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Abstract
We propose a new first-order optimization algo-
rithm — AcceleratedGradient-OptimisticGradient
(AG-OG) Descent Ascent—for separable convex-
concave minimax optimization. The main idea of
our algorithm is to carefully leverage the structure
of the minimax problem, performing Nesterov
acceleration on the individual component and
optimistic gradient on the coupling component.
Equipped with proper restarting, we show that
AG-OG achieves the optimal convergence rate
(up to a constant) for a variety of settings, includ-
ing bilinearly coupled strongly convex-strongly
concave minimax optimization (bi-SC-SC), bilin-
early coupled convex-strongly concave minimax
optimization (bi-C-SC), and bilinear games. We
also extend our algorithm to the stochastic set-
ting and achieve the optimal convergence rate in
both bi-SC-SC and bi-C-SC settings. AG-OG is
the first single-call algorithm with optimal conver-
gence rates in both deterministic and stochastic
settings for bilinearly coupled minimax optimiza-
tion problems.

1. Introduction
Optimization is the workhorse for machine learning (ML)
and artificial intelligence. While many ML learning tasks
can be cast as a minimization problem, there is an increas-
ing number of ML tasks, such as generative adversarial net-
works (GANs) (Goodfellow et al., 2020), robust/adversarial
training (Bai & Jin, 2020; Madry et al., 2017), Markov
games (MGs) (Shapley, 1953), and reinforcement learning
(RL) (Sutton & Barto, 2018; Du et al., 2017; Dai et al.,
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2018), that are instead formulated as a minimax optimiza-
tion problem in the following form:

min
x∈X

max
y∈Y

L(x,y). (1.1)

When L(x,y) : X × Y → R is a smooth function that is
convex in x and concave in y, we refer to this problem as a
convex-concave minimax problem (a.k.a., convex-concave
saddle point problem). In this work, we focus on designing
fast or even optimal deterministic and stochastic first-order
algorithms for solving convex-concave minimax problems
of the form (1.1).

Unlike in the convex minimization setting, where gradient
descent is the method of choice, the gradient descent-ascent
method can exhibit divergence on convex-concave objec-
tives. Indeed, examples show the divergence of gradient de-
scent ascent (GDA) on bilinear objectives (Liang & Stokes,
2019; Gidel et al., 2018). This has led to the development
of extrapolation-based methods, including the extragradient
(EG) method (Korpelevich, 1976) and the optimistic gra-
dient descent ascent (OGDA) method (Popov, 1980), both
of which can be shown to converge in the convex-concave
setting. While the EG algorithm needs to call the gradient
oracle twice at each iteration, the OGDA algorithm only
needs a single call to the gradient oracle (Gidel et al., 2018;
Hsieh et al., 2019) and therefore has a practical advantage
when the gradient evaluation is expensive. We build on this
line of research, aiming to attain improved, and even opti-
mal, convergence rates via algorithms that retain the spirit
of simplicity of OGDA.

We focus on a specific instance of the general minimax
optimization problem, namely the separable minimax opti-
mization problem, which is formulated as follows

min
x∈X

max
y∈Y

L(x,y) = f(x) + I(x,y)− g(y). (1.2)

We refer to f(x)− g(y) as the individual component, and
I(x,y) as the coupling component of Problem (1.2). Let f
be µf -strongly convex and Lf -smooth and g be µg-strongly
convex and Lg-smooth. Let I(x,y) be convex-concave
with blockwise smoothness parameters Ixx, Ixy, Iyy where
||∇2

xxI||op ≤ Ixx, ||∇2
xyI||op ≤ Ixy, and ||∇2

yyI||op ≤
Iyy. Let I(x,y) be LH -smooth, and it is straightforward
to observe that LH can be picked as small as Ixx ∨ Iyy +
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Ixy. Throughout this paper, we focus on the unconstrained
problem where X = Rn and Y = Rm unless otherwise
specified in certain applications.

A notable special case of the separable minimax Prob-
lem (1.2) is the so-called bilinearly coupled strongly convex-
strongly concave minimax problem (bi-SC-SC), which has
the following form:

min
x∈X

max
y∈Y

L(x,y) ≡ f(x) + x⊤By − g(y). (1.3)

Here we take I(x,y) as the bilinear coupling function
x⊤By and is LH -smooth where LH can be picked as small
as the operator norm ∥B∥op of matrix B.

For the general minimax optimization problem (1.1), stan-
dard algorithms such as mirror-prox (Nemirovski, 2004),
EG and OGDA—when operating on the entire objective—
can be shown to exhibit a complexity upper bound of
L̄
µ̄ log

(
1
ϵ

)
for finding an ϵ-accurate solution (Gidel et al.,

2018; Mokhtari et al., 2020a), where L̄ ≡ Lf ∨ Lg ∨ LH

and µ̄ ≡ µf ∧ µg. Such a complexity is optimal when
Lf = Lg = LH and µf = µg, since the lower-bound
complexity is Ω( L̄µ̄ log( 1ϵ )) Nemirovskij & Yudin (1983);
Azizian et al. (2020). However, in the general case where
the strong convexity and smoothness parameters are signifi-
cantly different in x and y, fine-grained convergence rates
that depend on the individual strong convexity µf , µg and
smoothness parameters Lf , Lg and also Ixx, Ixy, Iyy are
more desirable. In fact, Zhang et al. (2021a) have proved
the following iteration complexity lower bound for solving
(1.2) via any first-order algorithms under the linear span
assumption:

Ω̃

(√
Lf + Ixx

µf
+

Lg + Iyy
µg

+
I2xy
µfµg

)
. (1.4)

With the goal of attaining this lower bound, several efforts
have been made in the setting of bi-SC-SC (1.3) or separable
SC-SC (1.2). Two notable methods are LPD (Thekumpara-
mpil et al., 2022) and PD-EG (Jin et al., 2022), which utilize
techniques from primal-dual lifting and convex conjugate de-
composition. Another approach is the APDG algorithm de-
veloped by Kovalev et al. (2021), which is based on adding
an extrapolation step to the forward-backward algorithm.
The work of Du et al. (2022) is also closely related to our
work, in the sense that it uses iterate averaging and employs
scaling reduction with scheduled restarting. However, these
algorithms are either limited to the bi-SC-SC setting (Ko-
valev et al., 2021; Thekumparampil et al., 2022; Du et al.,
2022), or are not single-call algorithms (Kovalev et al., 2021;
Jin et al., 2022; Du et al., 2022).1 In addition, only Kovalev
et al. (2021) and Du et al. (2022) can be extended to the

1By single call, we mean the algorithm only needs to call the

stochastic setting (Metelev et al., 2022), while the extension
of Thekumparampil et al. (2022); Jin et al. (2022) to the
stochastic setting remains elusive.

In this paper, we design near-optimal single-call algorithms
for both deterministic and stochastic separable minimax
problems (1.2). We focus on accelerating OGDA because
of its simplicity and because it enjoys the single-call prop-
erty. We show that it achieves a fine-grained, accelerated
convergence rate with a sharp dependency on the individual
Lipschitz constants. To the best of our knowledge, this is the
first presentation of a single-call algorithm that matches the
best-known result for the separable minimax problem (1.2)
and the lower bounds under a bi-SC-SC setting (1.3), bilin-
early coupled convex-strongly concave (bi-C-SC) setting
(i.e., f is convex but not strongly convex in (1.3)), and the
bilinear game setting (i.e., setting f = g = 0 in (1.3)).

1.1. Contributions

We highlight our contributions as follows.

(i) We present a novel algorithm that blends acceleration
dynamics based on the single-call OGDA algorithm for
the coupling component and Nesterov’s acceleration
for the individual component. We refer to this new algo-
rithm as the AcceleratedGradient-OptimisticGradient
(AG-OG) Descent Ascent algorithm. Using a sched-
uled restarting, we derive an AcceleratedGradient Op-
timisticGradient with restarting (AG-OG with restart-
ing) algorithm that achieves a sharp convergence rate
in a variety of settings. We provide theoretical analysis
of our algorithm for general separable SC-SC prob-
lem (1.2) and compare the results with existing litera-
ture under special cases in the form of (1.3) (bi-SC-SC,
bi-C-SC and Bilinear).

(ii) Using a scheduled restarting, we derive an
AcceleratedGradient-OptimisticGradient with
restarting (AG-OG with restarting) algorithm that
achieves a sharp convergence rate in a variety of
settings. For general separable SC-SC setting
in (1.2), our algorithm achieves a complexity

of
(√

Lf

µf
∨ Lg

µg
+ Ixx

µf
∨ Ixy√

µfµg
∨ Iyy

µg

)
log
(
1
ϵ

)
,

matching the best known upper bound in Jin et al.
(2022). For the setting of bilinearly coupled SC-
SC in (1.3), our algorithm achieves a complexity

of O
(√

Lf

µf
∨ Lg

µg
+

√
∥B∥op

µfµg

)
log
(
1
ϵ

)
[Corol-

lary 3.4], which matches the lower bound established
by Zhang et al. (2021a). For bi-C-SC, we prove a

(stochastic) gradient oracle of the coupling component once in each
iteration of the algorithm. This is in accordance with the concept of
single-call variants of extragradient in Hsieh et al. (2019). Previous
work calls ∇I(x,y) at least twice per iteration.
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O
(√

Lf

ϵ ∨
Lg

µg
+

∥B∥op√
ϵµg

)
log
(
1
ϵ

)
complexity [Theo-

rem 3.5], which matches that of Thekumparampil et al.
(2022) and is also optimal.

(iii) In the stochastic setting where the algorithm can only
query a stochastic gradient oracle with bounded noise,
we propose a stochastic extension of AG-OG with
restarting and establish a sharp convergence rate. For
both bi-SC-SC and bi-C-SC settings, the convergence
rate of our algorithm is near-optimal in the sense that
its bias error matches the respective deterministic lower
bound and its variance error matches the statistical min-
imax rate, i.e., σ2

µ2
f ϵ

2 [Corollary 4.3].

(iv) In the special case of the bilinear game (when f =
g = 0 in (1.3)), our algorithm has a complexity

of Ω

(
∥B∥op√

λmin(B⊤B)

)
log
(
1
ϵ

)
[Theorem 3.6], which

matches the lower bound established by Ibrahim et al.
(2020). Note that prior work (Kovalev et al., 2021;
Thekumparampil et al., 2022; Jin et al., 2022) can-
not achieve the optimal rate when applied to bilinear
games, which is an unique advantage of our algorithm.

A summary of the iteration complexity comparisons with
the state-of-the-art methods can be found in Table 1.

