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Abstract

Causal inference from observational data has attracted considerable attention among1

researchers. One main obstacle is the handling of confounders. As direct mea-2

surement of confounders may not be feasible, recent methods seek to address the3

confounding bias via proxy variables, i.e., covariates postulated to be conducive to4

the inference of latent confounders. However, the selected proxies may scramble5

both confounders and post-treatment variables in practice, which risks biasing the6

estimation by controlling for variables affected by the treatment. In this paper, we7

systematically investigate the bias due to latent post-treatment variables, i.e., latent8

post-treatment bias, in causal effect estimation. Specifically, we first derive the9

bias when selected proxies scramble both confounders and post-treatment variables,10

which we demonstrate can be arbitrarily bad. We then propose a novel Confounder-11

identifiable VAE (CiVAE) to address the bias. Based on a mild assumption that the12

prior of latent variables that generate the proxy belongs to a general exponential13

family with at least one invertible sufficient statistic in the factorized part, CiVAE14

individually identifies latent confounders and latent post-treatment variables up15

to bijective transformations. We then prove that with individual identification,16

the intractable disentanglement problem of latent confounders and post-treatment17

variables can be transformed into a tractable independence test problem. Finally,18

we prove that the true causal effects can be unbiasedly estimated with transformed19

confounders inferred by CiVAE. Experiments on both simulated and real-world20

datasets demonstrate significantly improved robustness of CiVAE.21

1 Introduction22

Causal inference, which aims to infer cause-and-effect relations from data, has gained increasing23

prominence in various fields, such as social science, economics, and public health [10, 17, 34].24

Traditional methods rely on the golden standard of randomized control trials (RCT) to draw valid25

causal conclusions via experimentation [6]. Recently, more attention has been dedicated to causal26

inference from observational data, where treatments, outcomes, and unit features are passively27

observed, and researchers have no control over the treatment assignment mechanism [36, 37, 40].28

One main obstacle to inferring valid causal relations from observational data is the confounding29

bias, which occurs when we fail to account for the systematic difference between the treatment and30

non-treatment group due to variables that causally influence the past treatments and the outcome, i.e.,31

unobserved confounders [16]. If the confounders can be measured, a simple strategy to address the32

bias is to control them via covariate adjustment [33] or propensity score re-weighting [24]. However,33

confounders are not always measurable [23]. Therefore, recent methods seek to adjust for the34

influence of unobserved confounders based on their proxies, which are easily acquirable covariates35

postulated to be causally related with the unobserved confounders [29, 42, 28]. One exemplar work36
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Figure 1: Comparison between the causal models assumed by CEVAE, TEDVAE, and CiVAE.

is the causal effect variational auto-encoder (CEVAE) [25], which has demonstrated that confounding37

bias can be mitigated by controlling latent variables inferred from the proxies of confounders.38

Although proxy-based methods have achieved substantial progress in recent years, they may risk39

controlling latent post-treatment variables scrambled in the proxies, where latent post-treatment40

bias can be introduced. Here, we note that the negative effects of controlling observed post-treatment41

variables have been investigated in prior research [1, 9, 21]. For example, Montgomery et al. [30]42

found that more than 50% of the papers published in top journals of politics inadvertently control43

post-treatment variables in the experimental setting, even though researchers have complete control44

over which covariates to control for. On this basis, we postulate that the post-treatment bias could45

be even worse for proxy-based methods in the setting of observational study where variables are46

passively recorded. In addition, the post-treatment variables can be latent and scrambled into the47

observed covariates together with the latent confounders, which makes them difficult to disentangle.48

Consider a real-world example from the Company1. We found that changing a job from onsite to49

online mode causes applicants to make different decisions, and we want to estimate the causal effects50

of switching a job from onsite to online mode to the decisions of the applicants (reflected by statistics51

of applicants that apply for the job). In this case, the Company collected two groups of online (treated)52

and onsite (control) jobs, where the statistics of the applicants (e.g., the average age) are calculated as53

the surrogate outcome. Clearly, job seniority is a confounder, since less senior jobs are more likely to54

permit online work, and applicants for these jobs tend to be younger. However, the seniority level of55

a job can be difficult to measure. Therefore, the required skills of the job can be used as the proxy of56

the confounder "seniority", as senior jobs tend to require more advanced skills. However, a caveat is57

that switching to an online work mode may also alter the required skills of a job, thereby affecting the58

qualification and, therefore, the decision of the applicants. Consequently, directly using the skills as59

the proxy of the confounder "seniority" for adjustment could unintentionally control latent mediators60

(changed skills), which introduces latent post-treatment bias in the causal effect estimation.61

Addressing the latent post-treatment bias faces multi-faceted challenges. First, there lacks a62

theoretical formulation of the bias when selected proxies scramble latent post-treatment variables63

for existing proxy-based methods. In addition, it is difficult to distinguish confounders and post-64

treatment variables in the latent space due to their similar observed behaviors. Existing covariate65

disentanglement-based methods, e.g., TEDVAE [44], focus on an easier task of disentangling latent66

confounders with latent adjusters and instrumental variables, which can be achieved by leveraging67

their different predictive abilities w.r.t. the treatment and outcome. However, since both latent68

confounders and post-treatment variables correlate with the treatment and the outcome, they cannot69

be disentangled by these methods. Finally, even if latent confounders can be distinguished from post-70

treatment variables, since most existing latent variable models have no identifiability guarantee [19],71

it is unclear whether controlling the inferred latent variables, which may be arbitrary transformations72

of the true confounders, can provide unbiased estimations of true causal effects.73

To address the aforementioned challenges, we first analyze existing proxy-based methods when se-74

lected proxies scramble both latent confounders and post-treatment variables and show the estimation75

can be arbitrarily biased. We then propose a novel Confounder-identifiable VAE (CiVAE) to address76

the latent post-treatment bias. Specifically, we prove that based on a mild assumption that the prior77

of latent variables that generate the observed proxy (i.e., the latent confounders and post-treatment78

variables) belong to a general exponential family with at least one invertible sufficient statistic in the79

factorized part, latent confounders and latent post-treatment variables can be individually identified up80

to simple bijective transformations. With such identifiability guarantee, based on the causal relations81

among confounders, mediators, and treatment, we further demonstrate that the inferred confounders82

1Anonymized due to double-blind review policy.
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(which are actually transformed proxies of the true confounders) could be properly distinguished83

from the latent post-treatment variables with pair-wise conditional independence tests. Finally, we84

prove that the true causal effects can be unbiasedly estimated based on transformed confounders85

inferred by CiVAE. Experiments on both simulated and real-world datasets demonstrate that CiVAE86

shows more robustness to latent post-treatment bias than existing methods.87

2 Problem Formulation88

In this paper, we assume the causal model in Fig. 1-(c). We use a binary random variable T to89

denote the treatment, a random vector X ∈ RKX to denote the observed covariates (i.e., the proxy),90

and a random scalar Y ∈ R to denote the outcome. Furthermore, the observed covariates X are91

assumed to be generated from KC independent latent confounders C ≜ [C1, C2..., CKC
] causally92

influencing both T and Y , and KM latent post-treatment variables M ≜ [M1,M2...,MKM
] under93

the causal influence of the treatment (where the relation between M and Y can be arbitrary). We use94

the random vector Z ≜ [C||M ] ∈ RKZ=KC+KM to denote all latent factors. Our aim is to estimate95

the average causal effects of treatment T on outcome Y with auxiliary confounder information in X ,96

where the estimation should be devoid of both confounding bias and post-treatment bias.97

3 Theoretical Analysis of Latent Post-Treatment Bias98

3.1 Preliminaries and Assumptions99

To achieve such a purpose, we first define the (conditional) average treatment effects (C/ATE) when100

covariates X scramble both latent confounders C and post-treatment variables M . We then define101

the post-treatment bias when covariates X are directly used as the proxy of confounders. To facilitate102

the analysis, we make the following assumption regarding the causal generative process.103

Assumption 1. (Noisy-Injectivity). We assume X = f(C,M) + ϵ, where f is a deterministic104

function that combines latent confounders C and latent post-treatment variables M into observations105

