
PythonSaga: Redefining the Benchmark to Evaluate Code Generating
LLM

Anonymous ACL submission

Abstract

Driven by the surge in code generation us-001
ing large language models (LLMs), numerous002
benchmarks have emerged to evaluate these003
LLMs capabilities. We conducted a large-004
scale human evaluation of HumanEval and005
MBPP, two popular benchmarks for Python006
code generation, analyzing their diversity and007
difficulty. Our findings unveil a critical bias008
towards a limited set of programming con-009
cepts, neglecting most of the other concepts010
entirely. Furthermore, we uncover a worry-011
ing prevalence of easy tasks, potentially inflat-012
ing model performance estimations. To ad-013
dress these limitations, we propose a novel014
benchmark, PythonSaga, featuring 185 hand-015
crafted prompts on a balanced representation016
of 38 programming concepts across diverse dif-017
ficulty levels. The code and dataset are openly018
available to the NLP community at https://019
anonymous.4open.science/r/PythonSaga.020

1 Introduction021

The rapid advancement of large language models022

(LLMs), such as Gemini (Anil et al., 2023a), GPT-023

4 (OpenAI, 2023), LLaMA (Touvron et al., 2023)024

and PaLM (Anil et al., 2023b), has achieved near-025

human or even superhuman performance (Bowman,026

2023) across a wide range of NLP tasks. This surge027

has also prompted the development of tailor-made028

code generation models, such as Codex (Chen029

et al., 2021), STARCODER (Li et al., 2023), Code-030

Gen (Nijkamp et al., 2022), and CodeGeeX (Zheng031

et al., 2023). These specialized models, hereafter032

collectively referred to as “Code-LLMs”, harness033

the capabilities of LLMs for automated code gen-034

eration from human descriptions. Figure 1 shows035

a toy example with an input description from a hu-036

man and an expected Python code generated by a037

Code-LLM.038

The prevalence of Python as the dominant039

programming language has significantly influ-040

enced a majority of Code-LLMs to showcase their041

sdafdaf

Write a Python program to return the
current time?

Certainly! Here's a simple Python program that
returns the current time:

from datetime import datetime

Get and print the current time

curr_time = datetime.now().strftime("%H:%M:%S")

print("Current Time:", curr_time)

Figure 1: Illustration of a conversation wherein a hu-
man provides an input description, and a Code-LLM
generates the expected Python code.

code-generation capabilities on Python-specific 042

benchmarks. Consequently, HumanEval (Chen 043

et al., 2021), MBPP (Austin et al., 2021), 044

APPS (Hendrycks et al., 2021), and DS-1000 (Lai 045

et al., 2023) have emerged as prominent bench- 046

marks, leveraging data curated from popular 047

coding platforms like GitHub (GitHub, 2024), 048

LeetCode (GeeksForGeeks, 2023), and Code- 049

forces (Codeforces, 2024) and crowdsourcing ef- 050

forts. These benchmarks offer a diverse range of 051

programming challenges, with sizes spanning from 052

a few hundred instances in HumanEval (Chen et al., 053

2021)) to several thousand instances in datasets like 054

APPS (Hendrycks et al., 2021) and MBPP (Austin 055

et al., 2021). 056

Code generation benchmarks, like their NLP 057

counterparts (Kiela et al., 2021), are reaching satu- 058

ration, revealing limitations in their ability to eval- 059

uate models comprehensively. Figure 2 reports 060

pass@1 score1 of recent Code-LLMs on two pop- 061

ular benchmarks, HumanEval (Chen et al., 2021) 062

1pass@k measures if at least one of the k code samples
generated by the model passes every test case. Detailed formal
definition is present in Appendix A.1.

1

https://anonymous.4open.science/r/PythonSaga
https://anonymous.4open.science/r/PythonSaga
https://anonymous.4open.science/r/PythonSaga

0
10
20
30
40
50
60
70
80

MBPP HumanEval

Pa
ss
@
1

Figure 2: Performance comparison arranged in ascending order of (pass@1) of popular Code-LLMs on two Python
benchmarks, HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021). pass@1 scores are taken verbatim
as reported in STARCODER (Li et al., 2023), Code Llama (Roziere et al., 2023), and Gemini (Anil et al., 2023a).
GPT-4, Gemini Pro, and Gemini Ultra do not report performance scores on MBPP dataset.

