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ABSTRACT

Despite the theoretical superiority in convergence rate, second-order optimizers
are generally not among the top choices for training large-scale neural networks
due to their high computation and memory cost. Nevertheless, introduced in recent
progress of parameter-efficient tuning is a new paradigm that large-scale pre-trained
models (PTMs) can be adapted to specific tasks by optimizing a tiny proportion
of parameters, which might hopefully change the game. We associate this new
paradigm with the computational tractability of second-order optimizers and
succeed in applying them to large PTMs from hundreds of millions of parameters
to billions in scale. Beyond verifying their tractability, we further investigate the
stability-influencing factors in the optimization process and propose accordingly
a Newton-step clipping approach in which we clip the update tensors rather than
the gradients. This approach stabilizes the convergence by gating the magnitude of
Newton steps along the optimization trajectories through the rugged landscapes of
deep transformers. We conduct extensive experiments across different downstream
tasks, demonstrating that, when equipped with Newton-step clipping, second-order
optimizers, especially Kronecker-factored curvature approximation (K-FAC), can
attain comparable and even superior results and faster convergence to those state-
of-the-art bars implemented with AdamW. Furthermore, we scale the model up
to 3 billion parameters and validate the tractability and effectiveness of our method.
This work is not only the first successful application of second-order optimization
on such enormous models but also paves the road towards the design and analysis
of second-order optimizers for the downstream adaptation of large-scale PTMs.

1 INTRODUCTION

Pre-Trained models (Bommasani et al., 2021; Han et al., 2021) (PTMs) based on deep transform-
ers (Vaswani et al., 2017; Devlin et al., 2019; Raffel et al., 2020; Brown et al., 2020) yield remarkable
performance on a wide range of tasks thanks to the tremendous capacity brought by numerous
parameters. A prevalent paradigm is to firstly pre-train such models on large-scale corpora in a
self-supervised manner and then adapt them to specific datasets (typically with supervision). Such
adaptations are usually implemented by first-order gradient-based optimization. However, recent
applications have witnessed an approaching bottleneck for first-order training — it is neither likely
to be faster nor easy to attain higher scores (Pascanu et al., 2013; Goodfellow et al., 2016). On the
other hand, second-order optimizers which enjoy better convergence properties might have been
an ideal alternative in theory (Nocedal & Wright, 1999; Boyd et al., 2004). They are, nevertheless,
almost unattended on the downstream adaptation of PTMs in practice. It is because they require
quadratic storage and cubic computation time for each update, which is especially prohibitive given
the enormous model scale, even though bunches of their simplified counterparts have been devised
(Byrd et al., 1995; Martens & Grosse, 2015; Botev et al., 2017; Anil et al., 2020; Tang et al., 2021).

Hopefully, recent advances in PTMs have brought a slight twist to the situation. Studies show that
full-parameter optimization may not be necessary for task-specific adaptations, as updating a small
portion (0.05%~1%) of parameters can achieve non-trivial performance in many datasets (Houlsby
etal., 2019; Li & Liang, 2021; Lester et al., 2021; Hu et al., 2021). With the new paradigm largely
shrinking the trainable parameter space, we find in experiments that second-order optimization is
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now tractable on large-scale PTMs with up to billions of parameters. This successful implementation
signals that the design and analysis of second-order optimization can start marching from relatively
toy or medium models to pre-trained deep transformers that are formidably large in scale. Further
triggered is a sequence of interesting research topics including: How tractable are second-order
optimizers on deep transformers? Are they capable of converging faster and more steadily and
yielding better results? If not, what auxiliary skills are needed? And also, how does the ratio of
trainable parameters influence the relative performance of second-order optimization?

In this application-oriented paper, we answer all the aforementioned questions through theoretical
justification and experimental verification. Taking K-FAC as the major example of the second-order
optimizer, we first experimentally verify that its training time and memory cost on extremely large
PTMs are totally affordable. In addition, we point out that clipping the gradients before or after
Hessian (or Fisher) preconditioning makes a non-negligible difference. We propose accordingly
a Newton-step clipping strategy which is indispensable for second-order training because of its
superior stabilizing effect. We then post comprehensive results to illustrate that with the assistance
of our Newton-step clipping strategy, second-order optimization outperforms baseline first-order
optimzers as well as its non-clipping and traditionally gradient clipping counterparts in terms of
both convergence speed and final test scores. Moreover, we scale the model scale up to 3 billion
parameters to evaluate the tractability and effectiveness. Observations of the relation between tunable
ratio and convergence speed are also presented subsequently.

2 SECOND-ORDER OPTIMIZERS FOR LARGE-SCALE TRAINING

Following the introductory part, we recap the essential background of second-order optimization.
While first-order optimizers such as stochastic gradient descent (SGD) and Adam (Kingma &
Ba, 2014) have been more than ubiquitous in deep learning, second-order optimizers remain rela-
tively under-explored in this field. Unlike their first-order counterparts, which take only first-order
derivatives into account, second-order optimizers will in addition incorporate the loss function’s
second-order features, or, in other words, the curvature information.

2.1 NEWTON’S METHOD AND ITS VARIANTS

Newton’s method and its variants are perhaps the most typical second-order optimization skills. To be
specific, in Newton’s method, we approximate the loss function with its Taylor expansion up to order 2:
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in which g(0) and H (0) are the gradient and Hessian matrix of L at 6 respectively. We then hope
to move towards the direction in which the quadratic function on the right-hand side of Equation
| is minimized. This condition implies that the standard Newton’s method should proceed as
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where 7, is the learning rate for the ¢-th step. Here the Hessian H is assumed to be invertible. The
quantity u = H g is usually called a Newton step.

