
Linear Regression using Heterogeneous Data Batches

Ayush Jain∗

Granica Computing Inc.
ayush.jain@granica.ai

Rajat Sen
Google Research

senrajat@google.com

Weihao Kong
Google Research

weihaokong@google.com

Abhimanyu Das
Google Research

abhidas@google.com

Alon Orlitsky
UC San Diego
alon@ucsd.edu

Abstract

In many learning applications, data are collected from multiple sources, each pro-
viding a batch of samples that by itself is insufficient to learn its input-output
relationship. A common approach assumes that the sources fall in one of several
unknown subgroups, each with an unknown input distribution and input-output
relationship. We consider one of this setup’s most fundamental and important
manifestations where the output is a noisy linear combination of the inputs, and
there are k subgroups, each with its own regression vector. Prior work [KSS+20]
showed that with abundant small-batches, the regression vectors can be learned
with only few, Ω̃(k3/2), batches of medium-size with Ω̃(

√
k) samples each. How-

ever, the paper requires that the input distribution for all k subgroups be isotropic
Gaussian, and states that removing this assumption is an “interesting and chal-
lenging problem”. We propose a novel gradient-based algorithm that improves on
the existing results in several ways. It extends the applicability of the algorithm
by: (1) allowing the subgroups’ underlying input distributions to be different, un-
known, and heavy-tailed; (2) recovering all subgroups followed by a significant
proportion of batches even for infinite k; (3) removing the separation requirement
between the regression vectors; (4) reducing the number of batches and allowing
smaller batch sizes.

1 Introduction

In numerous applications, including federated learning [WCX+21], sensor networks [WZ89],
crowd-sourcing [SVC16] and recommendation systems [WDVR06], data are collected from mul-
tiple sources, each providing a batch of samples. For instance, in movie recommendation systems,
users typically rate multiple films. Since all samples in a batch are generated by the same source,
they are often assumed to share the same underlying distribution. However, the batches are fre-
quently very small, e.g., many users provide only few ratings. Hence, it may be impossible to learn
a different model for each batch.

A common approach has therefore assumed [TLW99] that all batches share the same underlying
distribution and learn this common model by pooling together the data from all batches. While this
may work well for some applications, in others it may fail, or lack personalization. For instance, in
recommendation systems, it may not capture the characteristics of individual users.

A promising alternative that allows for personalization even with many small batches, assumes that
batches can be categorized into k sub-populations with similar underlying distributions. Hence in

∗This work was done while the author was a student at UCSD and interning part-time at Google Research.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

each sub-population, all underlying distributions are close to and can be represented by a single
distribution. Even when k is large, our work allows the recovery of models for sub-populations
with a significant fraction of batches. For example, in the recommendation setting, most users can
be classified into a few sub-populations such that the distribution of users in the sub-population is
close, for instance, those preferring certain genres.

In this paper, we focus on the canonical model of linear regression in supervised learning. A distri-
bution D of samples (x, y) follows a linear regression model if, for some regression vector w ∈ Rd,
the output is y = w ·x+ η where the input x is a random d dimensional vector and η is a zero-mean
noise. While we allow the presence of sub-populations that do not follow the linear regression model
or have very few batches, our goal is to recover the regression vectors for all large sub-populations
that follow this linear regression model.

1.1 Our Results

This setting was first considered in [KSS+20] for meta-learning applications, where they view and
term batches as tasks. [KSS+20] argue that in meta-learning applications task or batch lengths
follow a long tail distribution and in the majority of the batches only a few labeled examples are
available. Only a few batches have medium-size labeled samples available, and almost all of them
have length ≪ d. Note that similar observations have been made in the recommender system
literature where the distribution of a number of ratings per user follows a long-tailed distribution
with an overwhelming number of users rating only a few items while rare tail users rating hundreds
of items [GKG15]. The same has been observed for the distribution of the number of ratings per
item [PT08]. Therefore, it is reasonable to assume that in these applications of interest, a handful
of medium-size batches along with a large number of batches of constant size are available. Under
this setting our main results allow recovery of all sub-populations that has a significant fraction of
batches and follow a linear regression model.

Building upon the preceding discussion, we have two sets of batches. Each batch comprises i.i.d.
samples drawn from one of the k sub-populations. The distribution of samples for these sub-
populations is unknown, as is the identity of the sub-population from which each batch originates.
Batches in set Bs (denoted as small) consist of at least two samples each, while those in set Bm (de-
noted as medium) are of larger size, containing ≥ nm samples. Let’s consider a sub-population in-
dexed by i, which follows a linear regression model with parameter vector wi and output-noise vari-
ance ≤ σ2. The next theorem presents the guarantees provided by our algorithm for estimating wi.

Theorem 1.1 (Informal). Let α > 0 such that both sets Bs and Bm comprises at least α fraction
of batches from a sub-population i. Given |Bs| ≥ Ω̃(d/α2), |Bm| ≥ Ω̃(min(

√
k, 1/
√
α)/α), and

nm ≥ Ω̃(min(
√
k, 1/
√
α)), our algorithm runs in time poly(d, 1/α, k) and outputs a list L of size

Õ(1/α) such that w.h.p., at least one estimate in L is within a distance of o(σ) from wi and has
an expected prediction error σ2(1 + o(1)) for sub-population i. Moreover, given Ω(logL) samples
from sub-population i, we can identify such an estimate from L.

In the above theorem, the batches within set Bs must contain a minimum of 2 samples, while those
within set Bm must be of size ≥ nm. Additionally, both sets must include ≥ α fraction of batches
originating from the population we want to recover. It follows that our algorithm requires only
α(2|Bs|+nm|Bs|) = Ω̃(d/α) samples from that specific sub-population. It’s worth noting that any
algorithm, even when dealing with a single sub-population (k = 1), requires a minimum of Ω(d)
samples from said sub-population. To the best of our knowledge, ours is the best sample complexity
for recovering the linear regression models in the presence of multiple sub-populations using batch
sizes smaller than d.

Remark 1.1. When multiple sub-populations meet the criteria outlined for sub-population i, the
list L returned by our algorithm includes estimates of the regression vector for each of these sub-
populations. Furthermore, since there can be up to min{k, 1/α} distinct sub-populations that satisfy
these criteria, any algorithm that aims to provide meaningful guarantees must produce a list of size
≥ min{k, 1/α}, unless the algorithm has access to a sample set known to originate from the specific
sub-population i it aims to recover. A similar situation arises in the list-decodable setup [CSV17],
where also the algorithm returns a list of estimates.

2

1.2 Comparison to Prior Work

The only work that provides a polynomial-time algorithm in dimension d, in the same generality
as ours is [DJKS22]. They even allow the presence of adversarial batches. However, they require
Ω̃(d/α2) batches from the sub-population, each of them of size Ω̃(1/α), and therefore, Ω̃(d/α3)
samples in total, which exceeds our sample complexity by a factor of 1/α2. Furthermore, their
algorithm requires a minimum number of samples per batch, which is quadratically larger than ours.
All other works place strong assumptions on the distributions of the sub-population and still require
a number of samples much larger than ours, which we discuss next.

Most of the previous works [CL13, SJA16, ZJD16, YCS16, LL18, CLS20, DK20, PMSG22] have
addressed the widely studied mixed linear regression (MLR) model where all batches are of size 1,
and adhere to the following three assumptions:

1. All k sub-populations have ≥ α fraction of data. This assumption implies k ≤ 1/α.

2. All k distributions follow a linear regression model.

3. All k regression coefficients are well separated, namely ∥wi − wj∥ ≥ ∆,∀ i ̸= j .

Even for k = 2, solving MLR, in general, is NP-hard [YCS14]. Hence all these works on mixed
linear regression, except [LL18], also made the following assumption:

4. All input distributions (i.e., the distribution over x) are the same for every sub-population, in
fact, the same isotropic Gaussian distribution.

With this additional isotropic Gaussian assumption, they provided algorithms that have runtime and
sample complexity polynomial in the dimension. However, even with these four strong assumptions,
their sample complexity is super-polynomial overall. In particular, the sample complexity in [ZJD16,
CLS20, DK20] is quasi-polynomial in k and [CL13, SJA16, DK20] require at least a quadratic
scaling in d. In [CL13, SJA16, YCS16] the sample complexity scales as a large negative power of
the minimum singular value of certain moment matrix of regression vectors that can be zero even
when the gap between the regression vectors is large. In addition, [ZJD16, YCS16, CLS20] required
zero-noise i.e η = 0. The only work we are aware of that can avoid Assumption 4 and handle
different input distributions for different sub-populations under MLR is [LL18]. However, they still
require all distributions to be Gaussian and η = 0, and their sample size, and hence run-time is
exponential, Ω(exp(k2)) in k. Recently, [TV23] proposed and analyzed an approximate message-
passing algorithm for mixed linear regression. However, their analysis is asymptotic, providing
convergence guarantees as the number of samples and dimensions tends to infinity, while assuming
a finite number of components. The results also rely on Assumptions 2 and 4.

The work that most closely relates to ours is [KSS+20], which considers batch sizes > 1. While
it achieves the same dependence as us on d, k, and 1/α, on the length and number of medium
and small batches, the sample complexity of the algorithms and the minimum length required for
medium-size batches had an additional multiplicative dependence on the inverse separation param-
eter 1/∆. It also required Assumption 4 mentioned in the section. The follow-up work [KSKO20]
which still assumes all four assumptions can handle the presence of a small fraction ≪ α2/k2

of adversarial batches, but requires Ω̃(dk2/α2 + k5/α4) samples. It also suffers from strong
assumptions similar to those in earlier work, and the sum-of-squares approach makes it impractical.
The sum of the square approach, and stronger isotropic Gaussian assumption, allow it to achieve a
better dependence on 1/α on medium-size batch lengths, however, causing a significant increase in
the number of medium-size batches required.

Our improvement over prior work. In contrast, our work avoids all four assumptions, and can
recover any sufficiently large sub-populations that follow a linear regression model. In particular:
(1) Even when a large number of different sub-populations are present, (e.g., k ≥ 1/α), we can still
recover the regression coefficient of a sub-population with sufficient fraction of batches. (2) The k
distributions do not even need to follow a linear regression model. In particular, our algorithm is
robust to the presence of other sub-populations for which the conditional distribution of output given
input is arbitrary. (3) Our work requires no assumption on the separation of regression coefficient
∆, and our guarantees as well have no dependence on the separation. (4) We allow different input
distributions for different sub-populations, which can be unknown and heavy tailed, (5) In addition

3

to removing the four assumptions, the algorithm doesn’t require all batches in a sub-population to
have identical distributions, it only requires them to be close (see Remark 2.1).

1.3 Techniques and Organization

To recover the regression vector for a sub-population i that follow the linear regression model and
has more than α fraction of batches, the algorithm begins by selecting a medium size batch from
this sub-population. To obtain such a batch we randomly choose Θ̃(1/α) batches from the set of
medium-size batches Bm and repeat our algorithm to obtain one estimate for every batch chosen.
With high probability, at least one of the randomly selected medium-sized batches belongs to sub-
population i, and when the algorithm is run for such a batch, w.h.p. it recovers the estimate of wi.
Therefore, at least one of the Θ̃(1/α) estimates accurately recover wi.

The regression vector wi minimizes the expected squared loss for the sub-population i. Therefore,
we use a gradient-descent-based approach to estimate wi. We start with an initial estimate (all zero)
and improve this estimate by performing multiple rounds of gradient descent steps.

First, using a large number of smaller batches we estimate a smaller subspace of Rd that preserves
the norm of the gradient for sub-population i. Next, using the medium-size batch selected at the
beginning, we test which of the other medium-size batches have a projection of gradient close to the
chosen batch, and use them to estimate the gradient in the smaller subspace. The advantage of sub-
space reduction is that testing and estimation of the gradient in the smaller subspace is easier, con-
sequently reducing the minimum length of medium-size batches required for testing and the number
of medium-size batches required for estimation. Our gradient estimation approach draws inspiration
from [KSS+20]. However, while they employed it to directly estimate regression vectors of all sub-
populations simultaneously , we adapt it to sequentially estimate gradients for one sub-population at
a time. A crucial new ingredient of our algorithm is the clipping of gradients, which limits the effect
of other components and allows the algorithm to work even for heavy-tailed distributions.

We describe the algorithm in detail in Section 3 after having presented our main theorems in Sec-
tion 2. Then in Section 4 we compare our algorithm with the one in [KSS+20] on simulated datasets,
to show that our algorithm performs better in the setting of the latter paper as well as generalizes to
settings that are outside the assumptions of [KSS+20].

2 Problem Formulation and Main Results

Consider distributions D0, . . . ,Dk−1 over input-output pairs (x, y) ∈ Rd × R each corresponding
to one of the k sub-populations. A batch b consists of i.i.d. samples from one of the distributions.
Samples in different batches are independent. There are two sets of batches. The batches in Bs are
small and contain at least two samples each, while batches in Bm are of medium size and contain at
least nm samples. For any batch the identity of the distribution it is sampled from is unknown. Next,
we describe the distributions. To aid it and the remaining paper we first introduce some notation.

The L2 norm of a vector u is denoted by ∥u∥. The norm, or spectral norm, of a matrix M is denoted
by ∥M∥ and is defined as max∥u∥=1 ∥Mu∥. If M is a symmetric matrix, the norm simplifies to
∥M∥ = max∥u∥=1 |u⊺Mu|. The trace of a symmetric matrix M is Tr(M) :=

∑
i Mii, the sum of

the elements on the main diagonal of M . We will use the symbol S to denote an arbitrary collection
of samples. For a batch denoted by b, we will use Sb to represent the set of all samples in the batch.

2.1 Data Distributions

Let Σi := EDi
[xx⊺] denote the second-moment matrix of input for distribution Di.

To recover the regression vector for a distribution Di, we assume that it satisfies the following
assumptions2:

1. (Input distribution) There are constants C and C1 such that for all i ∈ I ,

2We note that these assumptions are standard in heavy-tailed linear regression where some condition on the
anti-concentration of E[xx⊺] is necessary to achieve finite sample complexities [LM16, Oli16, CAT+20], even
in the specific case of a single sub-population.

4

(a) L4-L2 hypercontractivity: For all u ∈ Rd, EDi [(x · u)4] ≤ C(EDi [(x · u)2])2.
(b) Bounded condition number: For normalization purpose, we assume min∥u∥=1 u

⊺Σiu ≥ 1
and to bound the condition number we assume that ∥Σi∥ ≤ C1.

2. (Input-output relation) There is a σ > 0 s.t. for all i ∈ I , y = wi · x+ η, where wi ∈ Rd is an
unknown regression vector, and η is a noise independent of x, with zero mean EDi [η]=0, and
EDi

[η2]≤σ2. Note that by definition, the distribution of η may differ for each i.

For a given αs > 0 and αm > 0, our goal is to estimate the regression vector wi for all sub-
populations that have at least αs and αm fractions of the batches within Bs and Bm, respectively,
and follow the assumptions described above. Let I ⊆ {0, 1, .., k − 1} denote the collection of
indices corresponding to all such sub-populations. (Note that in the introduction, we simplified this
more general scenario by assuming equal values for αs and αm, both denoted by α.)

For other sub-populations i /∈ I , we only need that the input distribution satisfies ∥Σi∥ ≤ C1, same
as the second half of assumption 1(b). The input-output relation for samples generated by Di for
i /∈ I can be arbitrary, and in particular, does not even need to follow a linear regression model.
Moreover, the fraction of batches from these other sub-populations can also be arbitrary.

To simplify the presentation, we make two additional assumptions. First, there is a constant C2 > 0
such that for all components i ∈ {0, 1, .., k − 1}, and random sample (x, y) ∼ Di, ∥x∥ ≤ C2

√
d,

a.s. Second, for all i ∈ I and a random sample (x, y) ∼ Di, the noise distribution η = y − wi · x is
symmetric around 0. As discussed in Appendix J, these assumptions can be easily removed.
Remark 2.1. For simplicity, we assumed that each batch exactly follows one of the k distributions.
However, our methods can be extended to more general scenarios. Let Db denote the underlying
distribution of batch b. Instead of requiringDb = Di for some i ∈ {0, 1, .., k−1}, our approach can
be extended to cases where the expected gradients for Db and Di are close. Additionally, if i ∈ I ,
the regression vector wi must achieve a mean squared error (MSE) of at most σ2 for Db. These
conditions are satisfied if the following hold: (1) ∥EDb [xx⊺] − Σi∥ is small, (2) for all x ∈ Rd,
|EDb [y|x] − EDi [y|x]| is small, and (3) if i ∈ I then for all x ∈ Rd, EDb [(y − wi · x)2|x] ≤ σ2.
Thus, the strict identity requirementDb = Di can therefore be replaced by these three approximation
conditions in our analysis. This extension is feasible as our algorithm and its analysis are based on
gradient descent, and can handle stochastic noise. Since the analysis tolerates statistical noise, it
can also accommodate small deviations in the gradient distributions across batches in the same sub-
population.

