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ABSTRACT

Increasing the replay ratio, the number of updates of an agent’s parameters per
environment interaction, is an appealing strategy for improving the sample effi-
ciency of deep reinforcement learning algorithms. In this work, we show that
fully or partially resetting the parameters of deep reinforcement learning agents
causes better replay ratio scaling capabilities to emerge. We push the limits of the
sample efficiency of carefully-modified algorithms by training them using an order
of magnitude more updates than usual, significantly improving their performance
in the Atari 100k and DeepMind Control Suite benchmarks. We then provide an
analysis of the design choices required for favorable replay ratio scaling to be
possible and discuss inherent limits and tradeoffs.

1 INTRODUCTION

In many real world scenarios, each interaction with the environment comes at a cost, and it is
desirable for deep reinforcement learning (RL) algorithms to learn with a minimal amount of
samples (François-Lavet et al., 2018). This can be naturally achieved if an algorithm is able to
leverage more computational resources during training to improve its performance. Given the online
nature of deep RL, there is a peculiar way to aim at having such behavior: to train the agent for longer,
given a dataset of experiences, before interacting with the environment again.
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Figure 1: Scaling behavior of SAC and SR-SAC in the DeepMind Control Suite (DMC15-500k)
benchmark, and of SPR and SR-SPR in the Atari 100k benchmark (5 seeds for point for SAC and
SR-SAC, at least 20 seeds for point for SPR and SR-SPR, 95% bootstrapped C.I.).
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A method based on this idea can be said to bescaling the replay ratio, the number of updates of an
agent's parameters for each environment interaction. Despite generally providing limited bene�t
when applied to standard baselines (Fedus et al., 2020; Kumar et al., 2021), replay ratio scaling
has been shown to bring performance improvements to well-tuned algorithms. Recent approaches
were able to achieve better sample ef�ciency by increasing it to higher values, up to8 for discrete
control (Kielak, 2019) or20 for continuous control (Chen et al., 2021; Smith et al., 2022).

In this paper, we show that it is possible, with minimal but careful modi�cations to model-free
algorithms mostly based on parameter resets (Ash & Adams, 2020; Nikishin et al., 2022), to reach
new levels of replay ratio scaling and push the sample ef�ciency limits of deep RL. Both in continuous
control, with SAC in DeepMind Control Suite (Haarnoja et al., 2018; Tassa et al., 2018), and discrete
control, with SPR in Atari 100k (Schwarzer et al., 2021a; Kaiser et al., 2020), webreak the replay
ratio barrier, unlocking a training regime in which orders of magnitude of additional agent updates
can be used to increase the performance of an algorithm for a given budget of interactions with the
environment. By doing so, we obtain better aggregated scores than strong baselines, with a general
blueprint to improve sample ef�ciency of potentially any off-policy deep RL algorithm.

To understand how this can be feasible, it is useful to re�ect on one of the most common patterns
observed in the development of deep RL algorithms (Mnih et al., 2015b). With a few exceptions,
researchers typically ground their methods on the well-established dynamic programming mathemati-
cal machinery, combining it with optimization strategies common in deep learning. However, the RL
setting is inherently different from the one in which most deep learning architectures and optimization
methods were developed. In deep RL, neural networks have to deal with dynamic datasets, whose
composition changes over the course of training; their training actively determines the value of future
inputs, but also the value of future targets. We argue that the recently identi�ed tendency of neural
networks to lose their ability to learn and generalize from new information during training (Chaudhry
et al., 2018; Ash & Adams, 2020; Berariu et al., 2021; Igl et al., 2021; Dohare et al., 2022; Lyle et al.,
2022a;b; Nikishin et al., 2022), against which most RL methods deploy no countermeasures, has
been the main roadblock in achieving better sample ef�ciency through replay ratio scaling.

After presenting and evaluating our algorithmic solution leading to better replay ratio scaling, we
discuss some of the aspects of thinking about deep RL algorithms under the lens of this paradigm.
We show some examples of algorithm design decisions important, or not important, for effective
replay ratio scaling to be possible, with particular attention to the role of online interaction. Then, we
visualize in an explicit way the data-computations tradeoff implied by this approach and, after having
shown the potential of replay ratio scaling, we discuss its inherent limits.