and MBPP (Austin et al., 2021). This progress063

prompts two critical questions: (1) Have Code-064

LLMs attained the generalization ability to solve065

any programming problem? (2) What program-066

ming concepts remain challenging for them, hin-067

dering their ability to solve specific problems? Sur-068

prisingly, despite their widespread use, existing069

benchmarks lack a comprehensive evaluation of070

their diversity in terms of programming concepts071

and difficulty level.072

In this paper, we introduce a comprehensive hi-073

erarchical classification of programming concepts,074

categorizing them into basic, intermediate, and ad-075

vance levels (see Section 3). We then rigorously076

evaluate two benchmarks, HumanEval (Chen et al.,077

2021) and MBPP (Austin et al., 2021), on two078

dimensions: diversity of programming concepts079

and user-perceived difficulty. Our findings reveal a080

significant bias towards a small subset (<53%) of081

programming concepts, leaving the vast majority082

underrepresented. Additionally, over 80% of the083

problems are perceived as easy, raising concerns084

about the benchmarks’ generalizability and effec-085

tiveness (see Section 4). To address these limita-086

tions, in Section 5, we propose a novel code genera-087

tion benchmark, PythonSaga, featuring a balanced088

representation of 38 programming concepts across089

three difficulty levels in the form of 185 manually090

crafted problems. Surprisingly, our experiments091

show poor pass@1 scores by the majority of the ex-092

isting open (< 4%) and closed-source (< 13%)093

Code-LLMs on PythonSaga. Furthermore, de- 094

tailed analysis unveils significant disparities in their 095

capacity to handle different programming concepts 096

and difficulty levels. 097

2 Related Work 098

NLP for Programming: Over the years, various 099

programming tasks, including clone detection (Roy 100

et al., 2009) (assessing semantic similarity between 101

code fragments), defect detection (Tabernik et al., 102

2020) (identifying potential flaws within source 103

code), code completion (Hindle et al., 2016) (pre- 104

dicting subsequent tokens based on code context), 105

automated code repair (Arcuri and Yao, 2008) (im- 106

proving code by automatically addressing bugs), 107

code search (Sachdev et al., 2018) (gauging se- 108

mantic relevance between textual descriptions and 109

code snippets), and code summarization (Allama- 110

nis et al., 2016) (generating natural language com- 111

ments for code), have been extensively investi- 112

gated and discussed within the NLP community. 113

This exploration has led to the development of sev- 114

eral datasets such as GitHub Java Corpus (Alla- 115

manis and Sutton, 2013), BigCloneBench (Sva- 116

jlenko et al., 2014), POJ-104 (Mou et al., 2016), 117

PY150 (Raychev et al., 2016), Devign (Zhou et al., 118

2019), Bugs2Fix (Tufano et al., 2019), CodeSearch- 119

Net (Husain et al., 2019), CT-max/min (Feng et al., 120

2020), MBPP by Austin et al. (2021), CodeXGLUE 121

by Lu et al. (2021), CodeNet by Puri et al. (2021), 122

HumanEval by Chen et al. (2021), XLCoST by Zhu 123

2

et al. (2022), MultiPL-E by Cassano et al. (2022),124

and HumanEval-X by Zheng et al. (2023). These125

datasets and associated benchmarks span multiple126

programming languages, including Java, C, C++,127

PHP, Ruby, Go, and Python, among others.128

Code Generation Models: The remarkable surge129

in the popularity of large language models (LLMs)130

has also been accompanied by significant advance-131

ments in code-generation LLMs (Code-LLMs).132

These models exhibit the capability to gener-133

ate code in designated programming languages,134

guided by instructions presented in the form of135

prompts, functions, or docstrings. Prominent136

examples of such Code-LLMs include but are137

not limited to, Codex (Chen et al., 2021), Code-138

Gen (Nijkamp et al., 2022), Code Llama (Roziere139

et al., 2023), STARCODER (Li et al., 2023) and140

CodeGeeX (Zheng et al., 2023). These Code-141

LLMs are largely multilingual, capable of handling142

multiple programming languages, and their param-143

eter sizes range from 1 billion to 35 billion. Their144

training datasets encompass popular programming145

websites and code repositories such as GitHub,146

LeetCode, and GeeksForGeeks. All popular Code-147

LLMs primarily focus on Python programs due to148

their widespread usage in ML and AI applications.149

Python-based Evaluation Benchmarks: Recent150

thrust in Python code generation models also led151

to the development of several benchmark datasets.152

The PY150 dataset (Raychev et al., 2016), consist-153

ing of 150,000 Python source files from GitHub,154

serves as a valuable tool for LLM evaluation. The155

APPS dataset Hendrycks et al. (2021) features156

10,000 problems from platforms like Codewars, At-157

Coder, Kattis, and Codeforces. HumanEval (Chen158

et al., 2021) comprises 164 handwritten prob-159

lems. The MBPP dataset (Austin et al., 2021)160

contains 974 entry-level problems. Additionally,161

the MathQA-Python dataset (Austin et al., 2021),162

with 23,914 problems, assesses code synthesis from163

complex textual descriptions.164

Limitations in Existing Benchmarks: Current165

datasets for evaluating Large Language Models166

(LLMs) often lack transparency and comprehen-167

siveness in problem selection and categorization.168

This opacity hinders assessments of the generaliz-169

ability and representativeness of the benchmarks,170

potentially leading to overestimation of LLM per-171

formance on code generation tasks. To address this172

issue, this paper proposes a comprehensive prob-173

lem categorization by outlining recommended con-174

cepts for problem inclusion, aiming to establish a 175

rigorous and transparent benchmarking framework. 176

