledge the several limitations.
Firstly, our work only surveys imperative program-
ming languages used for general-purpose program-
ming. Therefore, some DA methods for declar-
ative languages (Zhuo et al., 2023b) or minor
downstream tasks like cryptography misuse detec-
tion (Rodrigues et al., 2023), including SQL. Sec-
ondly, our focus has been primarily on function-
level DA within the source code context. As such,
future development in project-level DA methods
remains needed. Nonetheless, this paper offers a
valuable collection of general-purpose DA tech-
niques for source code models, and we hope that
it can serve as an inspiration for further research
in this area. Thirdly, given the page limits, the de-
scriptions presented in this survey are essentially
brief in nature. Our approach has been to offer the
works in meaningful structured groups rather than
unstructured sequences, to ensure comprehensive
coverage. This work can be used as an index where
more detailed information can be found in the corre-
sponding works. Lastly, it is worth noting that this
survey is purely qualitative and does not include
any experiments or empirical results. To provide
more meaningful guidance, it would be helpful to
conduct comparative experiments across different
DA strategies. We leave this as a suggestion for
future work.

References

Wasi Uddin Ahmad er al. 2023. Summarize and gen-
erate to back-translate: Unsupervised translation of
programming languages. In Proceedings of the 17th
Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, pages 1528—
1542, Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

Miltiadis Allamanis and Charles Sutton. 2013. Min-
ing source code repositories at massive scale using
language modeling. In 2013 10th working confer-
ence on mining software repositories (MSR), pages

207-216. IEEE.

Miltiadis Allamanis et al. 2017. A survey of machine
learning for big code and naturalness. ACM Comput-
ing Surveys (CSUR), 51:1 — 37.

Miltiadis Allamanis ef al. 2021. Self-supervised bug
detection and repair. Advances in Neural Information
Processing Systems, 34:27865-27876.

Uri Alon et al. 2019. code2seq: Generating sequences
from structured representations of code. In Interna-
tional Conference on Learning Representations.

Mrinal Anand et al. 2021. Adversarial robustness of pro-
gram synthesis models. In Advances in Programming
Languages and Neurosymbolic Systems Workshop.

Mehdi Bahrami et al. 2021. Augmentedcode: Examin-
ing the effects of natural language resources in code
retrieval models. arXiv preprint arXiv:2110.08512.

Pavol Bielik and Martin Vechev. 2020. Adversarial
robustness for code. In International Conference on
Machine Learning, pages 896-907. PMLR.

Marc Brockschmidt ez al. 2019. Generative code mod-
eling with graphs. In International Conference on
Learning Representations.

Pinzhen Chen and Gerasimos Lampouras. 2023. Ex-
ploring data augmentation for code generation tasks.
In Findings of the Association for Computational
Linguistics: EACL 2023, pages 1497-1505.

Xiao Cheng et al. 2022. Path-sensitive code embedding
via contrastive learning for software vulnerability
detection. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and
Analysis, pages 519-531.

Michael L Collard et al. 2013. srcml: An infrastructure
for the exploration, analysis, and manipulation of
source code: A tool demonstration. pages 516-519.
IEEE.

Yangruibo Ding et al. 2021. Towards learning (dis)-
similarity of source code from program contrasts. In
Annual Meeting of the Association for Computational
Linguistics.

Zeming Dong et al. 2023a. Boosting source code learn-
ing with data augmentation: An empirical study.
arXiv preprint arXiv:2303.06808.

Zeming Dong et al. 2023b. Mixcode: Enhancing code
classification by mixup-based data augmentation. In
2023 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER),
pages 379-390. IEEE.

Steven Y Feng et al. 2021. A survey of data augmen-
tation approaches for nlp. In Findings of the Associ-
ation for Computational Linguistics: ACL-IJCNLP
2021, pages 968-988.

Zhangyin Feng et al. 2020. Codebert: A pre-trained
model for programming and natural languages. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 1536-1547.