X , and ϵ is random noise. In addition, we assume that the function f is injective; beyond injectivity,106

f can be arbitrarily nonlinear. We use f† : X → [C||M ] to denote its left inverse. We use107

f†
C : X → C and f†

M : X →M to denote the mapping from X to C, M , respectively.108

Noisy-Injectivity is a common assumption made either explicitly or implicitly in most existing proxy-109

of-confounder-based causal inference algorithms. For example, if both X and C are categorical,110

[31] assumes that X has at least the same number of categories as C, whereas the effect restoration111

algorithm [35] assumes that the matrix of p(C,X) to be full-rank. Although CEVAE [25] makes no112

explicit injectivity assumption between C and X , it requires that the joint distribution p(C,X, T, Y )113

can be fully recovered from the observations (X, T, Y ). [2] show that some of the possible identifica-114

tion criteria for the recovery include 1) having multiple independent views of C in X [8], and 2) C115

is categorical and X is a mixture of Gaussian components determined by C (that is, X is generated116

by bijective mapping of C to the mean of the corresponding component with added Gaussian noise).117

In the following part of this section, we omit the noise ϵ to gain better intuition of latent post-treatment118

bias (but all the exact conclusions will still hold in the posterior sense [19]). In Section 4, we assume119

noise exists and demonstrate that our method can still properly identify the latent confounders.120

3.2 Causal Estimand and the True ATE121

Based on Assumption 1, we are ready to define the estimand of average treatment effect (ATE)122

through controlling the covariates X ′, as well the as the true (conditional) average treatment effects.123

Definition 1. (DCEV & DEV). We define the Difference in Conditional Expected Values (DCEV) as:124

DCEV (x′) = E[Y |T = 1,X ′ = x′]− E[Y |T = 0,X ′ = x′], (1)

which is the difference of the expected value of Y for units with variable X ′ = x′ in the treatment125

group and the non-treatment group. Based on DCEV (x′), we define the Difference in Expected126

Value (DEV) as DEV (X ′) = Ep(X′)[DCEV (X ′)] as the expectation of DCEV w.r.t. p(X ′).127
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DEV (X ′) denotes the estimand of ATE when X ′ is the covariates that we choose to control (i.e.,128

calculate the expected difference in each stratum of X ′ = x′). If X ′ = ∅, DEV (∅) represents129

the naive estimator that directly calculates the expected difference of the outcome Y between the130

treatment group and the non-treatment group. With the causal estimand DEV (X ′) defined, we then131

derive the true causal effects with the covariates X ′ when it scrambles both latent confounders and132

post-treatment variables according to the generative process described in Assumption 1:133

Definition 2. Under Assumption 1, we define the Conditional Average Treatment Effect (CATE) for134

individuals with observed covariates X = x by controlling only the confounder part in X as:135

CATE(x) = E[Y |T = 1,C = f†
C(x)]− E[Y |T = 0,C = f†

C(x)], (2)

with the Average Treatment Effect (ATE) of treatment T defined as:136

ATE = E[Y |do(T = 1)]− E[Y |do(T = 0)] = Ep(C)[E[Y |T = 1,C]− E[Y |T = 0,C]]. (3)

Please note that we only consider the latent confounder component of the observed features X in the137

definition of CATE in Eq. (2). This is because the causal relationship between the post-treatment138

variables M and the outcome Y is indeterminate. However, if the specific relationship between M139

and Y can be further established by the researcher (e.g., all elements of M are latent mediators),140

more precise forms of CATE can be derived with path-specific counterfactual analysis [5, 14].141

3.3 Latent Post-Treatment Bias142

With DEV (X ′) (the ATE estimator that control for the covariates X ′), CATE, and ATE defined in143

Section 3.2, in this section, we analyze the latent post-treatment bias of existing proxy-of-confounder-144

based causal inference methods, such as CEVAE, that control for latent variables inferred from145

the covariates X to estimate the ATE of T on Y , when X scrambles both latent confounders and146

post-treatment variables as Assumption 1. In our analysis, Lemma 3.1 will be frequently used.147

Lemma 3.1. For an injective function g, E[Y |X ′ = x′] = E[Y |g(X ′) = g(x′)] holds.148

The proof when g is differentiable a.e. can be referred to in Appendix C.1. Since the latent variable149

models used in existing methods (such as VAE with factorized Gaussian prior in CEVAE) lack150

identifiability guarantee (i.e., the recovery of the exact latent variables), we assume that these models151

can recover the true latent space Z = [C,M ] up to invertible transformations f̄ , where the inference152

process can be represented as Ẑ = f̃(X) = f̄ ◦ f†(X). With such an assumption, we have the153

following theorem regarding the latent post-treatment bias when X mixes post-treatment variables.154

Theorem 3.2. If the observed covariates X are generated from latent confounders C and latent155

post-treatment variables M according to Assumption 1, the latent post-treatment bias of a proxy-156

based causal inference algorithm that controls latent variables Ẑ inferred from X via f̃ = f̄ ◦ f† :157

RKX → RKC+KM to estimate the ATE can be formulated as follows:158

Bias(X) = ATE −DEV (f̃(X)) = ATE − E[E[Y |T = 1, f̃(X)]− E[Y |T = 0, f̃(X)]]

= ATE − E[E[Y |1, f̄ ◦ f†(f(C,M))]− E[Y |0, f̄ ◦ f†(f(C,M))]]

= E[E[Y |1,C]− E[Y |0,C]]− E[E[Y |1,C,M ]− E[Y |0,C,M ]],

(4)

which can be arbitrarily bad. Therefore, the estimator of existing proxy-of-confounder-based meth-159

ods, i.e., DEV (f̃(X)), is an arbitrarily biased estimator of the ATE, when the selected proxy of160

confounders X accidentally mixes in latent post-treatment variables M .161

The final step of Eq. (4) can be proved since f is injective and f̄ bijective, the composite f̄ ◦ f† ◦ f :162

[C,M ]→ Ẑ is bijective, so we can use Lemma 3.1 to remove f̄ ◦ f† ◦ f in the condition.163

3.4 Examples in the Linear Case164

Generally, the latent post-treatment bias defined in Eq. (4) cannot be simplified, because (i) the165

causal relationship between M and Y are indeterminate, and (ii) the causal influence of C, M ,166

and T on Y can be arbitrary. However, for linear structural causal models with determined causal167

relationships between M and Y (e.g., M are mediators, which are post-treatment variables that have168

causal influences on the outcomes), stronger conclusions can be drawn as follows:169
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Corollary 3.3. (Mixed Latent Mediator). For the linear Structural Causal Model (SCM) defined as:170

(i) T ← 1(αT +
∑

βi · Ci > a), (ii)Mj ← αM + γj · T

(iii) X ← αX +A[M ||C], (iv) Y ← αY + τ · T +
∑

θj ·Mj +
∑

κi · Ci,
(5)

where the mixture function f = A ∈ RKX×(KC+KM ) is a full column-rank matrix, the CATE, ATE,171

and the bias of proxy-of-confounder-based causal inference model that controls the latent variables172

Ẑ inferred via Ẑ = f̃(X) = BTX can be formulated as follows:173

ATE = CATE = τ +
∑

γj · θj , and DEV (Ẑ) = E[DCEV (Ẑ)] = DCEV (Ẑ) = τ

Bias(Ẑ) = ATE −DEV (Ẑ) =
∑

γj · θj ,
(6)

where B ∈ RKX×(KC+KM ) is another full column-rank matrix. Since
∑

γj · θj is arbitrary, the174

estimator DEV (Ẑ) = E[DCEV (BTX)] is arbitrarily biased for ATE estimation.175

The proof of Eq. (6) is provided in Appendix C.2. In addition, we show that post-treatment variables176

M DO NOT necessarily need to have direct causal effects on the outcome Y to incur arbitrary bias177

in ATE estimation. In Appendix C.3, we provide another example (i.e., Mixed Latent Correlator) in178

the linear case where M is correlated with Y through unobserved confounders U in Corollary C.1.179