2 RELATED WORK

Loss of Ability to Learn and Generalize in Neural Networks A growing body of evidence
suggests that arti�cial neural networks lose their ability to learn and generalize during training. The
phenomenon is not clearly visible when learning with a static dataset on a �xed task, but it starts
appearing when the data distribution changes. In the continual learning setting, an alleviation of the
problem by partially resetting the network parameters already provides a consistent improvement (Ash
& Adams, 2020). Berariu et al. (2021) provides an in-depth study of how this phenomenon happens,
including how many training updates are required for the performance of a network on future tasks to
be unrecoverably damaged. The phenomenon becomes even more prominent in deep RL, where it has
been identi�ed in multiple settings. In the context of on-policy algorithms, it has been investigated as
a consequence oftransient non-stationarityand mitigated via self-distillation (Igl et al., 2021); in
off-policy RL, it has been studied under the name ofcapacity loss(Lyle et al., 2022a), counteracted
by the use of auxiliary tasks; in the sparse reward setting, it has been mitigated by post-training policy
distillation (Lyle et al., 2022b). To address what they callloss of plasticity, Dohare et al. (2022)
proposes a variation of backpropagation compatible with continual learning, also applying it to the
continual RL context. In this paper, we primarily leverage the hard resetting method proposed by
Nikishin et al. (2022), which was used to studythe primacy biasphenomenon. Our work demonstrates
that addressing this phenomenon allows for increased sample ef�ciency by scaling the replay ratio
to much higher values than other model-free methods. We report in Appendix A a more precise
summary and glossary of the different related de�nitions from previous work.
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Scaling in Deep and Reinforcement LearningThe topic of understanding and exploiting the scaling
behavior of a deep learning algorithm's performance with respect to the amount of resources used for
training has recently gained attention. Hestness et al. (2017) pioneered the idea of empirically studying
and predicting performance when increasing a model's size, and subsequent work investigated scaling
with respect to both model and dataset size, as well as training time (Kaplan et al., 2020; Bahri et al.,
2021; Djolonga et al., 2021). Recent work in language modeling has also highlighted the importance
of having high-quality data and the right training setup for ef�cient scaling to be possible (Hoffmann
et al., 2022). In RL, scaling with respect to model size has been investigated in the of�ine setting
for decision transformers (Lee et al., 2022) and with respect to planning-time in model-based
RL (Hamrick et al., 2021). For what concerns replay ratio scaling, moderately increasing the replay
ratio for standard baselines has been shown to be a competitive data-ef�cient baseline for both
discrete and continuous control when compared to model-based RL methods (Holland et al., 2018;
Van Hasselt et al., 2019; Kielak, 2019; D'Oro & Jaśkowski, 2020), despite clear limitations (Kumar
et al., 2021). Recent approaches in continuous control leveraged high replay ratios as a strategy
to improve sample ef�ciency through the use of ensembles of value functions (Chen et al., 2021;
Hiraoka et al., 2022; Wu et al., 2022) or normalization strategies (Smith et al., 2022); we argue that
explicitly alleviating the progressive loss of ability to learn and generalize pushes the replay ratio
scaling capabilities much further than those techniques can achieve.

3 EFFECTIVE REPLAY RATIO SCALING WITH RESETS

Most off-policy deep RL algorithms make use of a replay buffer (Lin, 1992) for storing transitions
encountered over (a window of) an agent's lifespan. At a �xed frequency, such methods sample a
batch of transitions from the buffer, update the parameters of the agent by following the gradient
of some loss function, and let the agent interact again with the environment before adding new
experience to the buffer. The number of agent updates per environment step is usually calledreplay
ratio1 (Wang et al., 2016; Fedus et al., 2020), and most standard algorithms are trained with a value
around1 (Mnih et al., 2015a; Haarnoja et al., 2018). It is natural to view increasing the replay ratio
beyond these values as a way to improve sample ef�ciency. For ease of discussion, we now explicitly
state and give a name to this idea, which has been an object of interest in previous studies (Van Hasselt
et al., 2019; Kumar et al., 2021).

Replay Ratio Scaling

Change in an agent's performance caused by doing more updates for a �xed number of
environment interactions.

