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Abstract

Diffusion models have been recently employed to improve certified robustness1

through the process of denoising. However, the theoretical understanding of why2

diffusion models are able to improve the certified robustness is still lacking, pre-3

venting from further improvement. In this study, we close this gap by analyzing4

the fundamental properties of diffusion models and establishing the conditions5

under which they can enhance certified robustness. This deeper understanding al-6

lows us to propose a new method DensePure, designed to improve the certified7

robustness of a pretrained model (i.e. classifier). Given an (adversarial) input,8

DensePure consists of multiple runs of denoising via the reverse process of the9

diffusion model (with different random seeds) to get multiple reversed samples,10

which are then passed through the classifier, followed by majority voting of in-11

ferred labels to make the final prediction. This design of using multiple runs of12

denoising is informed by our theoretical analysis of the conditional distribution of13

the reversed sample. Specifically, when the data density of a clean sample is high,14

its conditional density under the reverse process in a diffusion model is also high;15

thus sampling from the latter conditional distribution can purify the adversarial16

example and return the corresponding clean sample with a high probability. By17

using the highest density point in the conditional distribution as the reversed sam-18

ple, we identify the robust region of a given instance under the diffusion model’s19

reverse process. We show that this robust region is a union of multiple convex sets,20

and is potentially much larger than the robust regions identified in previous works.21

In practice, DensePure can approximate the label of the high density region in22

the conditional distribution so that it can enhance certified robustness. We conduct23

extensive experiments to demonstrate the effectiveness of DensePure by evaluat-24

ing its certified robustness given a standard model via randomized smoothing. We25

show that DensePure is consistently better than existing methods on ImageNet,26

with 7% improvement on average.27

1 Introduction28

Diffusion models have been shown to be a powerful image generation tool (Ho et al., 2020; Song29

et al., 2021b) owing to their iterative diffusion and denoising processes. These models have achieved30

state-of-the-art performance on sample quality (Dhariwal & Nichol, 2021; Vahdat et al., 2021) as31

well as effective mode coverage (Song et al., 2021a). A diffusion model usually consists of two32

processes: (i) a forward diffusion process that converts data to noise by gradually adding noise to33

the input, and (ii) a reverse generative process that starts from noise and generates data by denoising34

one step at a time (Song et al., 2021b).35

Given the natural denoising property of diffusion models, empirical studies have leveraged them to36

perform adversarial purification (Nie et al., 2022; Wu et al., 2022; Carlini et al., 2022). For instance,37
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Nie et al. (2022) introduce a diffusion model based purification model DiffPure. They empirically38

show that by carefully choosing the amount of Gaussian noises added during the diffusion process,39

adversarial perturbations can be removed while preserving the true label semantics. Despite the40

significant empirical results, there is no provable guarantee of the achieved robustness. Carlini et al.41

(2022) instantiate the randomized smoothing approach with the diffusion model to offer a provable42

guarantee of model robustness against L2-norm bounded adversarial example. However, they do43

not provide a theoretical understanding of why and how the diffusion models contribute to such44

nontrivial certified robustness.45

Our Approach. We theoretically analyze the fundamental properties of diffusion models to under-46

stand why and how it enhances certified robustness. This deeper understanding allows us to propose47

a new method DensePure to improve the certified robustness of any given classifier by more ef-48

fectively using the diffusion model. It consists of a pretrained diffusion model and a pretrained49

classifier. DensePure incorporates two steps: (i) using the reverse process of the diffusion model50

to obtain a sample of the posterior data distribution conditioned on the adversarial input; and (ii)51

repeating the reverse process multiple times with different random seeds to approximate the label52

of high density region in the conditional distribution via a majority vote. In particular, given an ad-53

versarial input, we repeatedly feed it into the reverse process of the diffusion model to get multiple54

reversed examples and feed them into the classifier to get their labels. We then apply the majority55

vote on the set of labels to get the final predicted label.56

DensePure is inspired by our theoretical analysis, where we show that the diffusion model reverse57

process provides a conditional distribution of the reversed sample given an adversarial input, and58

sampling from this conditional distribution enhances the certified robustness. Specifically, we prove59

that when the data density of clean samples is high, it is a sufficient condition for the conditional60

density of the reversed samples to be also high. Therefore, in DensePure, samples from the condi-61

tional distribution can recover the ground-truth labels with a high probability.62

For the convenience of understanding and rigorous analysis, we use the highest density point in the63

conditional distribution as the deterministic reversed sample for the classifier prediction. We show64

that the robust region for a given sample under the diffusion model’s reverse process is the union of65

multiple convex sets, each surrounding a region around the ground-truth label. Compared with the66

robust region of previous work (Cohen et al., 2019), which only focuses on the neighborhood of one67

region with the ground-truth label, such union of multiple convex sets has the potential to provide68

a much larger robust region. Moreover, the characterization implies that the size of robust regions69

is affected by the relative density and the distance between data regions with the ground-truth label70

and those with other labels.71

We conduct extensive experiments on ImageNet and CIFAR-10 datasets under different settings to72

evaluate the certifiable robustness of DensePure. In particular, we follow the setting from Carlini73

et al. (2022) and rely on randomized smoothing to certify robustness to adversarial perturbations74

bounded in the L2-norm. We show that DensePure achieves the new state-of-the-art certified75

robustness on the clean model without tuning any model parameters (off-the-shelf). On ImageNet,76

it achieves a consistently higher certified accuracy than the existing methods among every σ at every77

radius ϵ , 7% improvement on average.78

2 Preliminaries and Backgrounds79

Continuous-Time Diffusion Model. The diffusion model has two components: the diffusion pro-80

cess followed by the reverse process. Given an input random variable x0 ∼ p, the diffusion pro-81

cess adds isotropic Gaussian noises to the data so that the diffused random variable at time t is82

xt =
√
αt(x0 + ϵt), s.t., ϵt ∼ N (0, σ2

t I), and σ2
t = (1 − αt)/αt, and we denote xt ∼ pt. The83

forward diffusion process can also be defined by the stochastic differential equation84

dx = h(x, t)dt+ g(t)dw, (SDE)

where x0 ∼ p, h : Rd × R 7→ Rd is the drift coefficient, g : R 7→ R is the diffusion coefficient,85

and w(t) ∈ Rn is the standard Wiener process.86

Under mild conditions C.1, the reverse process exists and removes the added noise by solving the87

reverse-time SDE (Anderson, 1982)88

dx̂ = [h(x̂, t)− g(t)2▽x̂ log pt(x̂)]dt+ g(t)dw, (reverse-SDE)
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where dt is an infinitesimal reverse time step, and w(t) is a reverse-time standard Wiener process.89

In our context, we use the conventions of VP-SDE (Song et al., 2021b) where h(x; t) := − 1
2γ(t)x90

and g(t) :=
√
γ(t) with γ(t) positive and continuous over [0, 1], such that x(t) =