3 Programming Concepts and Difficulty 177

Levels 178

3.1 Programming Concepts 179

The concepts encompass language-specific con- 180

structs like variables, data types, control flow, and 181

conditions to generic constructs like Algorithms, 182

OOPs, etc. We, therefore, propose a hierarchy of 183

programming concepts where a complex concept 184

might require knowledge of several basic concepts. 185

For example, sorting algorithms like Quicksort 186

or Mergesort require a thorough understanding of 187

data structures such as arrays and linked lists, as 188

well as proficiency in algorithmic analysis and time 189

complexity2. Each programming concept is an in- 190

trinsic feature of a problem. We next describe the 191

proposed hierarchy: 192

• Basic Concepts: At the basic level, concepts 193

involve the application of elementary syntax 194

principles, encompassing the utilization of 195

variables, manipulation of diverse data types, 196

basic input/output operations, comprehension 197

of control flow and conditional statements, ba- 198

sic handling of data structures, functions, and 199

knowledge of essential built-in libraries. Prob- 200

lems leveraging basic concepts primarily aim 201

to evaluate the core competencies within a 202

designated programming language. 203

• Intermediate Concepts: Intermediate-level 204

concepts involve a comprehensive understand- 205

ing of multiple foundational concepts and 206

their adept integration. For example, extend- 207

ing basic data structures to implement Stack, 208

Hash, Queue, etc. Problems comprising inter- 209

mediate concepts evaluate a higher level of 210

proficiency in programming. 211

• Advance Concepts: Concepts include im- 212

plementation knowledge of advanced data 213

structures such as Tree, Heap, etc., algorith- 214

mic paradigms such as Greedy, Divide and 215

Conquer, and Dynamic Programming, and 216

Concurrent and Parallel Programming. 217

Problems comprising advanced concepts fo- 218

cus on evaluating sophisticated problem- 219

solving and design capabilities. 220

We curate a list of 38 programming concepts 221

from three popular coding platforms (Geeks- 222

ForGeeks, 2023; LeetCode, 2023; hackerearth, 223

2https://shorturl.at/nrBTX

3

https://shorturl.at/nrBTX

Basic Intermediate Advance
Function OOPS Trie

Mathematics Stack Tree
File Handling Sorting Heap

Basic Libraries Hashing Graph
Error Handling Searching Matrix

Input and Output Recursion Max Flow
In-Built Functions Linked List Disjoint Set
Pattern Replication Bit Manipulation Backtracking

Basic Data Structures Queue & Dequeue Greedy Search
Variable & Data Types Regular Expression Advanced OOPs

Control Flow & Conditions Circular & Doubly Linked List Context Managers
Advanced String Manipulation Divide and Conquer

Dynamic Programming
Closures and Decorators

Concurrency and Parallelism

Table 1: A hierarchy of 38 programming concepts categorized into basic, intermediate, and advance categories.

2023). We further assign each concept to one of the224

three hierarchy levels. Table 1 presents the curated225

concepts and the proposed hierarchy.226

3.2 Difficulty Levels227

An annotator, with their expertise and experience228

in programming, can perceive a programming prob-229

lem as belonging to one of three difficulty levels:230

Easy, Medium, or Hard (Hendrycks et al., 2021).231

Thus, difficulty level is an extrinsic feature of a232

problem. This subjective assessment is based on233

a complex combination of factors, such as knowl-234

edge of programming concepts, problem-solving235

skills, experience with similar problems, and cod-236

ing proficiency. It is important to note that this237

perceived difficulty is subjective and can vary sig-238

nificantly between annotators. A problem consid-239

ered easy by one annotator due to their prior expe-240

rience and knowledge might be deemed challeng-241

ing by another who lacks those same advantages.242

Furthermore, the perceived difficulty of a problem243

can also evolve over time as an annotator develops244

their skills and knowledge. A problem that initially245

seemed challenging may become easier with prac-246

tice and exposure to similar problems. Conversely,247

an annotator may encounter a problem that initially248

appears straightforward but then find themselves249

struggling due to hidden complexities or unfore-250

seen challenges.251

In this paper, we focus on Python Programming252

language and conduct human experiments with two253

popular Python-based code generation benchmarks254

to showcase extensive selection bias and poor diver- 255

sity in the curated problems. The following section 256

describes the human experiments in detail. 257

4 Limitations of Code- Generation 258

Existing Benchmarks 259

4.1 Python Code Generation Benchmarks 260

This study is grounded on the two most widely 261

recognized Python code generation benchmarks: 262

(i) HumanEval (Chen et al., 2021) and (ii) 263

MBPP (Austin et al., 2021). Recent Code- 264

LLMs including STARCODER (Li et al., 2023), 265

LLaMA (Touvron et al., 2023), METAGPT (Hong 266

et al., 2023), Code Llama (Roziere et al., 267

2023), SANTACODER (Allal et al., 2023), and 268

CodeGeeX (Zheng et al., 2023) have employed 269

these two benchmarks to assess their performance. 270

We next briefly describe these benchmarks. 271

• HumanEval Dataset: HumanEval dataset 272

was introduced alongside Codex (Chen et al., 273

2021)3. It comprises 164 hand-crafted Python 274

programming problems4. Each problem de- 275

scription contains a function signature, doc- 276

string, body, and multiple unit tests. Figure 5 277

illustrates a representative problem. On aver- 278

age, each problem is associated with 7.7 unit 279

tests. 280

3Codex is a GPT-based language model fine-tuned on pub-
licly available codes from GitHub.