4 Methodology180

In this section, we introduce the proposed Confounder-identifiable Variational Auto-Encoder (CiVAE)181

in detail. Specifically, we first prove that if the prior distribution of the true latent variables Z =182

[C,M ] satisfies certain weak assumptions, CiVAE individually identify [C,M ] up to bijective183

transformations. Then, utilizing the causal relations between C, M , and T , we novelly transform the184

challenging confounder-identifiability problem into a tractable pair-wise conditional independence185

test problem, which can be effectively solved with kernel-based methods. The generalization of186

CiVAE to address the interactions among [C,M ] are discussed in Section D of the Appendix.187

4.1 Generative Process188

The fundamental work on the identifiability of deep variational inference, i.e., the identifiable VAE189

(iVAE) [19], makes a strict assumption that the prior of true latent variables Z (i.e., [C,M ] in190

our case) is conditionally factorized given the available covariates. However, since both C and191

M form fork structures with the outcome Y (see Fig. 1-(c)) [22], Ci, Cj , Mi, and Mj are not192

independent given Y . Recently, Non-Factorized iVAE (NF-iVAE) [26] was proposed that allows193

arbitrary dependence among the true latent variables Z in the conditional priors, where Z can be194

identified up to arbitrary non-linear transformations. However, the transformation is not necessarily195

invertible, which is risky as multiple values of the confounders may collapse, leading to bias when196

estimating the ATE by averaging the DCEV calculated in each stratum of the inferred confounders.197

In contrast to NF-iVAE, CiVAE guarantees the individual and bijective identifiability of Z by putting198

a general exponential family with at least one invertible sufficient statistic in the factorized part as its199

prior when conditioning on treatment T and outcome Y , which can be formulated as follows.200

Assumption 2. Let Z = [C||M ] be the random vector for latent variables that causally gen-201

erate the observed covariates X according to Assumption 1. We assume that the conditional202

prior of Z given the outcome Y and the treatment T belongs to a general exponential family203

with parameter vector λ(Y, T ) and sufficient statistics S(Z) = [Sf (Z)T ,Snf (Z)T ]T . Specif-204

ically, S(Z) is composed of (i) the sufficient statistics of a factorized exponential family, i.e.,205

Sf (Z) = [S1(Z1)
T , · · · ,SKZ

(ZKZ
)T ]T , where all components Si(Zi) have dimension larger206

than or equal to 2 and each Si has at least one invertible dimension, and (ii) Snf (Z), where Snf is207

a neural network with ReLU activation. The density of the conditional prior can be formulated as:208

pS,λ(Z|Y, T ) = Q(Z)/C(Y, T ) exp[S(Z)Tλ(Y, T )], (7)

where Q(Z) is the base measure, and C(Y, T ) is the normalizing constant independent of Z.209
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We justify that assumption 2 is weak and practical as follows. (i) Neural networks with ReLU210

activation have universal approximation ability of distributions [27]. Therefore, Eq. (7) can model211

arbitrary dependence between true latent confounders C and post-treatment variables M conditional212

on T and Y . (ii) Although CiVAE makes an extra assumption that ∀i, at least one dimension of Si is213

invertible, this can be easily satisfied as most commonly used exponential family distributions, such214

as Gaussian, Bernoulli, etc., has at least one invertible sufficient statistics2.215

The reason why we use ReLU as the activation is that, the identifiability of iVAE relies on the216

condition that the sufficient statistics S have zero second-order cross-derivative. The factorized part,217

i.e., Sf , satisfies it trivially as all cross-derivatives of Sf are zero. In addition, since the ReLU neural218

networks are linear a.e., all second-order derivatives of Snf are zero. Therefore, identifiability holds219

after adding Snf in the prior that allows the capturing of arbitrary dependence among Z.220

4.2 Optimization Objective221

Combining Assumptions 1 and 2, the generative process assumed by CiVAE can be formulated as:222

(i) pθ(X,Z | Y, T ) = pf (X | Z), (ii) pS,λ(Z | Y, T ), (iii) pf (X | Z) = pϵ(X − f(Z)). (8)

where θ = (f,λ,S) ∈ Θ are the parameters of the generative distribution. Since the generative223

process of CiVAE is parameterized by deep neural networks, the posterior distribution of Z, i.e.,224

pθ(Z |X, Y, T ), is intractable. Therefore, we resort to variational inference [4], where we introduce225

an approximate posterior qϕ(Z |X, Y, T ) parameterized by a deep neural network with a trainable226

parameter ϕ, and in qϕ(Z|·) finds the one closest to pθ(Z|·) measured by KL divergence. The227

minimization of KL is equivalent to maximization of the evidence lower bound (ELBO):228

L(θ,ϕ) := Eqϕ

[
log pf (X | Z) + log pS,λ(Z | Y, T )− log qϕ(Z | ·)︸ ︷︷ ︸

KL of posterior with prior

]
.

(9)

Since the normalization constant C in Eq. (7) is generally intractable, it is infeasible to directly learn229

S, λ by optimizing Eq. (9). Therefore, we substitute the KL term in Eq. (9) with the widely-used230

score matching [13] to learn unnormalized densities instead as follows:231

L(S,λ,ϕ) := Eqϕ(Z|·)

[
∥∇Z log qϕ(Z | ·)−∇Z log pS,λ(Z | Y, T )∥2

]
= Eqϕ(Z|·)

KZ∑
j=1

[
∂2pS,λ(Z | Y, T )

∂Z2
j

+
1

2

(
∂pS,λ(Z | Y, T )

∂Zj

)2
]+ const,

(10)

4.3 Identifiability of CiVAE232

With the generative process and optimization objective of CiVAE discussed in previous sub-sections,233

we are ready to introduce the final assumption of CiVAE, which, combined with Assumptions 1 and234

2, leads to the main Theorem of this paper, which states the identifiability of CiVAE.235

Assumption 3. Assume the following: (i) The set {X ∈ X |ϕ(X) = 0} has measure zero, where ϕ236

is the characteristic function of the density pf in Eq. (8). (ii) The sufficient statistics, Si in Sf are all237

twice differentiable. (iii) The mixture function f in Eq. (8) has all second-order cross derivatives.238

(iv) There exist k + 1 distinct points (Y, T )0, · · · , (Y, T )k s.t. the matrix L = [λ((Y, T )1) −239

λ((Y, T )0), · · · ,λ((Y, T )k)− λ((Y, T )0)] of size k × k is invertible, where k = Dim(S).240

Here, we note that Assumptions (i) - (iii) are trivial for differentiable neural networks. The Assumption241

(iv) can be intuitively understood as independent samples of (Y, T ) are required to identify C and242

M . The identifiability theorem of CiVAE can be formulated as follows.243

Theorem 4.1. If Assumptions 1, 2, and 3 hold, and if θ, θ̃ ∈ Θ→ pθ(X|Y, T ) = pθ̃(X|Y, T ), the244

true latent variables Z are identifiable up to permutation and element-wise bijective transformation.245

Furthermore, in the case of variational inference, if we denote the true parameter that generates the246

data as θ∗, if (i) the distribution family qϕ(Z|X, Y, T ) contains the posterior pθ(Z|X, Y, T ), and247

qϕ(Z|X, Y, T ) > 0, (ii) we optimize Eq. (4) w.r.t. both θ,ϕ, then in the limit of infinite data, true248

parameters θ∗ can be learned up to a permutation and bijective transformation of Z.249

2There are a few exponential family dist. with no invertible sufficient statistics, e.g., Weibull with even shape
parameter k. However, these distributions are not commonly used in statistics or machine learning.
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The proof of Theorem 4.1 non trivially extends the NF-iVAE paper [26] by incorporating the new250

assumption introduced in CiVAE (i.e., each Si has at least one invertible dimension) to ensure that the251

transformation of each Zi is bijective. The detailed proof is provided in Appendix C.4 for reference.252

4.4 Identification of Latent Confounders253

Theorem 4.1 ensures that the latent variables Ẑ inferred by CiVAE cannot (i) mix confounders254

and post-treatment variables in each dimension, or (ii) collapsing of different values of the latent255

confounders into the same value. To further determine the dimensions of confounder and post-256

treatment variable in Ẑ, we rely on the causal relations between latent variables Ẑ and the treatment257