√
αtx(0) +91 √

1− αtϵ where αt = e−
∫ t
0
γ(s)ds and ϵ ∼ N (0, I). We use {xt}t∈[0,1] and {x̂t}t∈[0,1] to denote92

the diffusion process and the reverse process generated by SDE and reverse-SDE respectively, which93

follow the same distribution.94

The formulations of Discrete-Time Diffusion Model (or DDPM (Ho et al., 2020)) and Randomized95

Smoothing are in the appendix.96

3 Theoretical Analysis97

In this section, we theoretically analyze why and how the diffusion model can enhance the robustness98

of a given classifier. We will analyze directly on SDE and reverse-SDE as they generate the same99

stochastic processes {xt}t∈[0,T ] and the literature works establish an approximation on reverse-100

SDE (Song et al., 2021b; Ho et al., 2020).101

We first show that given a diffusion model, solving reverse-SDE will generate a conditional distribu-102

tion based on the scaled adversarial sample, which will have high density on data region with high103

data density and near to the adversarial sample in Theorem 3.1. See detailed conditions in C.1.104

Theorem 3.1. Under conditions C.1, solving equation reverse-SDE starting from time t and sample105

xa,t =
√
αtxa will generate a reversed random variable x̂0 with density P (x̂0 = x|x̂t = xa,t) ∝106

p(x) · 1√
(2πσ2

t )
n
exp

(
−||x−xa||22

2σ2
t

)
, where p is the data distribution, σ2

t = 1−αt

αt
is the variance of107

Gaussian noise added at time t in the diffusion process.108

Proof. (sketch) Under conditions C.1, we know {xt}t∈[0,1] and {x̂t}t∈[0,1] follow the same distri-109

bution, and then the rest proof follows Bayes’ Rule.110

Please see the full proofs of this and the following theorems in Appendix C.3.111

Remark 1. Note that P (x̂0 = x|x̂t = xa,t) > 0 if and only if p(x) > 0, thus the generated reverse112

sample will be on the data region where we train classifiers.113

In Theorem 3.1, the conditional density P (x̂0 = x|x̂t = xa,t) is high only if both p(x) and the114

Gaussian term have high values, i.e., x has high data density and is close to the adversarial sample115

xa. The latter condition is reasonable since adversarial perturbations are typically bounded due to116

budget constraints. Then, the above argument implies that a reversed sample will have the ground-117

truth label with a high probability if data region with the ground-truth label has high enough data118

density.119

For the convenience of theoretical analysis and understanding, we take the point with high-120

est conditional density P (x̂0 = x|x̂t = xa,t) as the reversed sample, defined as P(xa; t) :=121

argmaxx P (x̂0 = x|x̂t = xa,t). P(xa; t) is a representative of the high density data region in122

the conditional distribution and P(·; t) is a deterministic purification model. In the following, we123

characterize the robust region for data region with ground-truth label under P (·; t). The robust re-124

gion and the robust radius for a general deterministic purification model given a classifier are defined125

below.126

Definition 3.2 (Robust Region and Robust Radius). Given a classifier f and a point x0, let127

G(x0) := {x : f(x) = f(x0)} be the data region where samples have the same label as x0.128

Then given a deterministic purification model P(· ;ψ) with parameter ψ, we define the robust re-129

gion of G(x0) under P and f as Df
P (G(x0);ψ) := {x : f (P(x;ψ)) = f(x0)}, i.e., the set of x130

such that purified sample P(x;ψ) has the same label as x0 under f . Further, we define the robust131

radius of x0 as rfP(x0;ψ) := max
{
r : x0 + ru ∈ Df

P (x0;ψ) , ∀||u||2 ≤ 1
}

, i.e., the radius of132

maximum inclined ball of Df
P (x0;ψ) centered around x0. We will omit P and f when it is clear133

from the context and write D (G(x0);ψ) and r(x0;ψ) instead.134

Remark 2. In Definition 3.2, the robust region (resp. radius) is defined for each class (resp. point).135

When using the point with highest P (x̂0 = x|x̂t = xa,t) as the reversed sample, ψ := t.136
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Now given a sample x0 with ground-truth label, we are ready to characterize the robust region137

D (G(x0);ψ) under purification model P(·; t) and classifier f . Intuitively, if the adversarial sample138

xa is near to x0 (in Euclidean distance), xa keeps the same label semantics of x0 and so as the139

purified sample P(xa; t), which implies that f (P(xa;ψ)) = f(x0). However, the condition that140

xa is near to x0 is sufficient but not necessary since we can still achieve f (P(xa;ψ)) = f(x0)141

if xa is near to any sample x̃0 with f (P(x̃a;ψ)) = f(x0). In the following, we will show that142

the robust region D (G(x0);ψ) is the union of the convex robust sub-regions surrounding every x̃0143

with the same label as x0. The following theorem characterizes the convex robust sub-region and144

robust region respectively.145

Theorem 3.3. Under conditions C.1 and classifier f , let x0 be the sample with ground-truth label146

and xa be the adversarial sample, then (i) the purified sample P(xa; t) will have the ground-truth147

label if xa falls into the following convex set,148

Dsub (x0; t) :=
⋂

{x′
0:f(x

′
0 )̸=f(x0)}

{
xa : (xa − x0)

⊤(x′
0 − x0) < σ2

t log

(
p(x0)

p(x′
0)

)
+
||x′

0 − x0||22
2

}
,

and further, (ii) the purified sample P(xa; t) will have the ground-truth label if and only if xa falls149

into the following set, D (G(x0); t) :=
⋃

x̃0:f(x̃0)=f(x0)
Dsub (x̃0; t). In other words, D (G(x0); t)150

is the robust region for data region G(x0) under P(·; t) and f .151

Proof. (sketch) (i). Each convex half-space defined by the inequality corresponds to a x′
0 such that152

f(x′
0) ̸= f(x0) where xa within satisfies P (x̂0 = x0|x̂t = xa,t) > P (x̂0 = x′

0 | x̂t = xxxa,t). This153

implies that P(xa; t) ̸= x′
0 and f (P(xa;ψ)) = f(x0). The convexity is due to that the intersection154

of convex sets is convex. (ii). The “if” follows directly from (i). The “only if” holds because155

if xa /∈ D (G(x0); t), then exists x̃1 such that f(x̃1) ̸= f(x0) and P (x̂0 = x̃1|x̂t = xa,t) >156

P (x̂0 = x̃0|x̂t = xa,t) ,∀x̃0 s.t. f(x̃0) = f(x0), and thus f (P(xa;ψ)) ̸= f(x0).157

Remark 3. Theorem 3.3 implies that when data region G(x0) has higher data density and larger158

distances to data regions with other labels, it tends to have larger robust region and points in data159

region tends to have larger radius.160

In the literature, people focus more on the robust radius (lower bound) r (G(x0); t) (Cohen et al.,161

2019; Carlini et al., 2022), which can be obtained by finding the maximum inclined ball inside162

