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Abstract

We propose a novel framework for modelling
strategic interactions between boundedly-rational
agents in complex, partially observable environ-
ments. Our approach introduces agents that mini-
mize a free-energy functional, capturing the diver-
gence between their beliefs about future trajecto-
ries and their preferences, which are represented
by a biased probabilistic model. We extend this
to multi-agent settings and introduce Free-Energy
Equilibria, a new class of game-theoretic solu-
tion concepts. We begin by establishing the re-
lationship between Free-Energy Equilibria and
existing game-theoretic solution concepts. Then,
we propose an approach to studying cooperation
by contrasting Free-Energy Equilibria with joint
free-energy minimization, extending key concepts
from mechanism design. Our framework allows
for modelling interactions between agents with
varying levels of rationality and biased or incor-
rect world models, providing insights into human-
Al interaction and Al alignment.

1. Introduction

Efforts to understand human behaviour, cooperation, and
the alignment of Al systems with human values rely on
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formal models of human and Al agency. While simplify-
ing assumptions can lead to useful insights, the problem of
aligning Al systems with humans requires us to critically ex-
amine the realism of these models. Unrealistic assumptions
about human agency or artificially intelligent systems, when
used to align powerful Al systems, can lead to unethical and
potentially catastrophic outcomes (Russell, 2019; Critch &
Krueger, 2020).

A realistic model of both natural and artificial agency should
at least capture (but is not limited to) (i) embodied agents
who persist through time, model their world, and interact
with it through an interface/Markov blanket (Friston et al.,
2023a;b; Ramstead et al., 2023), (ii) strategic interactions
between agents who may have different beliefs and pref-
erences, (iii) partially observable, stochastic environments,
and (iv) varying degrees of agent rationality. Traditional
game theory provides a foundation for analyzing strategic
interactions but assumes perfect rationality. It also typically
omits explicit models of agents’ beliefs and how they are
revised over time, limiting its applicability to realistic sce-
narios with cognitively constrained agents (Simon, 1964;
Kahneman, 2003). Free-energy-based frameworks, such as
Active Inference (Friston et al., 2010) and Action-Perception
Divergence (APD) minimization (Hafner et al., 2020), are a
compelling class of models of perception and action based
on (variational) free-energy minimization, but are currently
lacking a general theory of multi-agent interactions.

We propose an application of game theory in studying in-
teractions between free-energy minimizing agents to bridge
the gap between idealized game-theoretic results and the
behaviour of realistic agents. Our model studies boundedly-
rational agents as those who minimize a free-energy func-
tional, which captures the divergence between their beliefs
(represented by a predictive generative model) and prefer-
ences (represented by a biased generative model) over future
trajectories. This leads us to the concept of Free-Energy
Equilibrium (FEE) and its generalizations.

Our framework is built upon Partially Observable Stochas-
tic Games (POSGs) (Hansen et al., 2004b), extending the
Partially Observable Markov Decision Process (POMDP)
to multi-agent settings. Our framework allows one to model
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boundedly-rational agents through (1) approximate latent
state estimation using variational inference, (2) sub-optimal
policy selection due to bounded rationality, and (3) varying
levels of belief updating and self-modelling. Preferences are
modelled by assuming that agents desire to minimize the
KL divergence between ‘expected’ and ‘desired’ trajecto-
ries, a common approach in free-energy methods, bounded
rationality models, and variational inference (Friston et al.,
2010; Hafner et al., 2020; Ortega & Braun, 2013).

The implications of our work extend beyond the introduc-
tion of free-energy equilibria and their theoretical analysis:
We introduce the concept of joint free-energy minimization
as a framework for studying cooperation, conflict, and align-
ment in multi-agent systems. We hope to lay the foundation
for understanding the dynamics of human-AlI interactions
and addressing key challenges in Al alignment. We also
illustrate the use of the framework by translating an existing
formal alignment proposal, Cooperative Inverse Reinforce-
ment Learning (Hadfield-Menell et al., 2016), to our model
of bounded rationality.

2. Related Work

Formal models of human agency permeate many fields,
ranging from psychology and cognitive science to machine
learning and microeconomics. Due to space constraints, we
briefly review only the most pertinent areas.

2.1. Economics and Game Theory

Economics and game theory are concerned with develop-
ing models of bounded rationality to capture real-world
decision-makers’ behaviors (Simon, 1964; Braun & Ortega,
2014). The objective we study extends information-theoretic
models of bounded rationality, which assume that agents
incur information-processing costs (Ortega & Braun, 2013;
Braun & Ortega, 2014). It is also closely related to ra-
tional inattention, which models the costs of information
acquisition in decision-making (Mackowiak et al., 2023;
Matéjka & McKay, 2015; Sims, 2003). We study a more
general class of dynamic decision-making problems and
focus more on the costs of policy and belief updating rather
than on information acquisition, although the latter can also
be incorporated into our model. Bounded rationality has
been applied to strategic interactions using statistical and
information-theoretic models (Evans & Prokopenko, 2021;
Gottwald & Braun, 2019; Rogers et al., 2009; McKelvey
& Palfrey, 1995; 1998; Wolpert, 2006a;b). However, these
models do not explicitly account for the internal models that
agents use to plan and make decisions.

Mechanism design, a subfield of game theory, focuses on
designing rules that lead to desirable outcomes in strategic
settings. Foundational concepts were developed by Leonid

Hurwicz (Hurwicz, 1973), while later contributions intro-
duced key ideas such as incentive compatibility (Myerson,
1981) and equilibrium selection (Harsanyi & Selten, 1988).
Social choice theory explores the aggregation of individ-
ual preferences to implement collective decision-making.
This framework could be applied to explaining behavioural
experiments, offering a theoretical framework for policy de-
sign, studying social behaviours, and potentially providing
microfoundations for macroeconomic phenomena due to
its applicability across scales (Yudkowsky, 2017; Ramstead
et al., 2021b). In incentive design, it can suggest ways to
combine ‘utility-based” and ‘information-based’ incentives
to shape behaviour (Ratliff et al., 2019).