1.2. More Related Work

Deterministic Case. Much attention has been paid to
obtaining linear convergence rates for gradient-based
methods applied to games in the context of strongly
monotone operators (which is implied by strong convex-
concavity) (Mokhtari et al., 2020a) and several recent
works (Yang et al., 2020; Zhang et al., 2021b; Cohen et al.,
2020; Wang & Li, 2020; Xie et al., 2021) have bridged the
gap with the lower bound provided for unbalanced strongly-
convex-strongly-concave objective. There has been a series
of papers along this direction (Mokhtari et al., 2020a; Co-
hen et al., 2020; Lin et al., 2020a; Wang & Li, 2020; Xie
et al., 2021), and only very recently have optimal results
that reach the lower bound been presented (Kovalev et al.,
2021; Thekumparampil et al., 2022; Jin et al., 2022). This
work presented improved methods leveraging convex du-
ality. Among these works, only Jin et al. (2022) considers
non-bilinear coupling terms, and only Thekumparampil et al.
(2022) considers single gradient calls. Note that Jin et al.
(2022) consider a finite-sum case, which differs from our
setting of a general expectation. Kovalev et al. (2021);
Thekumparampil et al. (2022) focus solely on the determin-
istic setting, and Metelev et al. (2022) present a stochastic
version of APDG algorithm (Kovalev et al., 2021) and its
extension to a decentralized setting, which is comparable
and concurrent with the work of Du et al. (2022).

Stochastic Case. There exists a rich literature on stochas-
tic variational inequalities with application to solving
stochastic minimax problems (Juditsky et al., 2011; Hsieh
et al., 2019; Chavdarova et al., 2019; Alacaoglu & Malitsky,
2022; Zhao, 2022; Beznosikov et al., 2022). However, only
a few works have proposed fine-grained bounds suited to
the (bi-)SC-SC setting. To the best of our knowledge, most
fine-grained bounds have been proposed in the finite-sum
setting (Palaniappan & Bach, 2016; Jin et al., 2022) or in the
proximal-friendly case (Zhang et al., 2021c). Two closely re-
lated works are Li et al. (2022), who provide a convergence
rate for stochastic extragradient method in the purely bilin-
ear setting and Du et al. (2022), who study an accelerated
version of extragradient, dubbed as AcceleratedGradient-
ExtraGradient (AG-EG) in the bi-SC-SC setting. Our work
is in the same vein as Du et al. (2022) but instead employs
the optimistic gradient instead of extragradient to handle
the bilinear coupling component. Optimistic-gradient-based
methods have been considered extensively in the literature
due to their need for fewer gradient oracle calls per iteration
than standard extragradient and their applicability to the
online learning setting (Golowich et al., 2020). Note that, in
general, EG and OG methods share some similarities in their
analyses, but there are also significant differences (Golowich
et al., 2020, §3.1), (Gorbunov et al., 2022, §2). Specifically
in our case, using a single-call algorithm that reuses previ-
ously calculated gradients alters a key recursion (Eq. (C.7)).
Although the main part of the proof follows the standard
path of estimating Nesterov’s acceleration terms first, an
additional squared error norm involving the previous iterates
is present, intrinsically implying an additional iterative rule
(Eq. (C.8)) in place of the original iterative rule that is es-
sential for proving boundedness of the iterates. In addition,
due to the accumulated error across iterates, the maximum
stepsize allowed in single-call algorithms is forced to be
smaller. We believe that this is not an artifact of our analysis
but is a general feature of OG methods.2

Organization. The rest of this work is organized as fol-
lows. §2 introduces the basic settings and assumptions nec-
essary for our algorithm and theoretical analysis. Our pro-
posed AcceleratedGradient-OptimisticGradient (AG-OG)
Descent Ascent algorithm is formally introduced in §3
and further generalized to Stochastic AcceleratedGradient-
OptimisticGradient (S-AG-OG) Descent Ascent in §4. We
present our conclusions in §5. Due to space limitations,
we defer all proof details along with results of numerical
experiments to the supplementary materials.

Notation. For two sequences of positive scalars {an}
and {bn}, we denote an = Ω(bn) (resp. an = O(bn)) if

2Limited by space, we refer readers to §C.1 and §C.4 for tech-
nical details.
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Method
Setting

SC-SC bi-SC-SC Bilinear bi-C-SC
Stochastic

Rate
Single
Call

OGDA
(Mokhtari et al., 2020b) Õ

(
L′

f∨L′
g∨Ixy

µf∧µg

)
Õ
(

Lf∨Lg∨∥B∥op

µf∧µg

)
Õ
(

∥B∥2
op

λmin

)
O
(

Lf∨Lg∨∥B∥op

ϵ

)
✓✓✓ ✓✓✓

Proximal Best Response
(Wang & Li, 2020) Õ

(√
L′

f

µf
∨ L′

g

µg
+

√
Ixy(L′

f∨L′
g∨Ixy)

µfµg

)
Õ
(√

Lf

µf
∨ Lg

µg
+
√

∥B∥op(Lf∨Lg∨∥B∥op)
µfµg

)
— — ✘ ✘

DIPPA
(Xie et al., 2021) — Õ

((
LfLg

µfµg

(
Lf

µf
∨ Lg

µg

)) 1
4

+
∥B∥op√
µfµg

)
— — ✘ ✘

LPD
(Thekumparampil et al., 2022) — Õ

(√
Lf

µf
∨ Lg

µg
+

∥B∥op√
µfµg

)
Õ
(

∥B∥2
op

λmin

)
Õ
(√

Lf

ϵ ∨
Lg

µg
+

∥B∥op√
ϵµg

)
✘ ✓✓✓

APDG
(Kovalev et al., 2021)
(Metelev et al., 2022)

— Õ
(√

Lf

µf
∨ Lg

µg
+

∥B∥op√
µfµg

)
Õ
(

∥B∥2
op

λmin

)
Õ
(√

LfLg

λmin
∨ ∥B∥op√

λmin

√
Lg

µg
∨ ∥B∥2

op

λmin

)
✓✓✓ ✘

PD-EG
(Jin et al., 2022) Õ

(√
Lf

µf
∨ Lg

µg
+ Ixx

µf
∨ Ixy√

µfµg
∨ Iyy

µg

)
Õ
(√

Lf

µf
∨ Lg

µg
+

∥B∥op√
µfµg

)
Õ
(

∥B∥2
op

λmin

)
— ✘ ✘

EG+Momentum
(Azizian et al., 2020) — — Õ

(
∥B∥op√
λmin

)
— ✘ ✘

SEG with Restarting
(Li et al., 2022) — — Õ

(
∥B∥op√
λmin

)
— ✓✓✓ ✘

AG-EG with Restarting
(Du et al., 2022) — Õ

(√
Lf

µf
∨ Lg

µg
+

∥B∥op√
µfµg

)
Õ
(

∥B∥op√
λmin

)
— ✓✓✓ ✘

AG-OG with Restarting
(this work) Õ

(√
Lf

µf
∨ Lg

µg
+ Ixx

µf
∨ Ixy√

µfµg
∨ Iyy

µg

)
Õ
(√

Lf

µf
∨ Lg

µg
+

∥B∥op√
µfµg

)
Õ
(

∥B∥op√
λmin

)
Õ
(√

Lf

ϵ ∨
Lg

µg
+

∥B∥op√
ϵµg

)
✓✓✓ ✓✓✓

Lower Bound
(Zhang et al., 2021a)
(Ibrahim et al., 2020)

Ω̃

(√
L′

f

µf
∨ L′

g

µg
+

Ixy√
µfµg

)
Ω̃

(√
Lf

µf
∨ Lg

µg
+

∥B∥op√
µfµg

)
Ω̃

(
∥B∥op√
λmin

)
Õ
(√

Lf

ϵ ∨
Lg

µg
+

∥B∥op√
ϵµg

)
— —

Table 1. We present a comparison of the first-order gradient complexities of our proposed algorithm with selected prevailing algorithms for
solving bilinearly-coupled minimax problems. The comparison includes several cases such as general SC-SC, bilinear games, bi-SC-SC
(bilinearly-coupled SC-SC), and the bi-C-SC cases. We denote λmin ≡ λmin(B

⊤B), L′
f ≡ Lf + Ixx and L′

g ≡ Lg + Iyy . We focus on
comparing the gradient complexities of deterministic algorithms, and include a column to indicate whether the stochastic case has been
discussed. The row in blue background is the convergence result presented in this paper. The ”—” indicates that the complexity does not
apply to the given case.

an ≥ Cbn (resp. an ≤ Cbn) for all n, and also an = Θ(bn)
if both Ω(bn) and an = O(bn) hold, for some absolute
constant C > 0, and Õ or Ω̃ is adopted in turn when C
contains a polylogarithmic factor in problem-dependent pa-
rameters. Let λmax(A) and λmin(A) denote the maximal
and minimal eigenvalues of a real symmetric matrix A,
and ∥A∥op the operator norm

√
λmax(A⊤A). Let vector

z = [x;y] ∈ Rn+m denote the concatenation of x ∈ Rn,
y ∈ Rm. We use ∧ (resp. ∨) to denote the bivariate min
(resp. max) throughout this paper. For natural number K
let [K] denote the set {1, . . . ,K}. Throughout the paper we
also use the standard notation || · || to denote the ℓ2-norm
and ∥ · ∥op to denote the operator norm of a matrix. We will
explain other notations at their first appearances.

2. Preliminaries
In minimax optimization the goal is to find an (approxi-
mate) Nash equilibrium (or minimax point) of problem (1.1)
(or (1.2)), defined as a pair [x∗;y∗] ∈ X × Y satisfying:

L(x∗,y) ≤ L(x∗,y∗) ≤ L(x,y∗).

In order to analyze first-order gradient methods for this
problem, we assume access to the gradients of the objective
∇xL(x,y) and ∇yL(x,y). Finding the minimax point
of the original convex-concave optimization problem (1.1)
and (1.2) reduces to finding the point where the gradients

vanish. Accordingly, we use W to denote the gradient vector
field and z = [x;y] ∈ Rn+m:

W (z) :=

(
∇xL(x,y)
−∇yL(x,y)

)
=

(
∇f(x) +∇xI(x,y)
−∇yI(x,y) +∇g(y)

)
.

(2.1)

Based on this formulation, our goal is to find the station-
ary point of the vector field correponding to the monotone
operator W (z), namely a point z∗ = [x∗;y∗] ∈ Rn+m

satisfying (in the unconstrained case) W (z∗) = 0, which
is referred to as the variational inequality (VI) formulation
of minimax optimization (Gidel et al., 2018). The compact
representation of the convex-concave minimax problem as
a VI allows us to simplify the notation.

In the vector field (2.1), there are individual components
that point along the direction optimizing f, g individually,
and a coupling component which corresponds to the gra-
dient vector field of a separable minimax problem. For
the individual component, we let F (z) := f(x) + g(y)
and correspondingly ∇F (z) = [∇f(x);∇g(y)]. For
the coupling component, we define the operator H(z) =
[∇xI(x,y);−∇yI(x,y)]. Note that the representation al-
lows us to write W (z) as the summation of the two vector
fields: W (z) = ∇F (z) +H(z).