2.2 Main Results

We begin by presenting our result for estimating the regression vector of a component Di, for any
i ∈ I . This result assumes that in addition to the batch collections Bs and Bm, we have an extra
medium-sized batch denoted as b∗ which contains samples from Di and w.l.o.g, we assume i = 0.
Theorem 2.1. Suppose index 0 is in set I and let b∗ be a batch of ≥ nm i.i.d. samples from
D0. Given δ, ϵ ∈ (0, 1], |Bs| = Ω̃(d

αs
2ϵ4), nm = Ω̃(min{

√
k, 1

ϵ
√
αs
} · 1

ϵ2), and |Bm| =

Ω̃(1
αm

min{
√
k, 1

ϵ
√
αs
}), Algorithm 1 runs in polynomial time and returns estimate ŵ, such that

with probability ≥ 1− δ, ∥ŵ − w0∥ ≤ ϵσ.

We provide a proof sketch of Theorem 2.1 and the description of Algortihm 1 in Section 3, and
a formal proof in Appendix H. Algorithm 1 can be used to estimate wi for all i ∈ I , and the
requirement of a separate batch b∗ is not crucial. As mentioned in the introduction, it can be obtained
by repeatedly sampling a batch from Bm and running the algorithm for these sampled b∗. Since
all the components in I have ≥ αm fraction of batches in Bm, then randomly sampling b∗ from
Bm, Θ̃(1/αm) times would ensure that, with high probability, we have b∗ corresponding to each
component. We can then return a list of size Θ̃(1/αm) containing estimates corresponding to each
sampled b∗. Then, with high probability, the list will have an estimate of the regression vectors for
all components. Note that in this case, returning a list is unavoidable as there is no way to assign
an appropriate index to the regression vector estimates. The following corollary follows from the
above discussion and Theorem 2.1.
Corollary 2.2. For given δ, ϵ ∈ (0, 1], if |Bs|, nm, and |Bm|, meet the requirements outlined in
Theorem 2.1, then the above modification of Algorithm 1 runs in polynomial-time and outputs a

5

list L of size Õ(1/αm) such that with probability ≥ 1 − δ, the list has an accurate estimate for
regression vectors wi for each i ∈ I , namely maxi∈I minŵ∈L ∥ŵ − wi∥ ≤ ϵσ.

In particular, this corollary implies that for any i ∈ I , the algorithm requires only Ω̃(d/αs) batches of
size two and Ω̃(min{

√
k, 1√

αs
}) medium-size batches of size Ω̃(min{

√
k, 1√

αs
}) from distribution

Di to estimate wi within an accuracy o(σ). Furthermore, it is easy to show that any o(σ) accurate
estimate of regression parameter wi achieves an expected prediction error of σ2(1+o(1)) for output
y given input x generated from this Di.

Note that results work even for infinite k and without any separation assumptions on regression
vectors. The min(

√
k, 1/
√
αs) dependence is the best of both words. This dependence is reasonable

for recovering components with a significant presence or if the number is few.

The total number of samples required by the algorithm fromDi in small size batches Bs and medium
size batches Bm are only Õ(d/αs) and Õ(min{k, 1/αs)). It is well known that any estimator would
require Ω(d) samples for such estimation guarantees even in the much simpler setting with just
i.i.d. data. Consequently, the total number of samples required from Di by the algorithm is within
Õ(1/αs) factor from that required in a much simpler single component setting.

The next theorem shows that for any i ∈ I , given a list L containing estimate of wi and Ω(log(1/αs))
samples fromDi, we can identify an estimate of regression vector achieving a small prediction error
for Di. The proof of the theorem and the algorithm is in Appendix B.

Theorem 2.3. Let index i be in set I and let L be a list of d dimensional vectors. Suppose for a given
β > 0 at least one of the vectors in L is within distance β from the regression vector of Di, namely
minw∈L ∥w − wi∥ ≤ β. Given O(max{1, σ2

β2 } log L
δ) samples from Di Algorithm 3 identifies an

estimate w from the list L, s.t. with probability ≥ 1 − δ, ∥w − wi∥ = O(β) and it achieves an
expected estimation error EDi [(ŵ · x− y)2] ≤ σ2 +O(β2).

Remark 2.2. As a special case the above theorem implies that that for any β ≥ Ω(σ), Algorithm 3
can identify the near best estimate of wi from list L using only O(log L

δ) samples from Di.

Combining the above theorem and Corollary 2.2, we get

Theorem 2.4. For given δ, ϵ ∈ (0, 1], if |Bs|, nm, and |Bm|, meet the requirements outlined in The-
orem 2.1, then, there exists a polynomial-time algorithm that, with probability≥ 1−δ, outputs a list
L of size Õ(1/αm) containing estimates of wi’s for i ∈ I . Furthermore, given |S| ≥ Ω(1

ϵ2 log
1

δαm
)

samples from Di, for any i ∈ I , Algorithm 3 returns ŵ ∈ L that with probability ≥ 1 − δ satisfies
∥wi − ŵ∥ ≤ O(ϵσ) and achieves an expected estimation error EDi

[(ŵ · x− y)2] ≤ σ2 +O(ϵ2σ2)

3 Algorithm for recovering regression vectors

This section provides an overview and pseudo-code of Algorithm 1, along with an outline of the
proof that achieves the guarantee stated in Theorem 2.1. As per the theorem, we assume that index
0 belongs to I , and we have a batch b∗ containing nm samples from the distribution D0. Note that
D0 satisfies the conditions mentioned in Section 2.1 and that Bs and Bm each have ≥ |Bs|αs and
≥ |Bm|αm batches with i.i.d. samples from D0. However, the identity of these batches is unknown.

Gradient Descent. Note that w0 minimizes the expected square loss for distribution D0. Our
algorithm aims to estimate w0 by taking a gradient descent approach. It performs a total of R
gradient descent steps. Let ŵ(r) denote the algorithm’s estimate of w0 at the beginning of step r.
Without loss of generality, we assume that the algorithm starts with an initial estimate of ŵ(1) = 0.
In step r, the algorithm produces an estimate ∆(r) of the gradient of the expected square loss for
distribution D0 at its current estimate ŵ(r). For convenience, we refer to this expected gradient for
D0 at ŵ(r) simply as expected gradient. The algorithm then updates its current estimate for the next
round as ŵ(r+1) = ŵ(r) −∆(r)/C1.

The main challenge the algorithm faces is the accurate estimation of the expected gradients in each
step. Accurately estimating the expected gradients at each step would require Ω(d/ϵ2) i.i.d. samples
from D0. However, our algorithm only has access to a medium-size batch b∗ that is guaranteed to
have samples from D0 and this batch contains far fewer samples. And for batches in Bs and Bm,

6

Algorithm 1 MAINALGORITHM

1: Input: Collections of batches Bs and Bm, αs, k, a medium size batch b∗ of i.i.d. samples from D0,
distribution parameters (upper bounds) σ, C, C1, an upper bound M on ∥w0∥, ϵ and δ,

2: Output: Estimate of w0

3: ϵ1 ← Θ(1), ϵ2 ← Θ
(

1
C1

√
C+1

(ϵ1 +
1√
C1

)
)

, ℓ← min{k, 1
2αsϵ

2
2
}, δ′ ← δ

5R
and R← Θ(C1 log

M
σ
)

4: Partition the collection of batches Bs into R disjoint same size random parts {B(r)
s }r∈[R].

5: Similarly partition Bm into R disjoint same size random parts {B(r)
m }r∈[R].

6: Divide samples Sb∗ into 2R disjoint same size random parts {Sb∗,(r)
1 }r∈[R] and {Sb∗,(r)

2 }r∈[R].
7: Initialize ŵ(1) ← 0
8: for r from 1 to R do
9: κ(r) ← CLIPEST(S

b∗,(r)
1 , ŵ(r), ϵ1, δ

′, σ, C,C1)

10: P (r) ← GRADSUBEST(B
(r)
s , κ(r), ŵ(r), ℓ)

11: ∆(r) ← GRADEST(B
(r)
m , S

b∗,(r)
2 , κ(r), ŵ(r), P (r), ϵ2, δ

′)

12: ŵ(r+1) ← ŵ(r) − 1
C1

∆(r)

13: end for
14: ŵ ← ŵ(R+1) and Return ŵ

the algorithm doesn’t know which of the batches has samples from D0. Despite these challenges,
we demonstrate an efficient method to estimate the expected gradients accurately.

The algorithm randomly divides sets Bs and Bm into R disjoint equal subsets, denoted as {B(r)
s }Rr=1

and {B(r)
m }Rr=1, respectively. The samples in batch b∗ are divided into two collections of equal dis-

joint subsets, denoted as {Sb∗,(r)
1 }Rr=1 and {Sb∗,(r)

2 }Rr=1. At each iteration r, the algorithm uses the
collections of medium and small batches B

(r)
s and B

(r)
m , respectively, along with the two collec-

tions of i.i.d. samples S
b∗,(r)
1 and S

b∗,(r)
2 from D0 to estimate the gradient at point w(r). While

this division may not be necessary for practical implementation, as shown by our simulation results
later, this ensures independence between the stationary point ŵ(r) and the gradient estimate, which
facilitates our theoretical analysis and only incurs a logarithmic factor in sample complexity.

Next, we describe how the algorithm estimates the gradient and the guarantees of this estimation.
Due to space limitations, we provide a brief summary here, and a more detailed description, along
with formal proofs, can be found in the appendix. We start by introducing a clipping operation on
the gradients, which plays a crucial role in the estimation process.

Clipping. Recall that the squared loss of samples (x, y) on point w is (x ·w−y)2/2 and its gradient
is (x · w − y)x. Instead of directly working with the gradient of the squared loss, we work with
its clipped version. Given a clipping parameter κ > 0, the clipped gradient for a sample (x, y)

evaluated at point w is defined as ∇f(x, y, w, κ) := (x·w−y)
|x·w−y|∨κκx. For a collection of samples S,

the clipped gradient ∇f(S,w, κ) is the average of the clipped gradients of all samples in S, i.e.,
∇f(S,w, κ) := 1

|S|
∑

(x,y)∈S ∇f(x, y, w, κ).

The clipping parameter κ controls the level of clipping and for κ = ∞, the clipped and un-
clipped gradients are the same. The clipping step is necessary to make our gradient estimate
more robust, by limiting the influence of the components other than D0 (in lemma C.1), and as
a bonus, we also obtain better tail bounds for the clipped gradients. Theorem C.2 shows that for
κ ≥ Ω(

√
ED0 [(y − x · w)2]), the difference between the expected clipped gradient and the ex-

pected gradient ∥ED0 [(∇f(x, y, w, κ)]− ED0 [(x · w − y)x]∥ is small. Therefore, the ideal value
of κ at point w is Θ(

√
ED0 [(y − x · w)2]).

For the estimate ŵ(r) at step r, the choice of the clipping parameter is represented by κ(r). To
estimate a value for κ(r) that is close to its ideal value, the algorithm employs the subroutine
CLIPEST (presented as Algorithm 4 in the appendix). The subroutine estimates the expected value
of (y−x·ŵ(r))2 by using i.i.d. samples Sb∗,(r)

1 from the distributionD0. According to Theorem D.1
in Appendix D, the subroutine w.h.p. obtains κ(r) which is close to the ideal value. This ensures
that the difference between the expectation of clipped and unclipped gradients is small, and thus,
estimating the expectation of clipped gradients can replace estimating the actual gradients.

7

Subspace Estimation. The algorithm proceeds by using subroutine GRADSUBEST (presented as
Algorithm 5 in Appendix E) with B̂ = B

(r)
s , w = ŵ(r), and κ = κ(r) to estimate a smaller

subspace P (r) within Rd. The objective of this subroutine is to ensure that, with high proba-
bility, the expected clipped gradient for distribution D0 at point ŵ(r) remains largely unchanged
when projected onto the identified subspace. Thus, estimating the expected clipped gradient re-
duces to estimating its projection onto P (r), which requires fewer samples due to the lower di-
mensionality of the subspace. To achieve this, the subroutine constructs a matrix A defined as
E[A] =

∑
i pi EDi

[∇f(x, y, w, κ)]EDi
[∇f(x, y, w, κ)]⊺, where pi denotes the fraction of batches

in B̂ that have samples from Di. Since B
(r)
s are obtained by randomly partitioning Bs, w.h.p.

p0 ≈ αs. It is crucial for the success of the subroutine that the expected contribution of every batch
in the above expression is a PSD matrix. The clipping helps in bounding the contribution of other
components and statistical noise.

The subroutine returns the projection matrix P (r) for the subspace spanned by the top ℓ singular
vectors of A, where we choose ℓ = min{k,Θ(1/αs)}. It is worth noting that when 1/αs is much
smaller than k (thinking of the extreme case k = ∞), our algorithm still only requires estimating
the top ℓ = 1/αs dimensional subspace, since those infinitely many components can create at most
(1/αs−1) directions with weight greater than αs. This along with clipping ensures that the direction
ofD0 must appear in the top Θ(1/αs) subspace (see Lemma E.3). Theorem E.1 in Appendix E char-
acterizes the guarantees for this subroutine. Informally, if B̂ ≥ Ω̃(d/α2), then w.h.p., the expected
value of the projection of the clipped gradient on this subspace is nearly the same as the expected
value of the clipped gradient, namely ∥ED0

[P (r)∇f(x, y, w, κ)] − ED0
[∇f(x, y, w, κ)]∥ is small.

We note that our construction of matrix A for the subroutine is inspired by a similar construction

Algorithm 2 GRADEST

1: Input: A collection of medium batches B̂, a collection of samples S∗ fromD0, κ, w, projection matrix P
for subspace of Rd, parameter ϵ, δ′

2: Output: An estimate of clipped gradient at point w.
3: T1 ← Θ(log |B̂|

δ′) and T2 ← Θ(log 1
δ′)

4: For each b divide Sb into two equal random parts Sb
1 and Sb

2

5: For each b further divide Sb
1 into 2T1 equal random parts, and denote them as {Sb

1,j}j∈[2T1]

6: Divide S∗ into 2T1 equal random parts, and denote them as {S∗
j }j∈[2T1]

7: ζbj :=
(
∇f(Sb

1,j , w, κ)−∇f(S∗
j , w, κ)

)⊺
P ⊺P

(
∇f(Sb

1,T1+j , w, κ)−∇f(S∗
T1+j , w, κ)

)
8: Let B̃ ←

{
b ∈ B̂ : median{ζbj : j ∈ [T1]} ≤ ϵ2κ2C1

}
9: For each b divide Sb

2 into T2 equal parts randomly, and denote them as {Sb
2,j}j∈[T2]

10: For i ∈ [T2], let ∆i ← 1

|B̃|

∑
b∈B̃ P∇f(Sb

2,i, w, κ).
11: Let ξi ← median{j ∈ [T2] : ∥∆i −∆j∥}
12: Let i∗ ← argmin{i ∈ [T2] : ξi} and ∆← ∆i∗

13: Return ∆

in [KSS+20], where they used it for directly estimating regression vectors. Our results general-
ize the applicability of the procedure to provide meaningful guarantees even when the number of
components k = ∞. Additionally, Lemma E.3 improves matrix perturbation bounds in Lemma
5.1 of [KSS+20], which is crucial for applying this procedure for heavy-tailed distributions and
reducing the number of required batches.

Estimating the expectation of clipped gradient projection. The final subroutine, GRADEST,
estimates the expected projection of the clipped gradient. It does this by utilizing two key sets:
B

(r)
m , one of the R partitions of medium-sized batches, and S

b∗,(r)
2 , one of the 2R partitions of the

batch b∗, which contains i.i.d. samples from the reference distribution D0. GRADEST begins by
splitting each batch in B

(r)
m into two equal parts. For each batch b ∈ B

(r)
m , the first part of the split

is used along with samples from D0 in S
b∗,(r)
2 to test whether the expected projection of the clipped

gradient for the distribution that generated batch b is close to that of the reference distribution D0.
With high probability, the algorithm retains batches sampled from D0 and rejects those from other
distributions where the difference in expected projections is significant. This test requires Ω̃(

√
ℓ)

8

samples in each batch, where ℓ is the dimension of the projected clipped gradient, which is same as
the dimension of the estimated subspace in the subspace estimation space.

After identifying the relevant batches, GRADEST estimates the projection of the clipped gradients
using the second half of the samples in these batches. Since the projections of the clipped gradients
lie in an ℓ dimensional subspace, Ω(ℓ) samples suffice for the estimation. To obtain high-probability
guarantees, the procedure uses the median of means approach for both testing and estimation.

The guarantees of the subroutine are described in Theorem F.1, which implies that the estimate ∆(r)

of the gradient satisfies ∥∆(r) − ED0 [P
(r)∇f(x, y, w, κ)]∥ is small.