4Dataset is available here: https://github.com/
openai/human-eval

4

https://github.com/openai/human-eval
https://github.com/openai/human-eval

• Mostly Basic Programming Problems281

(MBPP) Dataset: The MBPP dataset (Austin282

et al., 2021) evaluates models that can synthe-283

size short Python programs from natural lan-284

guage descriptions. The benchmark5 consists285

of about 974 crowd-sourced Python program-286

ming problems designed to be solvable by287

entry-level programmers. Each problem con-288

sists of a task description, code solution, and289

three automated test cases. Figure 6 presents290

a representative problem.291

Both benchmarks evaluate model performances292

against one of the most popular metrics pass@k.293

We formally define pass@k in Section A.1.294

4.2 Human Annotation Experiments295

Next, we conducted two human annotation studies296

to gain insights into the diversity in programming297

concepts and difficulty levels of the two proposed298

benchmarks. Each study involved the recruitment299

of the same set of five annotators. Each annota-300

tor is a postgraduate student in Computer Science301

with at least three years of experience in Python302

programming and competitive programming. It is303

noteworthy that each participant willingly volun-304

teered throughout the entire duration of the exper-305

iment, and no remuneration was provided. Inter-306

net access was prohibited during the entire annota-307

tion period. Annotators were encouraged to utilize308

any brute-force technique they considered appro-309

priate without prioritizing optimized solutions. No310

time constraints were imposed to prevent hasty or311

fatigue-induced decisions. Each annotator was pre-312

sented with 164 problems from HumanEval and a313

randomly selected set of 164 problems from MBPP.314

We next describe the two annotation studies:315

• Programming Concepts Diversity: In this316

study, we adopted a single-concept annota-317

tion approach, where human annotators as-318

signed one programming concept (detailed319

in Section 3.1) to each problem. This selec-320

tion represented the concept they considered321

most crucial for successful problem-solving.322

Our annotation guidelines explicitly prohib-323

ited assigning multiple concepts to any single324

problem, ensuring a focused and unambigu-325

ous mapping between problems and relevant326

concepts.327

• Difficulty Level Diversity: In this study, each328

5Dataset is available here: https://github.com/
google-research/google-research/tree/master/mbpp

annotator categorized the problems into three 329

distinct difficulty levels: Easy, Medium, and 330

Hard, based on their individual expertise and 331

experiences. 332

4.3 Observations 333

Diversity in the Programming Concepts: In this 334

section, we report the proportion of problems as- 335

signed to a specific concept averaged over five 336

annotators. We find five predominant concepts, 337

Mathematics, Control Flow and Conditions, Basic 338

Data Structures, Variables and Data Types, and In- 339

Built Functions, which comprise 72.1% and 77.3% 340

problems in HumanEval and MBPP, respectively. 341

Surprisingly, we found a complete absence of 14 342

(=37.8%) concepts. Notable exclusions include 343

OOPs, Linked-lists, Tree, Graph, and Backtrack- 344

ing. Figure 3 presents conceptwise proportions in 345

both the benchmarks. Further analysis suggests 346

that, on average, the Basic category comprises ap- 347

proximately 78% of problems in both HumanEval 348

and MBPP. The Intermediate category comprises 349

20.24% and 18.04% problems in HumanEval and 350

MBPP, respectively. Finally, the Advance category 351

contains 1.09% and 3.04% problems in HumanEval 352

and MBPP, respectively. 353

Diversity in the Difficulty level: Here, we re- 354

port the difficulty level assigned to a problem us- 355

ing majority voting among the annotators. In Hu- 356

manEval, 84.8% of the problems were classified as 357

Easy, 14.6% as Medium, and only 0.6% as Hard. 358

Whereas in MBPP, 89.6% and 10.4% of problems 359

were categorized as Easy, and Medium, respec- 360

tively. No problem in MBPP was labeled as Hard. 361

Here, we achieved significant consensus among the 362

annotators. For example, in HumanEval, we find 363

complete agreement among five annotators on 39% 364

of the problems. Whereas we miss complete agree- 365

ment by a single vote in 29.2% problems. In the 366

case of MBPP, the 40.2% problems resulted in a 367

complete agreement, with 42.1% problems missing 368

the complete agreement by one vote. 369

Overall, we observe significant selection bias 370

towards easy problems in both benchmarks. 371

5 PythonSaga: A New Benchmark for 372

Code Generation Models 373

We now introduce PythonSaga, a new Python code 374

generation benchmark that addresses the limita- 375

tions of existing benchmarks with respect to diver- 376

sity in concepts and difficulty level. PythonSaga 377

5

https://github.com/google-research/google-research/tree/master/mbpp
https://github.com/google-research/google-research/tree/master/mbpp

0

0

0

0

0

0

0

0

0

0

0

0

0.4

1.4

0

0

0

0

0

1.4

3.6

2.2

2.4

0

4.2

8.8

10.6

0

0.2

0.2

1.2

2.6

4.2

5.2

20.4

27.8

35.6

31.6

0

0

0

0

0

0

0

0

0

0

0.2

0.4

0.2

0

4.2

0

0

0

0.2

2.6

0.8

2.2

4.6

8

4.2

1.8

5.2

0

0

0

0.6

1

0.6

15.4

8.8

35.2

30.4

37.4

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Tree (BST)

