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Abstract

In this paper, we highlight the critical issues of robustness001
and safety associated with integrating large language models002
(LLMs) and vision-language models (VLMs) into robotics003
applications. Recent works have focused on using LLMs and004
VLMs to improve the performance of robotics tasks, such005
as manipulation, navigation, etc. However, such integration006
can introduce significant vulnerabilities, in terms of their007
susceptibility to adversarial attacks due to the language mod-008
els, potentially leading to catastrophic consequences. By009
examining recent works at the interface of LLMs/VLMs and010
robotics, we show that it is easy to manipulate or misguide the011
robot’s actions, leading to safety hazards. We define and pro-012
vide examples of several plausible adversarial attacks, and013
conduct experiments on three prominent robot frameworks014
integrated with a language model, including KnowNo [40],015
VIMA [21], and Instruct2Act [20], to assess their susceptibil-016
ity to these attacks. Our empirical findings reveal a striking017
vulnerability of LLM/VLM-robot integrated systems: simple018
adversarial attacks can significantly undermine the effective-019
ness of LLM/VLM-robot integrated systems. Specifically, our020
data demonstrate an average performance deterioration of021
21.2% under prompt attacks and a more alarming 30.2% un-022
der perception attacks. These results underscore the critical023
need for robust countermeasures to ensure the safe and reli-024
able deployment of the advanced LLM/VLM-based robotic025
systems.026

1. Introduction027

The advent of large language models (LLMs) and vision-028
language models (VLMs) has enabled robots to perform029
various complex tasks by enhancing their capabilities for030
natural language processing and visual recognition. This can031
increase their benefits for different applications, including032
healthcare [17, 27, 36], manufacturing [48, 50], and service033
industries [3, 11]. However, incorporating LLMs/VLMs into034
a robotic system can introduce unprecedented risks, primarily035
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Figure 1. Our experiments expose vulnerabilities in state-of-the-
art LLMs/VLMs for robotics, particularly to adversarial attacks,
underscoring the need for further research to ensure the safety and
reliability of using language models in robotic applications.

due to inadequate defense mechanisms. For instance, the hal- 036
lucination and illusion of language models [14] could affect 037
a reliable understanding of the scene, leading to undesired 038
actions in the robotic system. Another source of risk comes 039
from the failure of LLMs/VLMs to address the ambiguity of 040
contextual information provided by text or images [35, 52]. 041
Since the current language models usually follow a template- 042
based prompt format to execute a task [16, 29], the lack of 043
flexibility in addressing the variants and synonyms of natural 044
languages could also contribute to the misunderstanding of 045
prompts [24, 43]. Moreover, using multi-modality in prompt 046
input increases the difficulty of context understanding and 047
reasoning, which could lead to a higher failure risk [8, 18]. 048
In practical applications, those risks would pose significant 049
challenges to the robustness and safety of robotic systems. 050

Our goal is to analyze the trustworthiness and reliability 051
of language models and robotics. In that regard, we aim 052
to increase awareness regarding the safety concerns of the 053
state-of-the-art language models for robotics applications 054
via extensive experiments. We show that further research 055
is needed on this topic to safely deploy LLM/VLM-based 056
robots for real-world applications. Our primary focus is to 057
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Original: Put the
green and purple
stripe letter R into
the red pallet.

Rephrased: Place
the verdant and
lavender striped
alphabet character
R into the crimson
palette.
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Figure 2. Showcases of Successful Attacks to LLMs/VLMs in
Robotic Applications. The manipulator could successfully exe-
cute the pick-and-place (Visual Manipulation) task given the origi-
nal prompt. However, when applying adversarial attacks, like the
prompt rephrasing attack on adjectives, the information conveyed
by rephrased prompts may be misunderstood by the robot system
and lead to an incorrect operation, e.g. pick up the incorrect object
and place it to an incorrect location.