2.2. Computer Science and Biology

Information theory and Bayesian inference form a bridge
between modern Al and biologically-inspired theories of
agency. For example, many machine learning problems can
be viewed as KL divergence minimization (Hafner et al.,
2020; Millidge et al., 2021a;b; Alemi, 2023) or Evidence
Lower Bound maximization (Beal, 2003; Blei et al., 2017).
Recent language modelling approaches using Reinforce-
ment Learning (RL) with KL divergence penalties can be
viewed as approximate Bayesian inference (Korbak et al.,
2022). Given this, it is natural to investigate whether ar-
tificial agents based on neural networks and RL can be
modelled as boundedly-rational in the ways we assume.
With the rapid growth of access to computational power,
sample-efficient model-based methods in (multi-agent) RL
have been garnering interest (Eysenbach et al., 2021; Moer-
land et al., 2020) alongside more data-intensive model-free
methods (Albrecht et al., 2024; Sutton & Barto, 2018). The
model we propose here may provide a general framework
for developing model-based (multi-agent) RL algorithms in
partially observable settings by learning generative models
of players and environments for planning (Ray et al., 2008;
Chandrasekaran et al., 2017; Wang et al., 2022). Indeed, a
closely related framework known as Maximum Diffusion
RL has recently been proposed as a principled way of regu-
larizing reward functions for RL agents to decorrelate their
experiences, which leads to an objective very similar to the
one we propose here (Berrueta et al., 2024), but arrived at
from a different starting point.

Active Inference is a theoretical framework for modelling
biological systems (Parr et al., 2022), which has more re-
cently found useful applications in describing generally
agentic systems in the formalism of POMDPs (Da Costa
et al., 2020). Within the field of active inference, there has
been much interest in studying interactions between multi-
ple active inference agents, focusing on applications such
as communication (Albarracin et al., 2022; 2024a; Friston
& Frith, 2015a;b; Friston et al., 2023d; Vasil et al., 2020),
competition (Demekas et al., 2023), coordination (Friedman
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etal.,2021; Levchuk et al., 2019; Maisto et al., 2023; Poppel
et al., 2022), social cognition (Constant et al., 2019; Gal-
lagher & Allen, 2018; Hipdlito & van Es, 2022; Veissiere
et al., 2020; Yoshida et al., 2008), collective behaviour (Fris-
ton et al., 2015a; 2024; Heins et al., 2022; 2023; Kaufmann
et al., 2021; Ramstead et al., 2021a), and hierarchical self-
organisation (Friston et al., 2015a; Hesp et al., 2019; Kuch-
ling et al., 2020; Palacios et al., 2020; Ramstead et al., 2019;
Sims, 2021). Despite this, the field is currently lacking a gen-
eral formalism and theory that can be used to model such
multi-agent interactions, in the same way that POMDPs
(Da Costa et al., 2020; 2023; 2024) and algorithms for (ap-
proximately) solving them (Fountas et al., 2020; Maisto
et al., 2021) have been applied to model active inference
in single-agent settings. We hope to take steps towards ad-
dressing this gap in the literature with our proposed model.

3. Preliminaries

We define some basic notation and conventions, with tech-
nical details deferred to the appendix. For a set X, let
A(X) denote the set of probability distributions over X.
Where X is a discrete random variable with distribution
P, we write H(X) to denote the Shannon entropy of X.
For two probability distributions P and () defined over the
same domain X, we write Dgp, [P(z) || Q(x)] to denote the
Kullback-Leibler (KL) divergence or relative entropy from
Q@ to P. Finally, we use boldface to denote n-tuples, e.g.,
X = (21,...,2,). For I < {1,...,n}, welet x! denote the
tuple (z%);e; and x ! to denote the tuple (z%);e1, .y
When adding an additional time index ¢ € Z, we denote
x; = (x},...,27). For s,t € Z such that s < t, we use
X¢.¢ to denote the sequence Xg,Xs41,-..,X; and xizt to
denote 2%, ..., zt.

3.1. Partially Observable Stochastic Games

We use the framework of Partially Observable Stochastic
Games (POSGs) (Hansen et al., 2004a), which are a natural
extension of Partially Observable Markov Decision Pro-
cesses (POMDPs) to situations involving multiple agents
acting concurrently. POMDPs are a widely used model for
individual decision-making in dynamic stochastic environ-
ments where agents may be uncertain about the true state of
the environment (Astrom, 1965). They have been success-
fully applied to problems in reinforcement learning (Kimura
et al., 1997), active inference (Parr et al., 2022), robotics
(Kurniawati, 2022), and many other disciplines. The wide
applicability of POMDPs thus makes their multi-agent ex-
tension an obvious first choice for the underlying model in
which to describe situations involving multiple heteroge-
neous interacting active inference agents. POSGS are also
a suitably general framework upon which we can build a
model that satisfies the desiderata outlined in Section 1.

Definition 1. A finite-horizon Partially Observable Stochas-
tic Game (POSG) is a tuple

g = (N7 S7 (Ai)iENv (Qi)ieNv (Oi)iENv Ta P7 Ia (Rl)zEN))

where: (i) N is a finite set of agents; (ii) S is a set of
states; (iii) A’ is a set of actions for each i € N. We write
A = X oy A" for the set of joint actions; (iv) Q' is a set
of observations for each i € N. We write {) = X 5§V
for the set of joint observations; (v) T € Z* is the time
horizon. We write T = {0,...,T} for the set of time
steps in the game; (vi) O' : A x S — A(Q) is a par-
tial observation probability function (or observation like-
lihood function) for each agent i € N. For a joint ob-
servation o = (0');en € Q and a time t € T, we write
O(oy|st,ai—1) = X, O'(0}]st,a¢—1) for the joint prob-
ability that each agent i € N receives observations o, given
that the state is sy and the most recently played joint ac-
tion was a;_1. (vii) p : S x A — A(S) is a Markovian
probabilistic transition function, which can also be written
as a conditional probability distribution P(sy11]|s¢, a;) for
timest € {0,...,T — 1}, (viii) I € A(S) is the initial state
distribution; (ix) R’ : S — R is agent i’s state-reward
function. We write R(s) = (R'(s),..., RN (s)).

To capture the output of this process between any two
timesteps to and t, 0 < tg < t < T, we use the notion
of a trajectory hto:t 1= SO0ty Aty - - - St—10¢—1A; 150t —
that is, an alternating sequence of states, joint observations,
and joint actions. We use the term history (or run) hg., to re-
fer to trajectories that start at timestep ¢y = 0, and similarly
for state histories sq.;, observation histories 0g.¢, etc. Let Oy
be the set of all possible observation trajectories of length
tand O := Uthl Oy as the set of all possible observation
trajectories of any length. Similarly, we use Q¢ = (Q¢)* and
0" = |J;_, (9%)" to denote the sets of observation histories
of a given player.