D (G(x0); t) centering x0. Note that although Dsub (x0; t) is convex, D (G(x0); t) is generally163

not. Therefore, finding r (G(x0); t) is a non-convex optimization problem. In particular, it can be164

formulated into a disjunctive optimization problem with integer indicator variables, which is typi-165

cally NP-hard to solve. One alternative could be finding the maximum inclined ball in Dsub (x0; t),166

which can be formulated into a convex optimization problem whose optimal value provides a lower167

bound for r (G(x0); t). However, D (G(x0); t) has the potential to provide much larger robustness168

radius because it might connect different convex robust sub-regions into one.169

In practice, we cannot guarantee to establish an exact reverse process like reverse-SDE but instead170

try to establish an approximate reverse process to mimic the exact one. As long as the approximate171

reverse process is close enough to the exact reverse process, they will generate close enough con-172

ditional distributions based on the adversarial sample. Then the density and locations of the data173

regions in two conditional distributions will not differ much and so is the robust region for each174

data region. We take the score-based diffusion model in Song et al. (2021b) for an example and175

demonstrate Theorem 3.4 to bound the KL-divergnece between conditional distributions generated176

by reverse-SDE and score-based diffusion model. Ho et al. (2020) showed that using variational177

inference to fit DDPM is equivalent to optimizing an objective resembling score-based diffusion178

model with a specific weighting scheme, so the results can be extended to DDPM.179

Theorem 3.4. Under score-based diffusion model Song et al. (2021b) and conditions C.1, we have180

DKL(P(x̂0 = x | x̂t = xa,t)∥P(xθ
0 = x | xθ

t = xa,t)) = JSM(θ, t;λ(·)), where {x̂τ}τ∈[0,t] and181

{xθ
τ}τ∈[0,t] are stochastic processes generated by reverse-SDE and score-based diffusion model182

respectively, JSM(θ, t;λ(·)) := 1
2

∫ t

0
Epτ (x)

[
λ(τ) ∥∇x log pτ (x)− sθ(x, τ)∥22

]
dτ, sθ(x, τ) is the183

score function to approximate ∇x log pτ (x), and λ : R → R is any weighting scheme used in the184

training score-based diffusion models.185
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Certified Accuracy at ϵ(%)
CIFAR-10 ImageNet

Method Off-the-shelf 0.25 0.5 0.75 1.0 0.5 1.0 1.5 2.0 3.0

PixelDP (Lecuyer et al., 2019) ✗ (71.0)22.0 (44.0)2.0 - - (33.0)16.0 - - - -
RS (Cohen et al., 2019) ✗ (75.0)61.0 (75.0)43.0 (65.0)32.0 (65.0)23.0 (67.0)49.0 (57.0)37.0 (57.0)29.0 (44.0)19.0 (44.0)12.0
SmoothAdv (Salman et al., 2019a) ✗ (82.0)68.0 (76.0)54.0 (68.0)41.0 (64.0)32.0 (63.0)54.0 (56.0)42.0 (56.0)34.0 (41.0)26.0 (41.0)18.0
Consistency (Jeong & Shin, 2020) ✗ (77.8)68.8 (75.8)58.1 (72.9)48.5 (52.3)37.8 (55.0)50.0 (55.0)44.0 (55.0)34.0 (41.0)24.0 (41.0)17.0
MACER (Zhai et al., 2020) ✗ (81.0)71.0 (81.0)59.0 (66.0)46.0 (66.0)38.0 (68.0)57.0 (64.0)43.0 (64.0)31.0 (48.0)25.0 (48.0)14.0
Boosting (Horváth et al., 2021) ✗ (83.4)70.6 (76.8)60.4 (71.6)52.4 (73.0)38.8 (65.6)57.0 (57.0)44.6 (57.0)38.4 (44.6)28.6 (38.6)21.2
SmoothMix (Jeong et al., 2021) ✓ (77.1)67.9 (77.1)57.9 (74.2)47.7 (61.8)37.2 (55.0)50.0 (55.0)43.0 (55.0)38.0 (40.0)26.0 (40.0)17.0

Denoised (Salman et al., 2020) ✓ (72.0)56.0 (62.0)41.0 (62.0)28.0 (44.0)19.0 (60.0)33.0 (38.0)14.0 (38.0)6.0 - -
Lee (Lee, 2021) ✓ 60.0 42.0 28.0 19.0 41.0 24.0 11.0 - -
Carlini (Carlini et al., 2022) ✓ (88.0)73.8 (88.0)56.2 (88.0)41.6 (74.2)31.0 (77.0)71.0 (74.0)54.0 (74.0)46.0 (59.0)29.0 (59.0)22.0
Ours ✓ (87.6)76.6 (87.6)64.6 (87.6)50.4 (73.6)37.4 (80.0)76.0 (75.0)62.0 (75.0)49.0 (61.0)37.0 (61.0)26.0

Table 1: Certified accuracy compared with existing works. The certified accuracy at ϵ = 0 for each
model is in the parentheses. The certified accuracy for each cell is from the respective papers except
Carlini et al. (2022). Our diffusion model and classifier are the same as Carlini et al. (2022), where
the off-the-shelf classifier uses ViT-based architectures trained on a large dataset (ImageNet-22k).

Proof. (sketch) Let µt and νt be the path measure for reverse processes {x̂τ}τ∈[0,t] and {xθ
τ}τ∈[0,t]186

respectively based on the xa,t. Under conditions C.1, µt and νt are uniquely defined and the KL-187

divergence can be computed via the Girsanov theorem Oksendal (2013).188

Remark 4. Theorem 3.4 shows that if the training loss is smaller, the conditional distributions gen-189

erated by reverse-SDE and score-based diffusion model are closer, and are the same if the training190

loss is zero.191

4 DensePure192

Inspired by the theoretical analysis, we introduce DensePure and show how to calculate its certified193

robustness radius via the randomized smoothing algorithm.194

Framework. Our framework, DensePure, consists of two components: (1) an off-the-shelf diffu-195

sion model with reverse process rev and (2) an off-the-shelf base classifier f .196

Given an input x, we feed it into the reverse process rev of the diffusion model to get197

the reversed sample rev(x) and then repeat the above process K times to get K reversed198

samples {rev(x)1, · · · , rev(x)K}. We feed the above K reversed samples into the clas-199

sifier to get the corresponding prediction {f(rev(x)1), · · · , f(rev(x)K)} and then apply200

the majority vote, termed MV, on these predictions to get the final predicted label ŷ =201

MV({f(rev(x)1), · · · , f(rev(x)K)}) = argmaxc
∑K

i=1 111{f(rev(x)i) = c} .202

Certified Robustness of DensePure with Randomized Smoothing.203

We show how DensePure can calculate certified robustness of DensePure via RS, which offers204

robustness guarantees for a model under a L2-norm ball. In particular, we follow the similar setting205

of Carlini et al. (2022) which uses a DDPM-based diffusion model. The details are in the appendix.206