Greedy Search

Divide and Conquer

Backtracking

Max Flow

Disjoint Set

Advanced OOPs

Closures and Decorators

Concurrency and Parallelism

Context Managers

Trie

Dynamic Programming

Graph

Matrix

Heap

Linked List

Circular & Doubly Linked List

OOPs

Queue & Dequeue

Hashing

Stack

Searching

Bit Manipulation

Regular Expression

Recursion

Advanced String Manipulation

Sorting

Error Handling

Input and Output

File Handling

Function

Basic Libraries

Pattern Replication

In-Built Functions

Variable & Data Types

Mathematics

Basic Data Structures

Control Flow & Conditions

Ad
va

nc
e

In
te

rm
ed

ia
te

Ba
sic

Average MBPP Average HE

1.8

33.2

129

5

29.6

129.4

0 20 40 60 80 100 120 140

Advance

Intermediate

Basic

Figure 3: Average number of problems/prompts in Fine-Grain category

contains 185 prompts, close to equal representation378

from each of the 38 programming concepts with379

varied levels of difficulty (described in Section 3.2).380

5.1 Data Sources and Curation Methodology381

Aligned with the problem curation strategies em-382

ployed in established benchmarks Hendrycks et al.383

(2021); Lai et al. (2023); Zhu et al. (2022), this384

study leverages problems from two prominent cod-385

ing platforms: GeekForGeeks (GeeksForGeeks,386

2023) and LeetCode (LeetCode, 2023). To compre-387

hensively represent each proposed programming388

concept (detailed in Section 3.1), we curated five389

problems per concept. This diverse set comprises 390

one Easy problem, two Medium problems, and two 391

Hard problems, ensuring a balanced distribution 392

across difficulty levels (20%, 40%, and 40%, re- 393

spectively) within the PythonSaga Dataset. 394

To enhance human-friendliness and ground the 395

problems in realistic contexts, each shortlisted prob- 396

lem statement undergoes a manual rephrasing pro- 397

cess without any aid from AI tools. Furthermore, 398

a comprehensive description of input and output 399

formats, accompanied by relevant examples, is sup- 400

plied with each problem statement to ensure a thor- 401

6

Model Size Pass@1 Pass@10
Code Llama Python (Roziere et al., 2023) 7B 0.0240 0.0979
Code Llama Instruct (Roziere et al., 2023) 7B 0.0178 0.0744
Mistral-Instruct-v0.1 (Jiang et al., 2023) 7B 0.0140 0.0552
Code Llama (Roziere et al., 2023) 7B 0.0067 0.0472
StarCoderBase (Li et al., 2023) 7B 0.0029 0.0149
Deepseek Coder Instruct (Guo et al., 2024) 6.7B 0.0137 0.0889
Deepseek Coder (Guo et al., 2024) 6.7B 0.0343 0.1415
GPT-3.5 (OpenAI, 2022) NA 0.0724 0.2384
GPT-4 (OpenAI, 2023) NA 0.1243 0.3311

Table 2: Comparison between open and closed-source models on PythonSaga. We use the number of samples (n)
as 20 for both open and closed-source models. OpenAI has not officially released the sizes of GPT-3.5 and GPT-4.

ough understanding of the task by Code-LLM. This402

multi-step approach aims to retain the core knowl-403

edge and essential solution steps while integrating404

them into relatable real-world scenarios. This re-405

construction involves reformulating the entire prob-406

lem statement while preserving its fundamental407

functionality. This deliberate transformation en-408

hances the challenge for Code-LLMs, requiring409

them to move beyond simple pattern matching and410

grasp the nuanced context embedded within the411

prompt to devise a solution effectively. For exam-412

ple, the problem statement “Given a string str, find413

the length of the longest substring without repeat-414

ing characters.” is paraphrased as “Let’s say you415

attend a car show where cars of different brands416

are showcased in a row. Find the length of the417

longest stretch where no two cars are of the same418

brand. Take the input from the user for the brands419

of the cars in the order they are placed in the row.420

Print the length of the longest stretch where no two421

cars are of the same brand”.422

5.2 Size and Structure423

Overall, PythonSaga comprises five problem in-424

stances from each programming concept, result-425

ing in a total size of 185 problems. Each prob-426

lem is associated with a maximum of four test427

cases, with an average of 3.7 test cases per problem.428

PythonSaga’s structure resembles HumanEval and429

MBPP, wherein each problem comprises a func-430

tion signature, docstring, body, and multiple unit431

tests. A representative example is present in Ap-432

pendix A.2.433

5.3 Benchmarking Existing LLMs434

Next, we benchmark several open and closed-435

source LLMs on PythonSaga. Open-source436

models include three Llama variants, Code 437

Llama (Roziere et al., 2023), Code Llama 438

Python (Roziere et al., 2023) and Code Llama In- 439

struct (Roziere et al., 2023), Mistral-Instruct (Jiang 440

et al., 2023), StarCoderBase (Li et al., 2023) and 441

two Deepseek variants, Deepseek Coder (Guo et al., 442

2024) and Deepseek Coder Instruct (Guo et al., 443

2024). Except for Mistral-Instruct, the rest are 444

the Code-LLMs. In addition, we benchmark two 445

closed-source models, including GPT variants GPT- 446

3.5 (OpenAI, 2022) and GPT-4 (OpenAI, 2023). 447

While larger open-source options exist, our selec- 448

tion was restricted to models with 7B parameters 449

due to computational resource limitations, which 450

were limited to a single Tesla V100 in our case. 451

We evaluate model performances using pass@k 452

metric. Adhering to previous studies like Hu- 453

manEval (Chen et al., 2021), StarCoder (Li et al., 454

2023), Deepseek Coder (Guo et al., 2024) etc, we 455

primarily utilized k = 1, signifying that a model 456

is considered successful if at least one of its gener- 457

ated solutions passes the defined evaluation crite- 458

ria. However, we additionally explored k = 10 to 459

analyze model consistency across larger sets of re- 460

sponses. Notably, unlike prior works that varied the 461

number of sampled responses (n), we consistently 462

generated n = 20 samples from both open-source 463

and Closed-source models for a consistent evalua- 464

tion. 465

Table 2 compares the above models against 466

pass@1 and pass@10 metrics. In consistent 467

with the latest trends, closed-source models per- 468

formed considerably better than open-source mod- 469

els. Among open-source models, Deepseek 470

Coder (Guo et al., 2024) performed best, whereas, 471

among closed-source models, GPT-4 (OpenAI, 472

2023) performed best. Notably, the performance 473

7

Figure 4: A heatmap showing the number of problems in PythonSaga solved by each LLM for a given programming
concept. A model succeeds if at least one of the n(=20) generated samples passes all test cases.