Estimation guarantees for expected gradient. Using the triangle inequality, we have:

∥∆(r) − ED0
[(x · w − y)x]∥ ≤ ∥ED0

[∇f(x, y, w, κ)]− ED0
[(x · w − y)x]∥

+ ∥ED0
[∇f(x, y, w, κ)]− ED0

[P (r)∇f(x, y, w, κ)]∥+ ∥∆(r) − ED0
[P (r)∇f(x, y, w, κ)]∥.

The first term on the right represents the difference between the expectations of the gradient and the
clipped gradient. The second term captures the difference between the expectation of the clipped
gradient and its projection onto the estimated subspace. Finally, the last term reflects the difference
between the expectation of the projection of the clipped gradient and its estimate.

All expectations are taken with respect to the distribution D0, and both gradients and clipped gra-
dients are evaluated at the point w. Recall that at the beginning of each gradient descent step, w is
updated to the previous round’s estimate of w0.

As previously argued, all three terms on the right side of the inequality are small, which implies that
∆(r) provides an accurate estimate of the expected value of the gradient for distribution D0. More-
over, Lemma G.1 shows that with an accurate estimation of expected gradients, gradient descent
reaches an accurate estimation of w0 after O(log ∥w0∥

σ) steps. Therefore, setting R = Ω(log ∥w0∥
σ)

suffices. This completes the description of the algorithm and the proof sketch of Theorem 2.1, with
a more formal proof available in Appendix H.

4 Empirical Results

Setup. We have sets Bs and Bm of small and medium size batches and k distributions Di for
i ∈ {0, 1, . . . , k−1}. For a subset of indices I ⊆ {0, 1, . . . , k−1}, both Bs and Bm have a fraction
of α batches that contain i.i.d. samples fromDi for each i ∈ I . And for each i ∈ {0, 1, . . . , k−1}\I
in the remaining set of indices, Bs and Bm have (1− |I|α)/(k − |I|) fraction of batches, that have
i.i.d samples from Di. In all figures, the output noise is distributed as N (0, 1). All small batches
have 2 samples each, while medium-size batches have nm samples each, which we vary from 4 to
32, as shown in the plots. We fix data dimension d = 100, α = 1/16, the number of small batches
to |Bs| = min{8dk2, 8d/α2} and the number of medium batches to |Bm| = 256. In all the plots,
we averaged over 10 runs and report the standard error.

5 10 15 20 25 30
0

20

40

60

80
KSSKO(4 samples)
KSSKO(8 samples)
Ours(4 samples)
Ours(8 samples)

 M
SE

 medium batch size

Figure 1: Same input dist., k = 16, large
min. distance between regression vectors.

5 10 15 0 25 30
0

200

400

600

800 KSSKO(4 samples)
KSSKO(8 samples)
Ours(4 samples)
Ours(8 samples)

 M

SE

medium batch size

Figure 2: Different input dist., k = 16, large
min. distance between regression vectors.

Evaluation. Our objective is to recover a small list containing good estimates for the regression
vectors of Di for each i ∈ I . We compare our proposed algorithm’s performance with that of the

9

algorithm in [KSS+20]. Given a new batch, we can choose the weight vector from the returned list,
L that achieves the best error3. Then the MSE of the chosen weight is reported on another new batch
drawn from the same distribution. The size of the new batch can be either 4 or 8 as marked in the
plot. More details about our setup can be found in Appendix L.

Setting in [KSS+20]. We first compare our algorithm with the one in [KSS+20] in the same setting
as the latter paper i.e. with more restrictive assumptions. The results are displayed in Figure 1, where
I = {0, 1, . . . , 15} and all 16 distributions have been used to generate 1/16 fraction of the batches.
All the Di’s are equal to N (0, I), and the minimum distance between the regression vectors is
comparable to their norm. It can be seen that even in the original setting of [KSS+20] our algorithm
significantly outperforms the other at all the different medium batch sizes plotted on the x-axis.

Input distributions. Our algorithm can handle different input distributions for different subgroups.
We test this in our next experiment presented in Figure 2. Specifically, for each i, we randomly
generate a covariance matrix Σi such that its eigenvalues are uniformly distributed in [1, C1], and
the input distribution for Di is chosen as N (0,Σi). We set C1 = 4. It can be seen that [KSS+20]
completely fails in this case, while our algorithm retains its good performance.

In the interest of space, we provide additional results in Appendix L which include even more
general settings: (i) when the minimum distance between regression vectors can be much smaller
than their norm (ii) when the number of subgroups k can be very large but the task is to recover the
regression weights for the subgroups that appear in a sufficient fraction of the batches. In both these
cases, our algorithm performs much better than the baseline.

5 Conclusion

We study the problem of learning linear regression from batched data in the presence of sub-
populations. We removed several restrictive assumptions from prior work and provide better guar-
antees in terms of overall sample complexity. Moreover, we require relatively fewer medium batches
that need to contain less number of samples compared to prior work. Finally, in our empirical results,
we show that our algorithm is both practical and more performant compared to a prior baseline.

One limitation of the algorithm is that it requires knowledge of parameters C, C1, M and σ.
However, note that the algorithm works even if their assumed values exceed the actual values. The
change in the recovery guarantees is proportional to the disparity between the estimates and the
actual parameters. The necessity of knowing reasonable upper bounds on these parameters, even
for simpler problems, has been highlighted by previous work, e.g. [CAT+20].

References

[AJK+22] Jayadev Acharya, Ayush Jain, Gautam Kamath, Ananda Theertha Suresh, and Huanyu
Zhang, Robust estimation for random graphs, Conference on Learning Theory, PMLR,
2022, pp. 130–166.

[BDLS17] S. Balakrishnan, S. S. Du, J. Li, and A. Singh, Computationally efficient robust sparse
estimation in high dimensions, Proceedings of the 30th Conference on Learning The-
ory, COLT 2017, 2017, pp. 169–212.

[BJK15] Kush Bhatia, Prateek Jain, and Purushottam Kar, Robust regression via hard threshold-
ing, Advances in neural information processing systems 28 (2015).

[BJKK17] K. Bhatia, P. Jain, P. Kamalaruban, and P. Kar, Consistent robust regression, Advances
in Neural Information Processing Systems 30: Annual Conference on Neural Informa-
tion Processing Systems 2017, 2017, pp. 2107–2116.

[CAT+20] Yeshwanth Cherapanamjeri, Efe Aras, Nilesh Tripuraneni, Michael I Jordan, Nicolas
Flammarion, and Peter L Bartlett, Optimal robust linear regression in nearly linear
time, arXiv preprint arXiv:2007.08137 (2020).

3This simple approach showed better empirical performance than Algorithm 3, whose theoretical guarantees
we described in Theorem 2.3

10

[CL13] Arun Tejasvi Chaganty and Percy Liang, Spectral experts for estimating mixtures
of linear regressions, International Conference on Machine Learning (ICML), 2013,
pp. 1040–1048.

[CLM20] Sitan Chen, Jerry Li, and Ankur Moitra, Learning structured distributions from un-
trusted batches: Faster and simpler, Advances in Neural Information Processing Sys-
tems 33 (2020), 4512–4523.

[CLS20] Sitan Chen, Jerry Li, and Zhao Song, Learning mixtures of linear regressions in
subexponential time via Fourier moments, STOC, https://arxiv.org/pdf/1912.
07629.pdf, 2020.

[CP22] Yanxi Chen and H. Vincent Poor, Learning mixtures of linear dynamical systems,
Proceedings of the 39th International Conference on Machine Learning (Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato,
eds.), Proceedings of Machine Learning Research, vol. 162, PMLR, 17–23 Jul 2022,
pp. 3507–3557.

[CSV17] Moses Charikar, Jacob Steinhardt, and Gregory Valiant, Learning from untrusted data,
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
2017, pp. 47–60.

[DJKS22] Abhimanyu Das, Ayush Jain, Weihao Kong, and Rajat Sen, Efficient list-decodable
regression using batches, arXiv preprint arXiv:2211.12743 (2022).

[DK20] Ilias Diakonikolas and Daniel M Kane, Small covers for near-zero sets of polynomials
and learning latent variable models, 2020 IEEE 61st Annual Symposium on Founda-
tions of Computer Science (FOCS), IEEE, 2020, pp. 184–195.

[DKK+19] Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Jacob Steinhardt, and
Alistair Stewart, Sever: A robust meta-algorithm for stochastic optimization, Proceed-
ings of the 36th International Conference on Machine Learning, ICML ’19, JMLR,
Inc., 2019, pp. 1596–1606.

[DKP+21] Ilias Diakonikolas, Daniel Kane, Ankit Pensia, Thanasis Pittas, and Alistair Stewart,
Statistical query lower bounds for list-decodable linear regression, Advances in Neural
Information Processing Systems 34 (2021), 3191–3204.

[DKS19] Ilias Diakonikolas, Weihao Kong, and Alistair Stewart, Efficient algorithms and lower
bounds for robust linear regression, Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SIAM, 2019, pp. 2745–2754.

[DT19] Arnak Dalalyan and Philip Thompson, Outlier-robust estimation of a sparse linear
model using ℓ1 -penalized huber’s m-estimator, Advances in neural information pro-
cessing systems 32 (2019).

[FAL17] Chelsea Finn, Pieter Abbeel, and Sergey Levine, Model-agnostic meta-learning for
fast adaptation of deep networks, Proceedings of the 34th International Conference on
Machine Learning (ICML), 2017, pp. 1126–1135.

[Gao20] Chao Gao, Robust regression via mutivariate regression depth, Bernoulli 26 (2020),
no. 2, 1139–1170.

[GKG15] Michael Grottke, Julian Knoll, and Rainer Groß, How the distribution of the number of
items rated per user influences the quality of recommendations, 2015 15th International
Conference on Innovations for Community Services (I4CS), IEEE, 2015, pp. 1–8.

[JLST21] Arun Jambulapati, Jerry Li, Tselil Schramm, and Kevin Tian, Robust regression re-
visited: Acceleration and improved estimation rates, Advances in Neural Information
Processing Systems 34 (2021), 4475–4488.

[JO20a] Ayush Jain and Alon Orlitsky, A general method for robust learning from batches, arXiv
preprint arXiv:2002.11099 (2020).

[JO20b] , Optimal robust learning of discrete distributions from batches, Proceedings of
the 37th International Conference on Machine Learning, ICML ’20, JMLR, Inc., 2020,
pp. 4651–4660.

[JO21] , Robust density estimation from batches: The best things in life are (nearly)
free, International Conference on Machine Learning, PMLR, 2021, pp. 4698–4708.

11

https://arxiv.org/pdf/1912.07629.pdf
https://arxiv.org/pdf/1912.07629.pdf

[KFAL20] Nikola Konstantinov, Elias Frantar, Dan Alistarh, and Christoph Lampert, On the sam-
ple complexity of adversarial multi-source pac learning, International Conference on
Machine Learning, PMLR, 2020, pp. 5416–5425.

[KKK19] Sushrut Karmalkar, Adam Klivans, and Pravesh Kothari, List-decodable linear regres-
sion, Advances in neural information processing systems 32 (2019).

[KKM18] Adam Klivans, Pravesh K Kothari, and Raghu Meka, Efficient algorithms for outlier-
robust regression, Conference On Learning Theory, PMLR, 2018, pp. 1420–1430.

[KP19] Sushrut Karmalkar and Eric Price, Compressed sensing with adversarial sparse noise
via l1 regression, 2nd Symposium on Simplicity in Algorithms, 2019.

[KSAD22] Weihao Kong, Rajat Sen, Pranjal Awasthi, and Abhimanyu Das, Trimmed maximum
likelihood estimation for robust learning in generalized linear models, arXiv preprint
arXiv:2206.04777 (2022).

[KSKO20] Weihao Kong, Raghav Somani, Sham Kakade, and Sewoong Oh, Robust meta-learning
for mixed linear regression with small batches, Advances in Neural Information Pro-
cessing Systems 33 (2020).

[KSS+20] Weihao Kong, Raghav Somani, Zhao Song, Sham Kakade, and Sewoong Oh, Meta-
learning for mixed linear regression, International Conference on Machine Learning,
PMLR, 2020, pp. 5394–5404.

[KZS15] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov, Siamese neural networks
for one-shot image recognition, ICML deep learning workshop, vol. 2, 2015.

[LL18] Yuanzhi Li and Yingyu Liang, Learning mixtures of linear regressions with nearly
optimal complexity, COLT, arXiv preprint arXiv:1802.07895, 2018.

[LM16] Guillaume Lecué and Shahar Mendelson, Performance of empirical risk minimization
in linear aggregation.

[LSLC18] Liu Liu, Yanyao Shen, Tianyang Li, and Constantine Caramanis, High dimensional
robust sparse regression, arXiv preprint arXiv:1805.11643 (2018).

[MGJK19] Bhaskar Mukhoty, Govind Gopakumar, Prateek Jain, and Purushottam Kar, Globally-
convergent iteratively reweighted least squares for robust regression problems, The
22nd International Conference on Artificial Intelligence and Statistics, 2019, pp. 313–
322.

[Oli16] Roberto Imbuzeiro Oliveira, The lower tail of random quadratic forms with applica-
tions to ordinary least squares, Probability Theory and Related Fields 166 (2016),
1175–1194.

[OLL18] Boris Oreshkin, Pau Rodrı́guez López, and Alexandre Lacoste, Tadam: Task depen-
dent adaptive metric for improved few-shot learning, Advances in Neural Information
Processing Systems, 2018, pp. 721–731.

[PJL20] Ankit Pensia, Varun Jog, and Po-Ling Loh, Robust regression with covariate filtering:
Heavy tails and adversarial contamination, arXiv preprint arXiv:2009.12976 (2020).

[PMSG22] Soumyabrata Pal, Arya Mazumdar, Rajat Sen, and Avishek Ghosh, On learning mixture
of linear regressions in the non-realizable setting, International Conference on Machine
Learning, PMLR, 2022, pp. 17202–17220.

[PSBR18] Adarsh Prasad, Arun Sai Suggala, Sivaraman Balakrishnan, and Pradeep Ravikumar,
Robust estimation via robust gradient estimation, arXiv preprint arXiv:1802.06485
(2018).

[PT08] Yoon-Joo Park and Alexander Tuzhilin, The long tail of recommender systems and how
to leverage it, Proceedings of the 2008 ACM conference on Recommender systems,
2008, pp. 11–18.

[QV18] Mingda Qiao and Gregory Valiant, Learning discrete distributions from untrusted
batches, Proceedings of the 9th Conference on Innovations in Theoretical Computer
Science (Dagstuhl, Germany), ITCS ’18, Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, 2018, pp. 47:1–47:20.

[RL17] Sachin Ravi and Hugo Larochelle, Optimization as a model for few-shot learning, In-
ternational Conference on Representation Learning, 2017.

12

[RRS+18] Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Si-
mon Osindero, and Raia Hadsell, Meta-learning with latent embedding optimization,
arXiv preprint arXiv:1807.05960 (2018).

[RY20] Prasad Raghavendra and Morris Yau, List decodable learning via sum of squares, Pro-
ceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SIAM, 2020, pp. 161–180.

[Sch87] Jürgen Schmidhuber, Evolutionary principles in self-referential learning, or on learn-
ing how to learn: the meta-meta-... hook, Ph.D. thesis, Technische Universität
München, 1987.

[SJA16] Hanie Sedghi, Majid Janzamin, and Anima Anandkumar, Provable tensor methods for
learning mixtures of generalized linear models, Artificial Intelligence and Statistics
(AISTATS), 2016, pp. 1223–1231.

[SVC16] Jacob Steinhardt, Gregory Valiant, and Moses Charikar, Avoiding imposters and delin-
quents: Adversarial crowdsourcing and peer prediction, Advances in Neural Informa-
tion Processing Systems 29 (2016).

[TLW99] Kai Ming Ting, Boon Toh Low, and Ian H Witten, Learning from batched data: Model
combination versus data combination, Knowledge and Information Systems 1 (1999),
83–106.

[TP12] Sebastian Thrun and Lorien Pratt, Learning to learn, Springer Science & Business
Media, 2012.

[TV23] Nelvin Tan and Ramji Venkataramanan, Mixed regression via approximate message
passing, Journal of Machine Learning Research 24 (2023), no. 317, 1–44.

[TZD+19] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Kelvin Xu,
Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and Hugo
Larochelle, Meta-dataset: A dataset of datasets for learning to learn from few exam-
ples, arXiv preprint arXiv:1903.03096 (2019).

[WCX+21] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan
Al-Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al.,
A field guide to federated optimization, arXiv preprint arXiv:2107.06917 (2021).

[WDVR06] Jun Wang, Arjen P De Vries, and Marcel JT Reinders, Unifying user-based and item-
based collaborative filtering approaches by similarity fusion, Proceedings of the 29th
annual international ACM SIGIR conference on Research and development in infor-
mation retrieval, 2006, pp. 501–508.

[WZ89] Mati Wax and Ilan Ziskind, On unique localization of multiple sources by passive sen-
sor arrays, IEEE Transactions on Acoustics, Speech, and Signal Processing 37 (1989),
no. 7, 996–1000.