A policy 7 : O — A(A?) of player i maps each obser-
vation history of ¢ to a probability distribution over their
actions. An independent policy profile (or a profile of inde-
pendent policies) is a tuple w = (7%, ..., 7"), where each
7 is a policy of player i. A policy (or a policy profile) is said
to be pure when each distribution 7 ( - |0}, ) is deterministic.
A correlated policy profile p is a probability distribution
over pure policy profiles.? We use IIj,q = X, II" and
1.0 to denote the sets of all independent, resp. correlated,
policy profiles. For a correlated policy profile p, we will
use 12 ~* to denote the corresponding marginal distribution

J
over X#iH .

In order to compute expected rewards in G, it is useful to
consider the auxiliary notion of the probability of reaching

Note that the definitions relevant to correlated policies make
sense even for probability distribution over profiles of non-
deterministic policies.
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a given history. We define the reach probability of a history
h = hy.; under an independent policy profile 7 as

p(h; ) := I(s0) - (

|
—

O(OT|ST7 a’T*l) ' 7T(a7—|00;7—)
0

Dlsrarlsran) -Olorlsr)., (D)

where m(a,|0g.) := [ [, 7*(a%|of.,). Analogously, we

define the reach probability of h under a correlated policy
profile g as p(h; p) := Ex,, p(h; 7). For any (indepen-
dent or correlated) policy profile 7r, these notions can be
straightforwardly extended to track other probability dis-
tributions related to the game (Kovafik et al., 2023), such
as the conditional probabilities p(ho.¢|ho.+,; 7) of reaching
a given history hy.; given that the current history is hg.,,
to < t.

3.2. Value functions and Solution Concepts

A central concept in control theory and reinforcement learn-
ing is known as the (subjective) value function, which is a
measure of the expected reward to-go for a player i € N
from a given time point ¢ in a run until the end of the episode,
under the policy profile 7.

Definition 2. Given an (independent or correlated) policy
profile  and a history hy.., the value function of agent i is
given by

T
Vz(ozl):t;ﬂ-) = IEp(ho;T \og:t;‘rr) l Z Rz(ST) ) (2)

T=t+1

where ho.r = hgya;s;.1...5707. By Vi(mw) =
Vi(; ), we denote the total expected reward under .

This measures a player’s expectation of the reward-to-go
under a given joint policy 7 and the information that they
have access to, i.e., 0}.,. The objective of a classical reward-
maximizing agent is thus to select a policy which maximizes
its initial value function, given information about the poli-
cies of the other players. Game theory typically assumes
an equilibrium state where each player knows the policies
of the others (Aumann & Brandenburger, 1995). However,
this assumption of equilibrium can be relaxed, giving rise to
the need to learn and possibly even shape opponent policies
(Foerster et al., 2017; He et al., 2016; Yu et al., 2022).

The historically prominent solution concept in game theory
is Nash equilibrium — a profile of independent policies that
allows no profitable deviations for any individual player.
However, in the context of this paper, we will be more
interested in the notion of correlated equilibrium, where
players may use an external source of randomness (e.g.,
a mediator or the outcome of some random process) to
coordinate on which joint actions to play.

While the notion of a correlated equilibrium is relatively
straightforward in single-step interactions (i.e., normal form
games), there are several ways of extending the idea to se-
quential settings (Zhang et al., 2022). What all these variants
have in common is that (i) the players use the correlated pol-
icy profile p to randomly select a pure policy profile ™ ~ p
to adopt, and (ii) w is said to be a correlated equilibrium
if none of the players can benefit by unilaterally deviating
from this plan. The variants differ in the types of deviations
available to the players.

Definition 3. A Nash Equilibrium (NE) is an independent
policy profile 7 s.t. for all i € N and 7 € I}, Vi(w) >
Vi((7t,w=")). A Coarse Correlated Equilibrium (CCE) is
a correlated policy profile  s.t. for all i € N and 7 € TI,
Vi) = V(@ 1)

We write CCE(G) for the set of all CCEs of a POSG G and
NE(G) for the set of Nash equilibria of G.

4. Free-Energy Equilibria

We introduce a generative and preferential model for
POSGs and derive three free-energy-based solution con-
cepts: Coarse Correlated Free-Energy Equilibrium (CCFEE)
and (Logit) Independent Free-Energy Equilibrium (IFEE)
based on a novel free-energy functional of a given policy
profile. We demonstrate their connection to classic game-
theoretic concepts, making assumptions that place the anal-
ysis in the realm of perfect rationality. However, the general
framework does not require agents to have perfect predictive
models or perform exact Bayesian inference.

Free-energy based models of agency generally consist of
two models: an unbiased generative model representing the
agent’s beliefs about the environment’s dynamics, and a
biased preference model encoding the agent’s preferences
as a desired distribution over states or observations. Agents
aim to minimize the divergence between these distributions
through their choice of actions.

Generative Models. Active inference agents, and predic-
tive agents in general, embody a generative model, which
furnishes them with beliefs about the trajectories of a game
and beliefs about other agents with whom they interact.
In general, an agent’s generative model consists of proba-
bilistic beliefs P?(hg.; ; pt) about possible histories of the
system:

t—1
P'(hg.e; m) := Pi(s0) (] | P'(0r|s-) P (sr11ls7,ar)
7=0
- w'(ar|0.) P (a7 |00:r) ) P (04]se).  (3)

(and analogously for correlated p and P?(hy.; ; p)). Given
a history of observations o)., and a policy profile p, an
agent may infer the latent causes of its sensory data by com-



Free-Energy Equilibria: Toward a Theory of Interactions Between Boundedly-Rational Agents

(Approximate)
Prediction model

PY(soz,06:1) Q' (Sor, Obiy; )
\ / 01_} /

min Dx.[Q||P mlnDKL[Q [l p]

! .

Planning Perception

Preference model

/'\l

-
R—~

True dynamics

p(SO:T' oyr;7)

(Approximate)

Prediction model Preference model

Q?(so.r, 0br; ) 132(50:% O(L):T)

‘CLLL
N/

min D, [Q*]] p] min Die, [Q*]|P?]

| !