We introduce our main assumptions as follows:

Assumption 2.1 (Convexity and Smoothness). We assume
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that f(·) : Rn → R is µf -strongly convex and Lf -smooth,
g(·) : Rm → R is µg-strongly convex and Lg-smooth,
and I(x,y) is convex-concave with blockwise smoothness
parameters LH = Ixx ∨ Iyy + Ixy .

This implies that F (z) is (Lf ∨Lg)-smooth and (µf ∧ µg)-
strongly convex. In addition H(·) is monotone, yielding the
property that for all z, z′ ∈ Rn+m:

⟨H(z)−H(z′), z − z′⟩ ≥ 0. (2.2)

The above assumption adds convexity and smoothness con-
straints to the individual components f(x) and g(y). In
addition, for the coupling component x⊤By in the separa-
ble minimax problem (1.2), without loss of generality, we
assume that B ∈ Rn×m, n ≥ m > 0 is a tall matrix. Note
that as x and y are exchangeable, tall matrices cover all
circumstances.

In the stochastic setting, we assume access to an unbiased
stochastic oracle H̃(z; ζ) of H(z) and an unbiased stochas-
tic oracle ∇F̃ (z; ξ) of ∇F (z). Furthermore, we consider
the case where the variances of such stochastic oracles are
bounded:

Assumption 2.2 (Bounded Variance). We assume that
the stochastic gradients admit bounded second moments
σ2
H , σ2

F ≥ 0:

Eξ

[
||H̃(z; ζ)−H(z)||2

]
≤ σ2

H ,

Eζ

[
||∇F̃ (z; ξ)−∇F (z)||2

]
≤ σ2

F .

For ease of exposition, we introduce the overall variance
σ2 = 3

√
2σ2

H + 2σ2
F . Note that the noise variance bound

assumption is common in the stochastic optimization litera-
ture.3 Under the above assumptions, our goal is to find an
ϵ-optimal minimax point, a notion defined as follows.

Definition 2.3 (ϵ-Optimal Minimax Point). [x;y] ∈ X ×Y
is called an ϵ-optimal minimax point of a convex-concave
function L(x,y) if ∥x− x∗∥2 + ∥y − y∗∥2 ≤ ϵ2.

It is obvious that when the accuracy ϵ = 0, [x;y] is an
(exact) optimal minimax point of L(x,y).

3. AcceleratedGradient OptimisticGradient
Descent Ascent

In this section, we discuss key elements of our algorithm
design—consisting of OptimisticGradient Descent-Ascent
(OGDA) and Nesterov’s acceleration method—that together
solve the separable minimax problem. Such an approach al-
lows us to demonstrate the main properties of our approach

3We leave the generalization to models of unbounded noise to
future work.

that will eventually guide our analysis in the discrete-time
case. In §3.1 and §3.2 we review OGDA and Nesterov’s ac-
celeration. In §3.3 we present our approach to accelerating
OGDA for bilinear minimax problems, yielding the Accel-
erated Gradient-Optimistic Gradient (AG-OG) algorithm,
and we prove its convergence. Finally in §3.4 we show that
proper restarting on top of the AG-OG algorithm achieves
a sharp convergence rate that matches the lower bound of
Zhang et al. (2021a).

3.1. Optimistic Gradient Descent Ascent

The OptimisticGradient Descent Ascent (OGDA) algorithm
has received considerable attention in the recent literature,
especially for the problem of training Generative Adver-
sarial Networks (GANs) (Goodfellow et al., 2020). In the
general variational inequality setting, the iteration of OGDA
takes the following form (Popov, 1980):

zk+ 1
2
= zk − ηW (zk− 1

2
), zk+1 = zk − ηW (zk+ 1

2
).

(3.1)

Note that at step k, the scheme performs a gradient descent-
ascent step at the extrapolated point zk+ 1

2
. Equivalently,

with simple algebraic modification (3.1) can be written in a
standard form (Gidel et al., 2018):

zk+ 1
2
= zk− 1

2
− 2ηW (zk− 1

2
) + ηW (zk− 3

2
). (3.2)

Treating the difference W (zk− 1
2
)−W (zt− 3

2
) as a predic-

tion of the future one W (zk+ 1
2
) −W (zk− 1

2
), this update

rule can be viewed as an approximation of the implicit prox-
imal point (PP) method:

zk+ 1
2
= zk− 1

2
− ηW (zk+ 1

2
).

Another popular tractable approximation of the PP method
is the extragradient (EG) method (Korpelevich, 1976): Al-
though conceptually similar to OGDA (3.1), EG requires
two gradient queries per iteration and hence doubles the
overall number of gradient computations. Both OGDA
and EG dynamics (3.1) alleviate cyclic behavior by ex-
trapolation from the past and exhibit a complexity of
O(L/µ log(1/ϵ)) (Gidel et al., 2018; Mokhtari et al., 2020a)
in general setting (1.1) with L-smooth, µ-strongly-convex-
µ-strongly-concave objectives.4

3.2. Nesterov’s Acceleration Scheme

Turning to the minimization problem, while vanilla gradi-
ent descent enjoys an iteration complexity of O(κ log(1/ϵ))
on L-smooth, µ-strongly convex problems, with κ = L/µ
being the condition number, Nesterov’s method (Nesterov,

4In fact an analogous result holds true for general smooth,
strongly monotone variational inequalities (Mokhtari et al., 2020a).
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1983), when equipped with proper restarting, achieves an im-
proved iteration complexity of O(

√
κ log(1/ϵ)). We adopt

the following version of the Nesterov acceleration, known
as the “second scheme” (Tseng, 2008; Lin et al., 2020b):

zmd
k = k

k+2z
ag
k + 2

k+2zk, (3.3a)

zk+1 = zk − ηk∇F (zmd
k ), (3.3b)

zag
k+1 = k

k+2z
ag
k + 2

k+2zk+1. (3.3c)

Subtracting (3.3a) from (3.3c) and combining the resulting
equation with (3.3b), we conclude

zag
k+1 − zmd

k =
2

k + 2
(zk+1 − zk) = −

2ηk
k + 2

∇F (zmd
k )

⇒ zag
k+1 = zmd

k −
2ηk
k + 2

∇F (zmd
k ). (3.4)

Moreover, shifting the index forward by one in (3.3a) and
combining it with (3.3c) to cancel the zk+1 term, we obtain

k + 2

k + 3
zag
k+1 − zmd

k+1 =
k

k + 3
zag
k −

k + 1

k + 3
zag
k+1 (3.5)

⇒ zmd
k+1 = zag

k+1 +
k

k + 3

(
zag
k+1 − zag

k

)
. (3.6)

Thus, by a simple notational transformation, (3.4) plus (3.6)
(and hence the original update rule (3.3)) is exactly equiv-
alent to the original updates of Nesterov’s acceleration
scheme (Nesterov, 1983). Here, zag

k denotes a 2
k -weighted-

averaged iteration. In other words, compared with vanilla
gradient descent, zk+1 = zk − ηk∇F (zk), Nesterov’s ac-
celeration conducts a step at the negated gradient direction
evaluated at a predictive iterate of the weighted-averaged
iterate of the sequence. This enables a larger choice of
stepsize, reflecting the enhanced stability. An analogous
interpretation has been discussed in work on a heavy-ball-
based acceleration method (Sebbouh et al., 2021, §1.3).

3.3. Accelerating OGDA on Separable Minimax
Problems

In this subsection and §3.4, we show that an organic com-
bination of the two algorithms in §3.1 and §3.2 achieves
improved convergence rates and when equipped with sched-
uled restarting, obtains a sharp iteration complexity that
matches Jin et al. (2022) while only requiring a single gradi-
ent call per iterate. Our algorithm is shown in Algorithm 1.
In Line 2 and 4 the update rules of the evaluated point and
the extrapolated point of f follow that in (3.3a) and (3.3c),
while in Lines 3 and 5 the updates follow the OGDA dynam-
ics (3.1) with each step modified by (3.3b). Algorithm 1 can
be seen as a synthesis of OGDA and Nesterov’s acceleration,
as it reduces to OGDA when ∇F = 0 and to Nesterov’s
accelerated gradient when H = 0.

For theoretical analysis, we first state a nonexpansiveness
lemma of zk with respect to z∗, the unique solution to
Problem (1.2). The proof is presented in §E.2.

Algorithm 1 AcceleratedGradient-OptimisticGradient (AG-
OG)(zag

0 , z0, z−1/2,K)

1: for k = 0, 1, . . . ,K − 1 do
2: zmd

k = (1− αk)z
ag
k + αkzk

3: zk+ 1
2
= zk − ηk

(
H(zk− 1

2
) +∇F (zmd

k )
)

4: zag
k+1 = (1− αk)z

ag
k + αkzk+ 1

2

5: zk+1 = zk − ηk

(
H(zk+ 1

2
) +∇F (zmd

k )
)

6: end for
7: Output: zag

K

Lemma 3.1 (Nonexpansiveness). Under Assumptions 2.1,
we set the parameters as L = Lf ∨ Lg, LH = Ixx ∨
Iyy + Ixy, ηk = k+2

2L+
√

3+
√
3LH(k+2)

and αk = 2
k+2 in

Algorithm 1 and choose initialization z− 1
2
= zag

0 = z0, at
any iterate k < K we have

||zk − z∗|| ≤ ||z0 − z∗||.

Remark 3.2. The result in Lemma 3.1 is significant in
that it establishes the last-iterate nonexpansiveness ruled
by the initialization z0: the zk iteration stays in the ball
centered at z∗ with radius ||z0 − z∗||. This is essential
in proving convergence results of iteration zag

k where the
main technical difficulty lies upon the additional recursive
analysis due to gradient evaluation in a previous iterate.
From a past extragradient perspective, earlier analysis was
focusing on the half iterates in extragradient step (3) (zk+ 1

2

in our formulation). In contrast, we perform a nonexpan-
siveness analysis on the integer steps (zk), serving as a
critical improvement over the best previous result achieved
by Mokhtari et al. (2020b, Lemma 2(b)) (consider the bi-
linear coupling case where f = 0, g = 0), which merely
admits a factor of

√
2 in terms of the Euclidean metric (i.e.,

||zk − z∗|| ≤
√
2||z0 − z∗||).

With the parameter choice in Lemma 3.1, Line 4 can also be
seen as an average step that makes last iterates shrink toward
the center of convergence. Equipped with Lemma 3.1, we
are ready to state the following convergence theorem for
discrete-time AG-OG:
Theorem 3.3. Under Assumption 2.1 and setting the pa-
rameters as in Lemma 3.1, the output of Algorithm 1 on
problem (1.2) satisfies:

||zag
K − z∗||2 ≤

(
4L

µ(K + 1)2
+

2
√

3 +
√
3LH

µ(K + 1)

)
∥z0 − z∗∥2.