This de�nition does not have any positive connotation per se; any deep RL algorithm will have a
certain replay ratio scaling behavior, and a desirable property for an algorithm is to have particularly
favorablereplay ratio scaling, so that its performance can improve by increasing the replay ratio.

In contrast to other performance scaling properties analyzed for deep learning algorithms (Kaplan
et al., 2020), replay ratio scaling is intertwined with the online RL paradigm: if the agent has a
signi�cantly better data-collection policy due to more training, the next collected sample will be
potentially different with respect to the one collected if doing less training before the interaction; by
this virtue, also future learning will be directly impacted by the presence of different data in the replay
buffer. In other words, this type of scaling can only be understood by considering the interaction of
an agent with an environment: training more on a small dataset of interactions, without any further
collection of data, will eventually lead to challenges associated to off-policy learning (Ostrovski et al.,
2021); but training morewhile the data is collectedcan drastically change the stream of incoming
data and the overall learning dynamics.

Given its appeal, what are the limiting factors to increasing the replay ratio? We argue that the
main factor inhibiting effective replay ratio scaling in existing deep RL algorithms has beenthe
progressive loss of the ability to learn and generalize in neural networks(Dohare et al., 2022; Lyle
et al., 2022b; Nikishin et al., 2022). It has been shown that this property hinders a neural network's
performance under task switches (Ash & Adams, 2020; Berariu et al., 2021) and, from the perspective

1Related quantities are also known as update-to-data (UTD) ratio (Chen et al., 2021; Smith et al., 2022).
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DMC15-500k

Method IQM Median Mean

SR-SAC 740(642, 818) 667(573, 742) 658(589, 722)
REDQ 511 (440, 577) 493 (442, 544) 494 (452, 534)
SAC 391 (334, 448) 424 (376, 468) 424 (386, 461)
DDPG 392 (334, 445) 410 (364, 454) 408 (371, 442)

DMC15-1M

Method IQM Median Mean

SR-SAC 805(726, 867) 729(628, 790) 710(643, 775)
REDQ 586 (514, 649) 546 (490, 596) 539 (498, 576)
SAC 535 (467, 597) 525 (471, 567) 519 (480, 557)
DDPG 514 (450, 572) 492 (440, 540) 489 (450, 526)

Figure 2 & Table 1: Performance of SR-SAC and of standard baselines on the DMC15 benchmark.
(5 seeds for SR-SAC, 20 for all other algorithms, 95% bootstrapped C.I.).

of a neural network employed by the agent, what is deep RL if not a long sequence of related but
distinct tasks (Dabney et al., 2021)?

Recent studies showed that, even under smooth task changes, the more training has been done on
a previous task, the worse the performance will eventually be in a new task (Ash & Adams, 2020;
Berariu et al., 2021). Since higher replay ratio correspond to an increased amount of training, this
gives a natural explanation to the limit in increasing it. The ability to learn and generalize can,
however, be restored. For instance, Nikishin et al. (2022) periodically reset the network's parameters,
with a frequency that is �xed with respect to the number ofenvironment steps. In this work, we
argue that the key to surprisingly effective replay ratio scaling is a periodic restoration of the ability
to learn and generalize of the network, via partial (Ash & Adams, 2020) or total (Nikishin et al.,
2022) resets of its parameters, with a reset frequency that only depends on the number ofupdates
and thus implicitly also on the replay ratio. This means the more an algorithm updates its neural
networks, the more frequent the restoration of its ability to learn and generalize will be, leading to
better performance, as we now show in practice.

4 REPLAY RATIO SCALING DRASTICALLY IMPROVESSAMPLE EFFICIENCY

We apply two different reset strategies to two standard continuous control and discrete control algo-
rithms and study their replay ratio scaling behavior. We consider Soft Actor-Critic (SAC) (Haarnoja
et al., 2018), which optimizes an actor and a critic by maximizing policy entropy alongside the
environment's reward, and SPR (Schwarzer et al., 2021a), a model-free DQN-based reinforcement
learning algorithm that augments a sample-ef�cient variant of Rainbow (Van Hasselt et al., 2019) with
a model-based latent dynamics prediction objective designed to improve representation learning in
the low-data regime. The two curves in Figure 1 show that it is possible, with the same algorithm, to
almost double the performance for the same number of environment steps, by just varying the replay
ratio. We call the modi�ed versions of these two algorithmsScaled-by-Resetting SAC(SR-SAC) and
Scaled-by-Resetting SPR(SR-SPR). In the rest of this section, we are going to describe the precise
the details of the reset strategies that we employ for the two algorithms, as well as the benchmarks to
which they are applied, by describing our decisions �rst in continuous control and then in discrete
control. For evaluation and comparisons, we follow the protocol suggested by Agarwal et al. (2021).