Despite the theory that fewer steps are required for convergence, the original Newton’s method
has long been criticized for high computation and storage costs in calculating the Hessian matrix,
inverting it, and other additional matrix manipulations (Nocedal & Wright, 1999; Boyd et al., 2004).
To remedy this deficiency of speed, amazing increments of Newton’s method have been proposed
successively in recent centuries. Included are those reducing the cost by using an approximation of
the Hessian matrix (Levenberg, 1944; Marquardt, 1963; Botev et al., 2017), and those quasi-Newton
optimizers such as BFGS (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) and its
limited-memory version L-BFGS (Byrd et al., 1995) which approximate the inverse of Hessian
matrix directly. Those aforementioned methods can partly alleviate the intractability of full Newton’s
method on deep neural networks.

2.2 NATURAL GRADIENT DESCENT AND K-FAC

In a common situation of supervised learning, a class of parametric conditional distribution
{p(y | z,0) | @ € O} is assigned to the model to fit the underlying distribution ¢(y | ) of the ob-
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served data. Kullback-Leibler divergence (Kullback & Leibler, 1951) L(0) = Dxr[q(x, y)||p(x, y |
0)] between the two joint distributions, or up to an additive constant, the negative log-likelihood, is
usually selected as the loss function to be minimized. Natural gradient descent suggests an update
direction satisfying

1
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where « is a positive constant and
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is known as the Fisher information matrix (FIM) of p(x, y | €). Since the true FIM is generally not
accessible, it is a common practice to evaluate the empirical FIM (Martens, 2020) instead, that is,
to evaluate

F(0) £ By )[Vologp(w,y | 8) Vo logp(z,y | 6)], (©)
in which ¢ is the empirical distribution of the observed samples.

Interestingly, when current distribution p(- | @) and target distribution ¢ are close to each other, we
have V4L(0) ~ F(0). This relation sheds light on the connection between Newton’s method and
natural gradient descent, in the sense that natural gradient descent can be conceived as a special
Newton’s method with approximate Hessian matrices. For this reason, we do not distinguish natural
gradient descent from Newton’s method in the rest of the paper and also call the update in equation 4
a Newton step or Newton update. Further discussion on the connections and distinctions among FIM,
empirical FIM and Hessian matrix are provided in Kunstner et al. (2019).

Vanilla natural gradient descent suffers from the same inefficiency with full Newton’s method.
Compared to the numerous increments of Newton’s method, few improvements for natural gradient
descent have ever been devised, among which is the enlightening work of Kronecker-factored
approximate curvature (K-FAC) (Martens & Grosse, 2015). K-FAC specializes in optimizing the
weights only involved once in linear mapping, including the weights of fully-connected linear
projection and convolutional operation (Grosse & Martens, 2016; Martens et al., 2018; Ba et al.,
2016). The core idea of K-FAC is the approximate evaluation of empirical FIM F(B) taking
advantage of the properties of Kronecker products. To be specific, it approximates the expectation of
the Kronecker product with the Kronecker product of expectation. In this way, the computation and
storage burden is greatly relieved without simplifying the second-order structures too much. K-FAC
has been proved a promising optimizer across various deep learning models and tasks (Martens &
Grosse, 2015; Grosse & Martens, 2016; Martens et al., 2018; Wu et al., 2017; Osawa et al., 2019),
and will be the major second-order optimizer we implement and analyze in this paper. More details
about natural gradient descent and K-FAC can be found in appendix A.

3 PARAMETER-EFFICIENT TUNING ENABLES SECOND-ORDER TRAINING

In the foregoing section, we have introduced typical second-order optimizers together with incremen-
tal methods which ameliorate their efficiency in large-scale settings. In spite of that amelioration,
second-order optimization still requires generally N2 order of storage space and N> order of com-
puting operations for every full parameter block with N parameters, and is therefore intractable on
extremely large models, especially those foundation language models based on deep transformers.
For example, it is unlikely a possible mission to fine-tune a T5x; with either L-BFGS or K-FAC
directly. The sad truth informs us that, beyond making second-order optimizers lighter and faster,
more modifications should be made to the way we train. While hardly any further improvements
could be made to the optimizers, cutting down the volume of the trainable parameters might be
another way out. This straightforward thought coincides with a new paradigm in the spotlight —
parameter-efficient tuning — including adapter, LoRA, and other useful methods, which we will
explain in detail in the following passage.

3.1 BACKGROUND OF PARAMETER-EFFICIENT TUNING

Parameter-efficient tuning aims to adapt PTMs, especially large ones, via optimizing a tiny proportion
of parameters. This intuition could also be found in previous works under other scenarios (Tajbakhsh
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Table 1: Peak memory consumption of
different models with first- and second-order ] AdamW
optimization. #P denotes the number of KA
total parameters, and #T denotes trainable
parameters. All the numbers are measured
on the RTE dataset with LoRA with a single
NVIDIA A100 GPU, batch size = 16.
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Memory (G)

Model #P #T Optim. Mem.
AdamW 422 GB
K-FAC 499 GB
AdamW  4.32GB

o

BERT 336M  0.75M

v

RoBERTa 355M 0.75M

o

K-FAC 5.08GB 0 500 Tilrg(e):o(s) 1500 2000
TSpase 220M  0.56M AdamW  2.05 GB
KFAC  249GB Figure 2: An example of GPU memory varia-
T5L 770M 150m _AdamW  6.00GB tion during training on the STS-B dataset with
K-FAC  7.53GB adapters. The used model is ROBERTaj, g
T5 3B 3gsM AdamW 2094 GB and the batch size is 128. Both experiments
X ' K-FAC  34.00 GB are run on a single NVIDIA A100 GPU.