(3.7)
Here we use µ to denote µf ∧ µg .

The proof of Theorem 3.3 is provided in §C.1. The selection
of αk = 2

k+2 and ηk = k+2

2L+
√

3+
√
3LH(k+2)

is vital for Nes-

terov’s accelerated gradient descent to achieve desirable con-
vergence behavior (Nesterov, 1983). This stepsize choice is

6
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Algorithm 2 AcceleratedGradient-OptimisticGradient with
restarting (AG-OG with restarting)
Require: Initialization z0

0 , total number of epochs N ≥ 1,
per-epoch iterates (Kn : n = 0, . . . , N − 1)

1: for n = 0, 1, . . . , N − 1 do
2: zout = AG-OG(zn

0 , z
n
0 , z

n
0 ,Kn)

3: Set zn+1
0 ← zout

//Warm-starting from the previous output
4: end for
5: Output: zN

0

larger than the ones used in previous techniques (Chen et al.,
2017; Du et al., 2022), which is brought by a fine-tuned anal-
ysis of (C.7) in the proof of Theorem 3.3. The convergence
rate in (3.7) for strongly convex problems is slow and not
even linear. However, in the next subsection we show how a
simple restarting technique not only achieves the linear con-
vergence rate, but also matches the lower bound in Zhang
et al. (2021a) in a broad regime of parameters.

3.4. Improving Convergence Rates via Restarting and
Scaling Reduction

Our algorithm design (Algorithm 2) utilizes the restarting
technique, which is a well-established method to accelerate
first-order methods in optimization literature (O’donoghue
& Candes, 2015; Roulet & d’Aspremont, 2017; Renegar
& Grimmer, 2022). Our variant of restarting accelerates
convergence through a novel approach inspired by con-
temporary variance-reduction strategies, similar to those
presented in Li et al. (2022); Du et al. (2022). Our ap-
proach is distinct from previous ones (Kovalev et al., 2021;
Thekumparampil et al., 2022; Jin et al., 2022) that incorpo-
rate the last iterate EG/OGDA with Nesterov’s acceleration.
By incorporating the extrapolated step of Nesterov’s method
as the average step of OGDA and utilizing restarting, we use
a two-timescale analysis and scaling reduction technique
to achieve optimal results under all regimes. Although our
algorithm is a multi-loop algorithm, the simplicity of restart-
ing does not harm the practical aspect of our approach.

Normally, as f and g have different strong convexity param-
eters (µf and µg), it is preferable in practice to have different
stepsizes for the descent step on f(x) and the ascent step on
g(y) (Du et al., 2017; Lin et al., 2020a; Du et al., 2022). Ac-
cordingly, for our analysis we use a scaling reduction tech-
nique (Du et al., 2022) that allows us to consider applying a
single scaling for all parameters without loss of generality.
Setting ŷ =

√
µg

µf
y, we have ∇ŷH(z) =

√
µf

µg
∇yH(z)

and ∇ŷg(y) =
√

µf

µg
∇g(y). Other scaling changes are

listed as follows:

L = Lf ∨ µf

µg
Lg, LH = Ixx ∨ Ixy

√
µf

µg
∨ Iyy

µf

µg
,

ηk,y =
ηkµf

µg
, µ = µf , (3.8)

where by ηk,y we mean that when updating z = [x;y] ∈
Rn+m, we adopt stepsize ηk on the x-part (first n coordi-
nates) and ηk,y on the y-part (last m coordinates). Writing
out in details, the update rules with adjusted stepsizes on
[x;y] are as follows:

xmd
k = (1− αk)x

ag
k + αkxk

ymd
k = (1− αk)y

ag
k + αkyk

xk+ 1
2
= xk − ηk

(
Ix(xk− 1

2
, yk− 1

2
) +∇f(xmd

k )
)

yk+ 1
2
= yk − ηk,y

(
−Iy(xk− 1

2
, yk− 1

2
) +∇g(ymd

k )
)

xag
k+1 = (1− αk)x

ag
k + αkxk+ 1

2

yagk+1 = (1− αk)y
ag
k + αkyk+ 1

2

xk+1 = xk − ηk

(
Ix(xk+ 1

2
, yk+ 1

2
) +∇f(xmd

k )
)

yk+1 = yk − ηk,y

(
−Iy(xk+ 1

2
, yk+ 1

2
) +∇g(ymd

k )
)

With the new scaling and restarting, we obtain Algorithm 2,
which we refer to as “AG-OG with restarting.” The itera-
tion complexity of AG-OG with restarting is stated in the
following Corollary 3.4.
Corollary 3.4. Algorithm 2 on problem (1.2) with Kn =⌈√

8eL
µ ∨ 4e

√
3 +
√
3LH

µ

⌉
outputs an ϵ-optimal minimax

point within a number O(N) of iterates, for N satisfying:

N =

(√
L

µ
+

LH

µ

)
log

(
1

ϵ

)
=

(√
Lf

µf
∨ Lg

µg
+

Ixx
µf

∨ Ixy√
µfµg

∨ Iyy
µg

)
log

(
1

ϵ

)
.

(3.9)

We defer the proof of the corollary to §C.2. When restricted
to the bilinear-coupled problem (1.3), Eq. (4.1) reduces

to
(√

Lf

µf
∨ Lg

µg
+

∥B∥op√
µfµg

)
log
(
1
ϵ

)
, which exactly matches

the lower bound result in Zhang et al. (2021a) and therefore
is optimal under this special instance.

The analysis in Du et al. (2022), which also adopts a
restarted scheme is most similar with ours. However, al-
though OGDA can be written in past-EG form, the al-
gorithm and theoretical analysis are fundamentally differ-
ent (Golowich et al., 2020). For example, in contrast to
EG, the non-expansiveness argument for OGDA does not
achieve a unity prefactor (Mokhtari et al., 2020b). Our work
proves a strict non-expansive property with prefactor 1, and
our technique is new compared with existing EG-based anal-
ysis and existing the OGDA-based analysis.

7
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3.5. Application to Separable Convex-Strongly-Concave
(C-SC) Problem

To extend our strongly-convex-strongly-concave (SC-SC)
AG-OG algorithm complexity to the convex-strongly-
concave (C-SC) setting, we define a regularization reduc-
tion method that modifies the objective via the addition of
a regularization term, which gives the objective function
Lϵ(x,y) = L(x,y) + ϵ||x||2, where ϵ is the desired accu-
racy of the solution. The following Theorem 3.5 provides
the complexity analysis; see §C.3 for the proof.

Theorem 3.5. The output of Algorithm 1 under the same
assumptions and stepsize choices of Theorem 3.3 on the
objective function Lϵ achieves the ϵ-optimal minimax point
of L within the sample complexity of

O

((√
Lf

ϵ
∨ Lg

µg
+

Ixx
ϵ
∨ Ixy√

ϵµg
∨ Iyy

µg

)
log

(
1

ϵ

))
for the original C-SC problem.

The work of Thekumparampil et al. (2022) also provides a
C-SC case result that is obtained by utilizing the smoothing
technique (Nesterov, 2005). Additionally, they present a di-
rect C-SC algorithm without smoothing. On the other hand,
Kovalev et al. (2021) focuses on a different perspective on
the C-SC problem where x and y have strong interactions
and obtains superlinear complexity of log( 1ϵ ). However,
both of these papers are limited to bilinear coupling terms.
Our result, in contrast, targets a more general separable
objective. Our complexity in Theorem 3.5 matches the com-
plexity for regularized reduction in Thekumparampil et al.
(2022). Furthermore, Theorem 3.5 is optimal in the bilinear

coupling case (1.3). The reason is that
√

Lf

ϵ is optimal for a

pure minimization of convex f (Nesterov et al., 2018),
√

Lg

µg

is optimal for a pure maximization of strongly-concave g

(Nesterov et al., 2018), and ∥B∥op√
ϵµg

matches the lower bound
of bilinearly coupled concave-convex minimax optimization
(Ouyang & Xu, 2021) when f = 0.

3.6. Application to Bilinear Games

While the complexity result for deterministic case in Corol-
lary 3.4 has also been obtained in Thekumparampil et al.
(2022); Kovalev et al. (2021) and Jin et al. (2022), in ad-
dition to conceptual simplicity, our algorithm has the sig-
nificant advantage that it yields a stochastic version and a
convergence rate for the stochastic case. By using proper av-
eraging and scheduled restarting techniques, our algorithm
is able to find near-optimal solutions and achieve an optimal
sample complexity up to a constant prefactor. Additionally,
we demonstrate that our algorithm can be reduced to a com-
bination of the averaged iterates of the OGDA algorithm
and a scheduled restarting procedure, which gives rise to

a novel single-call algorithm that achieves an accelerated
convergence rate on the bilinear minimax problem itself.
Finally, we address the situation where there is stochasticity
present in the problem. Throughout this section, we con-
sider Problem (1.2) with∇f(x),∇g(y) being zero almost
surely. Moreover, we assume the following bilinear form:

I(x,y) = x⊤By + x⊤ux + u⊤
y y, (3.10)

where x ∈ Rn, y ∈ Rm with n = m, B ∈ Rn×n is
square and full-rank, and ux,uy ∈ Rn are two parameter
vectors. Algorithm 1 reduces to an equivalent form of the
OGDA algorithm (in the past extragradient form) with initial
condition zag

0 = z− 1
2
= z0, which gives for all k ≥ 1:

zk+ 1
2

= zk − ηkH(zk− 1
2
), (3.11a)

zag
k+1 = (1− αk)z

ag
k + αkzk+ 1

2
(3.11b)

zk+1 = zk − ηkH(zk+ 1
2
) . (3.11c)

By selecting the parameters αk = 2
k+2 and ηk =

k+2
2L+c1LH(k+2) with L = 0 and c1 = 2 in (3.11), we can
prove a boundedness lemma (Lemma D.1, presented in D),
which is the bilinear game analogue of Lemma 3.1 with
an improved scheme of stepsize and demonstrates the non-
expansiveness of the last iterate of the OGDA algorithm.
The proof is deferred to §E.8.

Non-expansiveness of the iterates further yields the follow-
ing theorem whose proof is in §D.1.

Theorem 3.6. When specified to the bilinear game case,
setting the parameters as αk = 2

k+2 and ηk = 1
2LH

, the
output of update rules (3.11) satisfies

||zag
K − z∗||2 ≤ 64λmax(B

⊤B)

λmin(B⊤B)(K + 1)2
||z0 − z∗||2. (3.7)

Moreover, using the scheduled restarting technique, we
obtain a complexity result that matches the lower bound
of Ibrahim et al. (2020):

O

(√
λmax (B⊤B)

λmin (B⊤B)
log

(
1

ε

))
.