5 Experiments207

In this section, we use DensePure to evaluate certified robustness on two standard datasets, CIFAR-208

10 (Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009).209

Experimental settings We follow the experimental setting from Carlini et al. (2022). Specifically,210

for CIFAR-10, we use the 50-M unconditional improved diffusion model from Nichol & Dhariwal211

(2021) as the diffusion model. We select ViT-B/16 model Dosovitskiy et al. (2020) pretrained on212

ImageNet-21k and finetuned on CIFAR-10 as the classifier, which could achieve 97.9% accuracy213

on CIFAR-10. For ImageNet, we use the unconditional 256×256 guided diffusion model from214

Dhariwal & Nichol (2021) as the diffusion model and pretrained BEiT large model (Bao et al., 2021)215

trained on ImageNet-21k as the classifier, which could achieve 88.6% top-1 accuracy on validation216

set of ImageNet-1k. We select three different noise levels σ ∈ {0.25, 0.5, 1.0} for certification. For217

the parameters of DensePure , we set K = 40 and b = 10 except the results in ablation study. The218

details about the baselines are in the appendix.219
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CIFAR-10 ImageNet
Figure 1: Comparing our method vs Carlini et al. (2022) on CIFAR-10 and ImageNet. The lines
represent the certified accuracy with different L2 perturbation bound with different Gaussian noise
σ ∈ {0.25, 0.50, 1.00}.

Main Results We compare our results with other baselines. The results are shown in Table 1.220

For CIFAR-10, comparing with the models which are carefully trained with randomized smoothing221

techniques in an end-to-end manner (i.e., w/o off-the-shelf classifier), we observe that our method222

with the standard off-the-shelf classifier outperforms them at smaller ϵ = {0.25, 0.5} on both223

CIFAR-10 and ImageNet datasets while achieves comparable performance at larger ϵ = {0.75, 1.0}.224

Comparing with the non-diffusion model based methods with off-the-shelf classifier (i.e., De-225

noised (Salman et al., 2020) and Lee (Lee, 2021)), both our method and Carlini et al. (2022) are226

significantly better than them. These results verify the non-trivial adversarial robustness improve-227

ments introduced from the diffusion model. For ImageNet, our method is consistently better than all228

priors with a large margin.229

Since both Carlini et al. (2022) and DensePure use the diffusion model, to better understand the230

importance of our design, that approximates the label of the high density region in the conditional231

distribution, we compare DensePure with Carlini et al. (2022) in a more fine-grained manner.232

We show detailed certified robustness of the model among different σ at different radius for CIFAR-233

10 in Figure 1-left and for ImageNet in Figure 1-right. We also present our results of certified accu-234

racy at different ϵ in Appendix E.3. From these results, we find that our method is still consistently235

better at most ϵ (except ϵ = 0) among different σ. The performance margin between ours and Carlini236

et al. (2022) will become even larger with a large ϵ. These results further indicate that although the237

diffusion model improves model robustness, leveraging the posterior data distribution conditioned238

on the input instance (like DensePure ) via reverse process instead of using single sample ((Carlini239

et al., 2022)) is the key for better robustness. Additionally, we use the off-the-shelf classifiers, which240

are the VIT-based architectures trained a larger dataset. In the later ablation study section, we select241

the CNN-based architecture wide-ResNet trained on standard dataset from scratch. Our method still242

achieves non-trivial robustness.243

6 Conclusion244

In this work, we theoretically prove that the diffusion model could purify adversarial examples back245

to the corresponding clean sample with high probability, as long as the data density of the cor-246

responding clean samples is high enough. Our theoretical analysis characterizes the conditional247

distribution of the reversed samples given the adversarial input, generated by the diffusion model248

reverse process. Using the highest density point in the conditional distribution as the deterministic249

reversed sample, we identify the robust region of a given instance under the diffusion model re-250

verse process, which is potentially much larger than previous methods. Our analysis inspires us to251

propose an effective pipeline DensePure, for adversarial robustness. We conduct comprehensive252

experiments to show the effectiveness of DensePure by evaluating the certified robustness via the253

randomized smoothing algorithm. Note that DensePure is an off-the-shelf pipeline that does not254

require training a smooth classifier. Our results show that DensePure achieves the new SOTA cer-255

tified robustness for perturbation with L2-norm. We hope that our work sheds light on an in-depth256

understanding of the diffusion model for adversarial robustness.257
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Appendix356

Here is the appendix.357

A Notations358

p data distribution

P(A) probability of event A

Ck set of functions with continuous k-th derivatives

w(t) standard Wiener Process

w(t) reverse-time standard Wiener Process

h(x, t) drift coefficient in SDE

g(t) diffusion coefficient in SDE

αt scaling coefficient at time t

σ2
t variance of added Gaussian noise at time t

{xt}t∈[0,1] diffusion process generated by SDE

{x̂t}t∈[0,1] reverse process generated by reverse-SDE

pt distribution of xt and x̂t

{x1,x2, . . . ,xN} diffusion process generated by DDPM

{βi}Ni=1 pre-defined noise scales in DDPM

ϵa adversarial attack

xa adversarial sample

xa,t scaled adversarial sample

f(·) classifier

g(·) smoothed classifier

P (x̂0 = x|x̂t = xa,t) density of conditional distribution generated by reverse-
SDE based on xa,t

P(xa; t) purification model with highest density point

G(x0) data region with the same label as x0

Df
P(G(x0); t) robust region for G(x0) associated with base classifier f

and purification model P
rfP(x0; t) robust radius for the point associated with base classifier f

and purification model P
Dsub(x0; t) convex robust sub-region

sθ(x, t) score function

{xθ
t }t∈[0,1] reverse process generated by score-based diffusion model

P
(
xθ
0 = x|xθ

t = xa,t

)
density of conditional distribution generated by score-
based diffusion model based on xa,t

λ(τ) weighting scheme of training loss for score-based diffusion
model

JSM(θ, t;λ(·)) truncated training loss for score-based diffusion model

µt,νt path measure for {x̂τ}τ∈[0,t] and {xθ
τ}τ∈[0,t] respectively

359
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B Related Work360

Using an off-the-shelf generative model to purify adversarial perturbations has become an important361

direction in adversarial defense. Previous works have developed various purification methods based362

on different generative models, such as GANs (Samangouei et al., 2018), autoregressive generative363

models (Song et al., 2018), and energy-based models (Du & Mordatch, 2019; Grathwohl et al.,364

2020; Hill et al., 2021). More recently, as diffusion models (or score-based models) achieve better365

generation quality than other generative models (Ho et al., 2020; Dhariwal & Nichol, 2021), many366

works consider using diffusion models for adversarial purification (Nie et al., 2022; Wu et al., 2022;367