etal., 2016; Guo et al., 2020; 2019). The most practical advantage of such a paradigm is that we do not
need to update all the parameters and produce separate fine-tuned instances for every downstream task.
By training such lightweight parameters, we are able to flesh out the abstract ability of large-scale
models to solve specific problems. Houlsby et al. (2019) injects small neural modules to each layer of
the Transformer model and only optimizes the adapters in training. Subsequently, a series of variants
of adapters have emerged (Pfeiffer et al., 2020; Sung et al., 2021; Mahabadi et al., 2021; Sung et al.,
2022). Prefix and prompt tuning (Li & Liang, 2021; Lester et al., 2021) prepends tunable parameters
to the input layers. LoRA (Hu et al., 2021) injects low-rank trainable decomposition matrices to the
weights and is successfully applied to GPT-3 (Brown et al., 2020) with 175 billion parameters. Apart
from introducing additional parameters, experiments show that optimizing a designated proportion of
the inherent parameters produce a similar effect (Zhao et al., 2020; Zaken et al., 2021; Guo et al.,
2021). This line of work implies that after massive pre-training, the adaptation of large-scale PTMs
may be a “simple” process and is worth further exploring (He et al., 2022; Ding et al., 2022).

Adapter. The adapter (Houlsby et al., 2019) method inserts lightweight neural modules (adapter layer)
to each layer of the Transformer model. Given the input hidden state h;, € R?, each adapter layer
comprises a down-projection D € R?*", a non-linear activation function o (-), and an up-projection
U € R"*?, There is also a residual connection from the input to the output of an adapter layer.

how < o(hinD)U + hiy. @)

The position of adapter layers is optional. Houlsby et al. (2019) add them after the multi-head
attention layer and the feed-forward layer of each Transformer block. There are also variants that add
adapter modules to other positions like the LayerNorm layer (Pfeiffer et al., 2020). Depending on
the choice of the size of the bottleneck dimension r, the tunable parameters of the adapter approach
account for roughly 0.5%~8% of the total number of parameters.

LoRA. The LoRA method (Hu et al., 2021) assumes that the change of each weight matrix is
intrinsically low-rank, thus it injects tunable low-rank decomposition matrices D € R<", U € R"*¢
to estimate the weight changes AW = DU. Hence, the output hidden state is

houw < hin(W + D)U, ®

where W is the initial weight matrix. Depending on the intrinsic rank 7, the optimizable parameters
of LoRA are normally less than 1% of the total parameters.

3.2 PARAMETER-EFFICIENT TUNING ENABLES SECOND-ORDER TRAINING

Having introduced the background in second-order optimization and parameter-efficient tuning
and clarified our motivation for integrating them, we move on to verify through experiments that
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parameter-efficient tuning can indeed enable second-order optimization on large-scale PTMs. As
shown in Table 1, PTMs with different architectures and scales could be tractably adapted with a
single NVIDIA A100 GPU. It is worth noting that the excess memory consumption resulting from
second-order optimization is relatively low compared to the whole memory consumption. As the
model scales, the absolute amount of parameters to be fine-tuned increases, and the memory footprint
of the second-order optimization increases considerably. For example, in T5xy, the second-order
optimization takes up 13.06 GB more video memory than the first-order optimization. However, this
is still acceptable in practice. We report an example of the GPU memory variation in Figure 2, which
has a jagged shape over the training time. At low points, all the data is sent to the CPU for processing,
leaving only the parameters of the model itself and the states in the optimizer in GPU. The gap
between the first- and second-order optimization’s memory usage at the low point reflects the volume
difference in states of optimizers. We also conduct an analysis of time efficiency in Appendix C.3.

4 NEWTON-STEP CLIPPING STABILIZES SECOND-ORDER TRAINING

The combination of second-order optimization and parameter-efficient tuning is not enough for
training smoothly (illustrated in Figure 4 in Section 5.2). We reveal both in theory and by experiments
that one new auxiliary skill, which we call Newton-step clipping, has to be implemented to achieve
satisfactory results. In this section, we first introduce a more traditional stabilizing strategy named
gradient clipping. We will afterward clarify the divergence between gradient clipping and Newton-step
clipping and justify our initiative of devising and applying this new approach.

4.1 GRADIENT CLIPPING

One crucial point for a smoother training experience is to manage your step-sizes (norms of update
tensors) wisely. However, unlike the cases in toy tasks, it is of low efficiency to apply delicate
step-size schedules, such as line search with Wolfe (Wolfe, 1969) and Armijo-Goldstein (Armijo,
1966) conditions, to large models like a deep-transformer-based PTM. Such low efficiency is partially
ascribed to high computational cost, and, more substantially, to the nonconvex landscape that
invalidates the theoretical benefit of those schedules. Mostly adopted in deep learning is to set up a
fixed learning rate schedule for all layers at the beginning of a training process. But, this solution
may not be flexible enough and may result in gradient explosion problem since the optimal step-sizes
for different layers can typically be different.

Two strategies — adaptive gradient and gradient clipping — have been devised in previous works to
tackle this issue. AdaGrad (Hinton et al., 2011), RMSProp (Duchi et al., 2012), Adam (Kingma &
Ba, 2014), and other optimizers adopting the adaptive gradient strategy divide the first-order term
by the square root of the second-order term to ensure that the magnitude of each layer’s step-size
automatically remains in a rather stable range highly irrelevant to the gradient norm. Compared to the
adaptive gradient methods, gradient-clipping (Pascanu et al., 2013; Goodfellow et al., 2016) is a more
straightforward approach to set off the influence of extremely rugged landscapes. In this approach, a
gradient vector is clipped whenever its norm exceeds a fixed threshold, that is,

g°lr emin{l,T}g. ©)
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This approach is designed mostly by intuition to conquer the high-curvature landscape in deep learn-
ing, especially indispensable for some NLP-specialized models (Pascanu et al., 2013). Apart from the
stabilizing effect, more of its advantages are subsequently explored and proved, such as faster con-
vergence (Zhang et al., 2019) and prevention of convergence to stationary points (Chen et al., 2020).