T and the associated marginal/conditional dependence properties, which are discussed as follows.258

• Case 1. Intra-Confounders. Latent confounders Ci, Cj and the treatment T form the V structure259

Ci → T ← Cj . Therefore, Ci and Cj are marginally independent, whereas they become260

dependent when conditioning on the assigned treatment T .261

• Case 2. Intra-Post Treatment Variables. Latent post-treatment variables Mi, Mj and the treatment262

T form a Fork-structure Mi ← T → Mj , where Mi, Mj are marginally dependent, but they263

become independent after conditioning on the assigned treatment T .264

• Case 3. Cross-Confounder and Post-Treatment Variables. Latent confounder Ci, latent post-265

treatment variable Mj , and the treatment T forms a Chain structure Ci → T →Mj , where Ci,266

Mj are marginally dependent, and they become independent after conditioning on T .267

From the above analysis we can find that, the dependence between two latent variables Ẑi and Ẑj268

increases after conditioning on the treatment T ONLY in the case of intra-confounders. Therefore,269

if more than one latent confounder exists, which is highly probable when covariates X are high-270

dimensional, we can conduct independence test Ind(Ẑi, Ẑj) and CInd(Ẑi, Ẑj |T ) for all pairs of271

inferred latent variables, which can be implemented via kernel-based methods as [43], and select272

the pairs where the p-value of CInd is larger than that of Ind as latent confounders. Here, we note273

that the kernel-based (conditional) independence test incurs N2 ×K2
Z complexity in the training274

phase. However, once the dimensions of the confounders in Ẑ are determined, CiVAE has the same275

complexity as CEVAE for the estimation of CATE and ATE in the test phase.276

4.5 ATE Estimator with Transformed Confounders277

Finally, we demonstrate that controlling the transformed confounders Ĉ inferred by CiVAE provides278

an unbiased estimation of ATE. Specifically, we have the final Theorem show the unbiasedness.279

Theorem 4.2. Controlling bijective of confounders is equivalent to original confounders in ATE280

estimation, i.e., DEV (C̃) = DEV (g(C)) = ATE, if the transformation function g is bijective.281

The proof of Theorem 4.2 for discrete C is trivial (where Ĉ = g(C) represents a simple relabeling282

of the stratum that we calculate the DCEV and take the expectation). The proof in the continuous283

case where g is differentiable is provided in Appendix C.5. With Theorem 4.2, we can control the284

identified latent confounders as true confounders, providing an unbiased estimate of ATE.285

5 Empirical Study286

In this section, we provide and analyze the experiments we conduct on both simulated and real-world287

datasets, where a code demo written in PyTorch and Pyro is provided in this anonymous URL.288

5.1 Datasets289

Simulated Datasets. We first establish two simulated datasets, i.e., LatentMediator and290

LatentCorrelator, that consider two types of post-treatment variables, i.e., (i) mediators and291

(ii) correlators, i.e., variables that are correlated with the outcome Y via latent confounders U , where292

the causal generative process is under the full control of the experimenter. The generative process of293

the two datasets can be referred to in Corollary 3.3 and Corollary C.1 in the Appendix, respectively.294

In our experiments, C are generated from Gaussian distribution as C ∼ Gaussian(0, IKC
). For295

7

https://anonymous.4open.science/r/CiVAE-demo-E701/readme.md


(a) Case 1: Intra-Confounder (b) Case 2: Intra-Mediator (c) Case 3: Confounder-Mediator

Figure 2: Visualization of p-value of independence test before and after conditioning on treatment T .

LatentMediator, γ is set as [−1,−1,−1], θ is set as [1, 1, 1], and τ is set as 2, which results in296

ATE = −1. For the LatentCorrelator dataset, we set the same γ and θ as the LatentMediator297

dataset, where parameters ϕ and τ are set to 1, which results in an overall ATE of 1.298

Real-world Datasets. In addition, we build real-world datasets from the Company to estimate the299

ATE of switching a job from onsite to online work mode to the statistics of the applicants. The300

average age and the variance of gender of the applicants are two outcomes of interest. Covariates301

X ∈ {0, 1}KX include the required skills of the job. Specifically, we establish a cohort of 3,228302

jobs from the Bay Area in the US, where a preliminary study shows that DEV (∅) ≈ 2 years3 (i.e.,303

online job applicants are two years younger than onsite job applicants in the collected data), and304

DEV (∅) ≈ −0.015 (i.e., online jobs exhibit 0.015 more gender variance than onsite jobs in the305

collected data). To simulate C and M , we first learn a generative model as follows:306

Z ∼ Gaussian(0, IKZ
),X ∼Multi(NNf (Z)), Y ∼ Gaussian(w ⊙Z, 1), (11)

where Multi represents multinomial distribution, NNf is a neural network with softmax activation,307

Z,w ∈ RKZ , KZ = 8, and ⊙ represents the element-wise product operator, respectively. We308

then treat the first KC = 5 dimensions of Z as the latent confounders C and the remaining309

KM = KZ −KC dimensions as the latent mediators M . After learning NNf and w according to310

Eq. (11), we draw latent confounders C ∈ Gaussian(0, I), latent mediators M = T · γ, and set the311

outcome Y = w⊙ [C||M ] + τ ·T , where the true ATE can be calculated as sum(γ ⊙w−KM :)+ τ .312

5.1.1 Disentangle Confounders and Post-treatment Variables313

We first show the p-value of the kernel-based pairwise independence test of the true latent variables314

before and after conditioning on the assigned treatment T . From Fig. 2, we can find that the distinction315

of the intra-confounder case from the other two cases discussed in Subsection 4.4 is significant. Here,316

we should note this relies on the assumption that latent confounders are independent. If the latent317

confounders are correlated, we can first use causal discovery techniques such as the PC algorithm [39]318

to find direct parents of T , and use our algorithm as the refinement to determine the true confounders319

C from the misidentified post-treatment variables (Experiments see Section D) in Appendix.320

5.2 Baselines321

The baselines we include for comparisons can be categorized into three classes. (i) Unawareness,322

where no information in X is used for ATE estimation. We implement the naive LR0 estimator, which323

regresses Y on T and uses the coefficient to estimate the ATE [15] (LR0 equals to DEV (∅), i.e., the324

difference of the average outcome between the treatment and non-treatment group). (ii) Control-X ,325

which directly controls the covariates X . In this class, LR1 regresses Y on T and X , whereas TarNet326

uses a two-branch neural network to estimate the DEV (X) (iii) Control-Z, which controls latent327

variables Z learned from the covariates X . Methods from this class include the CEVAE [25] and328

covariate disentanglement methods, such as DR-CFR [12], TEDVAE [44], NICE [38], and AFS [41].329

5.2.1 Results and Analysis330

From Table 1, we can find that for all four datasets, CEVAE is worse than the naive LR0 estimator.331

In addition, for the LatentMediator and Company (Age) dataset, all methods except CiVAE fail332

to predict the negativity of the ATE. Covariates disentanglement-based methods, i.e., DR-CFR333

and TEDVAE, inherit the latent post-treatment bias of CEVAE. The reason is that, these methods334

disentangle latent confounders C from latent instrumental variables I and latent adjusters A by335

3which leads to 0.178 and -0.105 after standardization of the outcome.
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Table 1: Comparison of CiVAE with baselines under latent post-treatment bias on various datasets.
Dataset LatentMediator LatentCorrelator Company (Age) Company (Gender)
Method ATE. Err. ATE. Err. ATE. Err. ATE. Err.