Sun et al., 2022) Although they have found good empirical results in defending against existing368

adversarial attacks (Nie et al., 2022), there is no provable guarantee about the robustness about such369

methods. On the other hand, certified defenses provide guarantees of robustness (Mirman et al.,370

2018; Cohen et al., 2019; Lecuyer et al., 2019; Salman et al., 2020; Horváth et al., 2021; Zhang et al.,371

2018; Raghunathan et al., 2018a,b; Salman et al., 2019b; Wang et al., 2021). They provide a lower372

bounder of model accuracy under constrained perturbations. Among them, approaches Lecuyer et al.373

(2019); Cohen et al. (2019); Salman et al. (2019a); Jeong & Shin (2020); Zhai et al. (2020); Horváth374

et al. (2021); Jeong et al. (2021); Salman et al. (2020); Lee (2021); Carlini et al. (2022) based375

on randomized smoothing (Cohen et al., 2019) show the great scalability and achieve promising376

performance on large network and dataset. The most similar work to us is Carlini et al. (2022), which377

uses diffusion models combined with standard classifiers for certified defense. They view diffusion378

model as blackbox without having a theoretical under- standing of why and how the diffusion models379

contribute to such nontrivial certified robustness.380

C More details about Theoretical analysis381

C.1 Assumptions382

(i) The data distribution p ∈ C2 and Ex∼p[||x||22] <∞.383

(ii) ∀t ∈ [0, T ] : h(·, t) ∈ C1,∃C > 0,∀x ∈ Rn, t ∈ [0, T ] : ||h(x, t)||2 ⩽ C (1 + ||x||2).384

(iii) ∃C > 0,∀x,y ∈ Rn : ||h(x, t)− h(y, t)||2 ⩽ C∥x− y∥2.385

(iv) g ∈ C and ∀t ∈ [0, T ], |g(t)| > 0.386

(v) ∀t ∈ [0, T ] : sθ(·, t) ∈ C1,∃C > 0,∀x ∈ Rn, t ∈ [0, T ] : ||sθ(x, t)||2 ⩽ C (1 + ||x||2).387

(vi) ∃C > 0,∀x,y ∈ Rn : ||sθ(x, t)− sθ(y, t)||2 ⩽ C∥x− y∥2.388

C.2 Background389

Discrete-Time Diffusion Model (or DDPM (Ho et al., 2020)). DDPM constructs a discrete390

Markov chain {x0,x1, · · · ,xi, · · · ,xN} as the forward process for the training data x0 ∼ p, such391

that P(xi|xi−1) = N (xi;
√
1− βixi−1, βiI), where 0 < β1 < β2 < · · · < βN < 1 are predefined392

noise scales such that xN approximates the Gaussian white noise. Denote αi =
∏N

i=1(1− βi), we393

have P(xi|x0) = N (xi;
√
αix0, (1− αi)I), i.e., xt(x0, ϵ) =

√
αix0 + (1− αi)ϵ, ϵ ∼ N (0, I).394

The reverse process of DDPM learns a reverse direction variational Markov chain pθ(xi−1|xi) =395

N (xi−1;µθ(xi, i),Σθ(xi, i)). Ho et al. (2020) defines ϵθ as a function approximator to predict396

ϵ from xi such that µθ(xi, i) = 1√
1−βi

(
xi − βi√

1−αi
ϵθ(xi, i)

)
. Then the reverse time samples397

are generated by x̂i−1 = 1√
1−βi

(
x̂i − βi√

1−αi
ϵθ∗(x̂i, i)

)
+
√
βiϵ, ϵ ∼ N (000, I), and the optimal398

parameters θ∗ are obtained by solving θ∗ := argminθ Ex0,ϵ

[
||ϵ− ϵθ(

√
αix0 + (1− αi), i)||22

]
.399

Randomized Smoothing. Randomized smoothing is used to certify the robustness of a given400

classifier against L2-norm based perturbation. It transfers the classifier f to a smooth version401

g(x) = argmaxc Pϵ∼N (0,σ2I)(f(x + ϵ) = c), where g is the smooth classifier and σ is a hyper-402

parameter of the smooth classifier g, which controls the trade-off between robustness and accuracy.403

Cohen et al. (2019) shows that g(x) induces the certifiable robustness for x under the L2-norm with404

radius R, where R = σ
2

(
Φ−1(pA)− Φ−1(pB)

)
; pA and pB are probability of the most probable405

class and “runner-up” class respectively; Φ is the inverse of the standard Gaussian CDF. The pA and406

pB can be estimated with arbitrarily high confidence via Monte Carlo method (Cohen et al., 2019).407
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C.3 Theorems and Proofs408

Theorem 3.1. Under conditions C.1, solving equation reverse-SDE starting from time t and point409

xa,t =
√
αtxa will generate a reversed random variable x̂0 with conditional distribution410

P (x̂0 = x|x̂t = xa,t) ∝ p(x) ·
1√

(2πσ2
t )

n e
−||x−xa||22

2σ2
t

where σ2
t = 1−αt

αt
is the variance of the Gaussian noise added at timestamp t in the diffusion411

process SDE.412

Proof. Under the assumption, we know {xt}t∈[0,1] and {x̂t}t∈[0,1] follow the same distribution,413

which means414

P (x̂0 = x|x̂t = xa,t) =
P(x̂0 = x, x̂t = xa,t)

P(x̂t = xa,t)

=
P(x0 = x,xt = xa,t)

P(xt = xa,t)

= P (x0 = x)
P(xt = xa,t|x0 = x)

P(xt = xa,t)

∝ P (x0 = x)
1√

(2πσ2
t )

n e
−||x−xa||22

2σ2
t

= p(x) · 1√
(2πσ2

t )
n e

−||x−xa||22
2σ2

t

where the third equation is due to the chain rule of probability and the last equation is a result of the415

diffusion process.416

Theorem 3.3. Under conditions C.1 and classifier f , let x0 be the sample with ground-truth label417

and xa be the adversarial sample, then (i) the purified sample P(xa; t) will have the ground-truth418

label if xa falls into the following convex set,419

Dsub (x0; t) :=
⋂

{x′
0:f(x

′
0 )̸=f(x0)}

{
xa : (xa − x0)

⊤(x′
0 − x0) < σ2

t log

(
p(x0)

p(x′
0)

)
+
||x′

0 − x0||22
2

}
,

and further, (ii) the purified sample P(xa; t) will have the ground-truth label if and only if xa falls420

into the following set, D (G(x0); t) :=
⋃

x̃0:f(x̃0)=f(x0)
Dsub (x̃0; t). In other words, D (G(x0); t)421

is the robust region for data region G(x0) under P(·; t) and f .422

Proof. We start with part (i).423

The main idea is to prove that a point x′
0 such that f(x′

0) ̸= f(x0) should have lower density than424

x0 in the conditional distribution in Theorem 3.1 so that P(xa; t) cannot be x′
0. In other words, we425

should have426

P (x̂0 = x0|x̂t = xa,t) > P (x̂0 = x′
0 | x̂t = xxxa,t) .