4.2 NEWTON-STEP CLIPPING

In fact, the term “gradient clipping” can be misleading. We claim that the underlying purpose of per-
forming “gradient clipping” is to restrict the scale of the update tensor, NOT the gradient as is literally
suggested. It is noteworthy that gradient clipping is usually applied to first-order methods, especially
SGD and its variants. For these optimizers, the stepsize is proportional to the gradient norm, and hence
clipping the gradient is equivalent to restricting the scales of updates. Nevertheless, for second-order
optimizers, this rule may not hold. For instance, in natural gradient descent, the update is chosen to be

u=Elgg']"" Elg]. (10)
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Algorithm 1: Generalized procedures of pre-clipping and post-clipping

Data: Total iteration 7', current iteration ¢, current learning rate 7;;

while t < T do

Compute and store gradient g; and other required intermediate quantities h;
if pre-clipping then

g:; < min {l. H‘%}gf;

Compute other required quantities 7;;
Transform the gradient to the final update by: u; < T (g, h;), where T is a given transform;
if post-clipping then

L Uu; < min {1, m} Uy
t

Update the parameter 8 < 6 — n,u,.

Hence, we may expect that approximately ||u| = O(1/||E[g]|]).

The above relation indicates that K-FAC can take an
arbitrarily large step at a low curvature point, therefore, it is
problematic to associate large gradient norm with large step
size in natural gradient descent. A similar problem persists
among general second-order optimizers due to the precon-
dition of gradients by either Hessian matrices or FIMs. In
addition, though traditional gradient clipping (that is applied
before preconditioning) indeed shrinks the updates of a
second-order optimizer to a certain extend, the precondi-
tioned updates remain poorly controlled since the eigenval-
ues of Hessian matrices or FIMs can be arbitrarily small.

For the above reasons, gradient clipping, though intuitively

correct, may fails to improve the stability in second-order Figure 3: An illustration of the
optimization. To address this issue, we propose Newton-step- Newton-step clipping strategy.
clipping in which we clip the Newton update u = H~'g

(or w = F~'g) rather than the original gradient g, that is,

ucll’<—min{1,7}u. (11
|l

7, standing for the maximum update norm, is a hyperparameter. This approach has previously
appeared as an exclusive skill for K-FAC training (Ba et al., 2016), but it would hopefully work for a
wider range of second-order optimizers. We examine this approach on K-FAC, on which we discover
that 7 = 0.1 generally works well.

4.3 GENERALIZATIONS: PRE-CLIPPING AND POST-CLIPPING

We can generalize our approach as follows. In gradient-based optimization, gradient plays a major
role. However, the weight (or parameter) is seldom updated directly by its corresponding gradient;
most optimizers will further transform the gradient into a final update tensor. Newton’s method makes
a case in point. It left-multiplies the gradient with the inverse of Hessian to yield a final Newton
step. Then a divergence emerges in the question that when is the appropriate time for clipping. The
vanilla gradient clipping strategy clips the gradients at the stage when the gradient backpropagation
are completed. This sounds reasonable for SGD, feasible for Adam, but problematic for K-FAC.
A different measure is not to clip anything until the final updates have been transformed from the
original gradients, such as our Newton-step clipping. According to their time of clipping, we name
the two aforementioned approaches pre-clipping and post-clipping by convenience. Procedures of
pre-clipping and post-clipping are summarized in algorithm 1.

In a word, we have explained in the above passage that the choices of when to clip and what to clip
can lead to entirely different training results. Although second-order optimizers favor later clipping
upon the Newton step, for most of the rest of the optimizers that have ever been proposed, the choices
between pre-clipping and post-clipping remain a mystery to be explored in the future.

6
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5 EVALUATION

In this section, we evaluate and analyze our approach with corresponding baselines across widely
used natural language understanding (NLU) tasks and different backbone PLMs.

5.1 EXPERIMENTAL SETTINGS

Datasets. The evaluated benchmarks in our experiments include SST-2 (Socher et al., 2013) for
sentiment analysis, MRPC (Dolan & Brockett, 2005) for paragraph detection, CoLA (Warstadt
et al., 2019) for inference acceptability, RTE (Dagan et al., 2005) for inference, QNLI (Rajpurkar
et al., 2016) for inference, STS-B (Cer et al., 2017) for textual similarity, Choice of Plausible
Alternatives (COPA) (Gordon et al., 2012) for commonsense causal reasoning, CommitmentBank
(CB) (Marnefte et al., 2019) for inference, and Winograd Schema Challenge (WSC) (Levesque, 2011)
for commonsense reasoning.

Setup. We adopt ROBERTaj,. (Liu et al., 2019) with 350 million parameters for QNLI, SST-2, RTE,
COLA, MRPC, and STS-B; and T5-3b (Raffel et al., 2020) with 3 billion parameters for COPA, CB,
RTE, and WSC. The project and second-order optimizers are implemented by PyTorch (Paszke et al.,
2019), and the used models are loaded from the Huggingface Transformers (Wolf et al., 2019) library.
We use NVIDIA Tesla A100 with 40GB memory for all experiments. Most datasets use accuracy
as evaluation metrics, except for MRPC, CoL A, and STS-B. MRPC uses F1 scores. CoLA uses
Matthew correlation coefficient (Matthews, 1975). Spearman correlation and Pearson correlation
scores are reported on STS-B. More experimental details are reported in Appendix B.

5.2 EFFECT OF NEWTON-STEP CLIPPING

We first directly assess the effect of the Newton-step clipping method in the second-order training
of deep transformers. When straightforwardly applying K-FAC to deep transformers without any
clipping or with traditional pre-clipping, the training process is exceedingly unstable. Series of
experimental results shown in Figure 4 verify that for large-scale second-order optimization, the
strategy of Newton-step clipping significantly stabilizes the training process and outperforms its non-
clipping counterpart, while pre-clipping cannot deliver similar effectiveness. The results indicate the
indispensability of appropriate clipping when applying second-order optimization in the parameter-
efficient paradigm, which is consistent with the discussion in Section 4.2.