[YCS14] Xinyang Yi, Constantine Caramanis, and Sujay Sanghavi, Alternating minimization for
mixed linear regression, International Conference on Machine Learning, PMLR, 2014,
pp. 613–621.

[YCS16] , Solving a mixture of many random linear equations by tensor decomposition
and alternating minimization, arXiv preprint arXiv:1608.05749 (2016).

[ZJD16] Kai Zhong, Prateek Jain, and Inderjit S Dhillon, Mixed linear regression with mul-
tiple components, Advances in neural information processing systems (NIPS), 2016,
pp. 2190–2198.

13

A Other related work

Meta Learning. The setting we considered in this paper is closely related to meta learning if we
treat each batch as a task. Meta-learning approaches aim to jointly learn from past experience to
quickly adapt to new tasks with little available data [Sch87, TP12]. This is particularly significant in
our setting when each task is associated with only a few training examples. By leveraging structural
similarities among those tasks (e.g. sub-population structure), meta-learning algorithms achieve far
better accuracy than what can be achieved for each task in isolation [FAL17, RL17, KZS15, OLL18,
TZD+19, RRS+18]. Learning mixture of linear dynamical systems has been studied in [CP22].

Robust and List decodable Linear Regression. Several recent works have focused on obtaining
efficient algorithms for robust linear regression and sparse linear regression when a small fraction of
data may be adversarial [BJK15, BJKK17, BDLS17, Gao20, PSBR18, KKM18, DKK+19, LSLC18,
KP19, DT19, MGJK19, DKS19, KKK19, PJL20, CAT+20, JLST21, KSAD22].

In scenarios where over half of the data may be arbitrary or adversarial, it becomes impossible to
return a single estimate for the underlying model. Consequently, the requirement is relaxed to return
a small list of estimates such that at least one of them is a good estimate for the underlying model.
This relaxed framework, called “List decodable learning,” was first introduced in [CSV17]. List-
decodable linear regression has been studied by [KKK19, RY20, DKP+21], who have provided
exponential runtime algorithms. Additionally, [DKP+21] has established statistical query lower
bounds, indicating that polynomial-time algorithms may be impossible for this setting. However, as
mentioned earlier, the problem can be solved in polynomial time in the batch setting as long as the
batch size is greater than the inverse of the fraction of genuine data, as demonstrated in [DJKS22].
It’s worth noting that an algorithm for list-decodable linear regression can be used to obtain a list of
regression vector estimates for mixed linear regression.

Robust Learning from Batches. [QV18] presented the problem of robust learning of discrete
distributions from untrustworthy batches, where a majority of batches share the same distribution
and a small fraction are adversarial. They developed an exponential time algorithm for the problem.
Subsequent works [CLS20] improved the run-time to quasi-polynomial, while and [JO20b] derived
a polynomial time algorithm with an optimal sample complexity. The results were extended to
learning one-dimensional structured distributions in [JO21, CLM20], and classification in [JO20a,
KFAL20]. [AJK+22] examined a closely related problem of learning the parameters of an Erdős-
Rényi random graph when a portion of nodes may be corrupted and their edges are maybe be chosen
by an adversary.

B Selecting a regression vector from a given list

In this section, we introduce Algorithm 3 and prove that it achieves the guarantees presented in
Theorem 2.3.

Algorithm 3 SELECTING THE REGRESSION VECTOR

1: Input: Samples S from Di for some i ∈ I , C1, a list L of possible estimates of wi, and β ≥ 0
s.t. β ≥ minw∈L ∥w − wi∥.

2: Output: An estimate of wi∗ from list L
3: Divide S into T3 = Θ(log(|L|/δ)) equal parts {Sj}T3

j=1

4: while max{∥w − w′∥ : w,w′ ∈ L} ≥ 12C1β do
5: pick any w,w′ ∈ L s.t. ∥w − w′∥ ≥ 12C1β.
6: For j ∈ [T3], let aj ←

∑
(x,y)∈Sj

1
|Sj | (x · w − y)x · (w − w′)

7: a← Median{aj : j ∈ [T3]}
8: If a > ∥w − w′∥2/4 remove w, else remove w′ from L
9: end while

10: Return any of the remaining w ∈ L

Without loss of generality, assume i = 0, and let w∗ = argminw∈L ∥w − w0∥. From the
condition in the theorem, we know that ∥w∗ − w0∥ ≤ β. The algorithm is given access to
|S| = Ω(max 1, σ2

β2 log
|L|
δ) samples. The algorithm chooses any two vectors w,w′ ∈ L that are

14

more than 12C1β distance apart and tests which of them is more likely to be within β distance from
w0 using samples in S. The algorithm performs T3 = Θ(log |L|

δ) such tests and takes the majority
vote. It retains the vector that is more likely to be closer to w and discards the other from L. The
algorithm terminates when all the vectors in L are within a distance of 12C1β from each other, by
choosing a vector from those remaining in L and returning it as an estimate of w0. If w∗ is retained
in L until the end, using the simple triangle inequality for all w that remain in L at the end, we have
∥w − w0∥ ≤ ∥w − w∗∥ + ∥w∗ − w0∥ ≤ 12C1β + β ≤ 13C1β = O(β). Therefore, the estimate
returned by the algorithm achieves the desired accuracy in estimating w0. Hence, it suffices to show
that w∗ is retained at the end with high probability.

Suppose w∗ is not in the final list L. Then it must have been discarded by the test in favor of
w̃ ∈ L such that ∥w∗ − w̃∥ ≥ 12C1β. The following theorem shows that for any w̃ such that
∥w∗ − w̃∥ ≥ 12C1β, the probability of the testing procedure rejecting w∗ in favor of w̃ is at most
δ/|L|.
Theorem B.1. Given β > 0, list L, and samples S from D0, if minw∈L ∥w − w0∥ ≤ β and
|S| = max{1, σ2

β2 } log L
δ , then for the parameter a computed in the while loop of Algorithm 3, with

probability 1− δ/|L|, we have a ≤ ∥w − w′∥2/4 if w = w0 and a > ∥w − w′∥2/4 if w′ = w0.

The testing procedure utilized in the algorithm is based on gradients. Specifically, it calculates
the average of the gradient computed on samples at point w projected onto the vector (w − w′).
The expected value of the gradient at w, and its projection onto (w − w′), are (w − w0)

⊺Σ0 and
(w − w0)

⊺Σ0(w − w′), respectively. If w ≈ w0, then the expected projection will be small. On the
other hand. if w′ ≈ w0 and w, then expected value of projection is ≈ (w − w′)⊺Σ0(w − w′) ≳
∥w − w′∥2. Using these observations, we prove Theorem B.1 in the next subsection.

Finally, since the maximum number of comparisons made by the algorithm is |L|−1, a union bound
ensures that w∗ will be retained until the end with probability greater than 1 − δ, completing the
proof of Theorem 2.3.

B.1 Proof of Theorem B.1

Proof. Note that a is the median of the set {aj : j ∈ [T3]}, where each aj is computed using
different sets of i.i.d. samples. Consequently, {aj}j∈[T3] are also i.i.d random variables.

We begin by calculating the expected value of aj . Using the linearity of expectations, we have:

E[aj]
(a)
= E

[∑
(x,y)∈Sj

1
|Sj | (x · w − y)x · (w − w′)

]
(b)
= ED0

[(x · w − y)x · (w − w′)]

= ED0
[(x · (w − w0)− (y − x · w0))x · (w − w′)]

= ED0 [(x · (w − w0)x · (w − w′)]− ED0 [(y − x · w0)x · (w − w′)]

= ED0
[x · (w − w0)x · (w − w′)] (1)

(c)
= ED0

[(x · (w − w′))2] + ED0
[x · (w′ − w0)x · (w − w′)], (2)

here, (a) follows from the definition of aj , (b) follows from the linearity of expectation, and since
Sj contains i.i.d. samples from D0, (c) follows as the noise y − x · w0 has a zero mean and is
independent of x.

Next, we compute the variance of aj . Since aj represents the average of (x · w − y)x · (w − w′)
over |Sj | i.i.d. samples, we have

Var(aj) =
1

|Sj |
VarD0

((x · w − y)x · (w − w′))

≤ 1

|Sj |
ED0

[
((x · w − y)x · (w − w′))

2
]
. (3)

By applying Chebyshev’s inequality, with a probability ≥ 3/4, the following holds for each aj :

E[aj]− 2Var(aj) ≤ aj ≤ E[aj] + 2Var(aj). (4)

15

First, we consider the case when w = w∗. In this case, we have ∥w0 − w∥ ≤ β.

Using Equation (3), we can express the variance of aj as follows:

Var(aj) ≤
1

|Sj |
ED0

[
((x · w − y)x · (w − w′))

2
]

=
1

|Sj |
ED0

[
(x · (w − w0)x · (w − w′) + (w0 · x− y)x · (w − w′))

2
]

≤ 2

|Sj |

(
ED0

[
(x · (w − w0)x · (w − w′))

2
]
+ ED0

[
((w0 · x− y)x · (w − w′))

2
])

,

where the last step uses the fact that for any u, v ∈ R, (u+ v)2 ≤ 2u2 + 2v2.

Next, we bound the two terms on the right. For the first term, we have

ED0

[
(x · (w − w0)x · (w − w′))

2
]
≤
√

ED0
[(x · (w − w0))4]ED0

[(x · (w − w′))4]

≤ CED0 [(x · (w − w0))
2]ED0 [(x · (w − w′))2]. (5)

For the second term, we have:

ED0

[
((w0 · x− y)x · (w − w′))

2
]
= ED0

[
(w0 · x− y)2

]
ED0

[
(x · (w − w′))

2
]

= σ2 ED0

[
(x · (w − w′))

2
]
, (6)

where the first inequality follows from assumption 1a and the second inequality follows from as-
sumption 1b.

Combining the above three equations, we obtain:

Var(aj) ≤
2

|Sj |
ED0

[
(x · (w − w′))

2
](
C ED0

[(x · (w − w0))
2] + σ2

)
≤ 2

|Sj |
C1∥w − w′∥2

(
CC1∥w − w0∥2 + σ2

)
,

where the last inequality uses assumption 1b.

Using Equation (1), the Cauchy-Schwarz inequality, and assumption 1b, we have:

E[aj] ≤ C1∥w − w0∥ · ∥w − w′∥. (7)

Combining the two equations above, we obtain:

E[aj] + 2
√
Var(aj) ≤ ∥w − w′∥

(
C1∥w − w0∥+

2
√
2C1√
|Sj |

(
σ +

√
CC1∥w − w0∥

))
(a)

≤ ∥w − w′∥

(
C1β +

√
8C1√
|Sj |

σ +

√
8CC1√
|Sj |

β

)
(b)

≤ 3C1∥w − w′∥β
(c)

≤ ∥w − w′∥2

4
,

here, in (a), we use w = w∗, which implies ∥w − w0∥ ≤ β, in (b), we utilize |Sj | ≥ 48C and
|Sj | ≥ 12σ2

C1β2 , in (c), we use the fact that for any w and w′ in the while loop of the algorithm,

∥w − w′∥ ≥ 12C1β. Consequently, it follows from Equation (4) that each aj ≤ ∥w−w′∥2

4 with

probability ≥ 3/4. Hence, with probability ≥ 1− δ the median of aj is ≤ ∥w−w′∥2

4 .

16

Next, we consider the case when w′ = w∗. Firstly, we bound the variance using Equation (3):

Var(aj) ≤
1

|Sj |
ED0

[
((x · w − y)x · (w − w′))

2
]

=
1

|Sj |
ED0

[(
(x · (w − w′))2 + x · (w′ − w0)x · (w − w′) + (w0 · x− y)x · (w − w′)

)2]
(a)

≤ 3

|Sj |

(
ED0

[
((w − w′) · x)4

]
+ ED0

[
(x · (w′ − w0)x · (w − w′))

2
]

(8)

+ ED0

[
((w0 · x− y)x · (w − w′))

2
])

(b)

≤ 3

|Sj |

(
C ED0

[
(x · (w − w′))

2
]2

+
(
C ED0

[(x · (w′ − w0))
2] + σ2

)
ED0

[(x · (w − w′))2]

)
(c)

≤ 3

|Sj |

(√
C ED0

[
(x · (w − w′))

2
]
+
(√

C ED0 [(x · (w′ − w0))2] + σ
)√

ED0 [(x · (w − w′))2]
)2

.

In (a), we use the fact that for any t, u, v ∈ R, (t + u + v)2 ≤ 3t2 + 3u2 + 3v2. In (b) the first
term is bounded using assumption 1a, the bound on the second term can be obtained similarly to
Equation (5), and the bound on the last term is from Equation (6). Finally, in (c) we use the fact that
for any t, u, v ≥ 0, (t+ u+ v)2 ≤ t2 + u2 + v2.

Using Equation (2) and the equation above, we get

E[aj]− 2
√
Var(aj) ≥ ED0

[(x · (w − w′))2] + ED0
[x · (w′ − w0)x · (w − w′)]

− 2
√
3√
|Sj |

(√
C ED0

[
(x · (w − w′))

2
]
+
(√

C ED0 [(x · (w′ − w0))2] + σ
)√

ED0 [(x · (w − w′))2]
)

(a)

≥

(
1−
√
12C√
|Sj |

)
ED0

[(x · (w − w′))2]−
√

ED0
[(x · (w′ − w0))2]

√
ED0

[(x · (w − w′))2]

−
√
12√
|Sj |

((√
C ED0 [(x · (w′ − w0))2] + σ

)√
ED0 [(x · (w − w′))2]

)
(b)

≥

(
1

2

√
ED0

[(x · (w − w′))2]− 3

2

√
ED0

[(x · (w′ − w0))2]−
√
12√
|Sj |

σ

)√
ED0

[(x · (w − w′))2]

(c)

≥
(
1

2

√
ED0

[(x · (w − w′))2]− 3

2

√
ED0

[(x · (w′ − w0))2]−
√

C1β

)√
ED0

[(x · (w − w′))2],

here, in (a) we use the Cauchy-Schwarz inequality, (b) follows from |Sj | ≥ 48C, and (c) utilizes
|Sj | ≥ 12σ2

C1β2 . Next, we have:

1

2

√
ED0

[(x · (w − w′))2]− 3

2

√
ED0

[(x · (w′ − w0))2]−
√

C1β (9)

(a)

≥ 1

2
∥w − w′∥ − 3

2

√
C1∥w′ − w0∥ −

√
C1β

(b)

≥ 1

2
∥w − w′∥ − 5

2

√
C1β

(c)
>

1

4
∥w − w′∥, (10)

here in (a), we use assumption 1b, (b) relies on w′ = w∗, which implies ∥w′−w0∥ ≤ β, and (c) uses
the fact that for any w and w′ in the while loop of the algorithm, ∥w − w′∥ ≥ 12C1β and C1 ≥ 1.

Combining the above two equations, we obtain

E[aj]− 2
√
Var(aj) >

1

4
∥w − w′∥2.

Then from Equation (4) it follows that each aj > ∥w−w′∥2

4 with probability ≥ 3/4. Hence, with

probability ≥ 1− δ/|L| the median of aj is > ∥w−w′∥2

4 .

17

C Properties of Clipped Gradients

The norm of the expected value and covariance of unclipped gradients for components other than
D0 can be significantly larger than D0, acting as noise in the recovery process of D0. When using
unclipped gradients, the algorithm’s batch size and the number of batches must increase to limit the
effect of these noisy components. And while the norm of the expected value and covariance of the
unclipped gradient for D0 follows desired bounds, the maximum value of the unclipped gradient is
unbounded, posing difficulties in applying concentration bounds. The following lemma shows that
the clipping operation described in the main paper is able to address these challenges.
Lemma C.1. Let S be a collection of random samples drawn from distribution Di for some i ∈
{0, 1, ..., k− 1}. For any κ ≥ 0 and w ∈ Rd, the clipped gradient satisfies the following properties:

1. ∥E[∇f(S,w, κ)]∥ ≤ κ
√
C1,

2. ∥Cov(∇f(S,w, κ))∥ ≤ 1
|S|κ

2C1,

3. ∥∇f(S,w, κ)∥ ≤ κC2

√
d almost surely,

4. E
[
∥∇f(S,w, κ)∥2

]
≤ C1κ

2d,

5. for all unit vectors u,
∥∥E[(∇f(S,w, κ) · u)2]∥∥ ≤ κ2C1.

This lemma implies that for smaller values of κ, the norm of the expectations and covariance of
clipped gradients is bounded by a smaller upper limit. The proof of the lemma is presented in
Subsection C.1.

The following theorem demonstrates that by appropriately choosing a sufficiently large value of κ,
the norm of the expected difference between the clipped and unclipped gradients for distribution D0

can be small:
Theorem C.2. For any ϵ > 0, κ2 ≥ 8CC1 ED0

[(y − x · w)2]/ϵ the norm of difference between
expected clipped gradient ED0

[(∇f(x, y, w, κ)] and expected unclipped gradient ED0
[(w ·x−y)x]

is at most,

∥ED0
[(∇f(x, y, w, κ)]− ED0

[(w · x− y)x]∥ ≤ ϵ∥w − w0∥,
where ED0

[(w · x− y)x] = Σ0(w − w0).