of closed-source models on PythonSaga is signif-474

icantly lower than the respective performances in475

HumanEval and MBPP benchmarks (see Figure 2476

for more details).477

Figure 4 illustrates the performance of each478

LLM on problems within specific programming479

concepts in the PythonSaga. We consider a model480

has successfully solved a problem if any one of481

the n(=20) generated samples passes all the test482

cases. As anticipated, all models exhibited better483

performance in solving problems associated with484

basic concepts compared to intermediate or Ad-485

vance concepts. For example, Deepseek Coder,486

solved 21.1%, 25%, and 8.2% of problems in these487

categories, respectively. Whereas, GPT-4 solved488

42.3%, 46.6%, and 32.8% of problems, respec-489

tively. In contrast to open-source models, closed-490

source models have successfully solved at least one491

problem from a majority of the concepts. Interest-492

ingly, none of the models could successfully solve493

any problem within five specific concepts, Basic494

Data Structures, Hashing, Context Managers, Con-495

currancy and Parallelism and Max Flow. Notably,496

closed-source models exhibited a more consistent497

performance across categorization compared to 498

open-source models, suggesting a potential advan- 499

tage in handling diverse problem complexities. 500

6 Conclusion and Future Work 501

This study emphasizes the crucial need for a more 502

balanced and comprehensive evaluation framework 503

to ensure a fair and accurate assessment of large lan- 504

guage models (LLMs) capable of generating code 505

from human inputs. We address this gap by propos- 506

ing an extensive categorization and hierarchy of 507

programming concepts. Subsequent analysis of 508

two prominent Python code generation benchmarks 509

reveals limited diversity in both programming con- 510

cepts and difficulty levels. Notably, we introduce a 511

novel benchmark characterized by a uniform repre- 512

sentation of concepts and difficulty, offering a more 513

robust assessment paradigm. Our findings suggest 514

that existing benchmarks potentially overestimate 515

LLM performance on code generation tasks. This 516

work lays the groundwork for the future develop- 517

ment of diverse and representative Python code 518

generation benchmarks, paving the way for similar 519

studies in other programming languages. 520

8

Limitations521

This section acknowledges three key limitations522

associated with the present research. Firstly, due523

to constraints in human annotation resources, the524

study employed a randomly selected subset of 164525

problems from the MBPP benchmark. This selec-526

tion aimed to match the size of the HumanEval527

dataset for comparative analysis. While maintain-528

ing parity in dataset size was crucial, it is impor-529

tant to acknowledge that the study’s findings may530

not generalize to the entire MBPP benchmark due531

to the potential for selection bias introduced by532

the random sampling process. Secondly, the cur-533

rent study employed a team of postgraduate Com-534

puter Science students with extensive experience535

in Python programming and competitive coding.536

While this selection ensured a high level of tech-537

nical proficiency in the annotation task, it also ac-538

knowledges the potential limitations in terms of539

annotator diversity. Lastly, while the current study540

demonstrates the efficacy of our proposed approach541

within the context of the Python programming lan-542

guage, the generalizability of these findings to other543

languages requires further investigation, potentially544

limiting the direct applicability of our findings to545

benchmarks designed for languages such as Java546

or C++.547

Ethics Statement548

All human participants engaged in the evaluation549

process received detailed and comprehensible infor-550

mation regarding the study’s nature and objectives.551

Prior to their involvement in the research, explicit552

informed consent was obtained from each partici-553

pant.554

References555

Loubna Ben Allal, Raymond Li, Denis Kocetkov,556
Chenghao Mou, Christopher Akiki, Carlos Munoz557
Ferrandis, Niklas Muennighoff, Mayank Mishra,558
Alex Gu, Manan Dey, et al. 2023. Santacoder: don’t559
reach for the stars! arXiv preprint arXiv:2301.03988.560

Miltiadis Allamanis, Hao Peng, and Charles Sutton.561
2016. A convolutional attention network for ex-562
treme summarization of source code. In Interna-563
tional conference on machine learning, pages 2091–564
2100. PMLR.565

Miltiadis Allamanis and Charles Sutton. 2013. Min-566
ing source code repositories at massive scale using567
language modeling. In 2013 10th working confer-568
ence on mining software repositories (MSR), pages569
207–216. IEEE.570

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean- 571
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan 572
Schalkwyk, Andrew M Dai, Anja Hauth, et al. 2023a. 573
Gemini: a family of highly capable multimodal mod- 574
els. arXiv preprint arXiv:2312.11805. 575

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John- 576
son, Dmitry Lepikhin, Alexandre Passos, Siamak 577
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng 578
Chen, et al. 2023b. Palm 2 technical report. arXiv 579
preprint arXiv:2305.10403. 580

Andrea Arcuri and Xin Yao. 2008. A novel co- 581
evolutionary approach to automatic software bug fix- 582
ing. In 2008 IEEE Congress on Evolutionary Com- 583
putation (IEEE World Congress on Computational 584
Intelligence), pages 162–168. IEEE. 585

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten 586
Bosma, Henryk Michalewski, David Dohan, Ellen 587
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021. 588
Program synthesis with large language models. arXiv 589
preprint arXiv:2108.07732. 590

Samuel R Bowman. 2023. Eight things to know 591
about large language models. arXiv preprint 592
arXiv:2304.00612. 593

Federico Cassano, John Gouwar, Daniel Nguyen, Syd- 594
ney Nguyen, Luna Phipps-Costin, Donald Pinckney, 595
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, 596
Molly Q Feldman, et al. 2022. Multipl-e: A scal- 597
able and extensible approach to benchmarking neural 598
code generation. arXiv preprint arXiv:2208.08227. 599

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 600
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 601
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 602
Greg Brockman, et al. 2021. Evaluating large 603
language models trained on code. arXiv preprint 604
arXiv:2107.03374. 605

Codeforces. 2024. Codeforces. 606

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi- 607
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin, 608
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A 609
pre-trained model for programming and natural lan- 610
guages. arXiv preprint arXiv:2002.08155. 611