Perception Planning

Figure 1. High-level summary of our approach. Each agent embodies a predictive generative model of its environment and other agents,
which is approximated by a variational distribution Q. Agents also possess a preference model, which assigns higher probabilities to
more preferable trajectories. Policies are selected to minimize the Kullback-Leibler divergence between the two distributions, formalising
the intuition that agents aim to act in order to minimize the difference between their expectations and their desires.

puting the posterior probability P?(h.|of.; ). However,
even with knowledge of the true generative process, comput-
ing such a posterior exactly is computationally intractable
in general due to the need to evaluate the model evidence
P(0}.,; ), which involves computing a sum over all possi-
ble trajectories that could have given rise to the sequence of
observations. Thus, in practice, this generative model is usu-
ally approximated by optimizing a variational approxima-
tion Q' (hy; p) called a recognition model (Ramstead et al.,
2020) to the true posterior P*(hy|of.,; pt), which is usually
chosen from some tractable family of distributions that ad-
mits a factorisation over states, policies, and observations
as defined above (Da Costa et al., 2020). A common form
of this process is known as variational Bayesian inference,
which aims to approximate the posterior P* by minimising
a functional known as the variational free-energy (VFE) or
the negative evidence lower bound (ELBO) (Beal, 2003;
Blei et al., 2017), which is an upper bound on the surprise,
i.e., the negative log probability of the observed data.

For the purposes of situating our proposed solution concept
in relation to standard game-theoretic equilibria, we will
make the following assumptions® on the predictive models
Q" of agents, which are comprised of a retrospective recog-
nition model and a prospective predictive model (Aumann
& Brandenburger, 1995):

1. Agents have perfect knowledge of the generative pro-

3While these assumptions are unrealistic for boundedly-rational
agents, we emphasize that they are only utilised to identify the
connection between our proposed solution concepts and standard
equilibrium concepts in game theory.

cess and other agents’ policies: Q' (h; p) = p(h; p);

2. The agents’ variational approximations Q° to the true

posterior do indeed minimize their VFE and they can
thus perform exact Bayesian inference: Q* = P* = p.

Preference Models. In information-theoretic bounded
rationality and active inference, preferences are represented
as probability distributions over future trajectories, with
the interpretation that more preferable trajectories are as-
signed higher probability (Ortega et al., 2015; Parr et al.,
2022). This formulation licenses a description of attaining
one’s preferences as acting in order to minimize the dis-
crepancy between an agent’s predictions and preferences
about the unfolding of the system over time, given particular
policies. This allows one to express a wider range of prefer-
ence structures, including risk-aversion, social preferences,
and non-Markovian utility functions over trajectories of the
game (Skalse & Abate, 2023).

We thus adopt the following general functional form for
an agent’s preference model, which is defined as a joint
probability distribution over states, joint observations, and
joint actions:

T
P*(so.1, 00.1) = 1—[ P(s;) . p? (0%]s,) 4)

Notice that in this preference model, the agent adopts an
independent prior over states at each time step, which does
not take into account transition probabilities between indi-
vidual states. This reflects a kind of ‘wishful thinking’, in
which an agent’s preference model solely reflects the de-
sirability of different states at each point in time, without
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Figure 2. Multi-Agent Influence Diagram representing an agent 7’s predictive generative model over several time-steps. Square nodes
represent action distributions determined by each player’s policy 7*, represented by dashed lines.

Figure 3. The Probabilistic Graphical Model that we adopt for
representing an agent ¢’s preference model.

regard for the particular path that the agent takes over time.
Given a POSG with a particular reward function R, we
can convert the agents’ implied preference into a prefer-
ence model over states, as in Equation 4. To do this, we
define a biased prior over states, where for each state s € S,
we have Pi(s) = exp(B'R(s))/Z%(3%), where 3% € R,
is an agent-specific parameter that determines how moti-
vated agent ¢ is to occupy reward-maximising states and
ZH(BY) = Y egexp(BiR(s")) is a normalising constant
for each agent’s preference model. Thus, under the interpre-
tation that an agent assigns a high (biased) prior probability
to states that it prefers, this distribution encodes the intu-
ition that an agent prefers states with higher rewards (for
B% > 0). In addition, we make no particular assumptions
on the form of the preferred observation likelihood function
P¥(0}.|s0.7). Incorporating these assumptions into the
agent’s predictive generative model yields:

T

Pi(SO:Tvong) = 1_[

7=0

exp(B' R’ (sr))

7 - Pi(ois;). (5)

There is a large design space for preference models to ex-
plore. For example, including a biased prior over actions
may be used to encode a basic notion of “habits”, which
bias action towards those that are a priori preferred (Friston
et al., 2016b; Han et al., 2024).

4.1. Sophisticated Divergence Objective

We define the divergence objective for agents associated
with a policy profile p recursively by simply taking the ex-
pectation of the KL divergence from the preference model
to the prediction model with respect to the joint policy. It
can be shown that this is equivalent to minimizing the cross
entropy of the prediction model with respect to the prefer-
ence model, subject to information processing costs (Ortega
etal., 2015).

Definition 4. The Sophisticated Divergence Objective
(SDO) for an agent i in a POSG G given a correlated policy
profile p is defined recursively as:

i N o .
G (OO:TflvlJ’) - EQZ(O&}7175T—1|06;T71§H)7IL(aT—l‘OO:T—l)

D |Q'(s1.0%lsr—1,ar-1) || Pl(st0p)]  (6)
G (00:63 1) = Eqiogt silofinm), madlons)
[DKL [Qi(3t+1a0i+1|3tvat) I ﬁi(5t+1,0i+1)]
+ Eqi(or,,lsn.ar) [Gi((oatmiﬂ);u)]] @)
G'(1) = Dxe| @' (50, 0b) || P*(s0,0b)
+ Eqi(oy) [G (0 )] ®)

We sometimes later refer to this objective as an agent’s
‘free-energy’. This objective is closely related to the Free-
Energy of the Expected Future (Millidge et al., 2021b) and
the Action Perception Divergence objectives (Hafner et al.,
2020), which naturally model the tradeoffs between taking
actions to resolve uncertainty about the world and maximiz-
ing rewards.* Also closely related is the notion of expected

“For a detailed study of such tradeoffs, we refer the reader to
the expositions in (Millidge et al., 2021a;b).
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free-energy (Barp et al., 2022; Da Costa et al., 2024), which
can also be represented in our framework using a suitably
defined preference model.

4.2. Free-Energy Equilibrium

Given this model of objectives, we are now in a position to
propose a free-energy-based solution concept for boundedly-
rational agents.

Definition 5. A correlated policy profile p is a Coarse
Correlated Free-Energy Equilibrium (CCFEE) in a POSG
G if for all 7% € 1%, it holds that

G'(p) < G (7", u ™).