4.1 CONTINUOUS CONTROL

The DMC15 Benchmark To appropriately compare the performance of different algorithms, we
consider a benchmark based on15environments from DeepMind Control Suite (Tassa et al., 2018).
Our selection of tasks, reported in Table 6, is a set for which discussing sample ef�ciency is sensible
(i.e., neither immediately solvable nor unsolvable by common deep RL algorithms). For ease of
comparison, we specialize the benchmark to DMC15-500k, in which5 � 105 interactions with the
environment are allowed, and DMC15-1M, in which106 interactions are allowed.
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Reset Strategy We adapt the approach of Nikishin et al. (2022), and completely reset all the agent
parameters every2:56� 106 of its updates. This lets us avoid individually specifying the moments at
which resets should happen for different replay ratios. In terms of environment steps, resets will just
occur more often at higher replay ratios. For instance, for replay ratio 128 (128x higher than what
typically used by SAC), a reset occurs once every 20000 steps of interaction with the environment.

Results In Figure 2, we compare a version of SR-SAC that uses a replay ratio of 128 to standard deep
RL baselines. This also includes the recently proposed REDQ (Chen et al., 2021), which obtained
state-of-the-art sample ef�ciency by using a replay ratio of20. At any budget of interactions with the
environment, SR-SAC compares favorably with REDQ, despite being a simpler algorithm. SR-SAC
establishes a new state-of-the-art result for model-free continuous control. Following (Agarwal
et al., 2021) we focus on interquartile mean (IQM) performance, de�ned as the 25% trimmed mean
performance over all runs on all considered tasks, and report 95% bootstrap con�dence intervals.

4.2 ATARI 100K

Reset Strategy We follow Nikishin et al. (2022) in performing one reset every 40,000 updates; at
replay ratio 16, the highest considered, this corresponds to a reset every 2,500 environment steps,
or roughly once every three minutes of interaction. However, Nikishin et al. (2022) only reset a
subset of the agent's parameters when training on the ALE, leaving the agent's convolutional encoder
untouched by resets. While this leaves the encoder vulnerable to plasticity loss, fully resetting the
encoder is impractical, as Nikishin et al. (2022) observe. As an intermediate solution, we apply soft
resets, using a variant ofShrink and Perturb(Ash & Adams, 2020) in which encoder parameters are
interpolated between their previous value and a random re-initialized parameter vector on each reset:
� t = �� t � 1 + (1 � � )� , � � initializer . This formulation is different from that used by (Ash
& Adams, 2020) but allows easy interpolation between completely resetting a layer and leaving it
unchanged; we use� = 0 :8 by default. We examine the impact of this decision in Section 5.2.

Target Networks By default, SPR does not employ a separate target network, unlike traditional
DQNs (Mnih et al., 2015a). However, we �nd that this leads replay ratio scaling to stop improving
performance at relatively low replay ratios, which we hypothesize is due to fundamental variance in
optimization limiting the accuracy to which the value function may be estimated. To alleviate it, we
directly adopt the target strategy employed by SR-SAC, with an exponential moving average (EMA)
target network with coef�cient� = 0 :005, which we �nd allows bene�cial replay ratio scaling out to
at least replay ratio 16. Moreover, following (Ghavamzadeh et al., 2011), SR-SPR also uses its target
network for action selection. We elaborate on this design decision in Section 5.2.