An extended result is also obtained in the stochastic setting;
we refer interested readers to §D.2.

4. Stochastic AcceleratedGradient
OptimisticGradient Descent Ascent

In this subsection, we generalize the theoretical performance
of our AG-OG algorithm (Algorithm 1 and 2) to the stochas-
tic case where the rate-optimal convergence behavior is
maintained. The stochastic AG-OG algorithm replaces each
batch gradient with its unbiased stochastic counterpart, with

8
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noise indices represented by ζt, ξt. The full stochastic AG-
OG algorithm is shown in Algorithm 3 in §B.2.

Based on a generalized nonexpasiveness lemma
(Lemma C.7, presented in §C.4) which is the stochastic
analogue of Lemma 3.1, we can proceed the analysis and
arrive at our stochastic result. See §C.4 for the proof.

Theorem 4.1. Under Assumptions 2.1 and 2.2, we take
ηk = k+2

4L+D+4
√

2+
√
2LH(k+2)

where D = σ
C

A(K)√
E||z0−z∗||2

for A(K) :=
√
(K + 1)(K + 2)(2K + 3)/6 and some ab-

solute constant C > 0. Then the output of Algorithm 3 on
problem (1.2) satisfies:

E||zag
K − z∗||2

≤
[

8L

µ(K + 1)2
+

7.4(1 + C2)LH

µ(K + 1)

]
E||z0 − z∗||2

+
2(C + 1

C )σ

µ
√
K + 1

√
E||z0 − z∗||2.

Remark 4.2. Without knowledge of expected initial dis-
tance E||z0 − z∗||2 to the true minimax point, we need
an alternative selection of stepsize ηk. We assume an
upper bound on ||z0 − z∗||2 defined as Γ0 and let C =

Γ0√
E||z0−z∗||2

. The quantity D = σA(K)
Γ0

is hence known.

Thus

E||zag
K − z∗||2

≤
[

8L

µ(K + 1)2
+

14.8LH

µ(K + 1)

]
Γ2
0 +

4σ

µ
√
K + 1

Γ0.

Analogous to the method in §3.4, we restart the S-AG-OG
algorithm properly and achieve the following complexity:

Corollary 4.3. With scheduled restarting imposed on top
of Algorithm 3, Algorithm 2 on problem (1.2) outputs an
ϵ-optimal minimax point within O(N) iterations, for N
satisfying:

N =

(√
L

µ
+

LH

µ

)
log

(
1

ϵ

)
+

σ2

µ2
f ϵ

2
(4.1)

=

(√
Lf

µf
∨ Lg

µg
+

Ixx
µf

∨ Ixy√
µfµg

∨ Iyy
µg

)
log

(
1

ϵ

)
+

σ2

µ2
f ϵ

2
.

In the special case of bilinearly coupled SC-SC, the above
result reduces to(√

Lf

µf
∨ Lg

µg
+

Ixy√
µfµg

)
log

(
1

ϵ

)
+

σ2

µ2
f ϵ

2
,

which matches that of Du et al. (2022) and is rate-optimal.
The reason is that the first term (i.e., bias error) matches the
lower bound of bilinearly coupled SC-SC in Zhang et al.
(2021a), and the second term (i.e., variance error) matches
the worst-case statistical minimax rate.

5. Discussion
In this paper, we propose novel algorithms for both the de-
terministic setting (AG-OG) and a stochastic setting (S-AG-
OG) which organically blends optimism with Nesterov’s
acceleration, featuring structural interpretability and simplic-
ity. Leveraging novel Lyapunov analysis, these algorithms
achieve desirable polynomial convergence behavior. Fur-
ther by properly restarting the algorithms, AG-OG and its
stochastic version theoretically enjoy rate-optimal sample
complexity for finding an ϵ-accurate solution. Future direc-
tions include closing the gap between the upper and lower
bounds for general separable minimax optimization, and
generalizations to nonconvex settings.
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A. Examples of Separable Minimax Optimization
In this section, we use two examples to showcase the applications of formulation (1.2). We refer the readers for other
examples in prior works such as Thekumparampil et al. (2022); Kovalev et al. (2021); Du et al. (2022). In the first example,
we demonstrate how the parameters of a linear state-value function can be estimated by solving (1.2). In the second example
of robust learning problem, we illustrate how turning the disk constraint into a penalty term allows us to obtain an objective
in the form of (1.2).

Policy Evaluation in Reinforcement Learning. The policy evaluation problem in RL can be formulated as a convex-
concave bilinearly coupled minimax problem. We are provided a sequence of four-tuple {(st, at, rt, st+1)}nt=1, where

(i) st, st+1 are the current state (at time t) and future state (at time t+ 1), respectively;

(ii) at is the action at time t generated by policy π, that is, at = π(st);

(iii) rt = r(st, at) is the reward obtained after taken action at at state st.

Our goal is to estimate the value function of a fixed policy π in the discounted, infinite-horizon setting with discount factor
γ ∈ (0, 1), where for each state s the discounted reward

V π(s) ≡ E

[ ∞∑
t=0

γtrt

∣∣∣∣ s0 = s, at = π(st), ∀t ≥ 0

]
.

If a linear function approximation is adopted, i.e. V π(s) = ϕ(s)⊤x where ϕ(·) is a feature mapping from the state space
to feature space, we estimate the model parameter x via minimizing the empirical mean-squared projected Bellman error
(MSPBE):

min
x

1

2
∥Ax− b∥2C−1 . (A.1)

where ||x||M ≡
√
x⊤Mx denotes the M-norm, for positive semi-definite matrix M, of an arbitrary vector x, and

A =
1

n

n∑
t=1

ϕ(st) (ϕ(st)− γϕ(st+1))
⊤
, b =

1

n

n∑
t=1

rtϕ(st), C =
1

n

n∑
t=1

ϕ(st)ϕ(st)
⊤.

Applying first-order optimization directly to (A.1) would necessitate computing (and storing) the inversion of matrix C, or
at least, the matrix-vector product C−1v for given vector v at each step, which would be computationally costly or even
prohibited. To circumvent inverting matrix C a reformulation via conjugate function can be resorted to; that is, solving (A.1)
is equivalent to solving the following minimax problem (Du et al., 2017; Du & Hu, 2019):

min
x

max
y
− y⊤Ax− 1

2
∥y∥2C + b⊤y.

Such an instance falls under the category of minimax problem (1.2) where the individual component is convex-concave, and
is further enhanced to be strongly-convex-strongly-concave when a quadratic regularizer term is imposed and C is strictly
positive definite.

Robust Learning. A robust learning or robust optimization problem targets to minimize an objective function (here the
sum of squares) formulated as a minimax optimization problem (Ben-Tal et al., 2009; Du & Hu, 2019; Thekumparampil
et al., 2022)

min
x

max
y:∥y−y0∥≤R

1

2
∥Ax− y∥2, (A.2)

where A is a coefficient matrix and y is a noisy observation vector, which is perturbed by a vector of R-bounded norm.
Transforming (A.2) to a penalized objective gives a formulation of minx maxy

1
2∥Ax− y∥2 − ρ∥y − y0∥2. When ρ is

selected to be strictly greater than 1
2 , we get a strongly-convex-strongly-concave bilinearly coupled minimax optimization

problem.
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Figure 1. Comparison with OGDA on different problem sets (Deterministic)

B. Experiments
In this section, we empirically study the performance of our AG-OG with restarting algorithm. In these experimental results,
we study both deterministic [§B.1] and stochastic settings [§B.2], each of which we compare the state-of-the-art algorithms.
Throughout this section, the x-axis represents the number of gradient queries while the y-axis represents the squared distance
to the minimax point.

B.1. Deterministic Setting

We present results on synthetic quadratic game datasets:

x⊤A1x+ y⊤A2x− y⊤A3y, (B.1)

with various selections of the eigenvalues of A1, A2, A3.

Comparison with OGDA. We use the single-call OGDA algorithm (Gidel et al., 2018; Hsieh et al., 2019) as the baseline.
In Figure 1 we plot the AG-OG algorithm and the AG-OG with restarting algorithm under three different instances. We use
stepsize ηk = k+2

2L+
√

3+
√
3LH(k+2)

in both the AG-OG and the AG-OG with restarting algorithms and restart AG-OG with

restarting once every 100 iterates. For the OGDA algorithm, we take stepsize η = 1
2(L∨LH) as is indicated by recent arts

e.g. (Mokhtari et al., 2020b). For the parameters of the problem (B.1), we fix LH = 1, Lf = 64, µf = 1 and scatter various
values of Lg, µg. In Figure 1(a) we take Lg = 64, µg = 1. In Figure 1(b) we take Lg = 1, µg = 1/64 and in Figure 1(c)
we take Lg = 4096, µg = 64. We see from Figures 1(a), 1(b) and 1(c) when the problem has different Lf , µf and Lg, µg,
changing Lg, µg has larger impact on OGDA than on AG-OG, which matches our theoretical results.

Comparison with LPD. Next, we focus on comparison to the Lifted Primal-Dual (LPD) algorithm (Thekumparampil
et al., 2022). We implement the AG-OG algorithm and its restarted version, the AG-OG with restarting. Additionally,
inspired by the technique of a single-loop direct-approach in Du et al. (2022), we consider a single-loop algorithm named
AG-OG-Direct that takes advantage of the strongly-convex-strongly-concave nature of the problem. We refer readers
to Du et al. (2022) for the “direct” method. The parameters of LPD are chosen as described in Thekumparampil et al. (2022).
For our AG-OG and AG-OG with restarting algorithms, we take ηk = k+2

2L+
√

3+
√
3LH(k+2)

and the scaling parameters are

taken as in Eq. (3.8). For the AG-OG-direct algorithm, we take η = 1

(1+

√
L/µf+(

√
3+

√
3LH)2/µ2

f )µf

with the same set of

scaling parameters. We restart AG-OG with restarting once every 100 iterates.

In Figure 2(a), the bilinear coupling component y⊤A2x is the dominant part. In Figure 2(b), we set the eigenvalues of A2

even larger than in Figure 2(a). In Figure 2(c), x⊤A1x and y⊤A3y are the dominant terms. More details on the specific
designs of the matrices are shown in the caption of the corresponding figures.