Xiaodong Gu et al. 2016. Deep api learning. In Pro-
ceedings of the 2016 24th ACM SIGSOFT interna-
tional symposium on foundations of software engi-
neering, pages 631-642.

https://aclanthology.org/2023.eacl-main.112
https://aclanthology.org/2023.eacl-main.112
https://aclanthology.org/2023.eacl-main.112
https://aclanthology.org/2023.eacl-main.112
https://aclanthology.org/2023.eacl-main.112
https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=Bke4KsA5FX
https://openreview.net/forum?id=Bke4KsA5FX
https://openreview.net/forum?id=Bke4KsA5FX

Daya Guo et al. 2021. Graphcode{bert}: Pre-training
code representations with data flow. In International
Conference on Learning Representations.

Hossein Hajipour et al. 2022. Simscood: Systematic
analysis of out-of-distribution behavior of source
code models. arXiv preprint arXiv:2210.04802.

Xiaoshuai Hao et al. 2023. Mixgen: A new multi-modal
data augmentation. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vi-
sion, pages 379-389.

Vincent J Hellendoorn et al. 2018. Deep learning type
inference. In Proceedings of the 2018 26th acm joint
meeting on european software engineering confer-
ence and symposium on the foundations of software
engineering, pages 152-162.

Xinyi Hou et al. 2023. Large language models for
software engineering: A systematic literature review.
arXiv preprint arXiv:2308.10620.

Qiang Hu et al. 2022. Codes: A distribution shift bench-
mark dataset for source code learning. arXiv preprint
arXiv:2206.05480.

Junjie Huang et al. 2021. Cosqa: 20,000+ web queries
for code search and question answering. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 5690-5700.

Qiao Huang ef al. 2018. Api method recommenda-
tion without worrying about the task-api knowledge
gap. In Proceedings of the 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineer-
ing, pages 293-304.

Xiangbing Huang et al. 2023. Towards better multilin-
gual code search through cross-lingual contrastive
learning. In Proceedings of the 14th Asia-Pacific
Symposium on Internetware, pages 22-32.

Hamel Husain et al. 2019. Codesearchnet challenge:
Evaluating the state of semantic code search. arXiv
preprint arXiv: 1909.09436.

Paras Jain ef al. 2021. Contrastive code representation
learning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 5954-5971.

Anjan Karmakar and Romain Robbes. 2021. What
do pre-trained code models know about code? In
2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 1332—
1336. IEEE.

Haochen Li et al. 2022a. Exploring representation-level
augmentation for code search. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4924-4936, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

10

Haochen Li et al. 2023. Rethinking negative pairs in
code search.

Yiyang Li et al. 2022b. Semantic-preserving adversar-
ial code comprehension. In Proceedings of the 29th
International Conference on Computational Linguis-
tics, pages 3017-3028.

Zhen Li et al. 2022c. Ropgen: Towards robust code au-
thorship attribution via automatic coding style trans-
formation. In Proceedings of the 44th International
Conference on Software Engineering, pages 1906—
1918.

Zhiming Li et al. 2022d. Cross-lingual transfer learning
for statistical type inference. In Proceedings of the
31st ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 239-250.

Zongjie Li et al. 2022e. Unleashing the power of com-
piler intermediate representation to enhance neural
program embeddings. In Proceedings of the 44th
International Conference on Software Engineering,
pages 2253-2265.

Fangyu Liu et al. 2023a. Matcha: Enhancing visual
language pretraining with math reasoning and chart
derendering. In Proceedings of the 6 1th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers).

Shangqing Liu et al. 2020. Retrieval-augmented gen-
eration for code summarization via hybrid gnn. In
International Conference on Learning Representa-
tions.

Shangqing Liu et al. 2023b. Contrabert: Enhancing
code pre-trained models via contrastive learning.

Yan Liu ef al. 2023c. Uncovering and quantifyingso-
cialbiases incodegeneration.

Shuai Lu et al. 2021. CodeXGLUE: A machine learning
benchmark dataset for code understanding and gener-
ation. In Thirty-fifth Conference on Neural Informa-

tion Processing Systems Datasets and Benchmarks
Track (Round 1).

Shuai Lu et al. 2022. Reacc: A retrieval-augmented
code completion framework. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
6227-6240.

Yingwei Ma et al. 2023. Mulcs: Towards a unified deep
representation for multilingual code search. In 2023
IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 120—
131. IEEE.