An independent policy profile  is called an Independent
Free-Energy Equilibrium (IFEE) if it satisfies the analo-
gous condition (with w in place of p). We let CCFEE(G),
resp. IFEE(G), denote the set of all CCFEEs, resp IFEEs,
of G. The equilibria are said to be strict if the inequality
above is strict.

Since every independent policy profile w can be repre-
sented as a correlated policy profile, we immediately obtain
IFEE(G) < CCFEE(G).

Forany 3 = (B',...,3") € R, every POSG G has a Free-
Energy Equilibrium. On the other hand, the uniqueness of
CCEEE and IFEE is not guaranteed in general, as with
many solution concepts. An example demonstrating this
non-uniqueness is provided in Appendix B.

4.3. Connections to Existing Solution Concepts

Here, we establish the relationship between the instantia-
tions of the family of free-energy equilibria proposed above
to existing solution concepts in the game theory literature.
We begin by formally showing how CCFEE and IFEE relate
to Coarse Correlated and Nash equilibria in POSGs, and
then briefly discuss Quantal Response Equilibrium.

Theorem 6. For a commonly known POSG G, we have
CCFEE(G) < CCE(G) for sufficiently large 3, i € N.

Note that since the sets of pure/mixed equilibria are con-
tained within the set of CCEs, it is straightforward to restrict
the class of strategies permitted and obtain similar corre-
spondences between modified versions of the CCFEE and
the other well-known solution concepts mentioned above.

Corollary 7. For a commonly known POSG G, we have
IFEE(G) < NE(G) for sufficiently large 3%, i € N.

Moving to models of bounded rationality in games, the
Quantal Response Equilibrium (QRE) is a well-known so-
lution concept (McKelvey & Palfrey, 1995; 1998). We
focus here on the case of independent policies for simplicity,
because a proper treatment of quantal correlation would

require the introduction of a mediator sampling signals to
coordinate the agents (Cerny et al., 2022).

Definition 8. A Logit Independent Free-Energy Equilib-
rium (LIFEE) is an independent joint policy m such that for
allie N,teT,o}, € O, al € A%, we have

exp(=G*((06.1,a); )
Zai'GAi eXP(_Gi((OB:tv ai/); ﬂ-)) ’

©))

7 (a}loby) =

where G*((0}.;, al); ) is obtained by conditioning the ex-

pectations in G*((0}.,; ) on a}. We show that in the limit
as 3 — oo for each agent, this solution concept tends to-
wards Nash equilibrium as in Theorem 6°. However, in the
case of finite 3%’s, our model is not equivalent to the stan-
dard quantal response framework in general. It would thus
be useful to compare the empirical predictions of human
choice behaviour under our model with existing approaches
in the literature.

S. Applications to Cooperation and Al
Alignment

Studying cooperation and conflict among participants is
crucial for modelling multi-agent systems, both for analysis
and for promoting desired outcomes. We propose that free-
energy-based models provide a promising framework for
studying cooperation and conflict among boundedly-rational
players with incomplete information. Unlike game theory
and mechanism design, which primarily focus on outcomes
by analyzing games in terms of expected utility, the free-
energy framework can capture how a more rational player’s
ability to make precise predictions and inferences about their
environment affects their utility, even when the additional
utility gained is minimal.

Joint Free-Energy. We introduce the notion of the
joint free-energy to study cooperation and conflict among
boundedly-rational agents. The joint free-energy of a pol-
icy profile G* () is defined as the sum of individual free-
energies under that policy: G¥(p) = Y, G*(p). A policy
profile that minimizes G is called a joint free-energy mini-
mizing policy, denoted as u* € arg min G= ().

G*(p) is one way of quantifying the total amount of pre-
diction error or surprisal (Schwartenbeck et al., 2013) (in
the sense of a mismatch between beliefs and desires) experi-
enced by all agents collectively under the policy profile .
Minimizing the joint free-energy can thus be seen as a way
for agents to coordinate their behaviour to achieve the best
joint outcome, taking into account their beliefs, preferences,
and cognitive limitations. In this sense, joint free-energy
minimization provides a bounded rationality analogue of
utilitarian social welfare maximization.

>The full result is presented in Appendix A.
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Figure 4. Nllustration of individual vs joint free-energy minimization: A full-information scenario with two thermostats in one room, both
with equal maximal heating and cooling power, each preferring to use less power themselves. However, they have different preferences for
the room temperature (18°C and 22°C). The contour plots show the free-energy corresponding to each state (temperature, power used) of
the two thermostats individually (1st and 2nd plots), and their joint free energy (3rd plot). The plotted free energy is the free energy of a
policy that would maintain that state. (Note that plotting the space of policies is not feasible due to their complexity.) Darker colours
indicate higher free-energy. Assuming a starting temperature of 20°C, selfish play stabilizes at s* with both players actively opposing
each other with maximal power, while the joint free-energy minimizing policy stabilizes at s, using no energy at the same temperature.

By definition, the joint free-energy of any Free-Energy Equi-
librium (FEE) G*(p) is at least G* (). This means that
if agents could coordinate effectively and share their free
energy, they may prefer to play u> over p. Indeed, these
conditions have been identified as potentially crucial mech-
anisms for implementing collective agency in biological
organisms (McMillen & Levin, 2024; Shreesha & Levin,
2024). See Figure 4 for an example. Studying the gap
between individual free-energy minimization (as in FEE)
and joint free-energy minimization thus provides a new way
to quantify and understand possible tensions between in-
dividual and collective rationality in multi-agent settings.
This gap, which is analogous to the price of anarchy (Kout-
soupias & Papadimitriou, 1999) may serve as one proxy
for the degree to which a group of agents may be thought
of as a collective agent. Additionally, the distribution of
free-energies in equilibrium may be used to understand the
fairness implications of diverse ‘rationality parameters’ /3°
among agents.

Applications to AI Alignment. The question of how to
align advanced Al systems with humans is a critical open
problem in Al. Whilst not resolving the ethical dimensions
of this problem, the Free-Energy Equilibrium framework
provides a structure which can be used to articulate align-
ment objectives more precisely. As the relative cognitive
capabilities of Al systems to humans increases over time, ac-
curately modelling bounded rationality will become increas-
ingly vital to understanding and shaping the evolving dy-
namics of human-Al interactions. Current approaches like
Reinforcement Learning from Human Feedback (RLHF)

(Christiano et al., 2017) assume that human feedback mean-
ingfully reflects long-term preferences, but this assump-
tion may break down as the cognitive gap narrows. As Al
advances, this assumption may lead to unintended conse-
quences, such as the promotion of highly-rated policies by
humans lacking a view of their broader impacts. Models
that faithfully account for these cognitive limitations may
help us to identify novel undesirable scenarios that arise
specifically from this feature of the agents.