Results Figure 3 shows performance pro�les of SR-SPR at various replay ratios, demonstrating
that replay ratio scaling consistently improves performance up to at least replay ratio 16. We also
compare a version of SR-SPR that uses replay ratio 16 to standard baselines (DrQ, DER, Kostrikov

Atari 100k

Method IQM Median Mean

SR-SPR 0.632(0.60, 0.66) 0.685(0.60, 0.77) 1.272(1.18, 1.37)
IRIS 0.501 (0.44, 0.56) 0.289 (0.25, 0.41) 1.046 (0.96, 1.13)
SPR 0.380 (0.36, 0.39) 0.433 (0.38, 0.48) 0.578 (0.56, 0.60)
DrQ(� ) 0.280 (0.27, 0.29) 0.304 (0.28, 0.33) 0.465 (0.46, 0.48)
DER 0.183 (0.18, 0.19) 0.191 (0.18, 0.21) 0.351 (0.34, 0.36)

Figure 3 & Table 2: Performance pro�les (left, higher is better) of SR-SPR at various replay ratios,
and 95% C.I.s of SR-SPR: 16 and of standard baselines on Atari 100k (right, 20 seeds for SR-SPR
and SPR, 5 seeds for IRIS, 100 seeds for all other algorithms as taken from Agarwal et al. (2021))
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Figure 4: Scaling behavior of SAC, SR-SAC and its tandem and iterated of�ine variations in the
DMC15 benchmark. Each individual line shows performance at a given number of environment
steps, denoted by color, across different numbers of agent updates. Each point in a line is obtained by
measuring performance with a different replay ratio for that number of environment steps. Each line
is computed over 5 seeds.

et al., 2022; Van Hasselt et al., 2019) and recent work (IRIS, Micheli et al., 2022) in table 2. SR-SPR
establishes a new state-of-the-art for model-free control on Atari 100k, and rivals prior work that has
aggressively pretrained on additional data (Liu & Abbeel, 2021; Schwarzer et al., 2021b). We present
full results and per-game scores for SR-SPR in table 4, and show training curves in �g. 15. We report
IQM performance, as well as plotting a performance pro�le (Agarwal et al., 2021), which visualizes
the full distribution of performance across all runs2 and demonstrates that increasing SR-SPR's replay
ratio comprehensively improves performance.

5 ALGORITHM DESIGN IN L IGHT OF REPLAY RATIO SCALING

5.1 ANALYZING THE IMPORTANCE OFONLINE INTERACTION

When training with high replay ratios and short reset intervals, the training regime an agent is subjected
to begins to resemble of�ine RL; the agent is primarily learning from data collected by policies
unrelated to its own, with only a small amount of online data available to correct its policy. Given
many classical analyses from of�ine RL (Levine et al., 2020), it is perhaps surprising that an agent
trained in a pseudo-of�ine setting with no explicit regularization towards conservatism (e.g., Kumar
et al., 2020) can learn successfully. What is then the role of the incoming stream of interactions?
To gain some understanding, in this section we attack the problem from different angles and study
the scaling behavior of variants of SR-SAC. We consider different data collection patterns and how
interleaving them with agent optimization changes the training dynamics. The appendix also presents
a comparisons with NFQI (Riedmiller, 2005) and with the online use of an of�ine RL algorithm.

5.1.1 ITERATED OFFLINE SETTING

Changing the replay ratio in a deep RL algorithm can be seen as a speci�c way of increasing the
proportion of of�ine training an agent is subject to. Speci�cally, the agent's parameters are updated a
number of times exactly equal to the replay ratio before a new sample is collected. This implies a
uniform distribution of the number of of�ine updates across time steps. Is this an important variable
for determining the replay ratio scaling behavior of an algorithm?

To answer this question, we resort to what we calliterated of�ine RL (Matsushima et al., 2021;
Riedmiller et al., 2021), which alternates between purely of�ine updates and data collection. In this
setting, a certain value of replay ratio is not distributed uniformly during the course of the interactions
with the environment. Instead, the agent is not updated during data collection, and an amount of
updates equal to the one that would be due in that data collection time frame in virtue of the replay
ratio is applied completely of�ine, right after each reset.