The theorem shows in order to estimate the expectation of gradients at point w for distribution D0,
it is sufficient to estimate the expectation of clipped gradients at point w, as long as the clipping

parameter κ is chosen to be at least Ω
(√

ED0
[(y−x·w)2]

ϵ

)
.

Intuitively, when κ is much larger than ED0
[|y − x · w|], with high probability the clipped and

unclipped gradients at point w for a random sample from D0 will be identical. The proof of the
theorem is a bit more nuanced and involves leveraging the symmetry of noise distribution and L4−
L2 hypercontractivity of distribution of x. The proof appears in Subsection C.2.

In the algorithm, we set κ to approximately Θ(
√

(ED0 [(y − x · w)2] + σ2)/ϵ). This choice ensures
that κ is close to the minimum value recommended by Theorem C.2 for preserving the gradient
expectation of D0. By selecting a small κ, we ensure a tighter upper bound on the expectation and
covariance of the clipped gradient for other components, as described in Lemma C.1. The use of the
clipping operation also assists in obtaining improved bounds on the tails of the gradient by limiting
the maximum possible norm of the gradients after clipping, as stated in item 3 of the lemma.

C.1 Proof of Lemma C.1

Proof. Since ∇f(S,w, κ) is average of clipped gradients of |S| independent samples from Di, it
follows that

a) E[∇f(S,w, κ)] = EDi [∇f(x, y, w, κ)],

b) Cov(∇f(S,w, κ)) = 1
|S|CovDi

(∇f(x, y, w, κ)),

18

c) ∥∇f(S,w, κ)∥ ≤ ess sup(x,y)∼Di
∥∇f(x, y, w, κ)∥ a.s.,

d) E
[
∥∇f(S,w, κ)∥2

]
≤ EDi

[
∥∇f(x, y, w, κ)∥2

]
, and

e) for all vectors u,
∥∥E[(∇f(S,w, κ) · u)2]∥∥ ≤ ∥∥∥EDi

[
(∇f(x, y, w, κ) · u)2

]∥∥∥.

We will now proceed to prove the five claims in the lemma by using these properties.

Firstly, we can analyze the expected norm of EDi [∇f(x, y, w, κ)] as follows:

∥EDi
[∇f(x, y, w, κ)]∥ = max

∥u∥
∥EDi

[(∇f(x, y, w, κ) · u)]∥

≤ max
∥u∥
∥EDi [(∇f(x, y, w, κ) · u)2]1/2∥

≤ max
∥u∥
∥EDi

[(κx · u)2]1/2∥ ≤ κ
√
C1,

here the first inequality follows from the Cauchy–Schwarz inequality and the last inequality follows
from assumptions on distributions Di. Combining the above inequality with item a) above proves
the first claim in the lemma.

Next, to prove the second claim in the lemma, we first establish bounds for the norm of the covari-
ance of the clipped gradient of a random sample:

∥CovDi
(∇f(x, y, w, κ))∥ = max

∥u∥
VarDi

(∇f(x, y, w, κ) · u)

≤ max
∥u∥

EDi
[(∇f(x, y, w, κ) · u)2]

≤ max
∥u∥

EDi [(κx · u)2] ≤ κ2C1.

By using the above bound and combining it with item b), we establish the second claim in the lemma.

To prove the third item in the lemma, we first bound the norm of the clipped gradient:

ess sup
(x,y)∼Di

∥∇f(x, y, w, κ)∥ ≤ κ ess sup
(x,y)∼Di

∥x∥ ≤ κC2

√
d.

We then combine this bound with item c) to prove the third claim in the lemma.

Next, we bound the expected value of the square of the norm of the clipped gradient of a random
sample,

EDi

[
∥∇f(x, y, w, κ)∥2

]
≤ EDi

[
κ2∥x∥2

]
= κ2Tr(Σi) ≤ κ2d∥Σi∥ ≤ C1κ

2d.

This bound, combined with item d), proves the fourth claim in the lemma.

Finally, for any unit vector u, we bound∥∥∥EDi

[
(∇f(x, y, w, κ) · u)2

]∥∥∥ ≤ κ2
∥∥∥EDi

[
(x · u)2

]∥∥∥ ≤ κ2∥Σi∥ ≤ κ2C1.

This bound, combined with item e), shows the fifth claim in the lemma.

C.2 Proof of Theorem C.2

We will utilize the following auxiliary lemma in the proof of the theorem. This lemma applies to
general random variables.
Lemma C.3. For any a ∈ R, b > 0 and a symmetric random variable z,∣∣∣∣E[(a+ z)− (a+ z)b

max(|a+ z|, b)

]∣∣∣∣ ≤ 2|a|Pr(z > b− |a|)

Proof. We assume a ≥ 0 and prove the lemma for this case. The statement for a < 0 case then
follows from symmetry.

19

We rewrite the term inside the expectation in terms of indicator random variables:

(a+ z)− (a+ z)b

max(|a+ z|, b)
= (a+ z − b) · 1(z > b− a) + (a+ z + b) · 1(z < −b− a)

= (a+ z − b) · 1(b− a < z ≤ b+ a) + (a+ z − b) · 1(z > b+ a) + (a+ z + b) · 1(z < −b− a).

Taking the expectation on both sides,

E
[
(a+ z)− (a+ z)b

max(|a+ z|, b)

]
= E[(a+ z − b) · 1(b− a < z ≤ b+ a)] + E[(a+ z − b) · 1(z > b+ a)]

+ E[(a+ z + b) · 1(z < −b− a)]

= E[(a+ z − b) · 1(b− a < z ≤ b+ a)] + 2aPr(z > b+ a),

where the last step follows because z is symmetric.

Next,∣∣∣∣E[(a+ z)− (a+ z)b

max(|a+ z|, b)

]∣∣∣∣ = E[|a+ z − b| · 1(b− a < z ≤ b+ a)] + 2|a|Pr(z > b+ a)

≤ E[|2a| · 1(b− a < z ≤ b+ a)] + 2|a|Pr(z > b+ a)

≤ 2|a|Pr(b− a < z ≤ b+ a) + 2|a|Pr(z > b+ a)

= 2|a|Pr(z > b− a).

Next, we proceed with the proof of Theorem C.2 using the aforementioned lemma.

Proof of Theorem C.2. Let (x, y) be a random sample from distribution D0, and let η = y − w0 · x
denote the noise. Recall that η is independent of x.

Note that:

(w · x− y)x = ((w − w0) · x− η)x.

We will now evaluate the expected value of the unclipped gradient.

ED0 [(w · x− y)x] = ED0 [((w − w0) · x− η)x] = ED0 [((w − w0) · x)x] = Σ0(w − w0). (11)

Next, we will bound the norm of the expected value of (w·x−y)x−∇f(x, y, w, κ), which represents
the difference between the clipped gradient and the true gradient. We first expand this expression:

(w · x− y)x−∇f(x, y, w, κ) =
(
(w · x− y)− (w · x− y)

|w · x− y| ∨ κ
κ

)
x

=

(
((w − w0) · x− η)− ((w − w0) · x− η)

|(w − w0) · x− η| ∨ κ
κ

)
x. (12)

Next, by applying Lemma C.3, we have

E η

[
((w − w0) · x− η)− ((w − w0) · x− η)

|(w − w0) · x− η| ∨ κ
κ

]
≤ 2|(w − w0) · x| · Pr(η > κ− |(w − w0) · x|).

Note that in the above expectation, we fixed x and took the expectation over noise η.

Let Z := 1(|x · (w − w0)| ≥ κ/2). Observe that Pr(η > κ− |(w−w0) · x|) ≤ Z +Pr(η > κ/2).
Combining this observation with the above equation, we have:

E η

[
((w − w0) · x− η)− ((w − w0) · x− η)

|(w − w0) · x− η| ∨ κ
κ

]
≤ 2|(w − w0) · x| · (Pr(η > κ/2) + Z).

(13)

20

Then, for any unit vector v ∈ Rd, we have
|ED0

[((w · x− y)x−∇f(x, y, w, κ)) · v]|
= |E x∼D0 [E η∼D0 [((w · x− y)x−∇f(x, y, w, κ)) · v]]|
≤ E x∼D0 [|E η∼D0 [((w · x− y)x−∇f(x, y, w, κ)) · v]|]
≤ E x∼D0 [2|(w − w0) · x| · |x · v|(Z + Pr(η > κ/2))]

≤ 2ED0
[Z · |(w − w0) · x| · |x · v|] + 2Pr(η > κ/2)ED0

[|(w − w0) · x| · |x · v|], (14)
here the second last inequality follows from Equation (12) and Equation (13). Next, we bound the
two terms on the right one by one. We start with the first term:

ED0
[Z · |(x · (w − w0))(x · v)|]

(a)
≤
(
E[(Z)2] · ED0

[(x · (w − w0))
2(x · v)2]

)1/2
(b)
≤
(
E[Z] · ED0

[(x · (w − w0))
4]1/2 ED0

[(x · v)4]1/2
)1/2

(c)
≤
(
E[Z] · C ED0

[(x · (w − w0))
2]ED0

[(x · v)2]
)1/2

(d)
≤
(
CC1 Pr[|x · (w − w0)| ≥ κ/2] · ED0

[(x · (w − w0))
2]
)1/2

,
(15)

where (a) used the Cauchy-Schwarz inequality, (b) used the fact that Z is an indicator random
variable, hence, Z2 = Z, and the Cauchy-Schwarz inequality, (c) uses L4− L2 hypercontractivity,
and (d) follows from the definition of Z and the assumption that ∥Σ0∥ ≤ C1.

Similarly, we can show that

ED0 [|(w − w0) · x| · |x · v|] ≤
(
C1 ED0 [(x · (w − w0))

2]
)1/2

. (16)

Applying the Markov inequality to η2 we get:

Pr[|η| ≥ κ/2] ≤ ED0
[η2]

(κ/2)2
. (17)

Similarly, applying the Markov inequality to |x · (w − w0)|4 yields:

Pr[|x · (w − w0)| ≥ κ/2] ≤ ED0
[|x · (w − w0)|4]

(κ/2)4
≤ C ED0

[|x · (w − w0)|2]2

(κ/2)4
, (18)

where the last inequality uses L4− L2 hypercontractivity.

Combining Equations (14), (15), (16), (17) and (18), we have
|ED0 [((w · x− y)x−∇f(x, y, w, κ)) · v]|

≤
8C
√
C1

(
ED0

[(x · (w − w0))
2]
)3/2

κ2
+

8
√
C1 ED0

[η2]
(
ED0

[(x · (w − w0))
2]
)1/2

κ2

≤
8C
√
C1

(
ED0

[(x · (w − w0))
2]
)1/2

(
(
ED0

[(x · (w − w0))
2]
)
+ ED0

[η2]/C)

κ2

(a)

≤
ϵ
(
ED0

[(x · (w − w0))
2]
)1/2

√
C1

·
(
(
ED0

[(x · (w − w0))
2]
)
+ ED0

[η2]/C)

ED0
[(y − x · w)2]

(b)

≤ ϵ∥w − w0∥ ·
(
(
ED0

[(x · (w − w0))
2]
)
+ ED0

[η2])

ED0 [(y − x · w)2]
(c)
= ϵ∥w − w0∥,

here inequality (a) follows from the lower bound on κ2 in theorem, inequality (b) follows from
Assumption 1b and C ≥ 1, and the last equality follows since y − x · w = x(w − w0) + η, and x
and η are independent.

Note that the above bound holds for all unit vectors v, therefore,
∥ED0

[((w · x− y)x−∇f(x, y, w, κ))]∥ ≤ max
∥v∥

ED0
[((w · x− y)x−∇f(x, y, w, κ))] · v ≤ ϵ∥w − w0∥.

21

D Estimation of clipping parameter

Algorithm 4 CLIPEST

1: Input: A collection of samples S∗ from D0, w, ϵ, δ′, σ, C, and C1.
2: Output: clipping parameter κ
3: T ← Θ(log 1/δ′)
4: Divide S∗ into T equal parts randomly, and denote them as {S∗

j }j∈[T]

5: θ ← Median
{

1
|S∗

j |
∑

(x,y)∈S∗
j
(x · w − y)2 : j ∈ [T]

}
6: κ←

√
32(C+1)C1(θ+17σ2)

ϵ

7: Return κ

In round r, to set κ ≈
√
ED0 [(y − x · w)2]/ϵ at point w = ŵ(r), the main algorithm 1 runs subrou-

tine CLIPEST 4 for S∗ = S
b∗,(r)
1 and w = ŵ(r). Recall that Sb∗,(r)

1 is collection of i.i.d. samples
from D0. Using these samples this subroutine estimates ED0 [(y − x · w)2] at w = ŵ(r) using the
median of means and then use it to obtain κ in the desired range. The following theorem provides
the guarantees on the estimation of κ by this subroutine.
Theorem D.1. For ϵ > 0, T ≥ Ω(log 1/δ′) and |S∗| ≥ 64C2T and w ∈ Rd. With probability
≥ 1− δ′, the clipping parameter κ returned by subroutine CLIPEST satisfy,√

8(C+1)C1·ED0
[(y−x·w)2]

ϵ ≤ κ ≤ 28

√
2(C+1)C1(ED0

[((w−w0)·x)2]+σ2)
ϵ .

To prove the theorem, we will make use of the following lemma:
Lemma D.2. Let S be a collection of m ≥ 64C2 i.i.d. samples from D0 and w ∈ Rd, then with
probability at least 7/8, the following holds:

1

4
ED0

[(w · x− y)2]− 17σ2 ≤ 1

m

∑
(x,y)∈S

(y − w · x)2 ≤ 3ED0
[((w − w0) · x)2] + 32σ2.

Proof. We start by expanding the expression:
1

m

∑
(x,y)∈S

(w · x− y)2 =
1

m

∑
(x,y)∈S

((w − w0) · x+ (w0 · x− y))2

=
1

m

∑
(x,y)∈S

(
((w − w0) · x)2 + 2((w − w0) · x)(w0 · x− y) + (w0 · x− y)2

)
≥ 1

m

∑
(x,y)∈S

(
1

2
((w − w0) · x)2 − (w0 · x− y)2

)
, (19)

where the last inequality follows since for any a, b, we have a2 + 2ab+ b2 ≥ a2/2− b2.

Similarly, we can show:
1

m

∑
(x,y)∈S

(w · x− y)2 ≤ 1

m

∑
(x,y)∈S

(
2((w − w0) · x)2 + 2(w0 · x− y)2

)
. (20)

Since S contains independent samples from D0, we have:

E

 1

m

∑
(x,y)∈S

(((w − w0) · x)2
 = ED0 [((w − w0) · x)2],

and

Var

(
1

m

∑
(x,y)∈S

((w − w0) · x)2
)

=
VarD0(((w − w0) · x)2)

m

≤ ED0
[((w − w0) · x)4]

m
≤ C ED0

[((w − w0) · x)2]2

m
,

22

where the last inequality follows from L4-L2 hypercontractivity.

For any a > 0, using Chebyshev’s inequality,

Pr

∣∣∣∣∣∣ 1m
∑

(x,y)∈S

((w − w0) · x)2 − ED0
[((w − w0) · x)2]

∣∣∣∣∣∣ ≥ a
C ED0

[((w − w0) · x)2]√
m

 ≤ 1

a2
.

(21)

Using the Markov inequality, for any a > 0, we have:

Pr

 1

m

∑
(x,y)∈S

(w0 · x− y)2 > a2σ2

 ≤ ED0 [(w0 · x− y)2]

a2σ2
≤ 1

a2
. (22)

By combining the equations above, we can derive the following inequality:

With probability ≥ 1− 2
a2 , the following holds:

1

m

∑
(x,y)∈S

(w · x− y)2 ≥ 1

2
ED0

[((w − w0) · x)2](1− a
C√
m
)− a2σ2,

and
1

m

∑
(x,y)∈S

(w · x− y)2 ≤ 2ED0
[((w − w0) · x)2](1 + a

C√
m
) + 2a2σ2.

By choosing a = 4 and using m ≥ 64C2 in the above equation, we can conclude that with proba-
bility ≥ 1− 2

a2 , the following holds:

1

4
ED0 [((w − w0) · x)2]− 16σ2 ≤ 1

m

∑
(x,y)∈S

(w · x− y)2 ≤ 3ED0 [((w − w0) · x)2] + 32σ2.

Next, note that

ED0
[(w · x− y)2] = ED0

[((w − w0) · x− (y − w0 · x))2]
(a)
= ED0

[((w − w0) · x)2] + ED0
[(y − w0 · x)2]

(b)

≤ ED0
[((w − w0) · x)2] + σ2,

here (a) follows since x is independent of the output noise y−w0 ·x, and (b) follows since the output
noise y − w0 · x is zero mean and has a variance at most σ2. Combining the above two equations
completes the proof.