Assistance Games in the Context of Free-Energy. To
conclude this discussion, we translate the ‘Cooperative In-
verse Reinforcement Learning game’ (CIRL) (Hadfield-
Menell et al., 2016) to the free-energy framework as an
example of extending Al alignment research with our model
of bounded rationality. CIRL studies a setting where a
powerful Al assists a human while initially being uncertain
about the human’s goals.

Formally, an assistance game G is any fully-cooperative
partially observable stochastic (POSG) game with two play-
ers: an Assistant A and a Human H, where the reward
function R = R4 = R(-|6) depends on a hidden param-
eter 6 € ©, drawn from a prior P, at the start of the game,
with the value of 6 revealed to H but not to A. Players do
not observe a reward signal to avoid leaking information
about 6, and the players’ strategies are generally restricted
to independent (uncorrelated) policies.

While this is not an explicit part of R( - | §), it is often crucial
for the Assistant to infer as much as possible about 6. It is
thus beneficial for both players to steer the game in a way
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that provides the Assistant with useful information about 6.

In the context of free-energy-minimizing agents, the fol-
lowing additional features can be modelled: (i) each of
the agents is not just boundedly-rational with parameters
BH and B4, but also aware of the bounded nature of the
other player; (ii) the boundedness of each agent (3%) may
be common knowledge, or it may be sampled privately at
the beginning of the game, and the players need to infer it;
(iii1) agents form (implicit or explicit) posterior estimates of
the hidden state at any moment, including 6; and (iv) agents
are also motivated by information-seeking (Schwartenbeck
et al., 2013; Friston et al., 2015b), in particular focusing on
information that helps them predict their reward, which is
well-aligned with the motivation of the assistance game.

While the assistance game is a good example in part due to
its simplicity and generality, it may rather serve as a starting
point for further research into various alignment objectives,
particularly those including multi-principal/multi-agent set-
tings (Sourbut et al., 2024) and symbiotic or empathetic
relationships between agents (Albarracin et al., 2024b).

6. Conclusion

This paper proposes a model of multiple boundedly-rational
agents interacting in partially observable environments, in-
spired by the active inference and action-perception diver-
gence frameworks. We introduce the Sophisticated Di-
vergence Objective and three free-energy-based solution
concepts: Coarse Correlated Free-Energy Equilibrium and
(Logit) Independent Free-Energy Equilibrium. We establish
relationships between these solution concepts and classi-
cal game-theoretic notions in the limit of perfectly rational
agents, prove the existence and non-uniqueness of Free-
Energy Equilibria, and discuss their potential generaliza-
tions. In addition we propose the concept of joint free-
energy minimization as a framework for studying cooper-
ation, conflict, and alignment in multi-agent systems. We
then discuss the relevance of our framework to Al align-
ment and demonstrate it by translating the CIRL game to
the free-energy setting. This highlights the potential of our
model to provide insights into the dynamics of human-Al
interactions and address key challenges in Al alignment.

Future research includes investigating the relationship be-
tween FEE and other solution concepts (McKelvey & Pal-
frey, 1995; Harsanyi, 1967), further studying cooperation
and conflict through the lens of joint free-energy, applying
FEE to model stated vs. revealed collective preferences, ex-
tending learning theory and algorithms to multi-agent free-
energy-minimizing systems (Friston et al., 2016a; 2023c;
Sajid et al., 2022), incorporating Predictive Game Theory
to model an external observer’s predictions about the sys-
tem (Wolpert, 2005), quantifying and analyzing collective

behavior (Levin, 2019; 2021; 2023; McMillen & Levin,
2024), and studying more realistic formal models of Al
alignment.
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A. Appendix
Theorem 6. For a commonly known POSG G, we have CCFEE(G) < CCE(G) for sufficiently large 3, i € N.

Proof. The proof goes along the same lines as that of Theorem 16 in (Da Costa et al., 2023). Suppose that pt is a CCFEE.
Then, for all ¢ € N and alternative policies 7t e IT%, we have

lim argmin G*((7%, u™"))
Bt—0  gielri
T-1 . 4 - 4
= lim argmin Y Egi(o,, s, a, Sr_1,8r_1,00,5(7,pu—1)) [DKL [Ql(57+1,03+1|57,a7) I P1(87+1,03+1)H

Bi—0  giemi 1T
T-1 ] )
= hm argmin Z ]EQi(oo:.,.,s.,.,a.,.\sr_l,aT_l,of‘)”_;(ﬁ'i,ufi)) [_H [QZ<ST+laO}r+1|STaa‘r)]

B*—w0 wrellt =0

= EQi(s 11,0t 15r0a0) [bg Pi(87+1,01+1)“
T—1
= lim argmin Z EQi (00.r5rsar 71,871,005 1) [-H [Qi(sf+1’02'+l|sﬂaf)]
Bi—0  giemi
— EQi(er 1ty o) [108 P (5r41) +Tog P(0 1 l5r41) |
T-1
= lim argmin Z EQi(oo;T,sT,aT\sT,l,aT,l,ong;(ﬁ'i,u—i)) [_H [Qi(sr+1voj—+1|57aaT)]
Bi—0  giemi T
Qi rt plaran) | ~B R (5r41) +10g(Z7(8)) — log (b [s741)] |
T-1
= lim argmax > EBgi(oq,, s, a, s _1ar 1,063t [H [@ (5741, 0041 ]57,a7)]
Bi—w  giemi T
+ EQierat ) | B R (5r41) = log(Z1(81) + og P (0} 4 [5r41) |
T—-1
c lim argmax ) Egi(o,. o0 arfs,1ar_1.0f, (7)) [EQi(sT+1,oi+1\sT,af> [B' R (s7+1) — log(Zi(ﬁi))]]

Bt—0  siglTi —0

T-1
= . . ) ) ) i _ ) —1
- arg maX 2 ]EQl(OU:T,sTVaT,ST+170;’_+1|ST,1,a7.717070:7_;(7?’7;1,*7')) [R (ST+1)] - arg max V (ﬂ— b )’
wrell* g wtell®

The first equality follows by unrolling the recursion in the definition of the SDO and noticing that the first KL divergence is
not affected by the joint policy. The fourth equality follows from substituting the preference prior over states as defined in
Equation 4. The set inclusion follows from the observation that the expected reward term dominates the entropy terms as
B% — oo and the sixth equality follows from the fact that Z¢(3*) is independent of the chosen policy. The final equality
follows from the assumption that the agents know the true transition probability function p of the game and are thus
accurately able to estimate states, joint observations, joint actions, and rewards, given a joint policy. O

Quantal Response Equilibrium. The Quantal Response Equilibrium (QRE) is a solution concept developed to model
boundedly-rational agents, where the assumption is made that the payoffs/reward functions are observed by agents as
independent noisy samples from a probability distribution, rather than their true values (McKelvey & Palfrey, 1995; 1998).
We focus here on the case of independent policies for simplicity, because a proper treatment of quantal correlation would
require the explicit introduction of a mediator sampling signals upon which the agents would condition their actions (Cerny
etal., 2022).