By Theorem 3.1, this is equivalent to427

p(x0) ·
1√

(2πσ2
t )

n e
−||x0−xa||22

2σ2
t > p(x′

0) ·
1√

(2πσ2
t )

n e
−||x′

0−xa||22
2σ2

t

⇔ log

(
p(x0)

p(x′
0)

)
>

1

2σ2
t

(
||x0 − xa||22 − ||x′

0 − xa||22
)

⇔ log

(
p(x0)

p(x′
0)

)
>

1

2σ2
t

(
||x0 − xa||22 − ||x′

0 − x0 + x0 − xa||22
)

⇔ log

(
p(x0)

p(x′
0)

)
>

1

2σ2
t

(
2(xa − x0)

⊤(x′
0 − x0)− ∥x′

0 − x0∥22
)
.
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Re-organizing the above inequality, we obtain428

(xa − x0)
⊤(x′

0 − x0) < σ2
t log

(
p(x0)

p(x′
0)

)
+

1

2
||x′

0 − x0||22.

Note that the order of xa is at most one in every term of the above inequality, so the inequality429

actually defines a half-space in Rn for every (x0,x
′
0) pair. Further, we have to satisfy the inequality430

for every x′
0 such that f(x′

0) ̸= f(x0), therefore, by intersecting over all such half-spaces, we431

obtain a convex Dsub (x0; t).432

Then we prove part (ii).433

On the one hand, if xa ∈ D (G(x0); t), then there exists one x̃0 such that f(x̃0) = f(x0) and434

xa ∈ Dsub (x̃0; t). By part (i), x̃0 has higher probability than all other points with different la-435

bels from x0 in the conditional distribution P (x̂0 = x|x̂t = xa,t) characterized by Theorem 3.1.436

Therefore, P(xa; t) should have the same label as x0. On the other hand, if xa /∈ D (G(x0); t),437

then there is a point x̃1 with different label from x0 such that for any x̃0 with the same label as x0,438

P (x̂0 = x̃1|x̂t = xa,t) > P (x̂0 = x̃0|x̂t = xa,t). In other words, P(xa; t) would have different439

label from x0.440

Theorem 3.4. Under score-based diffusion model Song et al. (2021b) and conditions C.1, we can441

bound442

DKL(P(x̂0 = x | x̂t = xa,t)∥P(xθ
0 = x | xθ

t = xa,t)) = JSM(θ, t;λ(·))

where {x̂τ}τ∈[0,t] and {xθ
τ}τ∈[0,t] are stochastic processes generated by reverse-SDE and score-

based diffusion model respectively,

JSM(θ, t;λ(·)) := 1

2

∫ t

0

Epτ (x)

[
λ(τ) ∥∇x log pτ (x)− sθ(x, τ)∥22

]
dτ,

sθ(x, τ) is the score function to approximate∇x log pτ (x), and λ : R→ R is any weighting scheme443

used in the training score-based diffusion models.444

Proof. Similar to proof of (Song et al., 2021a, Theorem 1), let µt and νt be the path measure for445

reverse processes {x̂τ}τ∈[0,t] and {xθ
τ}τ∈[0,t] respectively based on the scaled adversarial sample446

xa,t. Under conditions C.1, the KL-divergence can be computed via the Girsanov theorem Oksendal447

(2013):448

DKL
(
P(x̂0 = x | x̂t = xa,t)∥P(xθ

0 = x | xθ
t = xa,t)

)
= − Eµt

[
log

dνt

dµt

]
(i)
= Eµt

[∫ t

0

g(τ) (∇x log pτ (x)− sθ(x, τ)) dwτ +
1

2

∫ t

0

g(τ)2 ∥∇x log pτ (x)− sθ(x, τ)∥22 dτ

]
= Eµt

[
1

2

∫ t

0

g(τ)2 ∥∇x log pτ (x)− sθ(x, τ)∥22 dτ

]
=

1

2

∫ τ

0

Epτ (x)

[
g(τ)2 ∥∇x log pτ (x)− sθ(x, τ)∥22

]
dτ

= JSM
(
θ, t; g(·)2

)
where (i) is due to Girsanov Theorem and (ii) is due to the martingale property of Itô integrals.449

D More details about DensePure450

D.1 Pseudo-Code451

We provide the pseudo code of DensePure in Algo. 1 and Alg. 2452
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Algorithm 1 DensePure pseudo-code with the highest density point
1: Initialization: choose off-the-shelf diffusion model and classifier f , choose ψ = t,
2: Input sample xa = x0 + ϵa
3: Compute x̂0 = P(xa;ψ)
4: ŷ = f(x̂0)

Algorithm 2 DensePure pseudo-code with majority vote
1: Initialization: choose off-the-shelf diffusion model and classifier f , choose σ
2: Compute αn = 1

1+σ2 , n = argmins

{∣∣∣αs − 1
1+σ2

∣∣∣ | s ∈ {1, 2, · · · , N}}
3: Generate input sample xrs = x0 + ϵ, ϵ ∼ N (0, σ2I)
4: Choose schedule Sb, get x̂i

0 ← rev(
√
αnxrs)i, i = 1, 2, . . . ,K with Fast Sampling

5: ŷ = MV({f(x̂1
0), . . . , f(x̂

K
0 )}) = argmaxc

∑K
i=1 111{f(x̂i

0) = c}

D.2 Certified Robustness of DensePure with Randomized Smoothing.453

We show how DensePure can calculate certified robustness of DensePure via RS, which offers454

robustness guarantees for a model under a L2-norm ball.455

In particular, we follow the similar setting of Carlini et al. (2022) which uses a DDPM-based diffu-456

sion model. The details are in the appendix. The overall algorithm contains three steps:457

(1) Our framework estimates n, the number of steps used for the reverse process of DDPM-based458

diffusion model. Since Randomized Smoothing (Cohen et al., 2019) adds Gaussian noise ϵ, where459

ϵ ∼ N (0, σ2I), to data input x to get the randomized data input, xrs = x + ϵ, we map between460

the noise required by the randomized example xrs and the noise required by the diffused data xn461

(i.e., xn ∼ N (xn;
√
αnx0, (1 − αn)I)) with n step diffusion processing so that αn = 1

1+σ2 . In462

this way, we can compute the corresponding timestep n, where n = argmins{|αs − 1
1+σ2 | | s ∈463

{1, 2, · · · , N}}.464

(2). Given the above calculated timestep n, we scale xrs with
√
αn to obtain the scaled randomized465

smoothing sample
√
αnxrs. Then we feed

√
αnxrs into the reverse process of the diffusion model466

by K-times to get the reversed sample set {x̂1
0, x̂

2
0, · · · , x̂i

0, · · · , x̂K
0 }.467

(3). We feed the obtained reversed sample set into a standard off-the-shelf classifier f to get the468

corresponding predicted labels {f(x̂1
0), f(x̂

2
0), . . . , f(x̂

i
0), . . . , f(x̂

K
0 )}, and apply majority vote,469

denoted MV(· · ·), on these predicted labels to get the final label for xrs.470

To calculate the reversed sample, the standard reverse process of DDPM-based models re-471

quire repeatedly applying a “single-step” operation n times to get the reversed sample x̂0472