As visible in Figure 4, the iterated of�ine paradigm has a different replay ratio scaling behavior.
Applying a very large number of updates with a �xed dataset, with an algorithm such as SAC, incurs
serious risk of generating a degenerate policy, not able to outperform the previous one. As exempli�ed
in Figure 6, in the absence of any mechanism for stopping this natural degeneration to happen, this
circle is broken only when enough data is collected. Collecting enough data in this sense is possible

2Broadly speaking, a transposed and clipped plot of the cumulative distribution function of performance.
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Figure 6: Examples of behaviors of SR-SAC and its tandem and iterated of�ine variations on four
environments from DMC15. (5 runs,� std).

for easy tasks such ashopper-stand andwalker-run , with a cost in sample ef�ciency, or
impossible on hard tasks such ashumanoid-stand andquadruped-walk . This is unfortunate:
the iterated of�ine RL paradigm can be quite useful in practical settings, in which the agent is allowed
to only collected batches of data without any update (perhaps for safety reasons); however, current
backbone algorithms (such as SAC) are not currently compatible with such a setting, that thus leads
to favorable replay scaling only when closer to the online setting. This explains the sudden increase
in the curve of Figure 4, when the number of agent updates, and consequently the reset frequency,
becomes large enough. An interesting question, left for future work, is whether this behavior could
change if combined with conservative algorithms created for the of�ine RL setting.

5.1.2 TANDEM SETTING

With high replay ratios, an agent's training begins to resemble of�ine RL: although the agent still
has the possibility to interact with the environment, it is very infrequent relative to the amount of
training. Thus, an agent after a reset has a small stream of interactions collected by the agent itself,
while the vast majority of its data was collected by potentially unrelated agents. How important,
then, is this small stream of online interaction? To answer this question, we leverage the tandem
setting, as presented in Ostrovski et al. (2021). Two copies of the same agent, identical apart from
the initialization, are created. With the same algorithm (SR-SAC in this case), they are trained on
the replay buffer collected by theactive agent. Thepassive agentthus never directly interacts with
environment, and cannot collect data to correct its own misconceptions about the environment.

Figure 5: Learning curves
(top) and evaluation perfor-
mance (bottom) at replay ratio
16 for SPR and SR-SPR with
and without of�ine updates af-
ter each reset.

As shown in Figure 4, the behavior of Tandem SR-SAC offers an
alternative perspective on the importance of online interactions: de-
spite the performance of the algorithm being hurt, the overall replay
ratio scaling capabilities remain similar. We can look at the perfor-
mance of the passive agent to understand what the exact effect of on-
line interactions is on training. As evident in the environments from
Figure 6, especially inhopper-stand andquadruped-walk ,
there is a qualitative difference between the behavior of an active
agent (blue curve) and a passive agent (green curve): right after a
reset, with the initial high replay ratio training, the performance of
both agents is greatly improved; after a few thousands steps, training
remains stable for the active agent but causes performance collapse
in the passive agent. This experiment thus demonstrates the power of
having online interactions as animplicit regularization mechanism.

For the design of future replay ratio-scalable algorithms, one should
keep in mind that it is indeed possible to scale an algorithm poten-
tially affected by extreme off-policyness; however, online data col-
lection slows down performance collapse when training aggressively,
as shown in both the iterated of�ine and the tandem experiments.

5.1.3 ALTERNATIVE COMBINATIONS OF OFFLINE AND ONLINE UPDATES

The iterated of�ine setting can be seen as the extreme in which all of the updates are done of�ine,
compared to the even distribution used in the online setting. What if we use an intermediate strategy?
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For SR-SPR, we �nd that directly mixing of�ine and online RL by performing half the updates
allotted to each interval immediately after each reset can actually improve performance by some
metrics, such as training return (see Figure 5 upper), by mitigating the performance drop otherwise
experienced after each reset. Although we �nd that this has essentially no impact on �nal evaluation
performance (Figure 5 lower), it may allow SR-SPR to be used when cumulative regret is important.

5.2 WHAT IS REQUIRED FORREPLAY RATIO SCALING IN DISCRETECONTROL?

Figure 7: The replay ratio scaling behavior of SR-
SPR with various components ablated.

Although replay ratio scaling is relatively
straightforward for SR-SAC, achieving robust
replay ratio scaling for SR-SPR requires more
complex design decisions due to its shorter train-
ing period and more complex function approx-
imation. As a result, unlike SR-SAC, SR-SPR
contains additional modi�cations from the vari-
ant of SPR used by Nikishin et al. (2022). We
study the impact of these design decisions on
scaling behavior and report results in Figure 7.