Qing Mi et al. 2021. The effectiveness of data augmen-
tation in code readability classification. Information
and Software Technology, 129:106378.

Audris Mockus et al. 2002. Two case studies of open
source software development: Apache and mozilla.
ACM Transactions on Software Engineering and
Methodology (TOSEM), 11(3):309-346.

https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://aclanthology.org/2022.emnlp-main.327
https://aclanthology.org/2022.emnlp-main.327
https://aclanthology.org/2022.emnlp-main.327
https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb

Noor Nashid et al. 2023. Retrieval-based prompt selec-
tion for code-related few-shot learning. In Proceed-
ings of the 45th International Conference on Software
Engineering (ICSE’23).

Erik Nijkamp ef al. 2023. Codegen: An open large
language model for code with multi-turn program
synthesis. /ICLR.

Gabriel Orlanski et al. 2023. Measuring the impact of
programming language distribution. arXiv preprint
arXiv:2302.01973.

Shinwoo Pack et al. 2023. Contrastive learning with
keyword-based data augmentation for code search
and code question answering. In Conference of the
European Chapter of the Association for Computa-
tional Linguistics.

Subroto Nag Pinku et al. 2023. Pathways to lever-
age transcompiler based data augmentation for

cross-language clone detection. arXiv preprint
arXiv:2303.01435.

Maryam Vahdat Pour et al. 2021. A search-based test-
ing framework for deep neural networks of source
code embedding. In 2021 14th IEEE Conference on
Software Testing, Verification and Validation (ICST),
pages 36—46. IEEE.

Erwin Quiring et al. 2019. Misleading authorship attri-
bution of source code using adversarial learning. In
USENIX Security Symposium, pages 479—496.

Md Rafiqul Islam Rabin and Mohammad Amin Alipour.
2022. Programtransformer: A tool for generating
semantically equivalent transformed programs. Soft-
ware Impacts, 14:100429.

Md Rafiqul Islam Rabin et al. 2021. On the general-
izability of neural program models with respect to
semantic-preserving program transformations. Infor-
mation and Software Technology, 135:106552.

Arijit Ray et al. 2019. Sunny and dark outside?! improv-
ing answer consistency in vqa through entailed ques-
tion generation. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-1JCNLP),
pages 5860-5865.

de Paula Rodrigues et al. 2023. Detecting cryptography
misuses with machine learning: Graph embeddings,
transfer learning and data augmentation in source
code related tasks. IEEE Transactions on Reliability.

Baptiste Roziere et al. 2021. Leveraging automated unit
tests for unsupervised code translation. In Interna-
tional Conference on Learning Representations.

Rico Sennrich et al. 2015. Improving neural machine
translation models with monolingual data. arXiv
preprint arXiv:1511.06709.

11

Yiheng Shen et al. 2023. Bash comment generation
via data augmentation and semantic-aware codebert.
Available at SSRN 4385791.

Ensheng Shi et al. 2023. Cocosoda: Effective con-
trastive learning for code search. In Proceedings of
the 45th International Conference on Software Engi-
neering.

Zejian Shi et al. 2022. Cross-modal contrastive learn-
ing for code search. In 2022 IEEE International
Conference on Software Maintenance and Evolution
(ICSME), pages 94-105. IEEE.

Connor Shorten and Taghi M. Khoshgoftaar. 2019. A
survey on image data augmentation for deep learning.
Journal of Big Data, 6:1-48.

Zixuan Song et al. 2022. Do not have enough data? an
easy data augmentation for code summarization. In
2022 IEEE 13th International Symposium on Parallel
Architectures, Algorithms and Programming (PAAP),
pages 1-6. IEEE.

Jacob M. Springer. 2021. Strata: Simple, gradient-
free attacks for models of code. Preprint,
arXiv:2009.13562.

Shashank Srikant ef al. 2021. Generating adversarial
computer programs using optimized obfuscations. In
International Conference on Learning Representa-
tions.

Felix Stahlberg et al. 2020. Neural machine translation:
A review. Journal of Artificial Intelligence Research,
69:343-418.

Didac Suris et al. 2023. Vipergpt: Visual inference
via python execution for reasoning. arXiv preprint
arXiv:2303.08128.