Now we prove Theorem D.1 using the above lemma:

Proof of Theorem D.1. From the previous lemma and Chernoff bound it follows that with probabil-
ity ≥ 1− δ′,

1

4
ED0 [(w · x− y)2]− 17σ2 ≤ θ ≤ 3ED0 [((w − w0) · x)2] + 32σ2.

Then bound on κ follows from the relation κ =
√

32(C+1)C1(θ+17σ2)
ϵ .

E Subspace Estimation

As a part of gradient estimation in step r, the main algorithm 1 uses subroutine GRADSUBEST for
B̂ = B

(r)
s and w = ŵ(r). Recall that B(r)

s is a random subset of the collection of small batches Bs.

The purpose of this subroutine is to estimate a smaller subspace of Rd such that for distribution D0,
the expectation of the projection of the clipped gradient onto this subspace closely approximates the

23

Algorithm 5 GRADSUBEST

1: Input: A collection of medium batches B̂, κ, w, ℓ
2: Output: A rank ℓ projection matrix.
3: For each b ∈ B̂ divide its samples Sb into two equal random parts Sb

1 and Sb
2

4: A← 1

2|B̂|

∑
b∈B̂

(
∇f(Sb

1, w, κ)∇f(Sb
2, w, κ)

⊺ +∇f(Sb
2, w, κ)∇f(Sb

1, w, κ)
⊺
)

5: U ← [u1, u2, ..., uℓ], where {ui}’s are top ℓ singular vectors of A
6: Return UU⊺

true expectation of the clipped gradient, for distribution D0. This reduction to a smaller subspace
helps reduce the number of medium-sized batches and their required length in the subsequent part
of the algorithm.

The following theorem characterizes the final guarantee for subroutine GRADSUBEST.

Theorem E.1. Let p0 denote the fraction of batches in B̂ that are sampled from D0. For any ϵ, δ′ >
0, and B̂ = Ω

(
d

αsϵ2

(
1

αsϵ2
+

C2
2

C1

)
log d

δ′

)
, p0 ≥ αs/2 and ℓ ≥ min{k, 1

2αsϵ2
}, with probability

≥ 1− δ′, the projection matrix UU⊺ returned by subroutine GRADSUBEST satisfy

∥(I − UU⊺)ED0
[∇f(x, y, w, κ)]∥ ≤ 4ϵκ

√
C1.

The above theorem implies that the difference between the expectation of the clipped gradient and
the expectation of projection of the clipped gradient for distribution D0 is small. Next, we present
the description of the subroutine GRADSUBEST and provide a brief outline of the proof for the
theorem before formally proving it in the subsequent subsection.

The subroutine divides samples in each batch b ∈ B̂ into two parts, namely Sb
1 and Sb

2. Then it com-
putes the clipped gradients ub := ∇f(Sb

1, w, κ) and vb := ∇f(Sb
2, w, κ). From linearity of expecta-

tion, for any i and batch b that contain i.i.d. samples fromDi, E[ub] = E[vb] = EDi
[∇f(x, y, w, κ)].

The subroutine defines A =
∑

b∈B̂
1

2|B̂|
ub(vb)⊺ + vb(ub)⊺. Let pi denote the fraction of batches in

B̂ that have samples from Di. Then using the linearity of expectation, we have:

E[A] =
∑k−1

i=0 pi EDi
[∇f(x, y, w, κ)]EDi

[∇f(x, y, w, κ)]⊺.
It is evident that if the matrix U is formed by selecting the top k singular vectors of E[A], then the
projection of ED0 [∇f(x, y, w, κ)] onto UU⊺ corresponds to itself, and the guarantee stated in the
theorem holds. However, we do not have access to E[A], and furthermore, when the number of
components k is large, it may be desirable to obtain a subspace of smaller size than k.

To address the first challenge, Theorem E.2 in the next subsection shows that ∥A− E[A]∥ is small.
This theorem permits the usage of A as a substitute for E[A]. The clipping operation, introduced in
the previous subsection, plays a crucial role in the proof of Theorem E.2 by controlling the norm of
the expectation and the covariance of the clipped gradient for other components, and the maximum
length of clipped gradients across all components. This is crucial for obtaining a good bound on
the number of small-size batches required. Additionally, the clipping operation ensures that the
subroutine remains robust to arbitrary input-output relationships for other components.

Furthermore, the clipping operation assists in addressing the second challenge by ensuring a uniform
upper bound on the norm of the expectation of all components, i.e., ∥EDi [∇f(x, y, w, κ)]∥ ≤ O(κ).
Leveraging this property, Lemma E.3 demonstrates that it suffices to estimate the top ≈ 1/p0-
dimensional subspace. Intuitively, this is because the infinitely many components can create at most
approximately 1/p0 directions with weights greater than p0, indicating that the direction ofD0 must
be present in the top Θ(1/p0) subspace.

Since B̂ = B
(r)
s is obtained by randomly partitioning Bs into R subsets, and Bs contains a fraction

of at least αs batches with samples from D0, it holds with high probability that p0 ≳ αs. Conse-
quently, when ℓ ≥ min{k,Ω(1

αs
)}, the subspace corresponding to the top ℓ singular vectors of A

satisfies the desired property in the Theorem E.1.

We note that the construction of matrix A in subroutine GRADSUBEST is inspired by previous
work [KSS+20]. However, while they employed it to approximate the k-dimensional subspace of

24

the true regression vectors for all components, we focus exclusively on one distribution D0 at a time
and recover a subspace such that, for distributionD0, the expectation of the projection of the clipped
gradient on this subspace closely matches the true expectation of the clipped gradient.

It is worth noting that, in addition to repurposing the subroutine from [KSS+20], we achieve four
significant improvements:

1) A more meticulous statistical analysis and the use of clipping enable our algorithm to handle
heavy-tailed distributions for both noise and input distributions. 2) Clipping also facilitates the
inclusion of arbitrary input-output relationships for other components. The next two improvements
are attributed to an improved linear algebraic analysis. Specifically, our Lemma E.3 enhances the
matrix perturbation bounds found in [LL18] and [KSS+20]. These enhancements enable us to: 3)
Provide meaningful guarantees even when the number of components k is very large, 4) reduce the
number of batches required when the distance between the regression vectors is small.

E.1 Proof of Theorem E.1

To prove Theorem E.1, in the following theorem, we will first demonstrate that the term ∥A−E[A]∥
is small when given enough batches.

Theorem E.2. For 0 ≤ i ≤ k − 1, let zi = EDi
[∇f(x, y, w, κ)], and pi denote the fraction of

batches in B̂ that have samples from Di. For any ϵ, δ′ > 0, and B̂ = Ω
(

d
αsϵ2

(
1

αsϵ2
+

C2
2

C1

)
log d

δ′

)
,

with probability at least 1− δ′,∥∥∥∥∥A−
k−1∑
i=0

piziz
⊺
i

∥∥∥∥∥ ≤ αsϵ
2κ2C1,

where A is the matrix defined in subroutine GRADSUBEST.

Proof. Let Zb := ∇f(Sb
1, w, κ)∇f(Sb

2, w, κ)
⊺.

Note that

A =
1

2|B̂|

∑
b∈B̂

(Zb + (Zb)⊺).

Then, from the triangle inequality, we have:∥∥∥∥∥A−
k−1∑
i=0

piziz
⊺
i

∥∥∥∥∥ ≤ 1

2

∥∥∥∥∥∥ 1

|B̂|

∑
b∈B̂

Zb −
k−1∑
i=0

piziz
⊺
i

∥∥∥∥∥∥+ 1

2

∥∥∥∥∥∥ 1

|B̂|

∑
b∈B̂

(Zb)⊺ −
k−1∑
i=0

piziz
⊺
i

∥∥∥∥∥∥
=

∥∥∥∥∥∥ 1

|B̂|

∑
b∈B̂

Zb −
k−1∑
i=0

piziz
⊺
i

∥∥∥∥∥∥.
For a batch b sampled from distribution Di, we have:

E[Zb] = E[∇f(Sb
1, w, κ)∇f(Sb

2, w, κ)
⊺]

= E[∇f(Sb
1, w, κ)]E[∇f(Sb

2, w, κ)
⊺]

= EDi
[∇f(x, y, w, κ)]EDi

[∇f(x, y, w, κ)⊺] = ziz
⊺
i ,

where the second inequality follows since samples in Sb
1 and Sb

2 are independent, and the third
equality follows from the linearity of expectation.

It follows that

1

|B̂|

∑
b∈B̂

E[Zb] =

k−1∑
i=0

piziz
⊺
i ,

25

and ∥∥∥∥∥A−
k−1∑
i=0

piziz
⊺
i

∥∥∥∥∥ ≤
∥∥∥∥∥∥ 1

|B̂|

∑
b∈B̂

Zb − 1

|B̂|

∑
b∈B̂

E[Zb]

∥∥∥∥∥∥. (23)

To complete the proof, we will prove a high probability bound on the term on the right by applying
the Matrix Bernstein inequality. To apply this inequality, we first upper bound |Zb| as follows:

∥Zb∥ = ∥∇f(Sb
1, w, κ)∇f(Sb

2, w, κ)
⊺∥ ≤ ∥∇f(Sb

1, w, κ)∥ · ∥∇f(Sb
2, w, κ)

⊺∥.

From item 3 in Lemma C.1, we have ∥∇f(Sb
1, w, κ)∥ ≤ κC2

√
d almost surely, and

∥∇f(Sb
2, w, κ)∥ ≤ κC2

√
d almost surely. It follows that ∥Zb∥ ≤ κ2C2

2d. Therefore, ∥Zb −
E[Zb]∥ ≤ 2κ2C2

2d.

Next, we will provide an upper bound for
∥∥E[(∑b∈B̂(Z

b − E[Zb])
)(∑

b∈B̂(Z
b − E[Zb])

)⊺]∥∥:∥∥E[(∑b∈B̂(Z
b − E[Zb])

)(∑
b∈B̂(Z

b − E[Zb])
)⊺]∥∥

=
∥∥E[∑b∈B̂(Z

b − E[Zb])(Zb − E[Zb])⊺
]∥∥

≤ |B̂|max
b∈B̂

∥∥E[(Zb − E[Zb])(Zb − E[Zb])⊺
]∥∥

≤ |B̂|max
b∈B̂

∥∥E[(Zb(Zb)⊺
]∥∥

≤ |B̂|max
b∈B̂

(
E[∥∇f(Sb

2, w, κ)∥2] ·
∥∥E[∇f(Sb

1, w, κ)∇f(Sb
1, w, κ)

⊺
]∥∥)

≤ |B̂| max
b∈B̂,u:∥u∥=1

(
E[∥∇f(Sb

2, w, κ)∥2] ·
∥∥E[(∇f(Sb

1, w, κ) · u)2
]∥∥).

From item 4 and item 5 in lemma C.1, we have:

E[∥∇f(Sb
2, w, κ)∥2] ≤ C1κ

2d,

and ∥∥E[(∇f(Sb
1, w, κ) · u)2

]∥∥ ≤ κ2C1.

Combining these two bounds, wee obtain:∥∥∥∥∥∥E
∑

b∈B̂

(Zb − E[Zb])

∑
b∈B̂

(Zb − E[Zb])

⊺∥∥∥∥∥∥ ≤ |B̂|dκ4C1
2.

Due to symmetry, the same bound holds for
∥∥E[(∑b∈B̂(Z

b − E[Zb])
)⊺(∑

b∈B̂(Z
b − E[Zb])

)]∥∥.

Finally, by applying the Matrix Bernstein inequality, we have:

Pr

∥∥∥∥∥∥ 1

|B̂|

∑
b∈B̂

(Zb − E[Zb])

∥∥∥∥∥∥ ≥ αsϵ
2κ2C1

 ≤ 2d exp

{
− |B̂|2θ2

|B̂|dκ4C1
2 + |B̂|θ(2C2

2κ
2d)

}
.

For B̂ = Ω
(

d
αsϵ2

(
1

αsϵ2
+

C2
2

C1

)
log d

δ′

)
, the quantity on the right-hand side is bounded by δ′.

Therefore, with probability at least 1− δ′, we have:∥∥∥∥∥∥ 1

|B̂|

∑
b∈B̂

(Zb − E[Zb])

∥∥∥∥∥∥ ≤ αsϵ
2κ2C1.

Combining the above equation with Equation (23) completes the proof of the Theorem.

In the proof of Theorem E.1, we will utilize the following general linear algebraic result:

26

Lemma E.3. For z0, z1, ..., zk−1 ∈ Rd and a probability distribution (p0, p1, ..., pk−1) over k el-
ements, let Z =

∑k−1
i=0 piziz

⊺
i . For a symmetric matrix M and ℓ > 0, let u1, u2, .., uℓ be top ℓ

singular vectors of M and let U = [u1, u2, ..., uℓ] ∈ Rd×ℓ, then we have:

∥(I − UU⊺)z0∥2 ≤

{
2(ℓ+1)∥M−Z∥+maxj ∥zj∥2

(ℓ+1)p0
ℓ < k

2∥M−Z∥
p0

if ℓ ≥ k.

Lemma E.3 provides a bound on the preservation of the component z0 by the subspace spanned by
the top-ℓ singular vectors of a symmetric matrix M . This bound is expressed in terms of the spectral
distance between matrices Z and M , the maximum norm of any zi, and the weight of the component
corresponding to z0 in Z. The proof of Lemma E.3 can be found in Section I.

Utilizing Lemma E.3 in conjunction with Theorem E.2, we proceed to prove Theorem E.1.

Proof of Theorem E.1. From Lemma E.3, we have the following inequality:

∥(I − UU⊺)ED0
[∇f(x, y, w, κ)]∥2 ≤

2(ℓ+1)∥A−

∑k−1
i=0 piziz

⊺
i ∥+maxj ∥EDj

[∇f(x,y,w,κ)]∥2

(ℓ+1)p0
ℓ < k

2∥A−
∑k−1

i=0 piziz
⊺
i ∥

p0
if ℓ ≥ k.

By applying Theorem E.2 and utilizing item 1 of Lemma C.1, it follows that with a probability of at
least 1− δ′, we have:

∥(I − UU⊺)ED0 [∇f(x, y, w, κ)]∥2 ≤

{
2αsϵ

2κ2C1

p0
+ κ2C1

(ℓ+1)p0
ℓ < k

2αsϵ
2κ2C1

p0
if ℓ ≥ k.

The theorem then follows by using p0 ≥ αs/2 and ℓ ≥ min{k, 1
2αsϵ2

}.

F Grad Estimation

Recall that in gradient estimation for step r, Algorithm 1 utilizes the subroutine GRADSUBEST to
find a projection matrix P (r) for an ℓ-dimensional subspace. In the previous section, we showed that
the difference between the expectation of the clipped gradient and the expectation of projection of
the clipped gradient on the subspace for distribution D0 is small. Therefore, it suffices to estimate
the expectation of projection of the clipped gradient on the subspace.

The main algorithm 1 passes the medium-sized batches B̂ = B
(r)
m , the ℓ-dimensional projection

matrix P = P (r), and a collection of i.i.d. samples S∗ = S
b∗,(r)
2 from D0 to the subroutine

GRADEST. Here, B(r)
m is a random subset of the collection of medium-sized batches Bm.

The purpose of the GRADEST subroutine is to estimate the expected value of the projection of the
clipped gradient onto the ℓ-dimensional subspace defined by the projection matrix P . Since the
subroutine operates on a smaller ℓ-dimensional subspace, the minimum batch size required for the
batches in Bm and the number of batches required depend on ℓ rather than d.

The following theorem characterizes the final guarantee for the GRADEST subroutine:

Theorem F.1. For subroutine GRADEST, let nm denote the length of the smallest batch in B̂, N
denote the number of batches in B̂ that has samples from D0 and P be a projection matrix for
some ℓ dimensional subspace of Rd. If T1 ≥ Ω(log |B̂|

δ′), T2 ≥ Ω(log 1
δ′), nm ≥ 4T1Ω(

√
ℓ

ϵ2),

|S∗| ≥ 2T1Ω(
√
ℓ

ϵ2) samples, and N ·nm ≥ T2Ω(
ℓ
ϵ2), then with probability ≥ 1− 2δ′ the estimate ∆

returned by subroutine GRADEST satisfy

∥∆− ED0
[P∇f(x, y, w, κ)]∥ ≤ 9ϵκ

√
C1.

The above theorem implies that when the length of medium-sized batches is Ω̃(
√
ℓ) and the number

of batches in B̂ containing samples from D0 is Ω̃(ℓ), the GRADEST subroutine provides a reliable
estimate of the projection of the clipped gradient onto the ℓ-dimensional subspace defined by the
projection matrix P .

27

Next, we provide a description of the GRADEST subroutine and present a brief outline of the proof
for the theorem before formally proving it in the subsequent subsection.