Inspired by the �ndings of Berariu et al. (2021)
that plasticity loss is concentrated in the �nal lay-
ers of the network but affects all layers, we apply
Shrink and Perturb (SP) to the encoder; this is
responsible for roughly a constant increase of
IQM 0.04 past replay ratio 4. We note however
that applying Shrink and Perturb alone to all the
parameters of the network is not suf�cient to
enable bene�cial scaling; it is important that at
least the network's �nal layers be completely
reset. We explain this using the observations
from (Berariu et al., 2021) that the last layers
are more responsible for the loss of plasticity.

That said, the most important factor in allowing
SR-SPR to continue scaling well is its use of
a target network. This effect is primarily due
to better action selection through the target net-
work; we found that the stabilizing effect on optimization was a less important factor. This is
reminiscent of speedy Q-learning (Ghavamzadeh et al., 2011), where the use of an exponential
moving average policy was shown to improve convergence speed, and can also be understood in
relationship to the policy churn phenomenon (Schaul et al., 2022) (see Figure 10 in the appendix).

Meanwhile, removing both Shrink and Perturb and the target network is roughly equivalent to taking
the method of Nikishin et al. (2022) but setting reset intervals as in SR-SPR. As Figure 7 suggests, this
alone suf�ces to yield some replay ratio scaling but not as ef�cient compared to SR-SPR. However,
maintaining a �xed reset interval (in terms of environment steps) when varying replay ratio, as done
by Nikishin et al. (2022), leads to poor performance at replay ratios above 4.

Intriguingly, we note that these modi�cations are bene�cial speci�cally for replay ratio scaling;
at replay ratios 1 or 2 they do not improve performance (although for the most part they do not
signi�cantly harm performance either). We thus hypothesize that there may be other modi�cations to
complex algorithms such as SPR that could be made to further improve replay ratio scaling properties,
but that are today not in widespread use because they do not improve performance in standard low
replay ratio settings.

5.3 VISUALIZING THE DATA /COMPUTE TRADEOFF

If an order of magnitude more of updates can be used for improving the performance of an algorithm,
additional tradeoffs start to emerge. The type of computations that replay ratio scaling implies are
fundamentally different than other concepts of scaling, (e.g., about larger models): scaling here is
inherently sequential. Thus, obtaining more hardware does not help faster execution of the algorithm.
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When collecting new transitions is not very expensive, the choice between collecting new samples in
the environment and spending more time updating an agent could become nontrivial.

Figure 8: Performance of SR-SAC in
DMC15 as a function of the number of
interactions and of the number of agent
updates, determined by the replay ratio.

We visualize this tradeoff in Figure 8. The plot is obtained
by combining runs of SR-SAC with doubling replay ratio
from 0.25 to 128, and considering, for a �xed data budget
(in terms of environment steps), the total computational
budget (in terms of total number of agent updates at that
point), as well as the achieved performance. There exists
multiple ways to achieve the same level of performance, as
denoted by the color. This plot shows that resets provide a
knob on replay ratio scaling and allows to tradeoff data for
computation. If, for a given problem, sample ef�ciency
is more important than computational considerations, one
can spend about two orders of magnitude of additional
agent updates to obtain the same performance that can
be obtained by waiting for 800000 additional samples to
be collected from the environment. The peculiar feature
of the approach we advocate for in this paper is that it
allows to act on this tradeoff with an algorithm basically
as simple as the employed backbone.

6 THE L IMITS OF REPLAY RATIO SCALING

We have seen what becomes possible when higher level of replay ratio scaling are unlocked by resets.
What are the limits of this paradigm? First of all, replay ratio scaling is always possible up to a
�nite value, at which there is simply not enough information left to be extracted from the existing
dataset of experience. Current methods, including the one proposed in this paper, are not able to
automatically identify when this limit is reached, and they are therefore still subject to performance
collapse when increasing the replay ratio too much. Second, replay ratio scaling cannot go beyond
the intrinsic limitations of the given deep RL algorithm: for example, if the task is simply impossible
to solve because of hard credit assignment or exploration, then replay ratio scaling is only of limited
help. Third, the strategy we proposed for replay ratio scaling is based on keeping the entire history of
interactions with the environment in the replay buffer. While this is feasible for the kind of sample-
ef�ciency benchmarks that we have used in this paper, it might also require special consideration to
be applied to larger problems; for instance, it is possible to keep a large replay buffer on permanent
storage, albeit at the cost of slower batch retrieval. Lastly, replay ratio scaling can inherently become
time-consuming for a training agent, which can limit the applicability of methodologies like ours to
settings requiring high-frequency interactions with an environment.