Ruixue Tang et al. 2020. Semantic equivalent adversar-
ial data augmentation for visual question answering.
In Computer Vision—ECCV 2020: 16th European
Conference, Glasgow, UK, August 23-28, 2020, Pro-
ceedings, Part XIX 16, pages 437-453. Springer.

Junfeng Tian et al. 2021. Generating adversarial ex-
amples of source code classification models via g-
learning-based markov decision process. In 2021
IEEE 21st International Conference on Software
Quality, Reliability and Security (ORS), pages 807—
818. IEEE.

Christoph Treude and Martin P Robillard. 2016. Aug-
menting api documentation with insights from stack
overflow. In Proceedings of the 38th International

Conference on Software Engineering, pages 392—
403.

Yao Wan et al. 2018. Improving automatic source
code summarization via deep reinforcement learn-
ing. In Proceedings of the 33rd ACM/IEEE interna-
tional conference on automated software engineering,
pages 397-407.

https://arxiv.org/abs/2009.13562
https://arxiv.org/abs/2009.13562
https://arxiv.org/abs/2009.13562

Yao Wan et al. 2022. What do they capture? a structural
analysis of pre-trained language models for source
code. In Proceedings of the 44th International Con-
ference on Software Engineering, pages 2377-2388.

Shiqi Wang et al. 2023. Recode: Robustness evaluation
of code generation models. In Proceedings of the
61th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers).

Shuohang Wang et al. 2021a. Want to reduce labeling
cost? gpt-3 can help. In Findings of the Association
for Computational Linguistics: EMNLP 2021, pages
4195-4205.

Xiao Wang et al. 2022. Heloc: Hierarchical contrastive
learning of source code representation. In Proceed-
ings of the 30th IEEE/ACM International Conference
on Program Comprehension, pages 354-365.

Zeyu Wang et al. 2021b. Plot2api: recommending
graphic api from plot via semantic parsing guided
neural network. In 2021 IEEE International Con-
ference on Software Analysis, Evolution and Reengi-
neering (SANER), pages 458—469. IEEE.

Qingsong Wen et al. 2020. Time series data augmen-
tation for deep learning: A survey. In International
Joint Conference on Artificial Intelligence.

Sen Wu et al. 2020. On the generalization effects of
linear transformations in data augmentation. In In-
ternational Conference on Machine Learning, pages
10410-10420. PMLR.

Frank F Xu et al. 2020. Incorporating external knowl-
edge through pre-training for natural language to
code generation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 6045-6052.

Guang Yang et al. 2022a. How important are
good method names in neural code generation?
a model robustness perspective. arXiv preprint
arXiv:2211.15844.

Guang Yang et al. 2023. [Exploitgen: Template-
augmented exploit code generation based on codebert.
Journal of Systems and Software, 197:111577.

Zhou Yang et al. 2022b. Natural attack for pre-trained
models of code. In Proceedings of the 44th Interna-
tional Conference on Software Engineering, pages
1482-1493.

Noam Yefet ef al. 2020. Adversarial examples for mod-
els of code. Proceedings of the ACM on Program-
ming Languages, 4(OOPSLA):1-30.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 440-450.

12

Kang Min Yoo et al. 2021. Gpt3mix: Leveraging large-
scale language models for text augmentation. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 2225-2239.

Shiwen Yu ef al. 2022. Data augmentation by program
transformation. Journal of Systems and Software,
190:111304.

He Zhang et al. 2011. Identifying relevant studies
in software engineering. Information and Software
Technology, 53(6):625-637.

Hongyi Zhang et al. 2018. mixup: Beyond empirical
risk minimization. In International Conference on
Learning Representations.

Huangzhao Zhang et al. 2020a. Generating adversar-
ial examples for holding robustness of source code
processing models. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages
1169-1176.

Jian Zhang et al. 2020b. Retrieval-based neural
source code summarization. In Proceedings of the
ACM/IEEE 42nd International Conference on Soft-
ware Engineering, pages 1385-1397.

Xiaoqing Zhang et al. 2020c. Training deep code
comment generation models via data augmentation.
pages 185-188.