provide evidence of how the inherent complexities and learn-058
ing mechanisms of LLMs/VLMs in robotics can improve059
or hurt the performance: while they introduce sophisticated060
functionalities, they also expose these systems to new vul-061
nerabilities [12, 14, 31]. Adversarial attacks can lead to062
unexpected and potentially dangerous outcomes, particularly063
in scenarios where robotic decisions and actions have critical064
safety implications.065
Main Results: In this paper, we conduct an extensive analy-066
sis of current applications and potential attack vectors and067
emphasize the critical need for robust security frameworks068
and ethical guidelines. We show that ensuring the safe deploy-069
ment of LLM/VLM-enhanced robotics is not only a technical070
challenge but also a moral imperative, requiring concerted ef-071
forts from researchers, practitioners, and policymakers. Our072
main contributions include:073
1. Highlighting the vulnerabilities and safety concerns of074
using LLMs/VLMs in robotics. We conduct an extensive075
literature review of recent LLMs/VLMs integrated robotics076
systems and provide an in-depth analysis of their vulnerabil-077
ity to adversarial attacks. To the best of our knowledge, ours078
is the first work to specifically address and discuss vulnera-079
bilities in an LLM/VLM-based robot system.080
2. Design of adversarial attacks on LLM/VLM-based081
robotics systems. We define and categorize adversarial at-082
tacks on LLM/VLM-robot integrated systems, classifying083

Figure 3. To provide a preview of our findings, we showcase the
reduction in accuracy of the LLMs/VLMs used in robotics, under
various adversarial attacks. These results are presented across three
different tasks: Visual Manipulation (pick and place), Scene Under-
standing (move objects with specific textures to target place given
the scene image), and Rearrange (move objects to target places
given the scene image), with the accuracy decrements averaged for
each category of attack. Task details can be found in Section 8 in
the Supplementary Material.

them into prompt and perception attacks based on our anal- 084
ysis. For each attack category, we outline various potential 085
attack methods, along with detailed definitions and illustra- 086
tive examples. 087

3. Empirical analysis. We apply and assess the adversar- 088
ial attacks, across all the categories, on three state-of-the- 089
art LLM/VLM-robot approaches, including KnowNo [40], 090
VIMA [21], and Instruct2Act [20]. We propose several eval- 091
uation experiments for each attack and show that our adver- 092
sarial attacks deteriorate the success rate of the LLM/VLM- 093
robot integrated system by 21.2% under prompt attack and 094
30.2% under perception attack on average for manipulation 095
tasks. 096

4. Highlighting key open questions. We highlight some key 097
issues that need to be addressed by the research community 098
to ensure the safe, robust, and reliable integration of language 099
models in robotics based on the insights and findings of our 100
study. 101

2. Literature Review 102

2.1. Language Models for Robotics 103

Manipulation and Navigation Tasks. The integration of 104
Large Language Models (LLMs) and Vision Language Mod- 105
els (VLMs) with robotics marks a significant advancement 106
in embodied AI [9, 10, 15]. This fusion allows robots to 107
leverage the commonsense and inferential capabilities of 108
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language models in decision-making tasks. According to109
the criteria outlined in recent research [25, 41], the appli-110
cation of these models in robotics primarily encompasses111
navigation and manipulation tasks. Navigation tasks involve112
using Vision-Language Models (VLMs) trained on exten-113
sive image datasets, enabling robots to understand human114
instructions, recognize objects and their positions, and nav-115
igate effectively. These capabilities also aid in detecting116
out-of-domain objects and pinpointing targets within their117
spatial perception [19, 34, 38]. In contrast, manipulation118
tasks [4, 5, 21, 32, 45] involve processing human language119
instructions and using visual perception to locate objects120
within a scene. Here, large multi-modal models combine121
visual and language inputs to generate actions for robotic ma-122
nipulators, aiding in scene understanding, grasping, and ob-123
ject arrangement in simulated and real-world environments.124

Reasoning and Planning Tasks. Another key classification125
criterion is the complexity of tasks undertaken by large mod-126
els, which span from basic perception to advanced reasoning127
and planning. In perception-based tasks, these models either128
autonomously gather training data through scene observation129
without human labeling [51], or learn about unseen objects130
from expansive Internet-sourced datasets [46]. Conversely,131
in reasoning and planning tasks, the models engage in so-132
phisticated decision-making, drawing on their scene compre-133
hension and inherent commonsense knowledge [4, 30, 37].134
Research efforts have enhanced these models’ capabilities,135
such as pre-training for task prioritization [1] and converting136
complex instructions into detailed tasks with rewards [53].137
These models facilitate human-in-the-loop decision-making,138
where human input refines robot demonstrations. Innova-139
tive frameworks have been developed that enable robots to140
comprehend and learn from human demonstrations and in-141
structions [44], further integrating large multi-modal models142
in task understanding. Additionally, [40] proposed a frame-143
work that allows robots to seek additional guidance from144
human overseers when faced with decision-making uncer-145
tainties. Despite the extensive research and development in146
LLM/VLM-robot integration, there has been a notable lack147
of attention to the potential risks, especially the threat of ad-148
versarial attacks on advanced robotic systems. This oversight149
could lead to severe consequences if exploited by malicious150
actors.151