LR0 0.975 ± 0.032 1.975 2.977 ± 0.032 1.977 0.131 ± 0.015 0.399 -0.105 ± 0.009 -0.213
LR1 1.457 ± 0.167 2.457 3.400 ± 0.130 2.400 0.093 ± 0.029 0.361 -0.175 ± 0.014 -0.256
TarNet 1.461 ± 0.172 2.461 3.414 ± 0.146 2.414 0.112 ± 0.085 0.380 -0.167 ± 0.021 -0.248
CEVAE 1.550 ± 0.292 2.550 3.323 ± 0.167 2.323 0.106 ± 0.078 0.374 -0.180 ± 0.028 -0.261
DR-CFR 1.239 ± 0.324 2.239 3.185 ± 0.319 2.185 0.094 ± 0.089 0.362 -0.159 ± 0.030 -0.240
NICE 1.868 ± 0.530 2.868 1.942 ± 0.524 0.942 0.149 ± 0.126 0.417 -0.186 ± 0.041 -0.267
TEDVAE 1.042 ± 0.315 2.042 3.138 ± 0.281 2.138 0.097 ± 0.093 0.365 -0.143 ± 0.027 -0.224
AFS 1.496 ± 0.825 2.496 3.251 ± 0.398 2.251 0.105 ± 0.102 0.373 -0.163 ± 0.045 -0.244
CiVAE -0.822 ± 0.753 0.178 1.199 ± 0.765 0.199 -0.140 ±0.137 0.128 -0.106 ± 0.064 -0.187
True ATE -1.000 ± 0.000 0.000 1.000 ± 0.000 0.000 -0.268 ± 0.000 0.000 -0.081 ± 0.000 0.000

utilizing their causal relations with T and Y , i.e., I is predictive only for T , A is predictive only336

for Y , whereas C is predictive for both T and Y . For example, TEDVAE includes three encoders337

to infer three sets of latent variables Î , Â, Ĉ from X and adds classification losses p(T |Î, Ĉ)338

and p(Y |T, Ĉ, Â) on the CEVAE loss. However, since both latent confounders C and latent post-339

treatment variables M are correlated with both T and Y , these methods cannot disentangle C from340

M . An exception is NICE [38], which uses invariant risk minimization (IRM) [3] to find all causal341

parents of the outcome Y as the confounders, which makes it more robust in the LatentCorrelator342

case. However, since mediators M are also the causal parent of Y , the performance degrades343

substantially on the LatentMediator dataset. Although AFS [41] considers the existence of post-344

treatment variables M in the proxy X , it assumes that they can be separated from other variables in345

X in the observational space, and no relationship exists between the post-treatment variables and the346

outcome, so it still has poor performance in our setting since both assumptions are violated.347

5.3 Sensitivity Analysis348
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Figure 3: Error with different ratio of latent confounders and
latent post-treatment variable in the latent space.

In this part, we vary the number349

of confounders and post-treatment350

variables that generate proxy X in351

the Company (Age) and Company352

(Gender) datasets and compare353

CiVAE with the baseline TEDVAE354

in Fig. 3. Fig. 3 shows that the er-355

ror is consistently lower for CiVAE.356

In addition, the error is compara-357

tively higher when the number of con-358

founders is low since the misidenti-359

fication of latent post-treatment vari-360

ables as confounders can have a com-361

paratively larger influence on the ATE estimation. In addition, when the number of confounders362

becomes larger, the performance gap between CiVAE and TEDVAE gracefully shrinks.363

6 Conclusions364

In this paper, we systematically investigate the latent post-treatment bias in causal inference from365

observational data. We first prove that unresolved latent post-treatment variables scrambled in the366

proxy of confounders can arbitrarily bias the ATE estimation. To address the bias, we proposed367

the Confounder-identifiable VAE (CiVAE), which, utilizing a mild assumption regarding the prior368

of latent factors, guarantees the identifiability of latent confounders up to bijective transformations.369

Finally, we show that controlling the latent confounders inferred by CiVAE can provide an unbiased370

estimation of the ATE. Experiments on both simulated and real-world datasets demonstrate that371

CiVAE has superior robustness to latent post-treatment bias compared to state-of-the-art methods.372
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Appendix475

A Broader Impact476

The proposed CiVAE is a universal model for causal effect estimation with observational data.477

Although we use the Company job data that estimate the causal effects of online working mode to478

applicant statistics as a real-world example, proxy-of-confounder-based methods have been heavily479

used in other observational studies, which may be susceptible to latent post-treatment bias. Therefore,480

we speculate that the proposed CiVAE will have a broader impact on causal inference community.481

B Related Work482

B.1 Post-Treatment Bias in Causal Inference483

Bias due to accidentally controlling post-treatment variables, i.e., post-treatment bias, has long been484

recognized as dangerous in causal effect estimation [20]. Back at 2005, Pearl [32] cautioned that485

controlling more is not better, and uses the collider bias [9] and M-Bias [7] as two examples to486

show that bias can be increased when controlling the post-treatment variables. Furthermore, [30]487

show that indirect correlations between post-treatment variable M and outcome Y can still cause488

bias. Recent works prove that even if M has no causal relationship with Y , controlling it can still489

increase the variance of estimand [12]. However, most of these works study the post-treatment bias490

in the observational space, where latent post-treatment variables that are mixed with confounders to491

generate the observed covariates can be easily ignored by the researcher. Therefore, it motivates us to492

develop CiVAE, which is robust to the latent post-treatment bias under mild assumptions.493

B.2 Covariate Disentanglement494

Recently, researchers have realized that directly controlling proxy of confounders X may not be495

safe, as variables other than confounders could lurk in the proxy and ruin the ATE estimation [12].496

Traditional methods assume that the variables that generate X are a mixture of confounders, adjusters,497

and influencers [36], where adjusters should not be controlled as it can increase the estimation498

variance [11]. Most methods rely on the fact that adjusters are correlated only with the treatment499

to separate them from other variables [12, 44] (see Fig. (1)). This can also be used to remove post-500

treatment variables that are not correlated with the outcome, which have similar statistics properties501

with adjustors [41]. Here, a different work is NICE [38], which uses the fact that confounders and502

influencers are direct causal parents of the outcome to find these variables with invariant learning as503

the control set [3]. However, since mediators are also direct parents of the outcome, NICE is still not504

robust to general post-treatment bias. Given that all above methods cannot satisfactorily address the505

latent post-treatment in general cases, it is imperative to design the CiVAE, where confounders can506

be identified and distinguished with latent post-treatment variables for unbiased adjustment.507

C Theoretical Analysis508

C.1 Proof of Lemma 3.1.509

Proof. Let Z = f(X) and z = f(x). If f is injective and differentiable a.e., and f† is the510

left-inverse, we have:511

fY |f(X)(y|f(x)) = fY |Z(y|z) =
fY,Z(y,z)

fZ(z)
=

fY,X(y, f†(z))|Jf†(z)|
fX(f†(z))|Jf†(z)|

=
fY,X(y,x)

fX(x)
= fY |X(y|x),

(12)
where f· and f·|· represent the marginal and conditional density function, respectively, and Jf†(z) is512

the Jacobian matrix of function f† evaluated at z. Based on Eq. (12), we have:513

E[Y |X] =

∫
y·fY |X(y|x)dy =

∫
y·fY |Z(y|z)dy = E[Y |Z = z] = E[Y |f(X) = f(x)]. (13)

514
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C.2 Proof of Corollary 3.3.515

Proof. For X = x, let [c||m]
.
= [f†

C(x)||f
†
M (x)]

.
= f†(x) = A†(x − αX), where A† is the left516

inverse of the full column-rank matrix A in Eq. (2), we have:517

CATE(x) = E[Y |T = 1,C = f†
C(x)]− E[Y |T = 0,C = f†

C(x)]

= E[Y |T = 1,C = c]− E[Y |T = 0,C = c]

= E[αY + τ · T +
∑

θj ·Mj +
∑

κi · Ci|T = 1,C = c]

− E[αY + τ · T +
∑

θj ·Mj +
∑

κi · Ci|T = 0,C = c]

= αY + τ · E[T |T = 1,C = c] +
∑

θj · E[Mj |T = 1,C = c] +
∑

κi · E[Ci|T = 1,C = c]

− αY + τ · E[T |T = 0,C = c] +
∑

θj · E[Mj |T = 0,C = c] +
∑

κi · E[Ci|T = 0,C = c]

= τ · (1− 0) +
∑

θj · (γj · (1− 0)) +
∑

κi · (ci − ci)