Yifan Zhang et al. 2022. Combo: Pre-training repre-
sentations of binary code using contrastive learning.
arXiv preprint arXiv:2210.05102.

Yu Zhou et al. 2022. Adversarial robustness of deep
code comment generation. ACM Transactions on
Software Engineering and Methodology (TOSEM),
31(4):1-30.

Terry Yue Zhuo et al. 2023a. Exploring ai ethics
of chatgpt: A diagnostic analysis. arXiv preprint
arXiv:2301.12867.

Terry Yue Zhuo et al. 2023b. On robustness of prompt-
based semantic parsing with large pre-trained lan-
guage model: An empirical study on codex. In Pro-
ceedings of the 17th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 1090-1102.

Maksim Zubkov et al. 2022. Evaluation of contrastive
learning with various code representations for code
clone detection. arXiv preprint arXiv:2206.08726.

A Literature Selection

we employ the “Quasi-Gold Standard”
(QGS) (Zhang et al., 2011) approach for pa-
per search. We conduct a manual search to identify
a set of relevant studies and extracted a search
string from them. This search string is then used to
perform an automated search, and subsequently,

https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb

Publications per Venue

ArXiv 17.8%

10.0%

ICSE

6.7% 4.4%

5.6%

EMNLP ICLR

ACL

Figure 2: Venue Distribution of the collected publica-
tions.

a snowballing search is employed to further
supplement the search results. This approach
ensures both search efficiency and maximum
coverage, minimizing the risk of omission.

During the manual search, we manually verify
the papers containing two sets of keywords: one
pertaining to software engineering, and the other
related to deep learning. The complete set of search
keywords is as follows:

* Keywords related to software engineering: Pro-
gram Transformation, Robustness, Adversarial
Robustness, Adversarial Attack.

* Keywords related to deep learning: Code Model,
Code Language Model, Data Augmentation,
Augmented, Contrastive Learning, Low Re-
source.

To this end, we have compiled a list of 89 core
papers from the past five years, mainly from pre-
mier conferences and journals in both the ML and
SE disciplines as shown in Figure 2 (with 62 out of
89 papers published in Core Rank A/A* venues?).

B Background

B.1 What are source code models?

Source code models are trained on large-scale cor-
pora of source code and therefore able to model
3We refer to the venues listed at http://portal.core.

edu.au/conf-ranks/ and http://portal.core.edu.au/
jnl-ranks/.

13

the contextual representations of given code snip-
pets (Allamanis et al., 2017). In the early stage,
researchers have attempted to leverage deep learn-
ing architectures like LSTM (Gu et al., 2016) and
Seq2Seq (Yin and Neubig, 2017) to model the
source code like plain text, and shown that these
models can achieve great performance on specific
downstream tasks of source code. With the de-
velopment of pre-trained language models in NLP,
many pre-trained source code models are proposed
to enhance the source code representations and effi-
ciently be scaled to any downstream tasks (Feng et
al., 2020; Guo et al., 2021; Nijkamp et al., 2023).
Some of these models incorporate the inherent
structure of code. For example, instead of tak-
ing the syntactic-level structure of source code like
ASTs, Guo et al. (2021) consider program data
flow in the pre-training stage, which is a semantic-
level structure of code that encodes the relation of
“where-the-value-comes-from” between variables.
In this survey, we focus DA methods designed for
all the deep-learning-based source code models.

B.2 What is data augmentation?

Data augmentation (DA) techniques aim to im-
prove the model’s performance in terms of various
aspects (e.g., accuracy and robustness) via increas-
ing training example diversity with data synthesis.
Besides, DA techniques can help avoid model over-
fitting in the training stage, which maintains the
generability of the model. In CV, DA techniques
with predefined rules are commonly adopted when
training models, such as image cropping, image
flipping, and color jittering (Shorten and Khosh-
goftaar, 2019). These techniques can be classi-
fied as rule-based DA. Furthermore, some attempts
like Mixup have been made to create new exam-
ples by fusing multiple examples together, which
is categorized as example interpolation DA. Com-
pared to CV, DA techniques for NLP greatly rely
on language models that can help paraphrase the
given context by word replacing or sentence rewrit-
ing (Feng et al., 2021). As most of these language
models are pre-trained and can capture the seman-
tics of inputs, they serve as reasonable frameworks
to modify or paraphrase the plain text. We denote
such DA methods as model-based DA.