GeeksForGeeks. 2023. Gfg. 612

GitHub. 2024. Github. 613

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai 614
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, 615
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the 616
large language model meets programming–the rise of 617
code intelligence. arXiv preprint arXiv:2401.14196. 618

hackerearth. 2023. hackerearth. 619

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man- 620
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns, 621
Samir Puranik, Horace He, Dawn Song, et al. 2021. 622
Measuring coding challenge competence with apps. 623
arXiv preprint arXiv:2105.09938. 624

9

https://codeforces.com/
https://www.geeksforgeeks.org/
https://github.com/
https://www.hackerearth.com/

Abram Hindle, Earl T Barr, Mark Gabel, Zhendong Su,625
and Premkumar Devanbu. 2016. On the naturalness626
of software. Communications of the ACM, 59(5):122–627
131.628

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng629
Cheng, Ceyao Zhang, Zili Wang, Steven Ka Shing630
Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, et al.631
2023. Metagpt: Meta programming for multi-632
agent collaborative framework. arXiv preprint633
arXiv:2308.00352.634

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis635
Allamanis, and Marc Brockschmidt. 2019. Code-636
searchnet challenge: Evaluating the state of semantic637
code search. arXiv preprint arXiv:1909.09436.638

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-639
sch, Chris Bamford, Devendra Singh Chaplot, Diego640
de las Casas, Florian Bressand, Gianna Lengyel, Guil-641
laume Lample, Lucile Saulnier, et al. 2023. Mistral642
7b. arXiv preprint arXiv:2310.06825.643

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh644
Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vid-645
gen, Grusha Prasad, Amanpreet Singh, Pratik Ring-646
shia, et al. 2021. Dynabench: Rethinking benchmark-647
ing in nlp. arXiv preprint arXiv:2104.14337.648

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina649
Lee, Oded Padon, Alex Aiken, and Percy S Liang.650
2019. Spoc: Search-based pseudocode to code. Ad-651
vances in Neural Information Processing Systems,652
32.653

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,654
Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel655
Fried, Sida Wang, and Tao Yu. 2023. Ds-1000: A656
natural and reliable benchmark for data science code657
generation. In International Conference on Machine658
Learning, pages 18319–18345. PMLR.659

LeetCode. 2023. Leetcode.660

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas661
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc662
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.663
2023. Starcoder: may the source be with you! arXiv664
preprint arXiv:2305.06161.665

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey666
Svyatkovskiy, Ambrosio Blanco, Colin Clement,667
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.668
Codexglue: A machine learning benchmark dataset669
for code understanding and generation. arXiv670
preprint arXiv:2102.04664.671

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016.672
Convolutional neural networks over tree structures673
for programming language processing. In Proceed-674
ings of the AAAI conference on artificial intelligence,675
volume 30.676

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan677
Wang, Yingbo Zhou, Silvio Savarese, and Caiming678
Xiong. 2022. Codegen: An open large language679

model for code with multi-turn program synthesis. 680
arXiv preprint arXiv:2203.13474. 681

OpenAI. 2022. Introducing chatgpt. https://openai. 682
com/blog/chatgpt. 683

OpenAI. 2023. Gpt-4 technical report. 684

Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang, 685
Giacomo Domeniconi, Vladimir Zolotov, Julian 686
Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, 687
et al. 2021. Codenet: A large-scale ai for code 688
dataset for learning a diversity of coding tasks. arXiv 689
preprint arXiv:2105.12655. 690

Veselin Raychev, Pavol Bielik, and Martin Vechev. 2016. 691
Probabilistic model for code with decision trees. 692
ACM SIGPLAN Notices, 51(10):731–747. 693

Chanchal K Roy, James R Cordy, and Rainer Koschke. 694
2009. Comparison and evaluation of code clone de- 695
tection techniques and tools: A qualitative approach. 696
Science of computer programming, 74(7):470–495. 697

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten 698
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 699
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. 700
Code llama: Open foundation models for code. arXiv 701
preprint arXiv:2308.12950. 702

Saksham Sachdev, Hongyu Li, Sifei Luan, Seohyun 703
Kim, Koushik Sen, and Satish Chandra. 2018. Re- 704
trieval on source code: a neural code search. In 705
Proceedings of the 2nd ACM SIGPLAN International 706
Workshop on Machine Learning and Programming 707
Languages, pages 31–41. 708

Jeffrey Svajlenko, Judith F Islam, Iman Keivanloo, 709
Chanchal K Roy, and Mohammad Mamun Mia. 2014. 710
Towards a big data curated benchmark of inter-project 711
code clones. In 2014 IEEE International Conference 712
on Software Maintenance and Evolution, pages 476– 713
480. IEEE. 714

Domen Tabernik, Samo Šela, Jure Skvarč, and Danijel 715
Skočaj. 2020. Segmentation-based deep-learning 716
approach for surface-defect detection. Journal of 717
Intelligent Manufacturing, 31(3):759–776. 718

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 719
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 720
Baptiste Rozière, Naman Goyal, Eric Hambro, 721
Faisal Azhar, et al. 2023. Llama: Open and effi- 722
cient foundation language models. arXiv preprint 723
arXiv:2302.13971. 724

Michele Tufano, Cody Watson, Gabriele Bavota, Massi- 725
miliano Di Penta, Martin White, and Denys Poshy- 726
vanyk. 2019. An empirical study on learning bug- 727
fixing patches in the wild via neural machine trans- 728
lation. ACM Transactions on Software Engineering 729
and Methodology (TOSEM), 28(4):1–29. 730