2.2. Adversarial Attacks on Language Models152

Adversarial attacks are inputs that reliably trigger erroneous153
outputs from language models [47]. These attacks encom-154
pass diverse strategies such as Token Manipulation, Gradient-155
based Attack, Jailbreak Prompting, and Model Red-Teaming.156
Token Manipulation, for instance, involves altering model157
predictions through synonym replacement, random inser-158
tion, or swapping of the most influential words [22, 28, 33].159
Gradient-based attacks exploit the model’s own gradients to160

find vulnerabilities. Jailbreak Prompting, a more sophisti- 161
cated technique, involves crafting prompts that bypass model 162
restrictions, while Model Red-Teaming tests model robust- 163
ness against various adversarial inputs. Studies by [23, 55] 164
have delved into the creation of universal adversarial trig- 165
gering tokens, examining their efficacy as suffixes added to 166
input requests for language models. [13] research highlights 167
the exploitation of language models to analyze external in- 168
formation, such as websites or documents, and introduces 169
adversarial prompts through this channel. [12, 14, 31] re- 170
vealed vulnerabilities in language models by demonstrating 171
the limitations of one-dimensional alignment strategies, es- 172
pecially when dealing with multi-modal inputs. 173

2.3. Safety Concerns of LLMs/VLMs in Robotics 174

Substantial evidence in current literature underscores the ef- 175
fectiveness of LLMs/VLMs in robotics, highlighting their 176
superior performance in various applications [49, 54]. For 177
instance, these models support robots with enhanced reason- 178
ing capabilities, enabling them to act effectively in real-world 179
scenarios. Furthermore, they empower robotic systems with 180
the ability to process and understand natural language in- 181
structions, a crucial aspect of human-robot interaction [2]. 182
Despite these advancements, our review of the literature 183
reveals a notable gap: to the best of our knowledge, there 184
is a lack of comprehensive studies addressing the potential 185
vulnerabilities and risks associated with the deployment of 186
language models in robotics. Our work aims to fill this gap 187
by being the first to rigorously focus on this aspect, providing 188
empirical evidence that highlights the risks and challenges 189
of utilizing language models with robotics. 190

3. Highlighting the Risks: LLMs/VLMs for 191

Robotics 192

In this section, we delve into the sophisticated architecture of 193
a robotic system integrated with language models [20, 21]. 194
The two key input modalities include: Visual Inputs (RGB 195
images or segmentation) and Textual Prompts (human in- 196
structions). These high-level inputs are translated by the 197
vision-language models (VLMs) into practical and action- 198
able commands for the robot. This process enables the robot 199
with a nuanced contextual understanding to intelligently inter- 200
pret human instructions and visual cues. After receiving the 201
commands, the robot interacts with the physical world, makes 202
new observations, receives feedback from the surroundings, 203
and then processes the information by VLMs again. 204

3.1. Vulnerabilities 205

In the system architecture outlined in Figure 4, the vision- 206
language model plays a crucial role, bridging between com- 207
plex environmental data, user instructions, and the robot’s 208
simpler, executable commands. Nevertheless, this critical 209
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Put the red swirl block into the purple container.

Place the block with a red swirl design into the 
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Simple Rephrasing
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purple, ensuring a seamless fit as you carefully 
position the block within the container.

Extension Rephrasing

Place the crimson swirling block inside the violet 
receptacle.

Adjective Rephrasing
Place the red swirl-shaped piece into the purple 
holder.