B.3 How does data augmentation work in
source code?

Compared to images and plain texts, source code
is less flexible to be augmented due to the nature

http://portal.core.edu.au/conf-ranks/
http://portal.core.edu.au/conf-ranks/
http://portal.core.edu.au/jnl-ranks/
http://portal.core.edu.au/jnl-ranks/

of strict programming syntactic rules. Hence, we
observe that most DA approaches in source code
must follow the predetermined transformation rules
in order to preserve the functionality and syntax of
the original code snippets. To enable the complex
processing of the given source code, a common ap-
proach is to use a parser to build a concrete syntax
tree from the code, which represents the program
grammar in a tree-like form. The concrete syntax
tree will be further transformed into an abstract
syntax tree (AST) to simplify the representation
but maintain the key information such as identi-
fiers, if-else statements, and loop conditions. The
parsed information is utilized as the basis of the
rule-based DA approaches for identifier replace-
ment and statement rewrite (Quiring et al., 2019).
From a software engineering perspective, these DA
approaches can emulate more diverse code repre-
sentation in real-world scenarios and thus make
source code models more robust by training with
the augmented data (Yefet et al., 2020).

C More Scenarios

C.1 Method Name Prediction

The goal of method name prediction is to predict
the name of a method given the program. Yefet et
al. (2020) attack and defense source code models
by using variable-name-replaced adversarial pro-
grams on the Code2Seq dataset (Alon et al., 2019).
Pour et al. (2021) propose a search-based testing
framework specifically for adversarial robustness.
They generate adversarial examples of Java with
ten popular refactoring operators widely used in
Java. (Rabin et al., 2021) and (Yu et al., 2022) both
implement data augmentation frameworks and vari-
ous transformation rules for processing Java source
code on the Code2Seq dataset.

C.2 Type Prediction

Type prediction, or type interference, aims to pre-
dict parameter and function types in programs.
Bielik and Vechev (2020) conduct adversarial at-
tacks on source code models with examples of
transformed ASTs. They instantiate the attack
to type prediction on JavaScript and TypeScript.
Jain et al. (2021) apply compiler transforms to
generates many variants of programs in Deep-
Typer (Hellendoorn et al., 2018), with equivalent
functionality with 11 rules. Li et al. (2022d) incor-
porate sccML (Collard et al., 2013) meta-grammar
embeddings to augment the syntactic features of ex-

14

amples in three datasets, DeepTyper, Typilus Data
and CodeSearchNet.

C.3 Code Question Answering (CQA)

CQA can be formulated as a task where the source
code models are required to generate a textual an-
swer based on a given code snippet and a question.
Huang et al. (2021) incorporate two rule-based DA
methods on code and text to create examples for
contrastive learning. Li et al. (2022b) explore the
efficacy of adversarial training on the continuous
embedding space with rule-based DA on CodeQA,
a free-form CQA dataset. Park er al. (2023) eval-
uate KeyDAC, a framework using query writing
and variable renaming as DA, on WebQueryTest of
CodeXGLUE. Different from CodeQA, WebQuery-
Test is a CQA benchmark only containing Yes/No
questions.

C.4 Code Classification

The task performs the categorization of programs
regarding their functionality or readability. Wang
et al. (2022) propose a novel AST hierarchy rep-
resentation for contrastive learning with the graph
neural network. Specifically, they augment the
node embeddings in AST paths on OJ, a dataset
containing 104 classes of programs. Zhang et
al. (2022) incorporate simplex interpolation, an
example-interpolation DA approach on IR, to cre-
ate intermediate embeddings on POJ-104 from
CodeXGLUE. Dong ef al. (2023b) also explore
the example-interpolation DA to fuse the embed-
dings of code snippets. They evaluate the method
on two datasets, JAVA250 and Python800.