= τ +
∑

θj · γj = E[τ +
∑

θj · γj ] = ATE,

(14)
where the first equality is due to the definition of CATE in Eq. (2). In addition, the causal estimand518

and bias of a proxy-of-confounder-based causal inference model that controls the latent variable Z519

inferred via Z = f̄(X) = BTX (where B is also a full column-rank matrix) can be formulated as:520

DCEV (BTx) = E[Y |T = 1,Z = BTx]− E[Y |T = 0,Z = BTx]

= E[Y |T = 1,Z = BTαX +BTA[c||m]]− E[Y |T = 0,Z = BTαX +BTA[c||m]]

(a)
= E[Y |T = 1,C = c,M = m]− E[Y |T = 0,C = c,M = m]

= αY + τ · 1 +
∑

θj · E[Mj |T = 1,C = c,M = m] +
∑

κi · E[Ci|T = 1,C = c,M = m]

− αY + τ · 0 +
∑

θj · E[Mj |T = 0,C = c,M = m] +
∑

κi · E[Ci|T = 0,C = c,M = m]

= τ · (1− 0) +
∑

θj · (mj −mj) +
∑

κi · (ci − ci)

= τ = E[τ ] = E[DCEV (BTX)],
(15)

where step (a) is due to the fact that, since both A and B are full column-rank matrices, BTA is521

an invertible matrix, and the mapping f = BTαX +BTA is bijective. Therefore, we can invoke522

Lemma 3.1 and apply the left-inverse of f , i.e., f† = (BTA)−1 −BTαX , to the condition of the523

expectation. The rest steps are based on the structural causal equations defined in Eq. (2).524

C.3 Another Case of Linear SCM with Latent Correlators525

Corollary C.1. For another Linear Structural Causal Model defined as follows526

T ← 1(αT +
∑

βi · Ci > a)

Mj ← αM + γj · T + ϕj · Uj

X ← αX +A[M ||C]

Y ← αY + τ · T +
∑

θj · Uj +
∑

κi · Ci,

(16)

where f = A ∈ RKX×(KC+KM ) is a full column-rank matrix, the CATE, ATE, and the bias of527

proxy-of-confounder-based causal inference model that controls the latent variable Z inferred via528

Z = f̄(X) = BTX can be formulated as follows:529

ATE = CATE = τ

E[DCEV (Z = BTX)] = DCEV (Z = BTX) = τ−
∑ θj · γj

ϕj

Bias = ATE − E[DCEV (BTX)] =
∑ θj · γj

ϕj
,

(17)
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where B ∈ RKX×(KC+KM ) is another full column-rank matrix. Since
∑ θj ·γj

ϕj
is arbitrary, the530

estimator E[DCEV (BTX)] is arbitrarily biased for the estimation of ATE.531

Proof. The proof of the CATE and ATE is trivial. The causal estimand and the bias of a proxy-532

of-confounder-based causal inference model that controls the latent variables Z inferred via Z =533

f̄(X) = BTX (where B is also a full column-rank matrix) can be formulated as follows:534

DCEV (BTx) = E[Y |T = 1,Z = BTx]− E[Y |T = 0,Z = BTx]

= E[Y |T = 1,Z = αX +BTA[c||m]]− E[Y |T = 0,Z = αX +BTA[c||m]]

(a)
= E[Y |T = 1,C = c,M = m]− E[Y |T = 0,C = c,M = m]

= αY + τ · 1 +
∑

θj · E[Uj |T = 1,C = c,M = m] +
∑

κi · E[Ci|T = 1,C = c,M = m]

− αY + τ · 0 +
∑

θj · E[Uj |T = 0,C = c,M = m] +
∑

κi · E[Ci|T = 0,C = c,M = m]

= τ · (1− 0) +
∑

θj · (ϕ−1
j · (mj − αM − γj)− ϕ−1

j · (mj − αM )) +
∑

κi · (ci − ci)

= τ −
∑ θj · γj

ϕj
= E

[
τ −

∑ θj · γj
ϕj

]
= E[DCEV (BTX)],

(18)
535

where step (a) and the rest of the proof follow the same logic as the proof in Section 3.3.536

C.4 Proof of Theorem 4.1537

The strict definitions of the exponential family, strong exponential (which is assumed for the factorized538

part of the conditional prior), and identifiability follow [19, 26], and can be referred to in Appendix539

E, F of [26], which we omit to avoid redundancy. The proof of Theorem 4.1 is largely based on the540

NF-iVAE paper [26], where most of the details can be found, with the new assumption introduced in541

CiVAE that each Sf,i has at least one invertible dimension incorporated to ensure that each dimension542

of the inferred latent variables is a bijective transformation of the corresponding true latent variable.543

C.4.1 PART I544

Step I. In this step, we transform the equality of noisy conditional marginal distribution of X given545

Y, T of two models with parameter θ, θ̃ ∈ Θ into the equality of noise-free distributions.546

pθ(X | Y, T ) = pθ̃(X | Y, T )

=⇒
∫
Z
pf (X | Z)pS,λ(Z | Y, T )dZ =

∫
Z
pf̃ (X | Z)pS̃,λ̃(Z | Y, T )dZ

=⇒
∫
Z
pε(X − f(Z))pS,λ(Z | Y, T )dZ =

∫
Z
pε(X − f̃(Z))pS̃,λ̃(Z | Y, T )dZ

(a)
=⇒

∫
X
pε(X −X)pS,λ

(
f†(X) | Y, T

)
vol

(
Jf†(X)

)
dX =∫

X
pε(X −X)pS̃,λ̃

(
f̃†(X) | Y, T

)
vol

(
Jf̃†(X)

)
dX

(b)
=⇒

∫
Rd

pε(X −X)p̃f,S,λ,Y,T (X)dX =

∫
Rd

pε(X −X)p̃f̃ ,S̃,λ̃,Ỹ ,T̃ (X)dX

=⇒ (p̃f,S,λ,Y,T ∗ pε) (X) =
(
p̃f̃ ,S̃,λ̃,Ỹ ,T̃ ∗ pε

)
(X)

(c)
=⇒F [p̃f,S,λ,Y,T ] (ω)φε(ω) = F

[
p̃f̃ ,S̃,λ̃,Ỹ ,T̃

]
(ω)φε(ω)

(d)
=⇒F [p̃f,S,λ,Y,T ] (ω) = F

[
p̃f̃ ,S̃,λ̃,Ỹ ,T̃

]
(ω)

=⇒p̃f,S,λ,Y,T (X) = p̃f̃ ,S̃,λ̃,Ỹ ,T̃ (X).

(19)

15



Step (a) is based on the rule of change-of-variable, where vol(A) =

√
det

(
AT A

)
. In step (b),547

we define p̃f,S,λ,Y,T (X) ≜ pS,λ

(
f†(X) | Y, T

)
vol

(
Jf†(X)

)
IX (X). In step (c), we use F [·] to548

denote the Fourier transform. In step (d), we drop φε(ω) as it is non-zero a.e. (see Assumption 3).549

Step II. In this step, we transform the equality of the noise-free distributions into the relationship of550

the sufficient statistics S and S̃. By taking logarithm of both sides of Eq. (19), we have:551

log vol
(
Jf†(X)

)
+ logQ

(
f†(X)

)
− log C(Y, T ) +

〈
S
(
f†(X)

)
,λ(Y, T )

〉
= log vol

(
Jf̃†(X)

)
+ log Q̃

(
f̃†(X)

)
− log C̃(Y, T ) +

〈
S̃
(
f̃†(X)

)
, λ̃(Y, T )

〉
.