Noun Rephrasing
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Figure 4. Multi-modal Attacks to LLMs/VLMs in Robotic Applications. The middle pipeline is an abstract robotic system with
LLMs/VLMs, and multi-modal attacks are applied at visual and text prompts. The left-hand side provides different attacks to images, such
as reducing image quality, applying transformation, and adding new objects. The right-hand side shows different types of attacks in text,
including simple rephrasing, stealth rephrasing, extension rephrasing, and rephrasing of adjectives and nouns.

interpretative role exposes the model to potential vulnerabili-210
ties from adversarial attacks. These weaknesses include:211

Inaccurate Data Acquisition or Interpretation. Failure of212
the model to gather or understand perceived data correctly.213

Misinterpretation of Human Instructions. The potential214
for incorrectly interpreting human directives.215

Erroneous Command Generation. The risk of formulating216
impractical or incorrect commands for the robot.217

Within the spectrum of possible avenues for adversarial218
attacks, our attention is concentrated on two primary vulner-219
abilities. These vulnerabilities facilitate low-cost and easily220
implementable adversarial attacks, which could precipitate221
critical malfunctions in the entire robotic system. Such at-222
tacks can be achieved by simply modifying the inputs fed into223
the vision-language models, underscoring the need for height-224
ened awareness and robust countermeasures. We discuss two225
types of them as follows:226

Prompt Input. Most prompts provided to the vision-227
language models that are integrated with the robot system are228
highly template-based and depend on pre-defined keywords229
for semantic understanding [20, 21, 40]. Our analysis reveals230
that these prompts adhere to a formulaic pattern: Action +231
BaseObject + TargetObject. The placeholders for both232
BaseObject and TargetObject are constrained to a com-233
position that includes an adjective describing the object’s234
properties and a noun identifying the object, such as ’Put the235
red swirl block into the purple container’, ’Put the green and236
purple stripe star into the yellow and purple polka dot pan’.237

This composition is derived from a limited, pre-established 238
vocabulary, exhibiting a notable deficiency in diversity. 239
Visual Input. The vision-language models primarily receive 240
their visual inputs from the robot’s sensory equipment, such 241
as an RGB camera, but it may also process additional data 242
like segmentation maps derived from the RGB images. For 243
the robot system to perform accurately, the integrity and qual- 244
ity of this image data are crucial. They enable the robot to 245
precisely localize objects and clearly understand its surround- 246
ings. However, the semantic interpretation of these images 247
can be easily compromised. In Figure 4, simple manipu- 248
lations such as image rotation or distortion can disrupt the 249
logical connection between objects in the perceptual field, 250
thereby posing a significant threat to the functionality of the 251
vision-language models within the robotic system. 252

4. Methodology 253

Based on the vulnerabilities outlined in Section 3, we can 254
categorize our proposed attack into three distinct approaches: 255
Prompt Attack, Perception Attack, and Mixture attack. We 256
discuss them in detail as follows. 257

4.1. Prompt Attack 258

The prompt attack is to rephrase the initial instruction prompt, 259
with the aim of challenging the interpretative ability of 260
the robot system. As highlighted in Section 3.1, the in- 261
struction prompts are predominantly formatted as Action 262
+ BaseObject + TargetObject. The prompt attacks aim 263
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to either disorganize such structure by rearranging the com-264
ponents and introducing redundant words or directly attach265
prompt understanding by replacing the keywords, including266
the adjectives that describe object properties and the nouns267
corresponding to the object names, with their synonyms. We268
categorize the prompt attacks into the following five types as269
described in Figure. 4 and below:270
Simple Rephrasing involves rephrasing the prompts into a271
different structure while preserving the original meaning.272
Stealth Rephrasing entails delicately reshaping the under-273
lying meaning of prompts while preserving their surface274
meaning through subtle rephrasing.275
Extension Rephrasing involves elaborating the prompts276
using more words while preserving the original meaning.277
Adjective Rephrasing involves replacing adjectives within278
the prompts that describe object properties, such as color,279
patterns, and shapes, while preserving the original meaning.280
Noun Rephrasing involves replacing the nouns in the281
prompts, such as ‘bowl’ and ‘boxes’, while preserving the282
meaning of the objects.283

Additionally, prefixes used for rephrasing the prompts in284
these attacks and their outcomes are detailed in Table 3 and285
4 in Section 9 in the Supplementary Material.286