SST-2 CoLA RTE MRPC
Newton-step Newton-step Newton-step Newton-step
/ — pre-clipping — pre-clipping — pre-clipping — pre-clipping
2 10! 4 ’A/\'\ — no clipping — no clipping — no clipping — no clipping
g Vo
on
.g /\
=]
= 10°
<
£ 100 'r L~ S / \\ 100 100
W \/ S ¥~ - L —
0
5 10 15 20 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
Epoch

Figure 4: Training loss curve of K-FAC optimizer on ROBERTay,,. + Adapter with and without
our clipping approaches. All settings and hyperparameters are the same except for clipping strategy.

5.3 EXPERIMENTAL RESULTS

Experimental results of natural language understanding are reported in Table 2. We mainly compare
our approach with AdamW (Loshchilov & Hutter, 2017), which is broadly considered as the most
powerful optimization method for deep transformers. Most of the parameter-efficient adaptations
achieve on-par performances to full parameter fine-tuning. With both the adapter and LoRA
approaches, second-order optimization with our Newton-step clipping considerably outperforms
the AdamW counterparts. Specifically, in direct comparisons, with the adapter method, the average
performance in six tasks of NewtwonClip outperforms AdamW by 1.06%. And with the LoRA
method, the absolute improvement is 1.25%. We also observe that the performance gap is mainly
reflected in RTE, COLA, and MRPC datasets, which are also generally considered to be the more
difficult natural language understanding task than the other three tasks.
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Table 2: Results on NLU tasks. { indicates the results are from Hu et al. (2021), and a, b, and ¢
indicate different amounts of trainable parameters. Blue and orange represent the best and second
best performances of each column.

#Trainable

Method QNLI SST-2 RTE COLA MRPC STS-B | Avg.
params

RoBERTap,s. | 125M (100%) 92.8 94.8 78.7 63.6 90.2 91.2 85.22

RoBERTay,. | 355M (100%) 94.7 96.4 86.6 68.0 90.9 92.4 88.17

RoBERTay, g + Adapter

AdamWTe 6.0M (1.69%) | 947102 962103 834111 665144 887429 910417 | 86.75
AdamW? 3.0M (0.84%) | 948,00 96.1405 83.8429 683110 902407 91.5415 | 87.45
AdamWT“ 0.8M (023%) 94.7:&0,2 96.310,5 72.9;&2_9 66.312,0 87.711_7 91.510,5 84.90

AdamW 24M (0.67%) | 945103 95.6102 84.6105 649,55 91.8415 919,45 | 87.22
NewtonClip 2.4M (067%) 94~3i0.4 96.3:‘:0‘4 86.8i1'5 68.4i1‘3 92-3i1.9 91.6i0,3 88.28

RoBERTayyg. + LoRA
AdamWwT | 0.8M (0.23%) | 94.840.5 962405 852411 682419 902410 923405 | 87.82

AdamW 0.8M (0.23%) | 9%4.1006 954107 825409 69.1i07 9l.ligs 91.6407 | 87.30
NewtonClip | 0.8M (0.23%) | 944101 962105 857417 704115 927105 919.05 | 88.55

As illustrated in Figure 5, equipped with Newton-step clipping, K-FAC demonstrates faster and
more stable convergence than the first-order optimizer AdamW. Despite the effectiveness, the hy-
perparameter tuning of K-FAC is slightly more costly than that of AdamW since the second-order
optimizer itself is more sensitive to the learning rate and also involves more hyperparameters, such as
the scale of clipping. We carry out the ablation study of hyperparameters in Appendix C.1. We will
investigate adaptive techniques for Newton-step clipping in future work to better deploy second-order
optimization to PTM adaptations.

QNLI SST-2 RTE
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Figure 5: Training loss and validation metric curves of ROBERTay,e + Adapter on NLU tasks with
AdamW optimizer and K-FAC optimizer equipped with our Newton-step clipping strategy.

5.4 IMPACT OF THE NUMBER OF TRAINABLE PARAMETERS

To explore the impact of trainable parameters to our method, we train a ROBERTaj,e + LoORA with
different LoRA intrinsic ranks (i.e., the bottleneck dimension 7 of D, U in equation 8) on the MRPC
dataset. When linearly choosing 7 in {8, 12, 16, 20, 24, 28, 32}, the amount of trainable parameters
becomes {0.8M, 1.1M, 1.5M, 1.9M, 2.3M, 2.6M, 3.0M, 3, 4M}, respectively (we conduct 3 runs
with different random seeds for each LoRA rank). However, as illustrated in Figure 6 and Figure 7,
the convergence speed is observably inversely proportional to the number of trainable parameters,
i.e., the smaller the number of trainable parameters, the faster the convergence speed. Meanwhile,
we observe that the test performance does not change significantly as the number of trainable
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parameters changes. For a PTM and a specific task, the adaptation process is “simple” that it can be
accomplished with very few parameter optimizations, but it is difficult to make a leap in adaptation
performance by changing the number of training parameters. In other words, the pre-training, model
structure, and scale of the model itself seem to determine the upper limit of practical adaptations. The
fact that using fewer parameters leads to faster convergence is also a testament to the effectiveness
of our Newton-step clipping approach.
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Figure 6: Training loss curve of models with  Figure 7: The change of test metrics (F1) and
different LoRA ranks. Experiments are con-  number of trainable parameters with different
ducted on MRPC with RoBERTaj,ee and  LoRA ranks. Experiments are conducted on
batch size is 128. MRPC with RoBERTay., batch size is 128.