Theorem 7. For a commonly known POSG G, we have LIFEE(G) < NE(G) as 3¢ — oo for all i € N and for some
e> 0.

Proof. We begin by recalling the rollout of the negative SDO given an observation trajectory and an action for an agent
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i€ N:
. . . T_l . .
_Gl((o(z):t? (1;), 7T) = Z EQi(OU;T,ST,aT‘87-71,8-,—71,06:7,0,%;#) [H [Ql (ST+17 0:——}—1 ‘8T7 aT)]
T=t

 BQiar 1.0t feran) | B R (5r41) = 10g(Z1(8")) + log P'(ok 4 [sr41) ||

s 1lsTs
. . . . T_l . .
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T_1 ) . -
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exp(—=G'((0f., at); 7))
Yarear Xp(=G((0f,a”); )
_ exp(BV* (04, ap); m) — (T = ) Z'(8") + Her—1(a}))
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In general, such a policy does not map neatly onto a LQRE unless further assumptions about the environment are made,
such as a uniform transition probability function with respect to actions or even a deterministic transition function. However,
taking the limit as B — o0, the value function term dominates, and the Boltzmann distribution concentrates around value
function maximizing actions. Thus, letting 3° — o for all i € N, we observe that every player’s policy maximises their
value function at the beginning of the game in any LIFEE 7, so any such joint policy is by definition a Nash equilibrium of
g. O

' (aglop.,) =

B. Properties of Free-Energy Equilibrium

Proposition 8. Forall 3 = (B*,...,3") € R", every commonly known POSG G with perfect recall has a Free-Energy
Equilibrium.

Proof. We will show the existence of an independent FEE by transforming the given game G into a modified POSG G
whose rewards map directly onto reductions in expected free energy. The existence of a Nash Equilibrium (NE) in Gz, which
is guaranteed in any finite-horizon POSG with perfect recall (Kuhn, 1953; Nash Jr, 1950) is thus a witness to the existence
of an independent FEE in G, and moreover, an independent FEE can be extracted from any such NE in the transformed
game. The construction of Gy proceeds as follows. For each s,a,s" € S x A x S, we add a new state ¢ sas’ o the game

such that R'(¢*2%') = H[Q(s",0"|s,a)] + B R!(s') — log(Z' (")) + Eqi(s7.0/i]s,a) [log ﬁi(o/i|s”)] foralli e N. In

addition to this, we let Rli(s) = (0 for all s € S, so that all rewards are obtained in the new states. Then, we modify the
transition function p so that p(s,a, (5®%) = p(s,a,s') forall s,a,s' € S x A x S and p(¢>** a’,¢") = 1if " =
and is 0 otherwise. To ensure that no additional information is leaked to the players in the course of introducing these
new states, we let the observation function for the new states be given by O (¢S5 a)(o%) = O'(s’,a)(o") for all o € Q.
Additionally, we add an additional null observation of; to each observation set Q* and let O°(s’,a)(w’) = 1if w’ = o} and
is 0 otherwise, forallz € N and a € A.

Under this construction, suppose that the state of the game is s at some point in time, and the agents select the joint
action a. Then, the new game Gy simulates a sample from the transition function s’ ~ p(s,a) but instead transitions
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to the intermediate state ( a5’ in which each agent ¢ € N receives a reward equal to the terms in the sophisticated
divergence objective H[Q'(s”,0"]s,a)] + B'Ri(s") — log(Z*(8")) + Eqi(s7.0/i]s,a) [log pi(oli|5”)]. Additionally, the
agents’ observations o’ are sampled according to the same distribution O?(s’,a) that would have been sampled from,
had the game transitioned into the state s’. Crucially, the new reward from the state ¢ 5" is not included in any of the
observations o’ except potentially information about the original reward R;(s’) that was already included in the observation
function. This ensures that the agents have no additional information which would not have been available to them
otherwise. After this, the game transitions to the previously sampled state s’ deterministically, regardless of the joint action
chosen. It is clear that under this transformation, the expected reward of an agent ¢ € N after two timesteps under (s, a)

is Ep(s/[s.a) [H[Qi(s’/7 0'ls,a)] + BR(s') — log(Z'(B")) + EQi(s7.o/i|5,2) [log Pi(oli|s”)]], which is precisely equal to
the KL divergence objective Dgy. [Qi(s’, 0'ils,a) || Pi(s, o/i)]

Thus, given a NE 7 in Gz, we can obtain an independent FEE 7 in G by simply taking (s, a’) = #%(s,a’) foralli € N,
seS,and a’ € A°. O

B.1. Special Cases

Before concluding, we briefly discuss some further connections to special cases of the general framework presented here
that are commonly studied in the game theory literature. In all of the special cases we study below, decision-making under
the sophisticated divergence objective is equivalent to reward maximisation, which is widely adopted as the standard of
rationality in these scenarios. This highlights the importance of combining three essential features of the POMDP/POSG
model in studying divergence minimisation objectives: temporally-extended decision-making, stochastic environmental
dynamics, and partial-observability.

B.1.1. ONE-SHOT GAMES

In normal-form or one-shot games, the situation is much simpler. Such games can be embedded in a MG with a deterministic
initial state with reward 0. Each joint action a deterministically leads to a state s® where the rewards are assigned according
to the payoff matrix of the normal-form game. Let p be the policy profile and let the beliefs @Q? trivially reflect common
knowledge of this simple embedding. Then, we have the following:

G'(1) = Epaiso) [ Dxt [Q'(s1150.2) || P(s1)]] (10)
= —Epu(also)Qi (s faso) [~B R (s1) + log(Z'(8))] (11)

Since Z%(/3) is a constant with respect to the policy, we observe the following:

Proposition 9. For any fixed 3 = (B1,...,8"), where each 0 < 3% < 0, there is a one-to-one correspondence between
CCFEE:s in normal-form games and CCEs in the same game. The same relationship holds true between IFEEs and NEs.