7 CONCLUSIONS

In this paper, we have shown that, by leveraging partial or full resets of an agent's parameters,
it is possible to unlock new levels of favorable replay ratio scaling and, consequently, of sample-
ef�ciency for model-free deep RL algorithms. We demonstrated this by a careful evaluation on
the DeepMind Control Suite and Atari 100k benchmarks, where our approach (SR-SAC and SR-
SPR) demonstrated far superior performance compared to strong baselines, with minimal amounts
of additional algorithmic complexity. Then, we discussed which algorithmic design choices are
important for achieving such levels of replay ratio scaling with a deep RL algorithm, as well as the
tradeoffs implied by this paradigm. Through our empirical analysis, we showed the value of online
data collection, offering a perspective on its relationship with of�ine RL (Levine et al., 2020).

More generally, this paper is about how to leverage a discovery for the design of future deep RL
algorithms. We believe this work to be an example of how the development of effective deep RL
methods should be achieved not only through extending existing algorithms or creating new ones,
but also through the discovery of new phenomena related to deep RL systems, and of techniques for
exploiting them to increase performance. It is natural to wonder whether deeper understanding or
exploitation of surprising empirical properties (Ostrovski et al., 2021; Schaul et al., 2022) beyond the
one behind this work could lead to the emergence of new capabilities in deep RL algorithms.
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Expression De�nition Used In

Damage from
Warm-Starting

[Phenomenon for which] “a warm-started network performs
worse on test samples than a network trained on the same data
but with a new random initialization”

Ash & Adams
(2020)

Damage from
Non-Stationarity

“A memory effect where these transient non-stationarities can
permanently impact the latent representation and adversely affect
generalisation performance”

Igl et al. (2021)

Capacity Loss “Reduced ability to �t new targets in deep neural networks” Lyle et al. (2022b),
Lyle et al. (2022a)

Loss of Plasticity “Loss of the ability of the model to keep learning”
Berariu et al.
(2021), Dohare
et al. (2022)

Primacy Bias “A tendency to over�t initial experiences that damages the rest
of the learning process”

Nikishin et al.
(2022)

Table 3: De�nitions of coinciding and related phenomena from previous work justifying the effective-
ness of our strategy for replay ratio scaling.

(a) DeepMind Control Suite (DMC15-500k) (b) Atari 100k

Figure 9: Sensitivity of the IQM to varying reset intervals (in terms of gradient updates) of SR-SAC
on the DeepMind Control Suite (DMC15-500k) benchmark, and of SR-SPR on the Atari 100k
benchmark. (10 seeds, 95% bootstrapped C.I.).

A DEFINITIONS FROMRELATED WORKS

To further clarify our description of previous work from the related work section, we report in Table 3
de�nitions of the different terms used to refer to the loss of the ability to learn and generalize in neural
networks. Each de�nition is directly taken from one of the papers corresponding to it. Note that,
despite their overlap, they re�ect slightly different perspectives on the nature of this phenomenon,
and it can be worth for future investigations to pin down which one of these is more relevant for
replay ratio scaling or reinforcement learning as a whole.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 ADDITIONAL STUDIES

Reset Interval An important hyperparameter for both SR-SAC and SR-SPR is the interval at which
resets are performed, as denominated in terms of number of agent updates. In Figure 9, we study how
performance is impacted by this choice, at different replay ratios. Overall, both SR-SAC and SR-SPR
perform well for a vast range of reset intervals, with favorable replay ratio scaling and generally
smooth performance degradation. Note that, for large intervals (e.g., the last point on the right for
SR-SAC withRR = 16, and last two points in the bottom right for SR-SPR), this is equivalent to
actually performing no resets, just running the unmodi�ed baseline algorithms. Thus, performance
experiences non-smooth drops only in these easily avoidable cases.
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