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan 731
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang, 732
Yang Li, et al. 2023. Codegeex: A pre-trained model 733

10

https://leetcode.com/
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
http://arxiv.org/abs/2303.08774

for code generation with multilingual evaluations on734
humaneval-x. arXiv preprint arXiv:2303.17568.735

Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du,736
and Yang Liu. 2019. Devign: Effective vulnerability737
identification by learning comprehensive program738
semantics via graph neural networks. Advances in739
neural information processing systems, 32.740

Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravin-741
dran, Sindhu Tipirneni, and Chandan K Reddy. 2022.742
Xlcost: A benchmark dataset for cross-lingual code743
intelligence. arXiv preprint arXiv:2206.08474.744

A Appendix745

A.1 Performance Evaluation746

Within the field of code-generating large language747

models (Code-LLMs), the pass@k metric has748

emerged as a prevalent benchmark for performance749

evaluation (Kulal et al., 2019). This metric quanti-750

fies the overall proportion of benchmark problems751

successfully solved by a given model. A problem is752

considered solved if at least one of the k code sam-753

ples generated by the model passes every test case754

associated with the problem. However, this defi-755

nition leads to high variance. HumanEval (Chen756

et al., 2021) proposed an unbiased variant, where757

they generate n samples per problem such that n ≥758

k, and count the number of correct samples c ≤ n759

which pass unit tests. The unbiased estimator is760

described as:761

pass@k := E
Problems

[
1−

(
n−c
k

)(
n
k

)]
(1)762

Most of the Code-LLMs report pass@k values at763

k = 1. However, the value of n varies significantly764

across models. For instance, STARCODER (Li765

et al., 2023) conducts experiments with n = 200766

for open-source models and n = 20 for API mod-767

els.768

A.2 Representative Example from769

PythonSaga770

{771
"task_id": "PythonSaga /15",772

773
"prompt":774

775
def toy_distribution(n: int) -> str:776

"""777
Let’s say I have a bag of toys ,778
which are ’n’ in number. I know779
that these toys can be780
distributed either to n children781
or 1 child.782

I want to know what can be other 783
ways to distribute these toys to 784
children in such a way that each 785
child gets at least an equal 786
number of toys. 787
Take input from the user 788

‘ for the number of toys. Use the 789
divmod function to solve this 790
problem. 791

792
Example 1: 793
If 15 toys are there , then 15 794
children can get 1 toy each or 1 795
child can get 15 toys or 3 796
children can get 5 toys each or 797
5 children can get 3 toys each. 798
In this case , 799
return ’Yes , it is possible ’. 800

801
Example 2: 802
If 11 toys are there , then 11 803
children can get 1 toy each or 804
1 child can get 11 toys. 805
In this case , 806
return ’No, it is not possible ’. 807
""", 808

809
"entry_point": "toy_distribution", 810

811
"canonical_solution": 812
def is_prime(n): 813

""" 814
Check if a number is prime using 815
divmod. 816
""" 817
if n < 2: 818

return False 819
820

for i in range(2,int(n**0.5) +1): 821
quot ,remainder=divmod(n,i) 822
if remainder == 0: 823

return False 824
825

return True 826
827

def toy_distribution(n: int) -> str: 828
if n <= 0 or not is_prime(n): 829

return ’Yes , it is possible ’ 830
831

return ’No, it is not possible ’, 832
833

"test": 834
METADATA = { 835

’author ’: ’AY’, 836
’dataset ’: ’test’ 837

} 838
def check(candidate): 839

assert candidate (15) == ’Yes , 840
it is possible ’ 841

assert candidate (11) == ’No, 842
it is not possible ’ 843

assert candidate (20) == ’Yes , 844
it is possible ’ 845

assert candidate (2) == ’No, 846
it is possible ’ 847

848
849

} 850

11

A.3 Representative Example from851

HumanEval852

{
"task_id":"HumanEval /23",

"prompt":
"""
def strlen(string: str) -> int:

Return length of given
string
>>> strlen(’’)

0
>>> strlen(’abc ’)

3""",

"entry_point": "strlen",

"canonical_solution":
"return len(string)",

"test":
""" METADATA = {

’author ’: ’jt’,
’dataset ’: ’test’
}

def check(candidate):
assert candidate(’’) == 0
assert candidate(’x’) == 1
assert candidate(’asdasnakj ’)

== 9"""

}

Figure 5: Representative example from the HumanEval
dataset. Here, task_id is a unique identifier for the
data sample. The prompt contains problem text with
a function header and docstrings. Canonical_solution
presents one solution for the problem. The test contains
functions to validate the correctness of the generated
code. Entry_point represents the function name which
is yet to be completed.

A.4 Representative Example from MBPP853

{
"text": "Write a function to find m
number of multiples of n.",

"code":
’’’
def multiples_of_num(m,n):

multiples_of_num=
list(range(n,(m+1)*n,n))

return list(multiples_of_num)
’’’,

"task_id": 21,

"test_setup_code": "",

"test_list":
’’’
[" assert multiples_of_num (4,3)==

[3,6,9,12]",
"assert multiples_of_num (2,5)==

[5,10]",
"assert multiples_of_num (9,2)==

[2,4,6,8,10,12,14,16,18]"]
’’’,

"challenge_test_list": []
}

Figure 6: Representative example from the MBPP
dataset. Text represents the natural language description
of the problem. Code contains one possible solution
for the problem. Task_id is the unique identifier of the
sample. Test_setup_code lists necessary code imports
to execute tests. Test_list contains a list of tests to verify
the solution. Challenge_test_list contains a list of more
challenging tests to probe the solution further.

12