4.2. Perception Attack287

The perception attack applies modifications to the visual288
observation of the robotic system perceived from the envi-289
ronment, There are multiple perception attack approaches,290
categorized under 3 general perspectives. Examples of these291
attacks are presented in Figure. 4.292
Image Quality Attack is to degrade the quality of the images293
that the robot system perceived, which includes: (a) Blur-294
ring. Implementing Gaussian blurring on the RGB images295
captured by the robot system. (b) Noising. Introducing Gaus-296
sian noises into RGB and segmentation images. (c) Filtering.297
Adjusting the pixel values in a specific RGB channel to their298
maximum.299
Transformation Attack involves applying transformation300
onto images to change the properties of the objects within301
the robot’s perceptual field. Attacks in this genre include:302
(a) Translation. Shifting the image along the x and y axes303
to change the position of objects in the view. (b) Rotation.304
Rotating the image around its center point and altering the305
orientation of objects within the scene. (c) Cropping. Crop-306
ping part of the image and resizing it to change the context307
or focus of the image. (d) Distortion. Applying a distortion308
matrix to the image that warps the appearance of objects in309
the scene, affecting their perceived shapes and positions.310
Object Addition Attack involves inserting a fictitious object311
into the image perceived by the robot, an object that does312
not exist in the actual environment. Object addition attacks313
include: (a) Object Addition in RGB. Selecting a random314
rectangular area in the RGB image and fill it with white.315

This creates the illusion of an additional object within the 316
scene. (b) Object Addition in Segmentation. Choosing a 317
random rectangular area in the segmentation image and fill- 318
ing it with a random, pre-existing object ID. This introduces a 319
new, artificial object into the segmentation map. Detailed in- 320
formation on the implementation of these perception attacks 321
can be found in Table 5 in Section 10 in the Supplementary 322
Material. 323

4.3. Mixture Attack 324

Considering the prompt and perception attacks we have out- 325
lined, adversaries targeting the robotic system could employ 326
a combination of two or more such attack approaches to fur- 327
ther degrade the system’s performance. For instance, they 328
might simultaneously rephrase the adjectives in the prompts 329
and apply distortion to the images. In our experiments, we 330
conduct a detailed analysis of the performance differences of 331
the robot system under various combined attacks. 332

5. Experimental Evidence 333

5.1. Evaluation Plans and Metrics 334

Among all works at the intersection of language models used 335
in robot systems, we choose the following three models, 336
KnowNo [40], VIMA [21] and Instruct2Act [20], to eval- 337
uate our adversarial attack approaches, while all models are 338
applied for object manipulation or arrangement tasks with 339
robot manipulators and visual perception based on some vi- 340
sual reasoning abilities from language models. The details 341
of the comparisons are discussed in Section 7 given in the 342
Supplementary Material. We show some failure cases in 343
Section 12 in Supplementary Material and GIF animations 344
in the attachment. 345
Evaluation Metrics. The success rate given in percentages 346
is the metric we use to evaluate and compare the difference in 347
performance before and after adversarial attacks for each of 348
the works we mentioned above. For KnowNo, we run 500 cal- 349
ibration examples before execution as the in-context learning 350
for LLM. For VIMA and Instruct2Act that use VIMA-Bench, 351
we evaluate both approaches under adversarial attacks over 3 352
tasks with 3 difficulty levels. We run each adversarial attack 353
over each task for each model for 150 iterations allowing 5 354
possible attempts when executing tasks and computing the 355
overall success rate throughout the whole evaluation proce- 356
dure. 357

5.2. Results Analysis with Textual Prompt 358

We first perform attack experiments on KnowNo [40] using 359
textual prompts as its input without any visual inputs. Only 360
prompt attack is allowed in this scenario. Results are provided 361
in Figure 5. 362

KnowNo is robust under Simple and Extension Rephras- 363
ing without much accuracy reduction. The rationale be- 364
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Figure 5. Prompt Attack Results of KnowNo [40] over the pick-
and-place manipulation task. All prompt attack results are pre-
sented and compared with the no-attack baseline. Remark. The
KnowNo framework is more vulnerable under stealth rephrasing
attacks and noun rephrasing attacks.

hind this stems from the fact that both rephrases provide365
more explanations of the sentences, the information helps the366
language model to easier find more important information367
about the scene. Stealth Rephrasing reduces the accuracy to368
18.7%, revealing its strong ability to confuse the LLM when369
understanding the prompts. Adjective Rephrasing reduces370
the accuracy to 32.0%, because different adjectives provide371
different properties of the objects. This operation confuses372
the model from understanding object texture and scene infor-373
mation correctly. Noun Rephrasing reduces the accuracy374
to 15.3% after attack. Similar to adjective rephrasing, noun375
rephrasing uses synonyms to change the description away376
from the real objects. Since the nouns are typically the nu-377
cleus of the compound referring to objects, the rephrasing378
attack targeting nouns is more effective than others. Thus,379
LLM cannot understand the scene correctly.380