(i.e., x̂0 = Reverse(· · ·Reverse(· · ·Reverse(Reverse(
√
αnxrs;n);n− 1); · · · ; i); · · · 1)︸ ︷︷ ︸

n steps

). Here473

x̂i−1 = Reverse(x̂i; i) is equivalent to sample x̂i−1 from N (x̂i−1;µθ(x̂i, i),Σθ(x̂i, i)), where474

µθ(x̂i, i) =
1√

1−βi

(
x̂i − βi√

1−αi
ϵθ(x̂i, i)

)
and Σθ := exp(v log βi + (1− v) log β̃i). Here v is a475

parameter learned by DDPM and β̃i =
1−αi−1

1−αi
.476

To reduce the time complexity, we use the uniform sub-sampling strategy from Nichol & Dhariwal477

(2021). We uniformly sample a subsequence with size b from the originalN -step the reverse process.478

In details, we follow the method used in (Nichol & Dhariwal, 2021) and sample a subsequence479

Sb with b values (i.e., Sb = {n, ⌊n− n

b
⌋, · · · , 1}︸ ︷︷ ︸

b

, where Sb
i is the i-th element in Sb and Sb

i =480

⌊n − in
b ⌋,∀i < b and Sb

b = 1) from the original schedule S (i.e., S = {n, n− 1, · · · , 1}︸ ︷︷ ︸
n

, where481

Si = i is the i-th element in S).482
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Certified Accuracy at ϵ(%)
Methods Noise 0.0 0.25 0.5 0.75 1.0

σ = 0.25 88.0 73.8 56.2 41.6 0.0
Carlini (Carlini et al., 2022) σ = 0.5 74.2 62.0 50.4 40.2 31.0

σ = 1.0 49.4 41.4 34.2 27.8 21.8

σ = 0.25 87.6(-0.4) 76.6(+2.8) 64.6(+8.4) 50.4(+8.8) 0.0(+0.0)
Ours σ = 0.5 73.6(-0.6) 65.4(+3.4) 55.6(+5.2) 46.0(+5.8) 37.4(+6.4)

σ = 1.0 55.0(+5.6) 47.8(+6.4) 40.8(+6.6) 33.0(+5.2) 28.2(+6.4)

Table A: Certified accuracy compared with Carlini et al. (2022) for CIFAR-10 at all σ. The numbers
in the bracket are the difference of certified accuracy between two methods. Our diffusion model
and classifier are the same as Carlini et al. (2022).

Within this context, we adapt the original α schedule αS = {α1, · · · , αi, · · · , αn} used for single-483

step to the new schedule αSb

= {αSb
1
, · · · , αSb

j
, · · · , αSb

b
} (i.e., αSb

i = αSb
i
= αS⌊n− in

b
⌋

is the484

i-th element in αSb

). We calculate the corresponding βSb

= {βSb

1 , βSb

2 , · · · , βSb

i , · · · , βSb

b } and485

β̃Sb

= {β̃Sb

1 , β̃Sb

2 , · · · , β̃Sb

i , · · · , β̃Sb

b } schedules, where βSb
i

= βSb

i = 1 − αSb

i

αSb
i−1

, β̃Sb
i

=486

β̃Sb

i =
1−αSb

i−1

1−αSb
i

βSb
i
. With these new schedules, we can use b times reverse steps to calculate487

x̂0 = Reverse(· · ·Reverse(Reverse(xn;S
b
b);S

b
b−1); · · · ; 1)︸ ︷︷ ︸

b

. Since Σθ(xSb
i
, Sb

i ) is parameterized488

as a range between βSb

and β̃Sb

, it will automatically be rescaled. Thus, x̂Sb
i−1

= Reverse(x̂Sb
i
;Sb

i )489

is equivalent to sample xSb
i−1

from N (xSb
i−1

;µθ(xSb
i
, Sb

i ),Σθ(xSb
i
, Sb

i )).490

E More Experimental details and Results491

E.1 Implementation details492

We select three different noise levels σ ∈ {0.25, 0.5, 1.0} for certification. For the parameters493

of DensePure , The sampling numbers when computing the certified radius are n = 100000 for494

CIFAR-10 and n = 10000 for ImageNet. We evaluate the certified robustness on 500 samples subset495

of CIFAR-10 testset and 100 samples subset of ImageNet validation set. we set K = 40 and b = 10496

except the results in ablation study. The details about the baselines are in the appendix.497

E.2 Baselines.498

We select randomized smoothing based methods including PixelDP (Lecuyer et al., 2019), RS (Co-499

hen et al., 2019), SmoothAdv (Salman et al., 2019a), Consistency (Jeong & Shin, 2020), MACER500

(Zhai et al., 2020), Boosting (Horváth et al., 2021) , SmoothMix (Jeong et al., 2021), Denoised501

(Salman et al., 2020), Lee (Lee, 2021), Carlini (Carlini et al., 2022) as our baselines. Among them,502

PixelDP, RS, SmoothAdv, Consistency, MACER, and SmoothMix require training a smooth clas-503

sifier for a better certification performance while the others do not. Salman et al. and Lee use the504

off-the-shelf classifier but without using the diffusion model. The most similar one compared with505

us is Carlini et al., which also uses both the off-the-shelf diffusion model and classifier. The above506

two settings mainly refer to Carlini et al. (2022), which makes us easier to compared with their507

results.508

E.3 Main Results for Certified Accuracy509

We compare with Carlini et al. (2022) in a more fine-grained version. We provide results of certified510

accuracy at different ϵ in Table A for CIFAR-10 and Table B for ImageNet. We include the accuracy511

difference between ours and Carlini et al. (2022) in the bracket in Tables. We can observe from the512

tables that the certified accuracy of our method outperforms Carlini et al. (2022) except ϵ = 0 at513

σ = 0.25, 0.5 for CIFAR-10.514
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Certified Accuracy at ϵ(%)
Methods Noise 0.0 0.5 1.0 1.5 2.0 3.0

σ = 0.25 77.0 71.0 0.0 0.0 0.0 0.0
Carlini (Carlini et al., 2022) σ = 0.5 74.0 67.0 54.0 46.0 0.0 0.0

σ = 1.0 59.0 53.0 49.0 38.0 29.0 22.0

σ = 0.25 80.0(+3.0) 76.0(+5.0) 0.0(+0.0) 0.0(+0.0) 0.0(+0.0) 0.0(+0.0)
Ours σ = 0.5 75.0(+1.0) 72.0(+5.0) 62.0(+8.0) 49.0(+3.0) 0.0(+0.0) 0.0(+0.0)

σ = 1.0 61.0(+2.0) 57.0(+4.0) 53.0(+4.0) 49.0(+11.0) 37.0(+8.0) 26.0(+4.0)

Table B: Certified accuracy compared with Carlini et al. (2022) for ImageNet at all σ. The numbers
in the bracket are the difference of certified accuracy between two methods. Our diffusion model
and classifier are the same as Carlini et al. (2022).