5.5 SCALING TO 3 BILLION PARAMETERS

We scale our experimentation to T5xi, a Table 3: Results on COPA, CB, WiC, and WSC
sequence-to-sequence model with 3 billion pa-  datasets of TSx;, + Adapter.
rameters. Evaluated datasets in this part are

relatively small due to high training costs. AS  “pethod | COPA CB RTE WSC | Avg.
) 3 K. .
shown in Table 5, K-FAC with the proposed =g " 005576 7086 6731 | 79.62

Newton-step cl@pping can achieve comparable NewtonClip | 80.00 8929 8201 6923 | 80.13
performance with AdamW. For some datasets
like RTE and WSC, our method even outperforms its first-order counterpart by a considerable margin.
We also empirically find that larger models tend to favor larger maximum norms for Newton-step clip-
ping due to the vast capacity. The success of K-FAC on T5x;. further demonstrates its tractability under
parameter-efficient tuning paradigm, and its potential in efficiently steering large pre-trained models.

6 DISCUSSION

Theoretical analysis and experimental results are presented in this paper, illustrating that the parameter-
efficient paradigm can vivify second-order optimization on extremely large-scale PTMs with the
assistance of the Newton-step clipping strategy. Although the application of second-order optimization
on enormous PTMs is promising, the exploration is yet far from closed in the sense that pieces of dark
clouds are still hanging over this topic. (1) To begin with, as we have observed in our experiments,
second-order optimizers exhibit higher sensitivity to the choices of hyper-parameters compared to
their first-order counterparts. While second-order optimizers tend to introduce more hyper-parameters,
many of these newly-added hyper-parameters are more obscured in mathematical meaning and their
experimental influence is more elusive. It remains unclear whether there are theories and methods to
make the hyper-parameter tuning of second-order optimization no longer a sort of dark art. (2) Another
uncertainty lies in the question that whether the design of architecture-specified optimizers is feasible.
We notice in current work that both adapter and LoRA add to the original model fully-connected
feed-forward branches which coincide with K-FAC’s strength. But, for the other parameter-efficient
methods like modifications of each head of attention output in Prefix Tuning, no similar conclusion
has yet been drawn. (3) Moreover, it appears promising to study the combination of first-order or
second-order optimization instead of sticking merely to one. Observed in our experiments is the rule
of thumb that first-order optimizers, though with slower loss descent and lower test scores, enjoy
better numerical and convergence stability. It is a natural deduction to run first-order steps as the
warm-up period for second-order optimization. Seemingly trivial at first glance, the design of first and
second-order compounds is bound to be an arduous journey of in-detail technical implementation.
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A  MORE ABOUT NATURAL GRADIENT DESCENT AND K-FAC

A.1 CONNECTIONS BETWEEN NEWTON’S METHOD AND NATURAL GRADIENT DESCENT

The Hessian matrix of the Kullback-Leibler divergence (the loss function mentioned in section 2.2)
reads

V3L(0) = ViDxrla(z,y)||p(z,y | 0)] (12)
= —Eqy(a,p)[V3logp(z,y | 6)] (13)
= Eq(m,y) [VO log q(iL’, y)TVQ 10gp($7 Yy | 0” (14)

In case that the current density p(- | 8) is close to the target density ¢, we could see that V3L ~ F.

A.2 UPDATE RULES OF K-FAC

In accordance with the symbols adopted in Martens & Grosse (2015), a layer of linear mapping can
be written as

S; = Wiﬁi,l. (15)

Define g; = %, then the W;-related sub-block of FIM can be expressed as

13'1'71- = Eq[vec(VWiL)vec(VWiL)T}
=E4[(@i—1 ® gi)([@i—1® i)
= E4l@;1a_, ® gig,'] (16)

The core idea of K-FAC is to approximate the expectation of Kronecker product in equation 16 with
the Kronecker product of expectation, that is,

Fy; ~Eglaia, 1] ®Elgig) ] 2 Aim1 ® G, (17)

Furthermore, in light of the properties that (B ® C)~! = B~ ® C~! and that (B ® C)vec(V) =
vec(CV BT), the natural gradient update in K-FAC can be formulated in tensors as

W, « W, —n-G; ' (Vw,L)A . (18)

B ADDITIONAL EXPERIMENTAL DETAILS

Hyper-parameters. For experiments in Table 2, we perform a hyper-parameter grid search for both
AdamW and K-FAC optimizers to select better-performing models. For AdamW, the search space for
learning rate is {0.01, 0.001, 0.0001, 0.00003} and for maximum gradient norm clipping scale is
{0.1, 1.0, 10}. For K-FAC, in addition to the learning rate and the Newton-step clipping scale (), we
also set the damping factor to stabilize the matrix inverting operation (Levenberg, 1944; Marquardt,
1963). The search space for learning rate, Newton-step clipping scale, and damping factor are {0.01,
0.05, 0.1, 0.5}, {0.1, 1.0, 1.5, 2.0}, and {1e-2, 1e-3, le-4, le-5, le-6}, respectively. The search space
of K-FAC is larger for AdamW for two reasons. (1) K-FAC has more hyper-parameters than AdamW,
and we find that the damping factor has a considerable impact on the training. (2) Using AdamW to
optimize deep transformers is extensively practiced in the community and our previous empirical
studies, and we choose the set of reasonable learning rates and simply use commonly used values for
other hyper-parameters like weight decay. However, there is little empirical evidence to provide a
reasonable search space for K-FAC on large language models. The second-order update interval for
K-FAC is set to 500 in our experiments, which could simultaneously yield promising performance
and time efficiency. The batch size is 128 for Table 2 and Figure 5, and the training epochs and steps
for each dataset is shown in Table 4.