Remark. Overall, the prompt attacks targeted specific, essen-381
tial components and the prompt structures that are decisive in382
context-understanding procedures, significantly deteriorating383
the performance of the robot language model, while attack-384
ing the nucleus component of the compound like nouns is385
more effective than others. This highlights the heavy reliance386
of current language models in robotics on identifying key-387
words from templates or training data for decision-making.388
Considering the inherent ambiguity of human language and389
workspace uncertainty in robot systems, such vulnerabilities,390
which are easily detectable and accessible, raise the potential391
for cost-effective adversarial attacks. Attackers only need to392
target adjectives and nouns describing objects in the scene393
or break the structure of the prompt by altering its meaning394
subtly, which can result in significant losses in real-world395
robot applications.396

5.3. Results Analysis with Multi-modal Prompt 397

We perform both prompt and perception attack approaches on 398
the vision language model, VIMA [21], which uses a multi- 399
modal input combining both textual and visual information, 400
allowing both prompt and perception attacks. We also per- 401
form extra evaluation over another popular robot approach 402
embodied with the language model, Instruct2Act [20], which 403
is included and discussed in Section 11 in the Supplementary 404
Material due to limited space. 405

We perform experiments on three tasks in the VIMA- 406
Bench environment: (1) Visual Manipulation, (2) Scene Un- 407
derstanding, and (3) Rearrange. While Scene Understanding 408
is more text-dependent, Rearrange is more visual-dependent, 409
and Visual Manipulation is the balance of both. For Visual 410
Manipulation, we perform experiments over three difficulty 411
levels, (a) Placement Generalization, (b) Combinatorial Gen- 412
eralization, and (c) Novel Object generalization, depending 413
on the generalization level of objects and their properties 414
based on the common-sensing abilities of the language model. 415
Our experimental results, as detailed in Table 1, provide in- 416
sightful observations regarding the impact of various attack 417
strategies on the robot system: 418
1. Different Text Attacks. Compared to Section 5.2, results 419
in Table 1 show extension rephrasing outperforms rephras- 420
ing attacks with more specific targets, like adjective and 421
noun rephrasing attacks, as it lowers accuracy to 73.9%. In 422
contrast, adjective and noun rephrasings achieve 79.9% and 423
76.8% accuracy reductions, respectively. Simple rephrasing 424
less effectively drops accuracy to 83.4% and stealth rephras- 425
ing decreases the accuracy to 79.8%. This may be due to 426
extension rephrasing introducing duplicative, confusing in- 427
formation that disrupts model decision-making, while the 428
rephrasing attacks target nucleus components like nouns is 429
more effective than others. 430
2. Attacks under Different Tasks. Table 1 illustrates 431
VIMA’s performance across three tasks under various attacks. 432
In the Visual Manipulation task, accuracy falls by 15.5% and 433
40.1% under prompt and perception attacks, respectively. 434
Scene Understanding sees minimal impact from prompt at- 435
tacks (1.3% drop) but a significant 40.4% decrease under 436
perception attacks. In Rearrange, VIMA faces substantial 437
declines of 44.1% and 45.3% under prompt and perception 438
attacks, indicating differential sensitivity to the nature of 439
information and prompt structures across tasks. 440
3. Attacks to Models with Different Robustness. Im- 441
age quality attacks have a minimal impact on the VIMA 442
approach because VIMA is reliant to predetermined segmen- 443
tation results for object detection. However, in contrast, in 444
Instruct2Act results given in Section 11, presented in the 445
Supplementary Material, image quality attacks substantially 446
degraded performance from 47.4% to 12.1% in Visual Ma- 447
nipulation task. This suggests that compromising the object 448
segmentation process in manipulation tasks can critically 449
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Placement
Generalization