(20)

Let (Y, T )0, · · · , (Y, T )k be the k+1 distinct points defined in Assumption 3 - (iv). We obtain k+1552

equations by evaluating the Eq. (20) at these points, where the first equation is subtracted from the553

remaining ones, which leads to the following equation system:554 〈
S
(
f†(X)

)
,λ ((Y, T )l) −λ ((Y, T )0)⟩+ log

C ((Y, T )0)
C ((Y, T )l)

=
〈
S̃
(
f̃†(X)

)
, λ̃ ((Y, T )l)− λ̃ ((Y, T )0)

〉
+ log

C̃ ((Y, T )0)
C̃ ((Y, T )l)

, l = 1, · · · , k.
(21)

Let L be the invertible matrix defined in Assumption 3 - (iv) and L̃ be the counterpart for λ̃, if we555

summarize all terms irrelevant to X into a constant b,we have:556

LTS
(
f†(X)

)
= L̃T S̃

(
f̃†(X)

)
+ b

=⇒ S
(
f†(X)

)
= AS̃

(
f̃†(X)

)
+ c,

(22)

where A = L−T L̃ ∈ Rk×k, and c = L−T b ∈ Rk.557

Step III. Ideally, to prove the element-wise bijective identifiability of the latent variables Z, the558

transformation of the sufficient statistics S derived in Eq. (22) should be bijective. We claim that if559

the conditional prior pS,λ(Z | Y, T ) is strongly exponential and L is invertible, L̃ and A must also560

be invertible. The proof is omitted, and can be referred to in Appendix H.1.1 of [26].561

C.4.2 PART II562

In this part, we prove that, if Assumptions 1, 2 and 3 hold, we can identify the factorized part563

of the sufficient statistics S(Z), i.e., Sf (Z), up to permutation and element-wise transformation.564

Specifically, if we use v to denote the composite map f̃† ◦ f : Z → Z , Eq. (22) can be rewritten into:565

S(Z) = AS̃(v(Z)) + c. (23)

We aim to prove that A in Eq. (23) is a block permutation matrix.566

Step I. We start by showing that v is a component-wise function. If we differentiate both sides of Eq.567

(23) with respect to Zs and Zt, where s ̸= t, we have:568

∂S(Z)

∂Zs
= A

KZ∑
i=1

∂S̃(v(Z))

∂vi(Z)
· ∂vi(Z)

∂Zs

∂2S(Z)

∂Zs∂Zt
= A

KZ∑
i=1

KZ∑
i=1

∂2S̃(v(Z))

∂vi(Z)∂vj(Z)
· ∂vj(Z)

∂Zt
· ∂vi(Z)

∂Zs
+A

KZ∑
i=1

∂S̃(v(Z))

∂vi(Z)
· ∂

2vi(Z)

∂Zs∂Zt
.

(24)

Note that for the factorized part of the sufficient statistics S, i.e., Sf , all cross-derivatives are zero,569

and for the non-factorized part of S, i.e., Snf , which is a neural network with ReLU activation (i.e.,570

linear a.e.), all second-order derivatives are zero. Therefore, the second order cross-derivatives on571

the LHS. of Eq. (24) are zero, which leads to the following equality:572

0 = A

KZ∑
i=1

∂2S̃(v(Z))

∂vi(Z)2
· ∂vi(Z)

∂Zt
· ∂vi(Z)

∂Zs
+A

KZ∑
i=1

∂S̃(v(Z))

∂vi(Z)
· ∂

2vi(Z)

∂Zs∂Zt
. (25)
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Eq. (25) can be written into the matrix-vector product form as follows:573

0 = AS̃′′(Z)v′
s,t(Z) +AS̃′(Z)v′′

s,t(Z), (26)

where

S̃′′(Z) =

[
∂2S̃(v(Z))

∂v1(Z)2
, · · · , ∂

2S̃(v(Z))

∂vKZ
(Z)2

]
∈ Rk×KZ ,

v′
s,t(Z) =

[
∂v1(Z)

∂Zt
· ∂v1(Z)

∂Zs
, · · · , ∂vKZ

(Z)

∂Zt
· ∂vKZ

(Z)

∂Zs

]T
∈ RKZ ,

and

S̃′(Z) =

[
∂S̃(v(Z))

∂v1(Z)
, · · · , ∂S̃(v(Z))

∂vKZ
(Z)

]
∈ Rk×KZ ,

v′′
s,t(Z) =

[
∂2v1(Z)

∂Zs∂Zt
, · · · , ∂

2vKZ
(Z)

∂Zs∂Zt

]T
∈ RKZ .

If we denote the concatenation as S̃′′′(Z) =
[
S̃′′(Z), S̃′(Z)

]
∈ Rk×2KZ and v′′

s,t(Z) =574 [
v′
s,t(Z)T ,v′′

s,t(Z)T
]T ∈ R2Kz , we have:575

0 = AS̃′′′(Z)v′′′
s,t(Z). (27)

Finally, if we denote the rows of S̃′′′(Z) that correspond to the factorized part of S by S̃′′′
f (Z),576

according to Lemma 5 of the iVAE paper [19] and the assumption that k ≥ 2KZ , we have that the577

rank of S̃′′′
f (Z) is 2KZ . Since k ≥ 2KZ , the rank of S̃′′′

f (Z) is also 2KZ . Since the rank of A is k,578

the rank of AS̃′′′(Z) is 2KZ , which implies that v′′′
s,t(Z) ∈ R2KZ is a zero vector. Therefore, we579

have v′
s,t(Z) = 0,∀s ̸= t, and we have demonstrated that v is a component-wise function.580

Step II. Based on Step I, we demonstrate that A is a block permutation matrix. Without loss of gen-581

erality, we assume that the permutation in v is Identity, where v(Z) = [v1 (Z1) , · · · , vKZ
(ZKZ

)]
T

582

and each vi is a nonlinear univariate scalar function. Since f and f̃ are injective, v is bijective and583

v−1(Z) =
[
v−1
1 (Z1) , · · · , v−1

KZ
(ZKZ

)
]T

. If we denote S(v(Z)) = S̃(v(Z)) +A−1c, Eq. (23)584

can be reformulated as S(Z) = AS(v(Z)). We then apply v−1 to Z on both sides, which gives585

S
(
v−1(Z)

)
= AS(Z). (28)

Let t be the index of an entry in S that corresponds to the factorized part Sf . For all s ̸= t, we have:586

0 =
∂S

(
v−1(Z)

)
t

∂Zs
=

k∑
j=1

atj
∂S(Z)j
∂Zs

. (29)

Since the entries of S̃ are linearly independent, atj is zero for any j such that ∂S(Z)j
∂Zs

̸= 0. This587

includes the entries Sj that correspond to (1) the factorized part that does not depend on Zt; and (2)588

the non-factorized part Snf . Therefore, when t is the index of an entry in the sufficient statistics S589

that corresponds to factor i in the factorized part Sf , i.e., Sf,i, the only non-zero atj are the ones that590

map between Sf,i (Zi) and Sf,i (vi (Zi)). Therefore, we can construct an invertible submatrix A′
i591

with all non-zero elements atj for all t that corresponds to factor i, such that592

Sf,i (Zi) = A′
iSf,i (vi (Zi)) = A′

iS̃f,i (vi (Zi)) + ci, i = 1, · · · ,KZ , (30)

where ci denotes the corresponding elements of c. Eq. (30) means that for each i = 1, · · · ,KZ ,593

the matrix block A′
i of A affinely transforms the i-specific sufficient statistics vector Sf,i (Zi) into594

S̃f,i (vi (Zi)). In addition, there is also an additional block A′ that affinely transforms Snf (Z) in595

into Snf (v(Z)). This completes the proof that A is a block permutation matrix.596
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C.4.3 PART III597

Let Z̃i = vi (Zi) = f̃†(X)i be the ith inferred latent variable. Assume again that the permutation in598

v is Identity. In this part, we prove that if Assumption 2 holds, each inferred latent variable Z̃i is the599

bijective transformation of the true latent variable. The proof is as follows.600

Proof. Plugging Z̃i into Eq. (30), we have:601

Sf,i(Zi) = A′
iS̄f,i(Z̃i). (31)

According to Assumption 2, there exists one dimension of Sf,i, i.e., j, such that Sf,ij is bijective.602

This implies that Sf,i is injective, and therefore it has a left-inverse S†
f,i. we apply S†

f,i to both sides603

of Eq. (31), which gives:604

Zi = S†
f,iA

′
iS̄f,i(Z̃i). (32)