The reported results in Table 2 and Table 3 use the following hyper-parameter settings in Table 5 and
Table 6. For results in Figure 4, we adopt K-FAC as the optimizer and set the learning rate as 0.01,
and set the damping factor as 1e-4 for both experiments. For all experiments, weight decay is set to
le-4, and a linear scheduler with warm-up is adopted.
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Datasets. All datasets are loaded with huggingface Table 4: Total training epochs and steps
datasets (Lhoest et al., 2021). Since labels are not ac- for each dataset for Table 2 and Figure 5.
cessible for the test set, we manually split part of the

data for testing: Eor small c}atagets (#sgmples < 10K), Dataset | Epochs Total Steps
we randomly divide the validation set into halves, and

use one half as the test set and one half as the validation QNLI 20 16220
set. For larger datasets (#samples > 10K), we randomly SST-2 30 15570
take 1K samples from the original training set as valida- RTE 50 1000
tion and the rest as the training set, keeping the original CoLA 50 3350
validation set as the test set. All models are trained on MRPC 50 1450
the training set and evaluated every 200 steps on the STS-B 50 2250

validation set, the checkpoint with the best performance
on the validation set is kept for evaluation on the test set.

When dealing with MRPC, RTE, and STS-B datasets, some works use the best model checkpoint on
the MNLI dataset for initialization to boost the performance. In our empirical study, we do NOT use
this strategy, and we use usual initializations for all the models. In our experimentation, the main
parameters of PTMs are frozen, and we only optimize the trainable modules.

GPU Memory. The GPU memory statistics in Table | and Figure 2 come from PyTorch API and
NVIDIA, respectively, so there might be a small inconsistency caused by NVIDIA’s extra calculation
of cache memory.

Table 5: The training hyper-parameters for K-FAC with the Newton-step clipping strategy.

Model Dataset Method Learning Rate Max. Norm Damping Factor

Adapter 0.1 1.0 le-4

QNLI LoRA 0.05 1.0 le-3

Adapter 0.1 1.0 le-3

SST2 1 oRA 0.1 1.0 le-d

Adapter 0.05 1.5 le-3

RoBERTaw,e  RTE [ Ry 0.1 15 le-5
Adapter 0.01 1.0 le-2

CoLA "L oRA 0.01 1.0 le-2

Adapter 0.5 0.1 le-2

MRPC 1 oRA 0.05 1.0 le-3

Adapter 0.1 1.0 le-2

STS-B LoRA 0.1 1.0 le-6

COPA  Adapter 0.1 10.0 le-2

T5x CB  Adapter 0.1 10.0 le-2
WSC Adapter 0.1 10.0 le-3

RTE Adapter 0.1 10.0 le-2

C ADDITIONAL EXPERIMENTAL RESULTS

This section reports additional experimental results to Section 5. We study the effect of hyper-
parameters, time efficiency, and clipping occurrences in the training process. We find that the training
will be more sensitive when dealing with small datasets. Hence, to take a closer look at the training
procedure, we choose a larger dataset (STS-B and MRPC, respectively) and a small dataset (RTE) for
analyses in Appendix C.1 and Appendix C.3,

C.1 EFFECT OF HYPER-PARAMETERS
Hyper-parameters could considerably influence the performance of optimization. In our case, we find

that the learning rate, maximum norm, and damping factor could simultaneously affect the training
process. Hence, we conduct an ablation study to explore such impacts. When studying the effect of
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Table 6: The training hyper-parameters for AdamW.

Model Dataset Method Learning Rate Max. Norm

Adapter le-4 0.1

QNLL 1 orA le-3 0.1

Adapter le-4 0.1

SST2 LoRA le-3 0.1

Adapter le-4 0.1

ROBERTaws  RTE ‘[ by le-3 0.1
Adapter le-3 0.1

CoLA  "LorA le-4 1.0

Adapter le-4 1.0

MRPC 1 oRA le-3 0.1

Adapter le-4 0.1

STS-B LoRA le-4 0.1

COPA  Adapter le-4 0.1

T5x. CB  Adapter le-4 0.1
WSC Adapter le-4 0.1

RTE Adapter le-4 0.1

Damping factor=0.01, Max norm=1.0  Learning rate=0.1, Max norm=1.0  Learning rate=0.1, Damping factor=0.01

Learning rate Damping factor Max norm
0.01 0.1 le-6 — le-3 0.1 1.5
OT N 0.05 [ 1.0 — 2.0
-2 A
8 1 1 1 ; ~4 S
o 4 T T —4 1 T T
g 0 20 40 0 20 40 0 20 40
=]
S Damping factor=1e-3, Max norm=1.5  Learning rate=0.05, Max norm=1.5 Learning rate=0.05, Damping factor=1e-3
Z 0 T T T 7
_§D Damping factor
le-6 — le-3
o4 N le-5 — 0.01 -
le-4

&

—4 1 Learningrate | —4 < —4 94~ Max norm ;
0.01 0.1 ) 0.1 1.5
0.05 1.0 — 2.0

20 40 20 40 20 40
Epoch

Figure 8: Impact of different hyper-parameters on test performance with STS-B dataset (upper)
and RTE dataset (lower). Experiments are conducted with RoOBERTay,¢e + Adapter and K-FAC +
NewtonClip, and is trained with batch size of 128 for 50 epochs.

one hyper-parameter, we fix the other two hyper-parameters. We run an ablation study on STS-B and
RTE datasets and illustrate the training loss in Figure 8 and the corresponding performance on the test
set in Table 7. It could be seen that with a small learning rate and a small maximum norm value, the
model may fail to converge within a reasonable number of training steps. It indicates that, generally,
the second-order optimizer is compatible with a relatively large update value, which is in line with its
theoretical precision in loss landscape estimation. In terms of performance, it is relatively stable for
STS-B, but observes a larger variation on the RTE dataset. It is probably because the scale of RTE is
much smaller and thus the performance is more vulnerable to small perturbations in model parameters.
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Table 7: Impact of different hyper-parameters on training loss with STS-B and RTE datasets. Experi-
ments are conducted with ROBERTaj,e + Adapter and K-FAC + NewtonClip, and are trained with

batch size of 128 for 50 epochs.