We see from Figures 2(a) and 2(b) that AG-OG with restarting (green line) outperforms LPD and MP in regimes where
the bilinear term dominates, and when the eigenvalues of the coupling matrix increase, the performance of AG-OG with
restarting relative to other algorithms is enhanced. This is in accordance with our theoretical analysis. In addition, AG-OG
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Figure 2. Comparison with LPD on different problem sets (Deterministic)
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Figure 3. Comparison of algorithms on different problem sets (Stochastic)

Algorithm 3 Stochastic AcceleratedGradient-OptimisticGradient (S-AG-OG)(zag
0 , z0, z−1/2,K)

1: for k = 0, 1, . . . ,K − 1 do
2: zmd

k = (1− αk)z
ag
k + αkzk

3: zk+ 1
2
= zk − ηk

(
H̃(zk− 1

2
; ζk− 1

2
) +∇F̃ (zmd

k ; ξk)
)

4: zag
k+1 = (1− αk)z

ag
k + αkzk+ 1

2

5: zk+1 = zk − ηk

(
H̃(zk+ 1

2
; ζk+ 1

2
) +∇F̃ (zmd

k ; ξk)
)

6: end for
7: Output: zag

K

with restarting outperforms its non-restarted version (orange line) which has a gentle slope at the end. On the other hand,
when the individual component dominates, our AG-OG-direct (red line) slightly outperforms LPD. Moreover, AG-OG-direct
and LPD almost overlap in 2(a) and 2(b).

B.2. Stochastic Setting

We compared stochastic AG-OG and its restarted version (S-AG-OG) with Stochastic extragradient (SEG) SEG with
restarting, respectively (cf. Li et al., 2022). The complete algorithm is shown in 3. We note that we refer to the averaged
iterates version of SEG everywhere when using SEG. For SEG and SEG-restart, we use stepsize ηk = 1

2(L∨LH) . For AG-OG
and AG-OG with restarting, we use stepsize ηk = k+2

2L+
√

3+
√
3LH(k+2)

. We restart every 100 gradient calculations for both

SEG-restart and AG-OG-restart.

We use the same quadratic game setting as in (B.1) except that we assume access only to noisy estimates of A1, A2, A3.
We add Gaussian noise to A1, A2, A3 with σ = 0.1 throughout this experiment. We plot the squared norm error with
respect to the number of gradient computations in Figure 3. In 3(a) we consider larger eigenvalues for A2 than A1, A3.
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In 3(b), we let A1, A2, A3 to be approximately of the same scale. In 3(c), as the scale of the eigenvalues shrinks, the noise
is relatively larger than in 3(a) and 3(b). The specific choice of parameters are shown in the caption of the corresponding
figures. We see from 3(a), 3(c) and 3(c) that stochastic AG-OG with restarting achieves a more desirable convergence speed
than SEG-restart. Also, the restarting technique significantly accelerates the convergence, validating our theory.

C. Proof of Main Convergence Results
This section collects the proofs of our main results, Theorem 3.3 [§C.1], Corollary 3.4 [§C.2], and Theorem 4.1 [§C.4].

C.1. Proof of Theorem 3.3

Proof.[Proof of Theorem 3.3] We define the point-wise primal-dual gap function as:

V (z, z′) := F (z)− F (z′) + ⟨H(z′), z − z′⟩ . (C.1)

We first provide the following property for the primal-dual gap function:

Lemma C.1. For L-smooth and µ-strongly convex F (z), and for any z ∈ Rn+m we have

V (z, z∗) = F (z)− F (z∗) + ⟨H(z∗), z − z∗⟩ ≥ µ

2
∥z − z∗∥2 . (C.2)

Proof of Lemma C.1 is provided in §E.1.

Our proof proceeds in the following steps:

Step 1: Estimating weighted temporal difference in squared norms. We first prove a result on bounding the temporal
difference of the point-wise primal-dual gap between zag

k and z∗, whose proof is delayed to §E.4.

Lemma C.2. For arbitrary αk ∈ (0, 1] and any ωz ∈ Rn+m the iterates of Algorithm 1 satisfy for k = 1, . . . ,K almost
surely

V (zag
k+1, ωz)− (1− αk)V (zag

k , ωz) ≤ αk

〈
∇F (zmd

k ) +H(zk+ 1
2
), zk+ 1

2
− ωz

〉
︸ ︷︷ ︸

I

+
Lα2

k

2

∥∥∥zk+ 1
2
− zk

∥∥∥2︸ ︷︷ ︸
II

. (C.3)

Note that in Lemma C.2, the term I is an inner product that involves a gradient term.5 The term II is brought by gradient
evaluated at zmd

k .

Additionally, throughout the proof of Lemma C.2, we only leverage the convexity and L-smoothness of f and the
monotonicity of H as in (2.2), as well as the update rules as in Line 2 and Line 4. The proof involves no update rules
regarding the gradient updates and hence Lemma C.2 holds for the stochastic case as well.

Next, to further bound the inner product term I, we introduce a general proposition that holds for two updates starting from
the same point. Proposition C.3 is a slight modification from the proof of Proposition 4.2 in Chen et al. (2017) and analogous
to Lemma 7.1 in Du et al. (2022). We omit the proof here as the argument comes from simple algebraic tricks. Readers can
refer to Du et al. (2022) for more details.

Proposition C.3 (Proposition 4.2 in Chen et al. (2017) and Lemma 7.1 in Du et al. (2022)). Given an initial point θ ∈ Rd,
two update vectors δ1, δ2 ∈ Rd and the corresponding outputs φ1,φ2 ∈ Rd satisfying:

φ1 = θ − δ1, φ2 = θ − δ2. (C.4)

For any point z ∈ Rd we have

⟨δ2,φ1 − z⟩ ≤ 1

2
∥δ2 − δ1∥2 +

1

2

[
∥θ − z∥2 − ∥φ2 − z∥2 − ∥θ −φ1∥2

]
. (C.5)

5In fact, this term reduces to ⟨∇f(zk),zk − ωz⟩ of the vanilla gradient algorithm if the features of accelerations and optimistic
gradients are removed.
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Noting that the gradient term∇F (zmd
k ) +H(zk+ 1

2
) in Term I of inequality (C.3) of Lemma C.2 has been used in updating

zk to zk+1 in Line 5 in Algorithm 1. Comparing Line 5 with Line 3 and by letting θ = zk,φ1 = zk+ 1
2
,φ2 = zk+1 in

Proposition C.3, we obtain an upper bound for the inner product term I:

ηk · I ≤
η2k
2
||H(zk+ 1

2
)−H(zk− 1

2
)||2 + 1

2

[
||zk − ωz||2 − ||zk+1 − ωz||2 − ||zk+ 1

2
− zk||2

]
≤ L2

Hη2k
2
||zk+ 1

2
− zk− 1

2
||2 + 1

2

[
||zk − ωz||2 − ||zk+1 − ωz||2 − ||zk+ 1

2
− zk||2

]
, (C.6)

where the last inequality is due to properties of H and the definition of LH . Combining Eqs. (C.3) and (C.6) we obtain

V (zag
k+1, ωz)− (1− αk)V (zag

k , ωz) ≤
L2
Hηkαk

2
||zk+ 1

2
− zk− 1

2
||2

+
αk

2ηk

[
||zk − ωz||2 − ||zk+1 − ωz||2 − ||zk+ 1

2
− zk||2

]
+

Lα2
k

2
||zk+ 1

2
− zk||2. (C.7)

This finishes Step 1.

Step 2: Building and solving the recursion. We first apply the following lemma to build connections between ||zk+ 1
2
−

zk− 1
2
||2 and ||zk+ 1

2
− zk||2, reducing Eq. (C.7) to the composition of sequences {||zk − ωz||2}0≤k≤K−1 and {||zk+ 1

2
−

zk||2}0≤k≤K−1. The proof of Lemma C.4 is deferred to §E.5.

Lemma C.4. For any stepsize sequence {ηk}0≤k≤K−1 satisfying for some positive constant c > 0 and the Lipschitz
parameter LH such that LHηk ≤

√
c
2 holds for all k. Algorithm 1 with initialization z− 1

2
= zag

0 = z0 gives the following
for any k = 0, . . . ,K − 1: ∥∥∥zk+ 1

2
− zk− 1

2

∥∥∥2 ≤ 2ck
k∑

ℓ=0

c−ℓ
∥∥∥zℓ+ 1

2
− zℓ

∥∥∥2 . (C.8)

Combining Eqs. (C.7) and (C.8), bringing in the stepsize choice αk = 2
k+2 and rearranging the terms, we obtain the

following relation:

V (zag
k+1, ωz)−

k

k + 2
V (zag

k , ωz) ≤
1

ηk(k + 2)

[
||zk − ωz||2 − ||zk+1 − ωz||2

]
−
(

1

ηk(k + 2)
− 2L

(k + 2)2

)
||zk+ 1

2
− zk||2 +

2L2
Hηk

k + 2

k∑
ℓ=0

ck−ℓ||zℓ+ 1
2
− zℓ||2.

Multiplying both sides by (k + 2)2, we obtain

(k + 2)2V (zag
k+1, ωz)− [(k + 1)2 − 1]V (zag

k , ωz) ≤
k + 2

ηk

[
||zk − ωz||2 − ||zk+1 − ωz||2

]
−
(
k + 2

ηk
− 2L

)
||zk+ 1

2
− zk||2 + 2L2

H(k + 2)ηk

k∑
ℓ=0

ck−ℓ||zℓ+ 1
2
− zℓ||2.

Taking ηk = k+2

2L+
√

2
cLH(k+2)

, we have k+2
ηk
− 2L =

√
2
cLH(k + 2), and the previous inequality reduces to

(k + 2)2V (zag
k+1, ωz)− [(k + 1)2 − 1]V (zag

k , ωz)

≤

(
2L+

√
2

c
LH(k + 2)

)[
||zk − ωz||2 − ||zk+1 − ωz||2

]
−
√

2

c
LH(k + 2)||zk+ 1

2
− zk||2 +

√
2cLH(k + 2)

k∑
ℓ=0

ck−ℓ||zℓ+ 1
2
− zℓ||2.
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Subtracting off term V (zag
k+1, ωz) on both sides and summing over k from 0 to K − 1, we have

[
(K + 1)2 − 1

]
V (zag

K , ωz) +

(
2L+

√
2

c
LH(K + 1)

)
∥zK − ωz∥2

≤

(
2L+

√
2

c
LH

)
||z0 − ωz||2 +

√
2

c
LH

K−1∑
k=0

∥zk − ωz∥2 −
K−1∑
k=0

V (zag
k+1, ωz)

−
√

2

c
LH

K−1∑
k=0

(k + 2)||zk+ 1
2
− zk||2︸ ︷︷ ︸

III1

+
√
2cLH

K−1∑
k=0

(k + 2)

k∑
ℓ=0

ck−ℓ||zℓ+ 1
2
− zℓ||2︸ ︷︷ ︸

III2

.

Simple algebra yields

III2 =

K−1∑
ℓ=0

||zℓ+ 1
2
− zℓ||2

K−1∑
k=ℓ

(k + 2)ck−ℓ ≤
K−1∑
ℓ=0

[
ℓ+ 2

1− c
+

c

(1− c)2

]
||zℓ+ 1

2
− zℓ||2.