B.1.2. DETERMINISTIC GAMES

Next, we can examine the role that probabilistic transitions play in the objective studied here. This can be achieved by
considering deterministic POSGs, in which the state transition probability function is deterministic, i.e., p(s’|s,a) € {0, 1}
forall s,a, s’ € S x A x S. Following the same line of reasoning as in Theorem 6, we again obtain convergence of FEE in
deterministic POSGs to NE:

Proposition 10. For a commonly known deterministic POSG G, we have CCFEE(G) < CCE(G) and IFEE(G) < NE(G)
for sufficiently large 3, i € N.

B.1.3. FULLY OBSERVABLE GAMES

Due to the computational difficulty of multi-agent learning in the fully general framework of POSGs, much of the MARL
literature focuses on either fully observable games, known as Markov (or Stochastic) Games (MGs), or POSGs where all
agents are assumed to have a common reward function, known as Decentralised-POMDPs (Dec-POMDPs) (Albrecht et al.,
2024). In the fully observed setting, the actions of all agents are observed by every agent, as well as the true state of the
game. This can be encoded in our setting by letting Q' = S x A for all i € N, and setting O (o¢|s¢,a;_1) = 6((s¢,a:-1)),
where ¢ is the Dirac delta distribution which assigns a probability of 1 to the observation o; that corresponds to the true
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current state and previous joint action profile that was played, and assigns a probability of O to all other observations.

Written in this way, it becomes clear that the entropy terms over the observation likelihood function in the SDO vanish,
because it is a deterministic function. However, the entropy terms over the transition probability function remain in the
objective, so agents with finite inverse temperature parameters still retain the desire to ‘keep options open’, as a result of
being biased towards actions that lead to a higher path entropy.

In this setting, a history may now be written as a sequence h,., = s;,a,, ...s;. Moreover, an agent 7’s policy becomes a
mapping m; : Ule St — A(A?) from state trajectories to distributions over actions. Thus, an agent i’s predictive model
simplifies to the following form:

Q'(ho.e; ™) = Q (Hw Plsor) - Q' T”ISO:»-Qi(sTHsﬂaT)). (12)

Likewise, an agent ¢’s preference model that captures state rewards can be encoded by the following:

T . .
. exp(87 Ri(s,))
P'(so.7) = —_— (13)
o) = 11 =75
Following the same approach as before, the SDO in this case is given in its unravelled form by:
Gi(u) = DxvL [QI(S()) || 151(80)] + EQi(So) [Gi(SO;u)] (14)
T—1 _ -
= o+ 3 Eqi(oratonr s | Dkt [Q(sralsroar) | Pilsra)||. (1s)
=0

Using this, we obtain an analogous result to Theorem 6:

Proposition 11. For a commonly known Markov Game G, we have CCFEE(G) < CCE(G) and IFEE(G) < NE(G) for
sufficiently large 3%, i € N.

Proof. Following the same line of reasoning from Theorem 6, suppose that g is a CCFEE. Then, for all ¢ € [N and alternative
policies 7t e TI%, we have
lim argmin G*((7%, u™"))
Bi—0  siglTi
T—1 , .
= lim argmin Z EQi (s, ar 501,80 —13(7 1)) [DKL [Qz(37+1|577a7) I PZ(STH)H

ﬂ74)00 miellt =0
T—1 . .
= lim arg min Z EQ H(sr,ar|soir—1,ar—1;(F%,u"%)) [ H [Qz(87+1|sraa‘r>] - EQi(sTJrl\s,-,aT) [IOg PZ(STJrl)]]

ﬂ7—>OO miellt =0
T-1 '
= lim argmin Z EQi(s, ar|s0m—1,ar— 1,(7777“_1))[ H|[Q'(sr41]57,a7)]
ﬂ7—>OO miellt =0
+ EQi(s, 415, a,) [0 R (sr41) + log(Z*(8Y))]]
T-1
= hm argmax Z ]EQ i(sr,8r|S0ir—1,ar_1;(R1,m—1)) [H [QZ(ST+1|ST,37—)]
B*—w0 wiellt =0
+ EQi(s,1lsr.a) [B'R (sr41) —log(Z'(8))]]
T-1
C lim argmax Z EQi(s,,ar 501,80 _15(#,=%)) [EQ (Sr41]$7,a7) [5 R'(sr41) — 105(21(51))]]

Bt—0  siglTi —0

T-—1
i _ 1Al —1
— argmnax Y Equ(er o afon v si(rge )[R (r41)] = arg max V3(#, )
leH‘l = 0 frlen‘l,

thus obtaining the result. It is straightforward to see that this reasoning also applies to establish the relationship between the
IFEEs and NEs of a game. O
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Figure 5. Markov Game illustrating non-uniqueness of the CCFEE and its distinctness from CCEs.

Example 12. Consider a fully-observable POSG G (commonly known as a Markov or Stochastic Game) with agents
N = {1,2}, states S = {so, 51, 82}, action sets Ac' = {a,b} for all i € N, transition probability function P and
deterministic initial state as illustrated in Figure 5, reward function given by R'(sg) = R'(s3) = 1 and R'(s1) = 2 for all
i € N, and time horizonT' = 1. Full observability means that at each state of the game, all agents know the state of the
game and the joint action profile that was previously played.

Suppose that in the multi-agent active inference setting, we additionally let 3* = 1 for all i € N and ]-:’i(oli|5) = Qi(0/i|s).
Given this simple setting, we can directly compute the EFE associated with each action at the beginning of the game as
follows:

Gi(d]so) = G*(d]so) =0+1-2—1log(e- (e +2)) + 0 =2—log(e- (e + 2))
G'(blso) = G*(@sg) =1-1+1 —log(e- (e +2)) +0=2—log(e- (e+2)),

Here, we see that the sophisticated divergence objective associated with all joint actions is the same for all agents. Hence,
any joint policy in this setting is an IFEE. This illustrates the fact that IFEEs are not necessarily unique.

This example also illustrates the distinctness of the IFEE from the Nash equilibrium solution concept. Observe that from the
reward maximisation perspective, only those joint policies that assign zero probability to both b and ¢ are Nash equilibria.
From this, we see that for low enough (3*’s, not all IFEEs are Nash equilibria.
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