Dataset | Learning Rate Damping Factor MaxNorm | Performance

0.01 le-2 1.0 914
0.05 le-2 1.0 91.7
0.1 le-3 1.0 91.3
0.1 le-4 1.0 91.4
0.1 le-5 1.0 91.6
STS-B 0.1 le-6 1.0 92.1
0.1 le-2 0.1 91.3
0.1 le-2 1.5 92.0
0.1 le-2 2.0 91.9
0.1 le-2 1.0 92.0
0.01 le-3 1.5 71.2
0.1 le-3 1.5 83.5
0.05 le-2 1.5 80.6
0.05 le-4 1.5 77.0
0.05 le-5 1.5 79.9
RTE 0.05 le-6 1.5 81.3
0.05 le-3 0.1 57.6
0.05 le-3 1.0 83.5
0.05 le-3 2.0 71.7
0.05 le-3 1.5 87.1
C.2 CLIPPING IN THE TRAINING PROCESS
We investigate how the proposed clipping tech- p
nique affects the training procedure. Figure 10 N dm——
shows how many times the Newton-step clipping //’ N RSN
actually occurs in a whole training procedure. It 4 . \

can be seen that clipping happens in almost ev-
ery step in the early training stage, testifying to
the importance of clipping. After considerable
iterations of training, some steps could obtain a
steady amount of updates without Newton-step
clipping. The phenomenon persists through dif-
ferent datasets. It should also be noted that clip-
ping is not equivalent to shrinking the learning
rate. The functionality of clipping depends on
the scale of the update norm so that the scaling
effect can be adjusted dynamically according to
the current update scale. Learning rate adjust-
ment, however, is applied in a pre-defined manner
that happens independent of the current update.
Designing a suitable learning rate schedule for a
second-order optimizer would require the knowl-
edge of the change in update norm, and is thus ex-
tremely difficult given the rugged loss landscape
of deep neural networks. Figure 9 further proves
the point where simply decreasing the learning
rate without clipping technique will not achieve
satisfactory training, where we reduce the learning
rate to K-FAC without Newton-step clipping and
find that none of them could steadily converge.
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Figure 9: Comparison of training loss curve be-
tween small learning rate without post clipping
and large learning rate with post clipping. Ex-
periments are conducted on MRPC dataset with
RoBERTay,¢e + Adapter and K-FAC. Weight
decay is le-4, and linear scheduler with warm-up
is applied. The solid line denotes the training
process with Newton-step clipping and dotted
lines denote processes without Newton-step
clipping across different learning rates.
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Figure 10: Total parameter norm and status of post clipping throughout the training process with
RoBERTay,g + Adapter and K-FAC + NewtonClip. For all datasets, models are trained with the
optimum hyper-parameter setting.

C.3 TIME EFFICIENCY

After analyzing the memory tractability of second-order optimization in Section 3.2, we find that
second-order optimization is tractable for large language models under the parameter-efficient
paradigm. In this section, we further conduct experiments for time efficiency. We conduct experiments
on the MRPC and RTE datasets with a single NVIDIA A100 GPU and compute the average wall
clock time over 100 epochs. For second-order optimization, the value of second-order update interval
could particularly affect the training time. Thus we conduct different runs with intervals in {1,
50, 200, 500}. The results are reported in Table 8, from where we observe that K-FAC reaches
comparable speed with AdamW when the update interval is set to 50 since there are not a lot of
trainable parameters in the parameter-efficient paradigm. When the value is above 200, K-FAC
outspeeds AdamW with satisfying performance (we did not fine-tune the hyper-parameters for each
setting in this section). In the spirit of making second-order optimization as practical as possible on
large models, we set it to 500 in all our other experiments.
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Table 8: Wall clock time of AdamW and K-FAC + NewtonClip on the RTE dataset with ROBERTajy g
Values in the parentheses denote the relative time over AdamW.

Dataset \ Optimizer Update Interval Wall Clock Time Performance
\ AdamW 1 31.3s (1.00%) 91.3
MRPC K-FAC + NewtonClip 1 56.3s (1.80%) 92.7
K-FAC + NewtonClip 50 33.6s (1.07 %) 90.7
K-FAC + NewtonClip 200 27.9s (0.89x) 91.5
K-FAC + NewtonClip 500 28.0s (0.89%) 92.3
\ AdamW 1 18.4s (1.00%) 84.6
RTE K-FAC + NewtonClip 1 31.4s (1.70%) 81.3
K-FAC + NewtonClip 50 16.3s (0.89x) 81.3
K-FAC + NewtonClip 200 17.8s (0.96x) 86.3
K-FAC + NewtonClip 500 16.9s (0.92x%) 86.8

C.4 PROLONGING TRAINING PROCESS

In this section, we take a closer look at the training process by prolonging the iterations. Specifically,
we extend the training procedure to 500 epochs on the STS-B dataset, and the training loss and
validation metric curves are shown in Figure 11. It can be seen that with both optimizers, the
training loss keeps decreasing, while K-FAC observes an even smaller loss scale and converges
faster, especially in the later training stage. At the final stage of training, both optimizers reach
very small orders of magnitude in terms of training losses (10~* and 10~ for AdamW and K-FAC,
respectively). The validation metric curve of comparable performances also shows that there are no
overfitting issues for both two optimizers, which could be regarded as an advantageous characteristic
of parameter-efficient tuning.
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Figure 11: Training loss and validation metric curves on STS-B dataset with ROBERTaj,ge over 500
training epochs. The hyper-parameter settings follow Table 5 and Table 6.
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