Straightforward derivations give that if we choose c = 2
3+

√
3

, the inequality
√

2
c (k + 2) ≥

√
2c
[
k+2
1−c + c

(1−c)2

]
holds for

all k ≥ 0. Thus, summing III1 and III2 terms we have

−
√

2

c
LH III1 +

√
2cLH III2 ≤ 0.

Finally, we solve the recursion and conclude

[
(K + 1)2 − 1

]
V (zag

K , ωz) +

(
2L+

√
2

c
LH(K + 1)

)
∥zK − ωz∥2

≤

(
2L+

√
2

c
LH

)
||z0 − ωz||2 +

√
2

c
LH

K−1∑
k=0

∥zk − ωz∥2 −
K−1∑
k=0

V (zag
k+1, ωz). (C.9)

finishing Step 2.

Step 3: Proving zk stays nonexpansive with respect to z∗. In Lemma 3.1, we show that zk always stays in the ball
centered at z∗ with radius ||z0 − z∗||. The proof of this lemma is presented in §E.2.

Lemma 3.1 (Nonexpansiveness, restated). Under Assumptions 2.1, we set the parameters as L = Lf ∨ Lg, LH =
Ixx ∨ Iyy + Ixy, ηk = k+2

2L+
√

3+
√
3LH(k+2)

and αk = 2
k+2 Algorithm 1 with initialization z− 1

2
= zag

0 = z0, at any iterate

k < K we have

||zk − z∗|| ≤ ||z0 − z∗||.

Step 4: Combining everything together. Bringing the nonexpansiveness result in Lemma 3.1 into the solved recur-
sion (C.9), setting ωz = z∗ and rearranging, we obtain the following:

(K + 1)2V (zag
K , z∗) ≤ (K + 1)2V (zag

K , z∗) +

(
2L+

√
2

c
LH(K + 1)

)
∥zK − z∗∥2

≤

(
2L+

√
2

c
LH(K + 1)

)
∥z0 − z∗∥2.

Dividing both sides by (K + 1)2 and noting that Lemma C.1 implies V (zag
K , z∗) ≥ µ

2 ||z
ag
K − z∗||2. Hence, bringing in the

choice of c = 2
3+

√
3

concludes our proof of Theorem 3.3. □
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We finally remark that a limitation of this convergence rate bound is that the coefficient for LH in our stepsize choosing
scheme is

√
3 +
√
3 ≈ 2.175 while an improved stepsize in this special case is 1

2LH
, yielding a sharper coefficient 2.

Although the slight difference in constant factors does not harm the practical performance drastically, we anticipate that this
constant might be further improved and leave it to future work.

C.2. Proof of Corollary 3.4

Proof.[Proof of Corollary 3.4] The proof of restarting argument is direct. By Eq. (3.7), if we want ||zag
K−z∗||2 ≤ 1

e ||z0−z
∗||2

to hold, we can choose K such that

4L

µ(K + 1)2
≤ 1

2e
,

2
√

3 +
√
3LH

µ(K + 1)
≤ 1

2e
.

This is equivalent to

K + 1 ≥

√
8eL

µ
, K + 1 ≥ 4e

√
3 +
√
3LH

µ
.

For a given threshold ϵ > 0, with the output of every epoch satisfying ||zag
K − z∗||2 ≤ 1

e ||z0 − z∗||2, the total epochs

required to obtain an ϵ-optimal minimax point would be log
(

||z0−z∗||2
ϵ

)
. Thus, the total number of iterates required to get

within the ϵ threshold would be:

O

(√
L

µ
+

LH

µ

)
· log

(
1

ϵ

)
.

Bringing the choice of scaling parameters in (3.8) and we conclude our proof of Corollary 3.4. □

C.3. Proof of Theorem 3.5

Proof.[Proof of Theorem 3.5] For minimax problem, we recall that we define the primal-dual gap function as:

V (z, z′) = F (z)− F (z′) + ⟨H(z′), z − z′⟩ .

We have for any pair of parameters (x̂, ŷ) and (x,y):

L(x̂,y)− L(x, ŷ) = f(x̂)− f(x) + g(ŷ)− g(y) + I(x̂,y)− I(x, ŷ)

= f(x̂)− f(x) + g(ŷ)− g(y) + I(x̂,y)− I(x,y) + I(x,y)− I(x, ŷ)

≤ f(x̂)− f(x) + g(ŷ)− g(y) + ⟨H(z), ẑ − z⟩ ≤ V (ẑ, z).

Similarly for the regularized problem we define

Vϵ(z, z
′) = V (z, z′) +

ϵ

2
||x||2 − ϵ

2
||x′||2,

and by the definition of Lϵ we have

Lϵ(x̂,y)− Lϵ(x, ŷ) ≤ Vϵ(ẑ, z),

and moreover,

max
y∈Y
Lϵ(x̂,y)− min

x∈X
Lϵ(x, ŷ) ≤ max

z∈X×Y
Vϵ(ẑ, z).

By applying the AG-OG algorithm (Algorithm 1) onto the regularized objective Lϵ, if we can find a pair ẑ = (x̂, ŷ) such
that

max
y∈Y
Lϵ(x̂,y)− min

x∈X
Lϵ(x, ŷ) ≤ max

z∈X×Y
Vϵ(ẑ, z) ≤ ϵ.
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The result would imply for the original C-SC problem that

max
y∈Y
L (x̂,y)− min

x∈X
L (x, ŷ) = max

y∈Y
L (x̂,y) + ϵ

2
||x̂||2 −

(
min
x∈X
L (x, ŷ) + ϵ

2
||x̂||2

)
≤ max

y∈Y

(
L (x̂,y) + ϵ

2
||x̂||2

)
− min

x∈X

(
L (x, ŷ) + ϵ

2
||x||2

)
≤ max

y∈Y
Lϵ (x̂,y)− min

x∈X
Lϵ (x, ŷ) ≤ ϵ.

The left of this subsection is devoted to finding the gradient complexity of finding a ẑ ∈ Z such that maxz∈Z Vϵ(ẑ, z).
By utilizing the results in Step 2 in the proof of Theorem 3.3 to the objective Vϵ, we have

Vϵ(z
ag
k+1, ωz)−

k

k + 2
Vϵ(z

ag
k , ωz) ≤

1

ηk(k + 2)

[
||zk − ωz||2 − ||zk+1 − ωz||2

]
−
(

1

ηk(k + 2)
− 2L

(k + 2)2

)
||zk+ 1

2
− zk||2 +

2ηkL
2
H

k + 2

k∑
ℓ=0

ck−ℓ||zℓ+ 1
2
− zℓ||2.

Multiplying both sides by (k + 2)(k + 1), we obtain

(k + 2)(k + 1)Vϵ(z
ag
k+1, ωz)− (k + 1)kVϵ(z

ag
k , ωz) ≤

k + 1

ηk

[
||zk − ωz||2 − ||zk+1 − ωz||2

]
−
(
k + 1

ηk
− 2L

)
||zk+ 1

2
− zk||2 + 2(k + 1)ηkL

2
H

k∑
ℓ=0

ck−ℓ||zℓ+ 1
2
− zℓ||2.

Taking ηk = k+1

2L+
√

2
cLH(k+1)

, c = 2
3+

√
5

and adopting similar techniques as in the proof of Theorem 3.3, we have

(K + 2)(K + 1)Vϵ(z
ag
K ,ωz) +

(
2L+

√
2

c
LHK

)
∥zK − ωz∥2 ≤ 2L||z0 − ωz||2 +

√
2

c
LH

K−1∑
k=0

∥zk − ωz∥2 .

(C.10)

Taking ωz = z∗
ϵ where z∗

ϵ is the solution of the objective. Similarly as in Lemma 3.1 in the proof of Theorem 3.3, we
can apply the same bootstrapping argument and derive for µϵ being the strongly convexity parameter of Vϵ, Lϵ being the
smoothness parameter of the regularized F , the following inequality

||zag
K − z∗

ϵ ||2 ≤

(
4L

µϵ(K + 1)K
+

2
√
3 +
√
5LH

µϵ(K + 1)

)
∥z0 − z∗

ϵ ∥2.

Applying the same restarting as in Corollary 3.4, the total number of iterates required to get within the ϵ threshold (in terms
of ||zag

K − z∗
ϵ ||2) should be

O

(√
Lϵ

µϵ
+

LH

µϵ

)
· log

(
1

ϵ

)
.

We note that in previous iterates n = 0, . . . , N − 2 in Algorithm 2, we have obtained a z0 such that ||z0 − z∗
ϵ ||2 ≤ ϵ. We

then analyze at iteration n = N − 1. Again from Equation (C.10), letting ωz := z∗
K = argmaxz∈Z Vϵ(z

ag
K , z), we have

(K + 2)(K + 1)Vϵ(z
ag
K , z∗

K) +

(
2L+

√
2

c
LHK

)
∥zK − z∗

K∥2 ≤ 2L||z0 − z∗
K ||2 +

√
2

c
LH

K−1∑
k=0

∥zk − z∗
K∥

2
.

As Vϵ(z
ag
K , z∗

K) ≥ 0, we can apply the same boostrapping argument and derive

µϵ

2
||zag

K − z∗
K ||2 ≤ Vϵ(z

ag
K , z∗

K) ≤ 2Lϵ +
√
3 +
√
5LHK

K(K + 1)
||z0 − z∗

K ||2. (C.11)
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On the other hand, we also have that

µϵ

2
||zag

K − z∗
ϵ ||2 ≤ Vϵ(z

ag
K , z∗

ϵ ) ≤
2L+

√
3 +
√
5LHK

K(K + 1)
||z0 − z∗

ϵ ||2. (C.12)

By analyzing the two inequalities (C.11) and (C.12), we obtain that for sufficiently large K (in an order ofO
(√

Lϵ

µϵ
+ LH

µϵ

)
)

such that 4L+2
√

3+
√
5LHK

µϵK(K+1) ≤ 1
c2

,

||z∗
K − z∗

ϵ || ≤ ||z
ag
K − z∗

K ||+ ||z
ag
K − z∗

ϵ || ≤
1

c2
[||z0 − z∗

K ||+ ||z0 − z∗
ϵ ||]

≤ 1

c2
[||z0 − z∗

ϵ ||+ ||z∗
ϵ − z∗

K ||+ ||z0 − z∗
ϵ ||] ≤

2

c2 − 1
||z0 − z∗

ϵ ||.

Furthermore, we apply (C.11) again and derive

max
z∈Z

Vϵ(z
ag
K , z) = Vϵ(z

ag
K , z∗

K) ≤ 1

c2
||z0 − z∗

L||2 ≤
||z0 − z∗

K ||
c2

≤ ||z0 − z∗
ϵ ||+ ||z∗

ϵ − z∗
K ||

c2
≤ c2 + 1

c2(c2 − 1)
||z0 − z∗

ϵ ||.