Certified Accuracy at ϵ(%)
Datasets Methods Model 0.0 0.25 0.5 0.75 Model 0.0 0.25 0.5 0.75

CIFAR-10 Carlini (Carlini et al., 2022) ViT-B/16 93.0 76.0 57.0 47.0 WRN28-10 86.0 66.0 55.0 37.0
Ours ViT-B/16 92.0 82.0 69.0 56.0 WRN28-10 90.0 77.0 63.0 50.0

ImageNet Carlini (Carlini et al., 2022) BEiT 77.0 76.0 71.0 60.0 WRN50-2 73.0 67.0 57.0 48.0
Ours BEiT 80.0 78.0 76.0 71.0 WRN50-2 81.0 72.0 66.0 61.0

Table C: Certified accuracy of our method among different classifier. BeiT and ViT are pre-
trained on a larger dataset ImageNet-22k and fine-tuned at ImageNet-1k and CIFAR-10 respec-
tively. WideResNet is trained on ImageNet-1k for ImageNet and trained on CIFAR-10 from scratch
for CIFAR-10.

E.4 Ablation study515

We conduct ablation study on different Voting samples. Voting samples (K) We first show how K516

affects the certified accuracy. For efficiency, we select b = 10. We conduct experiments for both517

datasets. We show the certified accuracy among different r at σ = 0.25 in Figure H. The results for518

σ = 0.5, 1.0 and CIFAR-10 are shown in the Appendix E.5. Comparing with the baseline (Carlini519

et al., 2022), we find that a larger majority vote number leads to a better certified accuracy. It verifies520

that DensePure indeed benefits the adversarial robustness and making a good approximation of the521

label with high density region requires a large number of voting samples. We find that our certified522

accuracy will almost converge at r = 40. Thus, we set r = 40 for our experiments. The results with523

other σ show the similar tendency.524

Fast sampling steps (b) To investigate the role of b, we conduct additional experiments with b ∈525

{2, 5} at σ = 0.25. The results on ImageNet are shown in Figure H and results for σ = 0.5, 1.0 and526

CIFAR-10 are shown in the Appendix E.6. By observing results with majority vote, we find that a527

larger b can lead to a better certified accuracy since a larger b generates images with higher quality.528

By observing results without majority vote, the results show opposite conclusions where a larger b529

leads to a lower certified accuracy, which contradicts to our intuition. We guess the potential reason530

is that though more sampling steps can normally lead to better image recovery quality, it also brings531

more randomness, increasing the probability that the reversed image locates into a data region with532

the wrong label. These results further verify that majority vote is necessary for a better performance.533

Different architectures One advantage of DensePure is to use the off-the-shelf classifier so that534

it can plug in any classifier. We choose Convolutional neural network (CNN)-based architectures:535

Wide-ResNet28-10 (Zagoruyko & Komodakis, 2016) for CIFAR-10 with 95.1% accuracy and Wide-536

ResNet50-2 for ImageNet with 81.5% top-1 accuracy, at σ = 0.25. The results are shown in Table C537

and Figure E in Appendix E.7. Results for more model architectures and σ of ImageNet are also538

shown in Appendix E.7. We show that our method can enhance the certified robustness of any given539

classifier trained on the original data distribution. Noticeably, although the performance of CNN-540

based classifier is lower than Transformer-based classifier, DensePure with CNN-based model541

as the classifier can outperform Carlini et al. (2022) with ViT-based model as the classifier (except542

ϵ = 0 for CIFAR-10).543

E.5 Experiments for Voting Samples544

Here we provide more experiments with σ ∈ {0.5, 1.0} and b = 10 for different voting samplesK in545

Figure A and Figure B. The results for CIFAR-10 is in Figure G. We can draw the same conclusion546

mentioned in the main context .547
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CIFAR=10 ImageNet
Figure A: Certified accuracy among different vote numbers with different radius. Each line in the
figure represents the certified accuracy among different vote numbers K with Gaussian noise σ =
0.50.

CIFAR=10 ImageNet
Figure B: Certified accuracy among different vote numbers with different radius. Each line in the
figure represents the certified accuracy among different vote numbers K with Gaussian noise σ =
1.00.

E.6 Experiments for Fast Sampling Steps548

We also implement additional experiments with b ∈ {1, 2, 10} at σ = 0.5, 1.0. The results are549

shown in Figure C and Figure D. The results for CIFAR-10 are in Figure G. We draw the same550

conclusion as mentioned in the main context.551

E.7 Experiments for Different Architectures552

We try different model architectures of ImageNet including Wide ResNet-50-2 and ResNet 152 with553

b = 2 andK = 10. The results are shown in Figure F. we find that our method outperforms (Carlini554

et al., 2022) for all σ among different classifiers.555
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CIFAR=10 ImageNet
Figure C: Certified accuracy with different fast sampling steps b. Each line in the figure shows the
certified accuracy among different L2 adversarial perturbation bound with Gaussian noise σ = 0.50.

CIFAR=10 ImageNet
Figure D: Certified accuracy with different fast sampling steps b. Each line in the figure shows the
certified accuracy among different L2 adversarial perturbation bound with Gaussian noise σ = 1.00.

CIFAR=10 ImageNet
Figure E: Certified accuracy with different architectures. Each line in the figure shows the certified
accuracy among different L2 adversarial perturbation bound with Gaussian noise σ = 0.25.
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Wide ResNet-50-2 ResNet152
Figure F: Certified accuracy of ImageNet for different architectures. The lines represent the certified
accuracy with different L2 perturbation bound with different Gaussian noise σ ∈ {0.25, 0.50, 1.00}.

ImageNet ImageNet
Figure G: Ablation study. The left image shows the certified accuracy among different vote num-
bers with different radius ϵ ∈ {0.0, 0.25, 0.5, 0.75}. Each line in the figure represents the certified
accuracy of our method among different vote numbers K with Gaussian noise σ = 0.25. The right
image shows the certified accuracy with different fast sampling steps b. Each line in the figure shows
the certified accuracy among different L2 adversarial perturbation bound.

Figure H: Ablation study on ImageNet. The left image shows the certified accuracy among different
vote numbers with different radius ϵ ∈ {0.0, 0.25, 0.5, 0.75}. Each line in the figure represents the
certified accuracy of our method among different vote numbers K with Gaussian noise σ = 0.25.
The right image shows the certified accuracy with different fast sampling steps b. Each line in the
figure shows the certified accuracy among different L2 adversarial perturbation bound.
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