D More Challenges and Opportunities

Working with domain-specific data. Our pa-
per focuses on surveying DA techniques for com-
mon downstream tasks involving processing source
code. However, we are aware that there are a few
works on other task-specific data in the field of
source code. For instance, API recommendation
and API sequence generation can be considered a
part of source code tasks (Huang et al., 2018; Gu et
al., 2016). DA methods covered by our survey can
not be directly generalized to these tasks, as most
of them only target program-level augmentation but
not API-level. We observe a gap of DA techniques
between these two different layers (Treude and Ro-
billard, 2016; Xu et al., 2020; Wang et al., 2021b),
which provides opportunities for future works to
explore. Additionally, the source code modeling

has not fully justified DA for out-of-distribution
generalization. Previous studies (Hajipour et al.,
2022; Hu et al., 2022) assume the domain as the
programs with different complexity, syntax, and
semantics. We argue that this definition is not nat-
ural enough. Similar to the subdomains in NLP,
like biomedical and financial texts, the application
subdomains of source code can be diverse. For
example, the programs to solve data science prob-
lems can significantly differ from those for web
design. We encourage SE and ML communities to
study the benefits of DA when applied to various
application subdomains of source code.

Mitigating social bias. As source code models
have advanced software development, they may be
used to develop human-centric applications such
as human resources and education, where biased
programs may result in unjustified and unethical
decisions for underrepresented people (Zhuo et al.,
2023a). While social bias in NLP has been well
studied and can be mitigated with DA (Feng et
al., 2021), the social bias in source code has not
been brought to attention. For example, Liu et
al. (2023c¢) find that LLMs have severe biases in
various demographics such as gender, sexuality,
and occupation when performing code generation
based on the natural language queries. To make
these models more responsible in source code, we
urge more research on mitigating bias. As prior
works in NLP suggested, DA may be an effective
technique to make source code models more re-
sponsible.

Few-shot learning. In few-shot scenarios, mod-
els are required to achieve performance that rivals
that of traditional machine learning models, yet
the amount of training data is extremely limited.
DA methods provide a direct solution to the prob-
lem. However, limited works in few-shot scenarios
have adopted DA methods (Nashid et al., 2023).
Mainstream pre-trained source code models obtain
rich semantic knowledge through language model-
ing. Such knowledge even covers, to some extent,
the semantic information introduced by traditional
paraphrasing-based DA methods. In other words,
the improvement space that traditional DA meth-
ods bring to pre-trained source code models has
been greatly compressed. Therefore, it is an inter-
esting question how to provide models with fast
generalization and problem-solving capability by
generating high-quality augmented data in few-shot
scenarios.

15

Multimodal applications. It is important to note
that the emphasis on function-level code snippets
does not accurately represent the intricacies and
complexities of real-world programming situations.
In such scenarios, developers often work with mul-
tiple files and folders simultaneously.s have also
been developed. Wang et al. (2021b) and Liu et
al. (2023a) explore the chart derendering with an
emphasis on source code and corresponding APIs.
Suris et al. (2023) propose a framework to gener-
ate Python programs to solve complex visual tasks
including images and videos. Although such mul-
timodal applications are more and more popular,
no study has yet been conducted on applying DA
methods to them. A potential challenge for the mul-
timodal source code task technique is to effectively
bridge between the embedding representations for
each modality in source code models, which has
been investigated in vision-language multimodal
tasks (Ray et al., 2019; Tang et al., 2020; Hao et
al., 2023).

	Introduction
	Source Code Data Augmentation Methods for Deep Learning
	Rule-based Techniques
	Model-based Techniques
	Example Interpolation Techniques

	Strategies and Techniques
	Method Stacking
	Optimization
	Probabilistic Selection
	Model-based Selection
	Rule-based Selection

	Scenarios
	Adversarial Examples for Robustness
	Low-Resource Domains
	Retrieval Augmentation
	Contrastive Learning

	Downstream Tasks
	Code Authorship Attribution
	Clone Detection
	Program Repair
	Code Summarization
	Code Search
	Code Completion
	Code Translation

	Challenges and Opportunities
	Conclusion
	Literature Selection
	Background
	What are source code models?
	What is data augmentation?
	How does data augmentation work in source code?

	More Scenarios
	Method Name Prediction
	Type Prediction
	Code Question Answering (CQA)
	Code Classification

	More Challenges and Opportunities