Combinatorial
Generalization

Novel Object
Generalization

Method Category Attack Visual
Manipulation

Scene
Understanding Rearrange Visual

Manipulation
Visual

Manipulation

Prompt Rephrasing

Simple 88.0 99.3 65.3 85.3 79.3
Stealth 86.7 100.0 55.3 85.3 70.7

Extension 82.0 98.7 30.7 81.3 76.7
Adjective 83.3 98.7 70.7 81.3 65.3

Noun 82.7 96.7 57.3 82.7 64.7

Average 84.5 98.7 55.9 83.2 71.3

Perception

Image Quality
Blurring 100.0 100.0 99.3 100.0 99.3
Noising 100.0 100.0 98.7 100.0 99.3
Filtering 100.0 100.0 98.7 100.0 99.3

Transformation

Translation 81.3 80.0 66.7 82.0 82.7
Rotation 2.0 0.7 4.7 0.7 1.3
Cropping 5.3 2.0 6.7 4.0 0.7
Distortion 0.0 0.7 3.3 0.0 1.3

Object Addition in Seg 50.7 53.3 15.3 52.7 59.3
in RGB 100.0 100.0 99.3 100.0 99.3

Average 59.9 59.6 54.7 59.9 60.3
Original No Attack 100.0 100.0 99.3 100.0 99.3

Table 1. Attack Results of VIMA [21] over VIMA-Bench. We perform attack experiments over 3 tasks Visual Manipulation, Scene
Understanding and Rearrange, while Visual Manipulation has been made under 3 difficulty levels: Placement Generalization, Combinatorial
Generalization and Novel Object Generalization. Conclusion. VIMA framework is more vulnerable under all prompt attacks (except in the
Scene Understanding task), and some perception attacks like transformation attacks, and the object addition attack in the segmentation image.

Prompt
Perception Noising Translation OA

in Seg N/A

Simple 88.7 69.3 46.0 88.0
Stealth 92.7 66.0 36.0 86.7

Extension 87.3 68.0 41.3 82.0
Adjective 90.0 70.7 50.7 83.3

Noun 86.7 62.0 48.7 82.7
N/A 100.0 81.3 50.7 100.0

Table 2. Attack Results of VIMA [21] over different combi-
nations of prompt and perception attacks over VIMA-Bench.
Results over all combinations of 5 prompt attacks: Simple, Stealth,
Extension, Adjective and Noun and 3 perception attacks: Noising,
Translation and Object Addition in Segmentation. Conclusion. The
VIMA framework is more vulnerable under the combination of two
or more different attacks.

undermine the robot system’s functionality.450
4. Transformation Attacks. A particularly noteworthy find-451
ing is the profound effect of transformation attacks, where452
rotation, cropping, and distortion contribute to the minimum453
accuracies in Table 1. Even minimal deviations, like under 10454
degrees rotation or about 10 pixels shift in the perceived im-455
ages, result in a complete breakdown of the language models456
integrated with the robotic system. These types of deviations457

are common in real-world settings, stemming from installa- 458
tion errors or manufacturing processes. 459

5. Object Addition Attacks. Furthermore, our analysis re- 460
veals that VIMA is distinctly susceptible to object addition 461
attacks, especially addition in segmentation has an average 462
accuracy of 46.3%. The model’s heavy reliance on accu- 463
rate ground-truth object segmentation for decision-making 464
makes it vulnerable to introducing fictitious objects, which 465
can disrupt its logical reasoning. Conversely, introducing 466
anomalies in RGB images poses a more significant threat in 467
systems that manually perform object segmentation. 468

6. Generalization Abilities. Table 1 analyzes Visual Ma- 469
nipulation task performance across three levels: Placement 470
Generalization, Combinatorial Generalization, and Novel 471
Object Generalization, focusing on object and texture chal- 472
lenges. VIMA’s accuracy drops by 15.5% for Placement 473
Generalization and 28.7% for Novel Object Generalization 474
under prompt attacks. However, under perception attacks, 475
the performance decrease is consistent across all levels, with 476
about 40% drops, highlighting differential sensitivities to 477
attack types based on generalization complexity. 478

7. Consistency between Text and Perception Inputs. Table 479
2 reveals that mixed attacks generally cause a greater decrease 480
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in performance, with perception and prompt attacks together481
lowering accuracy by around 16% more than prompt attacks482
alone. Specifically, incorporating stealth rephrasing with per-483
ception attacks leads to a 21.8% fall in performance. Adding484
prompt attacks to noising attacks significantly drops accu-485
racy from 100.0% to 89.1%. A similar trend is observed with486
translation attacks, where accuracy decreases from 81.3%487
to 67.2%. However, combining prompt attacks with object488
addition in segmentation attacks does not greatly enhance489
effectiveness, as it shows 6.2% additional drop in accuracy490
compared to using object addition alone.491