In the GRADEST subroutine, the first step is to divide the samples in each batch of B̂ into two equal
parts. By utilizing the first half of the samples in a batch b along with the samples S∗, it estimates
whether the expected values of the projection of the clipped gradient forD0 and the distribution used
for the samples in b are close or not. With high probability, the algorithm retains all the batches from
D0 while rejecting batches from distributions where the difference between the two expectations is
large. To achieve this with an ℓ-dimensional subspace, we require Ω̃(

√
ℓ) samples in each batch (see

Lemma F.6).

Following the rejection process, the GRADEST subroutine proceeds to estimate the projection of the
clipped gradients within this ℓ-dimensional subspace using the second half of the samples from the
retained batches. To estimate the gradient accurately in the ℓ-dimensional subspace, Ω(ℓ) samples
are sufficient (see Lemma F.7). To obtain guarantees with high probability, the procedure employs
the median of means approach, both for determining which batches to keep and for estimation using
the retained batches.

We prove the theorem formally in the next subsection.

F.1 Proof of Theorem F.1

The following lemma provides an upper bound on the covariance of the projection of the clipped
gradients.
Lemma F.2. Consider a collection S of m i.i.d. samples from distribution Di. For κ > 0, w ∈ Rd

and a projection matrix P for an ℓ dimensional subspace of Rd, we have

E[P∇f(S,w, κ)] = EDi [P∇f(x, y, w, κ)],

and ∥Cov(P∇f(S,w, κ))∥ ≤ 2κ2

m C1 and Tr (Cov(P∇f(S,w, κ))) ≤ ℓ∥Cov(P∇f(S,w, κ))∥.

Proof. Note that,

E
[
P
(
∇f(S,w, κ)

)]
= P E[∇f(S,w, κ)]] = P EDi

[∇f(x, y, w, κ)] = EDi
[P∇f(x, y, w, κ)],

where the second-to-last equality follows from Lemma C.1.

This proves the first part of the lemma. To prove the second part, we bound the norm of the covari-
ance matrix:

Cov(P∇f(S,w, κ)) = max
∥u∥≤1

Var(u⊺P∇f(S,w, κ))

= max
∥v∥≤1

Var(v⊺∇f(S,w, κ))

≤ ∥Cov(∇f(S,w, κ))∥

≤ κ2

m
C1,

where the last inequality follows from Lemma C.1. Similarly,

Cov(P∇f(S′, w, κ)) ≤ κ2

m
C1.

Finally, since random vector P∇f(S′, w, κ) lies in ℓ dimensional subspace of Rd, correspond-
ing to projection matrix P , hence its covariance matrix has rank ≤ ℓ. Hence, the relation
Tr (Cov(P∇f(S,w, κ))) ≤ ℓ∥Cov(P∇f(S,w, κ))∥ follows immediately.

The following corollary is a simple consequence of the previous lemma:
Corollary F.3. Consider two collections S and S′ each consisting of m i.i.d. samples from distri-
butionsDi andD0, respectively. For κ > 0, w ∈ Rd and a projection matrix P for an ℓ dimensional
subspace of Rd, let z = P

(
∇f(S,w, κ)−∇f(S′, w, κ)

)
, we have:

E[z] = EDi
[P∇f(x, y, w, κ)]− ED0

[P∇f(x, y, w, κ)],

and ∥Cov(z)∥ ≤ 4κ2

m C1 and Tr (Cov(z)) ≤ ℓ∥Cov(z)∥.

28

Proof. The expression for E[z] can be obtained from the previous lemma and the linearity of expec-
tation.

To prove the second part, we bound the norm of the covariance matrix of z.

Cov(z) = Cov(P
(
∇f(S,w, κ)−∇f(S′, w, κ)

)
) ≤ 2(Cov(P∇f(S,w, κ)) + Cov(P∇f(S′, w, κ))).

Using the bounds from the previous lemma, we can conclude that ∥Cov(z)∥ ≤ 4κ2

m C1.

Finally, since the random vector z lies in the ℓ-dimensional subspace of Rd defined by the projection
matrix P , its covariance matrix has rank ≤ ℓ. Therefore, we have Tr, (Cov(z)) ≤ ℓ∥Cov(z)∥.

The following theorem bounds the variance of the dot product of two independent random vectors.
It will be helpful in upper bounding the variance of ζbj (defined in subroutine GRADEST).
Theorem F.4. For any two independent random vectors z1 and z2, we have:

Var(z1 · z2) ≤ 3Tr(Cov(z1)) · ∥Cov(z2)∥+ 3∥E[z1]∥2∥Cov(z2)∥+ 3∥E[z2]∥2∥Cov(z1)∥.

Proof. We start by expanding the variance expression:

Var(z1 · z2) = Var(z1 · z2 − E[z1 · z2])
= Var(z1 · z2 − E[z1] · E[z2])
= Var((z1 − E[z1]) · (z2 − E[z2]) + E[z1] · z2 + E[z2] · z1)
≤ 3Var((z1 − E[z1]) · (z2 − E[z2])) + 3Var(E[z1] · z2) + 3Var(E[z2] · z1)
= 3Var((z1 − E[z1]) · (z2 − E[z2])) + 3E[z1]⊺Cov(z2)E[z1] + E[z2]⊺Cov(z1)E[z2]
≤ 3Var((z1 − E[z1]) · (z2 − E[z2])) + 3∥E[z1]∥2∥Cov(z2)∥+ 3∥E[z2]∥2∥Cov(z1)∥.

To complete the proof, we bound the first term in the last expression:

Var((z1 − E[z1]) · (z2 − E[z2])) = E
[
((z1 − E[z1]) · (z2 − E[z2]))2

]
= E[(z1 − E[z1])⊺Cov(z2)(z1 − E[z1])]
≤ E

[
∥z1 − E[z1]∥2

]
· ∥Cov(z2)∥

= Tr(Cov(z1)) · ∥Cov(z2)∥.

Using the two previous results, we can establish a bound on the expectation and variance of ζbj .
Lemma F.5. In subroutine GRADEST, let P be a projection matrix of an ℓ dimensional subspace.
Suppose S∗

j has ≥ m i.i.d. samples from D0 and, Sb
1,j and Sb

1,j+T1
have ≥ m i.i.d. samples from

Di for some i ∈ {0, 1, ..., k − 1}. Than we have:

E[ζbj] = ∥EDi
[P∇f(x, y, w, κ)]− ED0

[P∇f(x, y, w, κ)]∥2

and

Var(ζbj) ≤
48

m2
κ4ℓC1

2 +
24

m
κ2 E[ζbj]C1.

Proof. Let z1 = P
(
∇f(Sb

1,j , w, κ) − ∇f(S∗
j , w, κ)

)
and z2 = P

(
∇f(Sb

1,T1+j , w, κ) −
∇f(S∗

T1+j , w, κ)
)
.

From Corollary F.3, we know that

E[z1] = E[z2] = EDi [P∇f(x, y, w, κ)]− ED0 [P∇f(x, y, w, κ)],

Cov(z1) = Cov(z2) =
4κ2

m
C1

and

Tr(Cov(z1)) = Tr(Cov(z2)) =
4

m
ℓκ2C1.

29

Note that ζbj = z1 · z2. Then bound on the variance of ζbj follows by combining the above bounds
with Theorem F.4. Finally, the expected value of ζbj is:

E[ζbj] = E[z1] · E[z2] = ∥E[z1]∥2.

The following lemma provides a characterization of the minimum batch length in B̂ and the size of
the collection S∗ required for successful testing in subroutine GRADEST.

Lemma F.6. In subroutine GRADEST, let P be a projection matrix of an ℓ dimensional subspace,
T1 ≥ Ω(log |B̂|

δ′), and each batch b ∈ B̂ has at least |Sb| ≥ 4T1Ω(
√
ℓ

ϵ2) samples, and |S∗| =
2T1Ω(

√
ℓ

ϵ2). Then with probability ≥ 1 − δ′, the subset B̃ in subroutine GRADEST satisfy the
following:

1. |B̃| retains all the batches in B̂ that had samples from D0.

2. B̃ does not contain any batch that had samples from Di if i is such that

∥EDi [P∇f(x, y, w, κ)]− ED0 [P∇f(x, y, w, κ)]∥ > 2ϵκ
√
C1.

Proof. The lower bound on |Sb| in the lemma ensures that for each batch b and all j ∈ [2T1], we
have Sb

1,j = Ω(
√
ℓ

ϵ2), and the lower bound on |S| ensures that for all j ∈ [2T1], Sj = Ω(
√
ℓ

ϵ2).

First, consider the batches that have samples from the distribution D0.

For any such batch b and j ∈ [T1], from Lemma F.5, we have E[ζbj] = 0 and Var(ζbj) = O(ϵ4κ2C1
2).

Therefore, for T1 ≥ Ω(log |B̂|
δ′), it follows that with probability ≥ 1 − δ′/2 for every batch b ∈ B̂

that has samples from D0 the median of {ζbj}j∈[T1] will be less than ϵ2κ2C1, and it will be retained
in B̃. This completes the proof of the first part.

Next, consider the batches that have samples from any distribution Di for which

∥EDi [P∇f(x, y, w, κ)]− ED0 [P∇f(x, y, w, κ)]∥ > 2ϵκ
√

C1.

For any such batch b and j ∈ [T1], according to Lemma F.5, we have E[ζbj] ≥ 4ϵ2κ2C1 and

Var(ζbj) = O(E[ζbj]2). Hence, for T1 ≥ Ω(log |B̂|
δ′), it follows that with probability at least 1−δ′/2,

the median of {ζbj}j∈[T1] for every batch will be greater than ϵ2κ2C1, and those batches will not be
included in B̃. This completes the proof of the second part.

The following theorem characterizes the number of samples required in B̃ for an accurate estimation
of ∆.

Lemma F.7. Suppose the conclusions in Lemma F.6 hold for B̃ defined in subroutine GRADEST,
T2 ≥ Ω(log 1

δ′), each batch b ∈ B̃ has size ≥ nm, and |B̃| · nm ≥ 2T2Ω(
ℓ
ϵ2), then with probability

≥ 1− δ′ the estimate ∆ returned by subroutine GRADEST satisfy

∥∆− ED0 [P∇f(x, y, w, κ)]∥ ≤ 9ϵκ
√
C1.

Proof. Recall that in subroutine GRADEST, we defined

∆i =
1

|B̃|

∑
b∈B̃

P∇f(Sb
2,i, w, κ).

Let zbi = P∇f(Sb
2,i, w, κ). From Lemma F.6, for all b ∈ B̃, we have∥∥E[zbi]− ED0

[P∇f(x, y, w, κ)]
∥∥ ≤ 2ϵκ

√
C1.

30

Therefore,

∥E[∆i]− ED0
[P∇f(x, y, w, κ)]∥ =

∥∥∥∥∥∥ 1

|B̃|

∑
b∈B̃

E[zbi]− ED0
[P∇f(x, y, w, κ)]

∥∥∥∥∥∥
≤ max

b∈B̃

∥∥E[zbi]− ED0
[P∇f(x, y, w, κ)]

∥∥ ≤ 2ϵκ
√
C1. (24)

Next, from Lemma F.2,

∥Cov(zbi)∥ ≤
κ2

|Sb
2,i|

C1 =
T2κ

2

|Sb
2|

C1 =
2T2κ

2

|Sb|
C1 ≤

2T2κ
2C1

minb∈B̃ |Sb|
, (25)

where the two equalities follow because for all batches b ∈ B̃, |Sb
2,i| = |Sb

2|/T2 and |Sb
2| = |Sb|/2.

Then

∥Cov(∆i)∥ =
1

|B̃|
max
b∈B̃
∥Cov(zbi)∥ ≤

2T2κ
2C1

|B̃| ·minb∈B̃ |Sb|

Since ∆i lies in an ℓ dimensional subspace of Rd, it follows that

Tr(Cov(∆i)) ≤ ℓ∥Cov(∆i)∥ ≤
2ℓT2κ

2C1

|B̃| ·minb∈B̃ |Sb|

Note that Var(∥∆i − E[∆i]∥) = Tr(Cov(∆i)). Then, from Chebyshev’s bound:

Pr[∥∆i − E[∆i]∥ ≥ ϵκ
√
C1] ≤

Var(∥∆i − E[∆i]∥)
ϵ2κ2C1

≤ 2ℓT2

ϵ2|B̃| ·minb∈B̃ |Sb|
≤ 1/8.

Combining above with Equation (24),

Pr[∥∆i − ED0
[P∇f(x, y, w, κ)]∥ ≥ 3ϵκ

√
C1] ≤ 1/4.

Let D := {i ∈ [T2] : ∥∆i−ED0 [P∇f(x, y, w, κ)]∥ ≤ 3ϵκ
√
C1∥}. Then, for T2 = Ω(log 1

δ′), with
probability ≥ 1− δ′, we have

|D| ≥ 1

2
T2.

Recall that in the subroutine, we defined ξi = median{j ∈ [T2] : ∥∆i−∆j∥} and i∗ = argmin{i ∈
[T2] : ξi}.

From the definition of D, and triangle inequality, for all i, j ∈ D, we have ∥∆i −∆j∥ ≤ 6ϵκ
√
C1.

Therefore, if |D| ≥ 1
2T2, then for any i ∈ D, ξi ≤ 6ϵκ

√
C1. This would imply ξi∗ ≤ 6ϵκ

√
C1.

Furthermore, since |D| ≥ 1
2T2, there exist at least one i ∈ D such that ∥∆i − ∆i∗∥ ≤ 6ϵκ

√
C1.

Using the definition of D, and the triangle inequality, we can conclude that

∥∆i∗ − ED0
[P∇f(x, y, w, κ)]∥ ≤ ∥∆i − ED0

[P∇f(x, y, w, κ)]∥+ ∥∆i −∆i∗∥ ≤ 9ϵκ
√
C1.

Theorem F.1 then follows by combining lemmas F.6 and F.7.

G Number of steps required

The following lemma shows that with a sufficiently accurate estimation of the expectation of gradi-
ents, a logarithmic number of gradient descent steps are sufficient in the main algorithm 1.

Lemma G.1. For ϵ > 0, suppose ∥∆(r) − Σ0(ŵ
(r) − w0)∥ ≤ 1

2∥ŵ
(r) − w0∥ + ϵσ

4 , and R =

Ω(C1 log
∥w0∥
σ), then ∥ŵ(r) − w0∥ ≤ ϵσ.

31

Proof. Recall that ŵ(r+1) = ŵ(r) − 1
C1

∆(r). Then we have:

ŵ(r+1) − w0 = ŵ(r) − w0 −
1

C1
∆(r) = (ŵ(r) − w0)

(
I − 1

C1
Σ0

)
+

1

C1
(Σ0(ŵ

(R+1) − w0)−∆(r)).

Using triangle inequality, we obtain:

∥ŵ(r+1) − w0∥ ≤ ∥ŵ(r) − w0∥
∥∥∥∥I − 1

C1
Σ0

∥∥∥∥+ 1

C1
∥Σ0(ŵ

(r) − w0)−∆(r)∥

≤ ∥ŵ(r) − w0∥
(
1− 1

C1

)
+

1

C1

(
∥ŵ(r) − w0∥

2
+

ϵσ

4

)
≤ ∥ŵ(r) − w0∥

(
1− 1

2C1

)
+

ϵσ

4C1
.

Using recursion, we have:

∥ŵ(R+1) − w0∥ ≤ ∥ŵ(1) − w0∥
(
1− 1

2C1

)R

+

R−1∑
i=0

(
1− 1

2C1

)i
ϵσ

4C1

≤ ∥ŵ(1) − w0∥ exp
(
− R

2C1

)
+ 2C1

ϵσ

4C1

≤ ϵσ,

where the second inequality follows from the upper bound on the sum of infinite geometric series
and the last inequality follows from the bound on R and ŵ(1) = 0.

H Final Estimation Guarantees

Proof of Theorem 2.1. We show that with probability ≥ 1 − δ, for each r ∈ [R], the gradient
computed by the algorithm satisfies ∥∆(r) − Σ0(ŵ

(r) − w0)∥ ≤ 1
2∥ŵ

(r) − w0∥+ ϵσ
4 . Lemma G.1

then implies that for R = Ω(C1 log
M
σ), the output returned by the algorithm ŵ = ŵ(R+1) satisfy

∥ŵ − w0∥ ≤ ϵσ.

To show this, we fix r, and for this value of r, we show that with probability ≥ 1 − δ/R, ∥∆(r) −
Σ0(ŵ

(r) − w0)∥ ≤ 1
2∥ŵ

(r) − w0∥+ ϵσ
4 . Since each round uses an independent set of samples, the

theorem then follows by applying the union bound.

First, we determine the bound on the clipping parameter. From Theorem D.1, for |Sb∗ |/R =
Ω(C2 log 1/δ′), with probability ≥ 1− δ′, we have√

8(C + 1)C1

(
ED0 [(y − x · w(r))2]

)
ϵ1

≤ κ(r) ≤ 28

√
2(C + 1)C1

(
ED0 [(x · (w(r) − w0))2] + σ2

)
ϵ1

.