Since A′
i is a block of an invertible block permutation matrix, Ai is also an invertible matrix, and605

therefore A′
i is a bijective mapping. In addition, since S̃f,i is injective, S̄f,i is also injective, and606

therefore the composite map S†
f,iA

′
iS̄f,i : R→ R that applies on Z̃i is a bijective. This completes607

the proof that each inferred latent variable Z̃i is the bijective transformation of the true latent variable608

in the case of no noise, where Z = f†(X) are the true latent variables. If noise ε exists, the posterior609

distribution of the latent variables can be identified up to an analogous bijective indeterminacy.610

C.4.4 Consistency611

Proof. If the family of the variational posterior qϕ(Z|X, Y, T ) contains the true posterior612

pθ(Z|X, Y, T ), then by optimizing the loss of Eq. (9) (with the KL term replaced by the score match-613

ing loss defined in Eq. (10)) over its parameter ϕ, the score matching term will eventually vanish.614

Therefore, the ELBO term in Eq. (9) will be equal to the log-likelihood. Under this circumstance,615

CiVAE inherits all the properties of maximum likelihood estimation (MLE). Since the identifiability616

of CiVAE is guaranteed up to permutation and component-wise bijective transformation of the latent617

variables, the consistency property of MLE means that the model will converge to the true parameter618

θ∗ up to such mild indeterminacy of the latent variables in the limit of infinite data.619

C.5 Proof of Theorem 4.2620

Proof. Let C be the true latent confounders and C̃ be the transformed confounders, where the621

transformation function f is bijective and differentiable a.e. Let f−1 denote its inverse. The ATE622

estimator that controls transformed confounders C̃ can be formulated as:623

DEV (C̃) = Ep(C̃)[E[Y |T = 1, C̃ = c̃]− E[Y |T = 0, C̃ = c̃]]. (33)

Specifically, for the continuous case where density functions exist, for each term, we have:624

Ep(C̃)[E[Y |T = t, C̃ = c̃]] =

∫
fC̃(c̃)

∫
y · fY |T,C̃(y|t, c̃)dydc̃. (34)

For the marginal density fC̃(c̃), the following equality holds:625

fC̃(c̃) = fC(f−1(c̃))|Jf−1(c̃)| = fC(c)|Jf−1(c̃)|. (35)

As for the conditional density fY |T,C̃(y|t, c̃), since f is bijective, according to Eq. (12), we have:626

fY |T,C̃(y|t, c̃) = fY |T,C(y|t, c). (36)

Combining Eqs. (35) and (36), and given that dc̃ = |Jf (c)|dc, we have:627

(34) =

∫
fC(c)|Jf−1(c̃)|

∫
y · fY |T,C(y|t, c)dy|Jf (c)|dc

=|Jf−1(c̃)| · |Jf (c)|
∫

fC(c)

∫
y · fY |T,C(y|t, c)dydc

(a)
=

∫
fC(c)

∫
y · fY |T,C(y|t, c)dydc

=Ep(C)[E[Y |T = t,C = c]],

(37)
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Table 2: Comparison of CiVAE with baselines when intra-interactions among M exist.
Dataset LatentMediator LatentCorrelator Company (Age) Company (Gender)
Method ATE. Err. ATE. Err. ATE. Err. ATE. Err.

CEVAE 1.627 ± 0.549 2.627 2.659 ± 0.302 1.353 0.152 ± 0.027 0.420 -0.225 ± 0.044 -0.144
TEDVAE 1.653 ± 0.511 2.042 2.827 ± 0.259 1.521 0.180 ± 0.047 0.448 -0.189 ± 0.012 -0.108
CiVAE -0.350 ± 0.695 1.785 1.785 ± 0.481 0.479 -0.073 ±0.101 0.195 -0.136 ± 0.087 -0.055
True ATE -1.000 ± 0.000 0.000 1.306 ± 0.000 0.000 -0.268 ± 0.000 0.000 -0.081 ± 0.000 0.000

Table 3: Comparison of CiVAE with baselines when inter-interactions between C and M exist.
Dataset LatentMediator LatentCorrelator Company (Age) Company (Gender)
Method ATE. Err. ATE. Err. ATE. Err. ATE. Err.

CEVAE 2.070 ± 0.279 3.070 2.831 ± 0.398 1.831 0.094 ± 0.061 0.362 -0.192 ± 0.015 -0.111
TEDVAE 1.743 ± 0.307 2.743 2.954 ± 0.763 1.954 0.109 ± 0.116 0.377 -0.212 ± 0.019 -0.131
CiVAE -0.716 ± 0.523 0.284 1.385 ± 0.660 0.385 -0.041 ±0.144 0.227 -0.129 ± 0.064 -0.048
True ATE -1.000 ± 0.000 0.000 1.000 ± 0.000 0.000 -0.268 ± 0.000 0.000 -0.081 ± 0.000 0.000

where the term |Jf−1(c̃)| · |Jf (c)| vanishes in step (a) as the two factors have the product of one.628

Therefore, if we plug Eq. (37) into Eq. (33), it leads to the following equality:629

DEV (C̃) = Ep(C̃)[E[Y |T = 1, C̃ = c̃]− E[Y |T = 0, C̃ = c̃]]

= Ep(C)[E[Y |T = 1,C = c]− E[Y |T = 0,C = c]] = DEV (C) = ATE,
(38)

where the last step is due to Eq. (2) in Definition 2, which completes our proof that controlling630

bijectively transformed confounders provides an unbiased estimation of ATE.631

D Extending CiVAE to address Latent Interactions632

In this section, we extend CiVAE to more general cases where interactions exist among the latent633

confounders C and the latent post-treatment variables M . Here, we note that the identification634

of latent confounders C in CiVAE is achieved in two steps. (i) CiVAE individually identifies635

latent variables [C,M ] that generate X in inferred Z (but which dims of Z correspond to C636

or M is unknown). (ii) pairwise independence test to identify C. Since Assumption 2 allows637

arbitrary dependence among C and M , step (i) still holds when interactions among [C,M ] exist.638

To distinguish C in these cases, we can use more general causal discovery algorithms, e.g., the639

PC algorithm [18] in the second step. In this section, we consider two cases of interaction: (i)640

Intra-Interaction among mediators, and (ii) Inter-Interaction among mediators and confounders.641

D.1 Intra-Interactions among Latent Mediators642

In this subsection, we discuss the case where latent post-treatment variables M interact with each643

other. Since in this case, M cannot causally influence the latent confounders C (otherwise C will be644

post-treatment), and the PC algorithm orients edges in causal graphs via colliders, latent confounders645

can still be identified from the inferred Z as they form colliders with the treatment T .646

To empirically verify the claim, we extend the simulated datasets described in Section 5.1, where we647

make (i) T directly affects M1, (ii) M1 affects M2, and (iii) M1, M2 affect M3. The coefficients are648

randomly sampled from N (0, 1/3). In step (ii), we use the PC algorithm [18] to identify C from649

the inferred Z. The results in Table 2 demonstrate that the adapted CiVAE is still significantly more650

robust to latent post-treatment bias compared to CEVAE and TEDVAE, which empirically verify our651

claim that PC-adapted CiVAE can address the interaction among post-treatment variables.652

D.2 Inter-Interactions between Latent Mediators and Latent Confounders653

In this subsection, we discuss another case where inter-interactions exist between latent confounders654

C and latent post-treatment variables M . Since in this case, M still cannot causally influence C655

(otherwise C will be post-treatment), and the PC algorithm orients edges in causal graph via colliders,656

latent confounders C can still be identified from Z as they form colliders with the treatment T .657
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To verify the claim, we extend the simulated datasets described in Section 5.1 to allow each latent658

confounder Ci ∈ R3 to determine M ∈ R3. The coefficients are randomly sampled from N (0, 1/3).659

In step (ii), we use the PC algorithm to identify C from the inferred Z. The results in Table 3660

demonstrate that the PC-adapted CiVAE is still significantly more robust to latent post-treatment bias661

compared to CEVAE and TEDVAE, which empirically verify our claim that PC-adapted CiVAE can662

address the case where inter-interactions exist among latent confounders and post-treatment variables.663
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