For a breakdown of these experimental details, including492
findings and the methodologies employed, please refer to493
Section 8, 11, and 12 in the Supplementary Material.494

5.4. Discussions and Take Away Messeage495

From our experimental results and analysis, we derive sev-496
eral insights into prompt and perception attacks targeting497
language models integrated within robotic systems.498
1. General and target-oriented prompt attacks. Target-499
oriented attacks, like adjective and noun rephrasing attacks,500
and stealth rephrasing attacks targeting the prompt structures,501
are more effective than general prompt rephrasing attacks,502
according to Section 5.2, #1 from Section 5.3 and Table 1.503
2. Attacks on different modalities. Language models ad-504
just their response based on the specific characteristics of505
manipulation tasks, leading to varied outcomes across dif-506
ferent attack approaches. Specifically, prompt attacks yield507
more pronounced effects on tasks heavily reliant on prompts,508
whereas perception attacks are more impactful on tasks de-509
pendent on visual cues. This variation is evident in the results510
presented in Table 1 and 2, with discussion in Section 5.3,511
particularly in observations #2, #6 and #7.512
3. Downstream effect by attacks on perceived RGB images513
on object segmentation. The attacks on perceived RGB514
images could lead to the failure of the object segmentation515
results, adversely affecting downstream perception and scene516
understanding tasks, as shown in Table 1 and mentioned in517
#3 and #5 from Section 5.3.518
4. Attacks leading to perception deviation cause signif-519
icant performance drops. Attacks causing deviations in520
perceived object positions can significantly reduce the task521
execution accuracy of robotic systems. This is true even for522
minor deviations caused by rotation, position, or projective523
errors, which are common issues in the installation of percep-524
tion sensors in robotic systems, as highlighted in observation525
#4 from Section 5.3.526

6. Conclusions and Open Questions527

In this work, we seek to enhance the safe and effective in-528
tegration of advanced language models and robotics. By529
conducting thorough experiments, we highlight the risks and530
vulnerabilities of the current state-of-the-art visual language531

models for robotics under adversarial attacks. We provide 532
empirical evidence of vulnerabilities by considering several 533
attack approaches on those models. Our findings emphasize 534
the need for further research to ensure the secure deployment 535
of such technologies and underscore their critical role in 536
maintaining the safety and reliability of robotic applications. 537

Based on our insights and findings in this work, we list 538
some important open problems and questions that need 539
the immediate attention of the research community for the 540
safe, robust, and reliable deployment of language models in 541
robotics. 542
1. Evaluation benchmarks to test the robustness of lan- 543
guage models in robotics. There is a need to introduce more 544
adversarial training samples or benchmark datasets to test 545
the robustness of the language models in robotics. 546
2. Designing safeguard mechanisms. We need a mecha- 547
nism that allows robots to ask for external help under uncer- 548
tainty like the mechanism proposed in [40]. 549
3. Explainability or interpretability of the LLM/VLM- 550
based robotics systems. One of the major reasons for the 551
vulnerabilities of LLM Robotics systems against these attacks 552
lies in the inherent black-box or/and uninterpretable compo- 553
nents in the system (i.e. ChatGPT). Therefore, it is essential 554
to identify the most vulnerable component of the pipeline to 555
these attacks and to understand the specific vulnerabilities. 556
4. Detection of Attack and Human Feedback. A funda- 557
mental aspect of a robust and reliable system is its ability 558
to detect attacks or vulnerabilities and subsequently signal 559
for assistance. Therefore, developing detection strategies for 560
LLM/VLM-based robotics systems that can identify attacks 561
using verifiable metrics and trigger alerts for human or expert 562
intervention becomes critical. 563
5. VLM-based robotics systems with multi-modal inputs 564
and their vulnerability. As robot systems increasingly in- 565
corporate multi-modal inputs and large generative models, it 566
becomes crucial to assess the vulnerabilities associated with 567
individual modalities, such as vision, language, and audio. 568
Equally important is identifying which components are most 569
susceptible to attacks and under what scenarios. 570
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