(26)

Next, employing Theorem C.2 and utilizing the lower bound on the clipping parameter in the above
equation, we obtain the following bound on the norm of the expected difference between clipped
and unclipped gradients:∥∥∥ED0

[(∇f(x, y, w(r), κ(r))− Σ0(w
(r) − w0)

∥∥∥ ≤ ϵ1∥w(r) − w0∥. (27)

Recall that in Bs, at least αs fraction of the batches contain samples from D0. When Bs is divided
into R equal random parts, w.h.p. each part B(r)

s will have at least αs fraction of the batches
containing samples from D0.

From Theorem E.1, if |B(r)
s | = |Bs|

R = Ω
(

d
αsϵ22

(
1

αsϵ22
+

C2
2

C1

)
log d

δ′

)
, then with probability≥ 1−δ′,

the projection matrix P (r) satisfies

∥ED0
[∇f(x, y, w(r), κ(r))]− P (r) ED0

[∇f(x, y, w(r), κ(r))]∥ ≤ 4ϵ2κ
(r)
√
C1. (28)

32

The above equation shows subroutine GRADSUBEST finds projection matrix P (r) such that the
expected value of clipped gradients projection is roughly the same as the expected value of the
clipped gradient.

Next, we show that subroutine GRADEST provides a good estimate of the expected value of clipped
gradients projection. Let N denote the number of batches in Bm that have samples from D0. If
N ≥ Ω(R + log 1/δ′) then with probability ≥ 1 − δ′, B(r)

m has Θ(N/R) batches sampled from
D0. If each batch in Bm and batch b∗ has more than nm samples, nm

R = Ω(
√
ℓ

ϵ22
log(|Bm|

δ′)), and
N ·nm

R ≥ Ω(ℓ
ϵ22

log 1/δ′), then from Theorem F.1, with probability ≥ 1− δ′∥∥∥∆(r) − ED0
[P (r)∇f(x, y, w(r), κ(r))]

∥∥∥ ≤ 9ϵ2κ
(r)
√
C1. (29)

Combining the above three equations using triangle inequality,

∥∆(r) − Σ0(ŵ
(r) − w0)∥ ≤ 13ϵ2κ

(r)
√

C1 + ϵ1∥w(r) − w0∥, (30)

with probability ≥ 1− 5δ′.

In equation (26) using the upper bound, ED0
[(x·(w(r)−w0))

2] ≤ ∥w(r)−w0∥2∥Σ0∥ ≤ C1∥w(r)−
w0∥2 we get

κ(r) ≤ 28

√
2(C + 1)C1

2∥w(r) − w0∥2 + (C + 1)C1σ2

√
ϵ1

≤
28
√
2(C + 1)
√
ϵ1

(C1∥w(r) − w0∥+
√
C1σ).

Combining the two equations,

∥∆(r) − Σ0(ŵ
(r) − w0)∥ ≤

364ϵ2
√

2(C + 1)C1√
ϵ1

(C1∥w(r) − w0∥+
√

C1σ) + ϵ1∥w(r) − w0∥,

(31)

with probability ≥ 1 − 5δ′ There exist universal constants c1, c2 > 0 such that for ϵ1 = c1 and
ϵ2 = c2

C1

√
C+1

(
ϵ+ 1√

C1

)
, the quantity on the right is bounded by ∥w(r) − w0∥/2 + ϵσ/4. We

choose these values for ϵ1 and ϵ2 and δ′ = δ
5R .

From the above discussion, it follows that if |Bs| = Ω̃
(

d
αs

2ϵ4

)
, nm ≥ Ω̃(

√
ℓ

ϵ2), and Bm has ≥
1

nm
Ω̃
(

ℓ
ϵ2

)
batches sampled from D0, then with probability ≥ 1− δ/R,

∥∆(r) − Σ0(ŵ
(r) − w0)∥ ≤

1

2
∥ŵ(r) − w0∥+

ϵσ

4
.

Using ℓ = min{k, 1
ϵ2αs
}, we get the bounds on the number of samples and batches required by the

algorithm.

I Proof of Lemma E.3

To establish the lemma, we first introduce and prove two auxiliary lemmas.
Lemma I.1. For k > 0, and a probability distribution (p0, p1, ..., pk−1) over k elements, let Z =∑k−1

i=0 p0ziz
⊺
i , where zi are d-dimensional vectors. Then for all ℓ ≥ 0, ℓth largest singular value of

Z is bounded by maxi ∥zi∥2/ℓ.

Proof. Note that Z is a symmetric matrix, so its left and right singular values are the same. Let
v1, v2, ... be the singular vectors in the SVD decomposition of Z, and let a1 ≤ a2 ≤ a3 ≤ ... be the
corresponding singular values. Using the properties of SVD, we have:

∑
i

ai =
∑
i

v⊺i Zvi =
∑
i

v⊺i

k−1∑
j=0

pjzjz
⊺
j

vi =

k−1∑
j=0

pj
∑
i

(vi · zj)2 ≤
k−1∑
j=0

pj∥zj∥2 ≤ max
j
∥zj∥2.

33

Next, we have: ∑
i

ai ≥
∑
i≤ℓ

ai ≥
∑
i≤ℓ

aℓ = ℓ · aℓ.

Combining the last two equations yields the desired result.

Lemma I.2. Let u1, u2, .., uℓ ∈ Rd be ℓ mutually orthogonal unit vectors, and let U =
[u1, u2, ..., uℓ] ∈ Rd×ℓ. For any set of k vectors z0, z1, ..., zk−1 ∈ Rd, non-negative reals
p0, p1, ..., pk−1, and reals a1, a2, ..., aℓ, we have:

∥(I − UU⊺)z0∥2 ≤

∥∥∥∑k−1
i=1 piziz

⊺
i −

∑
j∈[ℓ] ajuju

⊺
j

∥∥∥
p0

.

Proof. Let v = (I−UU⊺)z0. First we show that for all j ∈ [ℓ], the vectors v and uj are orthogonal,

u⊺
j (I − UU⊺)z0 = (u⊺

j · z0)− (u⊺
j · z0) = 0.

Then,∥∥∥v⊺(∑k−1
i=0 piziz

⊺
i −

∑
j∈[ℓ] ajuju

⊺
j

)
v
∥∥∥ =

∥∥∥v⊺(∑k−1
i=0 piziz

⊺
i

)
v
∥∥∥ =

∥∥∥∑k−1
i=0 pi(z

⊺
i v)

2
∥∥∥ ≥ ∥∥p0(z⊺0 v)2∥∥

Next, we have:

z⊺0 v = z⊺0 (I − UU⊺)v + z0UU⊺v = z⊺0 (I − UU⊺)v = v⊺v = ∥v∥2

Combining the last two equations, we obtain:

∥v∥2 ·
∥∥∥∑k−1

i=0 piziz
⊺
i −

∑
j∈[ℓ] ajuju

⊺
j

∥∥∥ ≥ ∥∥∥v⊺(∑k−1
i=0 ziz

⊺
i −

∑
j∈[ℓ] ajuju

⊺
j

)
v
∥∥∥ ≥ p0∥v∥4.

Dividing both sides by ∥v∥2 completes the proof.

Next, combining the above two auxiliary lemmas we prove Lemma E.3.

Proof of Lemma E.3. Let Λi(·) denote the ith largest singular value of a matrix. Let M̂ be rank ℓ
truncated-SVD of M , then it follows that,

∥M − M̂∥ = Λℓ+1(M).

First, we consider the case ℓ < k. By applying Weyl’s inequality for singular values, we have

Λℓ+1(M) ≤ Λℓ+1(Z) + Λ1(M − Z) ≤ maxj ∥zj∥2

ℓ+ 1
+ ∥M − Z∥,

where the last equation follows from Lemma I.1.

First applying the triangle inequality, and then using the above two equations, we have

∥M̂ − Z∥ ≤ ∥M − M̂∥+ ∥M − Z∥ ≤ maxj ∥zj∥2

ℓ+ 1
+ 2∥M − Z∥.

Combining the above equation with Lemma I.2, we have:

∥(I − UU⊺)z0∥2 ≤
2(ℓ+ 1)∥M − Z∥+maxj ∥zj∥2

(ℓ+ 1)p0
.

This completes the proof for ℓ < k. To prove for the case ℓ > k, we use Λℓ+1(Z) = 0 in place of
the bound Λℓ+1(Z) ≤ maxj ∥zj∥2

ℓ+1 in the above proof for the case ℓ < k.

34

J Removing the Additional Assumptions

To simplify our analysis, we made two assumptions about the data distributions. We now argue that
these assumptions are not limiting.

The first additional assumption was that there exists a constant C2 > 0 such that for all components
i ∈ {0, 1, . . . , k − 1} and random samples (x, y) ∼ Di, we have ∥x∥ ≤ C2

√
d almost surely. In

the non-batch setting, Cherapanamjeri et al. (2020) [CAT+20] have shown that this assumption is
not limiting. They showed that if other assumptions are satisfied, then there exists a constant C2

such that with probability ≥ 0.99, we have ∥x∥ ≤ C2

√
d. Therefore, disregarding the samples for

which |x| > C2

√
d does not significantly reduce the data size. Moreover, it has minimal impact

on the covariance matrix and hypercontractivity constants of the distributions. This argument easily
extends to the batch setting. In the batch setting, we first exclude samples from batches where
∥x∥ > C2

√
d. Then we remove small-sized batches with fewer than or equal to 2 samples and

medium-sized batches that have been reduced by more than 10% of their original size. It is easy to
show that w.h.p. the fraction of medium and small size batches that gets removed for any component
is at most 10%. THence, this assumption can be removed with a small increase in the batch size and
the number of required samples in our main results.

Next, we address the assumption that the noise distribution is symmetric. We can handle this by
employing a simple trick. Consider two independent and identically distributed (i.i.d.) samples
(x1, y1) and (x2, y2), where yi = w∗ · xi + ηi. We define x = (x1 − x2)/

√
2, y = (y1 − y2)/

√
2,

and η = (η1 − η2)/
√
2. It is important to note that the distribution of η is symmetric around 0,

and the covariance of x is the same as that of xi, while the variance of η is the same as that of ηi.
Furthermore, we have y = w∗ · x + η. Therefore, the new sample (x, y) obtained by combining
two i.i.d. samples satisfies the same distributional assumptions as before, and in addition, the noise
distribution is symmetric. We can combine every two samples in a batch using this approach, which
only reduces the batch size of each batch by a constant factor of 1/2. Thus, the assumption of
symmetric noise can be eliminated by increasing the required batch sizes in our theorems by a factor
of 2.

K Algorithm’s Parameter Requirements

The algorithm requires two distribution parameters: the L4-L2 hypercontractivity parameter C and
the condition number of input covariance matrix C1. These parameters significantly generalize the
input distributions typically considered in mixed linear regression, which have primarily focused on
sub-Gaussian distributions with an identity covariance matrix. Specifically, the L4-L2 hypercontrac-
tivity parameter generalizes the sub-gaussian distribution assumption and allows for heavier-tailed
distributions. The condition-number C1 of the input covariance matrices generalizes the identity
covariance matrix assumption for input distribution, corresponding to C1 = 1.

Additionally, the algorithm requires two population parameters: the number of sub-populations k
and the fraction of batches αs present from the relevant sub-population. Note that the algorithm
combines these parameters to define a single parameter ℓ.

Finally, the algorithm requires two regression parameters: the length M of the regression vector,
and the additive noise variance σ.

In total the algorithm relies on six parameters, two of which can be combined into one. Although
this may seem large, it requires only an upper bound on their values. If the upper bounds are tight,
they will result in a good estimate. If for any parameter we do not have a tight upper bound, we can
run the algorithm for different values of the parameter, dividing its possible range logarithmically.
This approach increases the size of the resulting list at most logarithmically, ensuring that at least
one estimate in the list will be tight.

L More Simulation Details

Setup. We have sets Bs and Bm of small and medium size batches and k distributions Di for
i ∈ {0, 1, . . . , k−1}. For a subset of indices I ⊆ {0, 1, . . . , k−1}, both Bs and Bm have a fraction

35

0 5 10 15 20 25 30 35
0

100

200

300

400

500
KSSKO(4 samples)
KSSKO(8 samples)
Ours(4 samples)
Ours(8 samples)

medium batch size

M

SE

Figure 3: Same input dist. (standard normal),
k = 16, small minimum distance between re-
gression vectors, recovering all

5 10 15 20 25 30

10

20

30

40

50

60

70

80 Ours(4 samples)
Ours(8 samples)

 medium batch size

M

SE

Figure 4: Different input dist, k = 100, large
minimum distance between regression vectors,
recovering 4 components that have 1/16 frac-
tion of batches each

of α batches that contain i.i.d. samples fromDi for each i ∈ I . And for each i ∈ {0, 1, . . . , k−1}\I
in the remaining set of indices, Bs and Bm have (1−|I|/16)/(k−|I|) fraction of batches, that have
i.i.d samples from Di. In all figures the output noise is distributed as N (0, 1).

All small batches have 2 samples each, while medium-size batches have nm samples each, which
we vary from 4 to 32, as shown in the plots. We fix data dimension d = 100, α = 1/16, number of
small batches to |Bs| = min{8dk2, 8d/α2} and the number of medium batches to |Bm| = 256. In
all the plots, we average our 10 runs.

Evaluation. Our objective is to recover a small list containing good estimates for the regression
vectors of Di for each i ∈ I . We compare our proposed algorithm’s performance with that of the
algorithm in [KSS+20]. We generate lists of regression vector estimates LOurs and LKSSKO using
our algorithm and [KSS+20], respectively. Then, we create 1600 new batches, each containing
nnew i.i.d samples randomly drawn from the distributionDi, where for each batch, index i is chosen
randomly from I .

Each list enables the clustering of the new sample batches. To cluster a batch using a list, we assign it
to the regression vector in the list that achieves the lowest mean square error (MSE) for its samples.

To evaluate the average MSE for each algorithm, for each clustered batch, we generate additional
samples from the distribution that the batch was generated from and calculate the error achieved
by the regression vector in the list that the batch was assigned to. We then take the average of this
error over all sets. We evaluate both algorithms’ performance for new batch sizes nnew = 4 and
nnew = 8, as shown in the plots.

Minimum distance between regression vectors. Our theoretical analysis suggests that our algo-
rithm is robust to the case when the minimum distance between the regression vectors are much
smaller than their norms. In order to test this, in Figure 3, we generate half of the regression vectors
with elements independently and randomly distributed in U [9, 11], and the other half with elements
independently and randomly distributed in U [−11,−9]. Notably, the minimum gap between the vec-
tors, in this case, is much smaller than their norm. It can be seen that the performance gap between
our algorithm and the one in [KSS+20] increases significantly as we deviate from the assumptions
required for the latter algorithm to work.

Number of different distributions. Our algorithm can notably handle very large k (even infinite)
while still being able to recover regression vectors for the subgroups that represent sufficient fraction
of the data. In the last plot, we set k = 100 and I = {0, 1, 2, 3} to highlight this ability. In
this case, the first four distributions each generate a 1/16 fraction of batches, and the remaining
96 distributions each generate a 1/128 fraction of batches. We provide the algorithm with one
additional medium-size batch from Di for each i ∈ I for identification of a list of size I . The results
are plotted in Figure 4, where we can see that the performance gets better with medium batch size
as expected. Note that the algorithm in [KSS+20] cannot be applied to this scenario.

36

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: These claims are justified by our theorems and the experimental results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We present such a discussion in the last section of the main paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

37

Justification: All assumptions and proofs are clearly mentioned in the paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include the details to reproduce our experiments in the paper. We also
include the scripts to reproduce all our results in supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

38

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our experiments are on synthetic data and we include the scripts to reproduce
all our results in supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide these details in the experiment sections in appendix and the main
paper. We also provide the code used to generate the figures in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report standard error over 10 runs in all our plots.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

39

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Our experiments are not compute intensive and were run on Macbook pro 16
inch laptop with 16 GB ram and intel processor (2020 model) and each of them took less
than 6 hours to finish.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the code of ethics and our submission abide by that.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of Machine
Learning There could be many potential societal consequences of our work, none which
we feel must be specifically highlighted here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

40

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any new dataset or model.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We used an algorithm in a prior work [KSS+20] and we have cited the original
paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

41

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

42

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

43

	Introduction
	Our Results
	Comparison to Prior Work
	Techniques and Organization

	Problem Formulation and Main Results
	Data Distributions
	Main Results

	Algorithm for recovering regression vectors
	Empirical Results
	Conclusion
	Other related work
	Selecting a regression vector from a given list
	Proof of Theorem B.1

	Properties of Clipped Gradients
	Proof of Lemma C.1
	Proof of Theorem C.2

	Estimation of clipping parameter
	Subspace Estimation
	Proof of Theorem E.1

	Grad Estimation
	Proof of Theorem F.1

	Number of steps required
	Final Estimation Guarantees
	Proof of Lemma E.3
	Removing the Additional Assumptions
	Algorithm's Parameter Requirements
	More Simulation Details