Taking c2 = 3, and noting that we have obtained ||z0 − z∗
ϵ ||2 ≤ ϵ in previous restarted iterates and combining the

technique at the beginning of the proof of Theorem 3.5, the total number of iterates in order to get maxy∈Y Lϵ (x̂,y) −
minx∈X Lϵ (x, ŷ) ≤ maxz∈Z Vϵ(ẑ, z) ≤ ϵ is O

(√
L

ϵ∧µg
+ LH

ϵ∧µg

)
· log

(
1
ϵ

)
. Applying a scaling reduction argument as

in (3.8) (the stepsize is dependent on ϵ after scaling reduction) gives a final complexity of

O

((√
Lf

ϵ
∨ Lg

µg
+

Ixx
ϵ
∨ Ixy√

ϵµg
∨ Iyy

µg

)
log

(
1

ϵ

))
.

□

C.4. Proof of Theorem 4.1

Proof.[Proof of Theorem 4.1] For the stochastic case, we use the primal-dual gap function (C.1) and proceeds in the
following

Step 1: Estimating weighted temporal difference in squared norms. We mentioned in the proof of Theorem 3.3 that
Lemma C.2 holds for the stochastic case as well. Thus, we have

V (zag
k+1, ωz)− (1− αk)V (zag

k , ωz) ≤ αk

〈
∇F (zmd

k ) +H(zk+ 1
2
), zk+ 1

2
− ωz

〉
︸ ︷︷ ︸

I

+
Lα2

k

2

∥∥∥zk+ 1
2
− zk

∥∥∥2︸ ︷︷ ︸
II

. (C.3)

By applying Proposition C.3 to the iterates of Algorithm 3. Taking x = zk,ϕ1 = zk+ 1
2
,ϕ2 = zk+1 in Proposition C.3 and

recalling the update rules in Algorithm 3, we obtain the following stochastic version of inequality (C.6):

ηk ·
〈
∇F̃ (zmd

k ; ξk) +∇H̃(zk+ 1
2
; ζk+ 1

2
), zk+ 1

2
− ωz

〉
≤ 1

2
η2k ||H̃(zk+ 1

2
; ζk+ 1

2
)− H̃(zk− 1

2
; ζk− 1

2
)||2︸ ︷︷ ︸

(a)

+
1

2

[
||zk − ωz||2 − ||zk+1 − ωz||2 − ||zk+ 1

2
− zk||2

]
.

Step 2: Building and solving the recursion. Note that in the stochastic case, unlike Step 2 in the proof of Theorem 3.3,
before connecting ||zk+ 1

2
− zk− 1

2
||2 with ||zk+ 1

2
− zk||2 to get an iterative rule, we need to bound the expectation of (a)

with additional noise first.

Throughout the rest of the proof of Theorem 4.1, we denote

∆
k+ 1

2

h = H̃(zk+ 1
2
; ζk+ 1

2
)−H(zk+ 1

2
), ∆k

f = ∇F̃ (zmd
k ; ξk)−∇F (zmd

k ).

Taking expectation over term (a) in above, we use the following lemma to depict the upper bound of the quantity. The proof
is delayed to §E.6.
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Lemma C.5. For any β > 0, under Assumption 2.2, we have

E||H̃(zk+ 1
2
; ζk+ 1

2
)− H̃(zk− 1

2
; ζk− 1

2
)||2 ≤ (1 + β)L2

HE||zk+ 1
2
− zk− 1

2
||2 +

(
2 +

1

β

)
σ2
H . (C.13)

Taking β = 1 in Lemma C.5 and bringing the result into the expectation of (C.3), we obtain that

EV (zag
k+1, ωz)− (1− αk)EV (zag

k , ωz)

≤ αkηk
2

[
2L2

HE||zk+ 1
2
− zk− 1

2
||2 + 3σ2

H

]
+ αkE

〈
∆k

f +∆
k+ 1

2

h , zk+ 1
2
− ωz

〉
+

Lα2
k

2
E||zk+ 1

2
− zk||2 +

αk

2ηk
E
[
||zk − ωz||2 − ||zk+1 − ωz||2 − ||zk+ 1

2
− zk||2

]
. (C.14)

Following the above inequality and following similar techniques as in Step 2 of the proof of Theorem 3.3, we can derive the
following Lemma C.6, whose proof is delayed to §E.7.

Lemma C.6. For the choice of stepsize such that ηkLH ≤
√
c
2 holds for all k and any constant r > 0, we have

EV (zag
k+1, ωz)− (1− αk)EV (zag

k , ωz) ≤
αk

2ηk
E
[
||zk − ωz||2 − ||zk+1 − ωz||2

]
+

3αkηk
2(1− c)

σ2
H

+ 2αkηkL
2
H

k∑
ℓ=0

ck−ℓE||zℓ+ 1
2
− zℓ||2 −

(
rαk

2ηk
− Lα2

k

2

)
E||zk+ 1

2
− zk||2 +

αkηk
2(1− r)

σ2
F .

Recalling that αk = 2
k+2 , we have

EV (zag
k+1, ωz)−

k

k + 2
EV (zag

k , ωz) ≤
1

ηk(k + 2)
E
[
||zk − ωz||2 − ||zk+1 − ωz||2

]
+

4ηkL
2
H

k + 2

k∑
ℓ=0

ck−ℓE||zℓ+ 1
2
− zℓ||2 −

(
r

ηk(k + 2)
− 2L

(k + 2)2

)
E||zk+ 1

2
− zk||2

+
3ηk

(1− c)(k + 2)
σ2
H +

ηk
(1− r)(k + 2)

σ2
F .

Multiplying both sides by (k + 2)2 and taking r = 1
2 , we obtain

(k + 2)2EV (zag
k+1, ωz)− [(k + 1)2 − 1]EV (zag

k , ωz)

≤ k + 2

ηk
E
[
||zk − ωz||2 − ||zk+1 − ωz||2

]
+ 4ηkL

2
H(k + 2)

k∑
ℓ=0

ck−ℓE||zℓ+ 1
2
− zℓ||2

−
(
r(k + 2)

ηk
− 2L

)
E||zk+ 1

2
− zk||2 +

3ηk(k + 2)

1− c
σ2
H +

ηk(k + 2)

1− r
σ2
F

≤ k + 2

ηk
E
[
||zk − ωz||2 − ||zk+1 − ωz||2

]
+ 4ηkL

2
H(k + 2)

k∑
ℓ=0

ck−ℓE||zℓ+ 1
2
− zℓ||2

−
(
k + 2

2ηk
− 2L

)
E||zk+ 1

2
− zk||2 +

3ηk(k + 2)

1− c
σ2
H + 2ηk(k + 2)σ2

F .

Telescoping over k = 0, 1, . . .K − 1 and using the same techniques as in the proof of Theorem 3.3, we have for
k+2
2ηk
≥ 2L+ 1√

c
LH(k + 2) and c = 1

2+
√
2

(c/(1− c) =
√
2− 1, and recall σ2 = 3

√
2σ2

H + 2σ2
F so that

[
(K + 1)2 − 1

]
EV (zag

K , z∗) +
K + 1

ηK−1
E||zK − z∗||2

≤ 2

η0
E||z0 − z∗||2 + 2√

c
LH

K−1∑
k=1

E ∥zk − z∗∥2 +
K−1∑
k=0

(k + 2)ηkσ
2 −

K−1∑
k=0

EV (zag
k+1, z

∗). (C.15)
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Step 3: Proving zk stays within a neighbourhood of z∗. We introduce the following Lemma C.7, whose proof is in §E.3

Lemma C.7. Given the maximum epoch number K > 0 and stepsize sequence {ηk}k∈[K] satisfying

(a) k+2
ηk
− k+1

ηk−1
= 2√

c
LH for any k < K, we have for ∀k ∈ [K − 1]:

||zk − z∗||2 ≤ ||z0 − z∗||2 + η0
2

K−1∑
k=0

(k + 2)ηkσ
2.

(b) In addition if ηk ≤ k+2
D for ∀k ∈ [K − 1] where D will be specified in (c) and taking A(K) :=√

(K + 1)(K + 2)(2K + 3)/6, we have

||zk − z∗||2 ≤ ||z0 − z∗||2 + A(K)2σ2

D2
. (C.16)

(c) Taking D = σ
C

A(K)√
E||z0−z∗||2

for some absolute constant C > 0 , bound (C.16) reduces to

||zk − z∗||2 ≤
(
1 + C2

)
||z0 − z∗||2. (C.17)

Step 4: Combining everything together. Combining the choice of stepsize ηk in (a), (b) in Lemma C.7 and k+2
2ηk
≥

2L + 1√
c
LH(k + 2), and bound (C.15) with Eq. (C.17), by rearranging the terms again, we conclude that for ηk =
k+2

4L+D+4
√

2+
√
2LH(k+2)

,

(K + 1)2EV (zag
K , z∗) ≤

(
4L+ 2

√
2 +
√
2(K + 1)

(
1 + C2

)
LH

)
E||z0 − z∗||2

+

(
C +

1

C

)
σA(K)

√
E||z0 − z∗||2.

Dividing both sides by (K + 1)2 and noting that V (zag
K , z∗) ≥ µ

2E||z
ag
K − z∗||2, we have

E||zag
K − z∗||2 ≤

[
8L

µ(K + 1)2
+

7.4(1 + C2)LH

µ(K + 1)

]
E||z0 − z∗||2 +

2(C + 1
C )σ

µ
√
K + 1

√
E||z0 − z∗||2,

hence concluding the entire proof of Theorem 4.1.

□

D. Proof of Bilinear Game Cases
D.1. Proof of Theorem 3.6

Proof.[Proof of Theorem 3.6]

Step 1: Non-expansiveness of OGDA last-iterate. We start by the non-expansiveness Lemma, whose proof is in §E.8.

Lemma D.1 (Bounded Iterates). Following (3.11), at any iterate k < K, zk stays within the region defined by the
initialization z0:

||zk − z∗|| ≤ ||z0 − z∗||,

where we recall that z∗ = [x∗;y∗] denotes the unique solution of Problem (1.3) with∇f,∇g = 0 and I defined in (3.10).

By Lemma D.1, for any 0 ≤ k < K, we have

||zk − z∗|| ≤ ||z0 − z∗||.
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Step 2: Recalling that we take αk = 2
k+2 in (3.11b) of (3.11). Thus, we obtain the following

zag
k+1 =

k

k + 2
zag
k +

2

k + 2
zk+ 1

2
.

Subtracting both sides by z∗ and multiplying both sides by (k + 1)(k + 2), we have

(k + 1)(k + 2)
(
zag
k+1 − z∗) = k(k + 1)

(
zag
k − z∗)+ 2(k + 1)

(
zk+ 1

2
− z∗

)
.

Telescoping over k = 0, . . . ,K − 1 and we conclude that

K(K + 1)
(
zag
K − z∗) = 2

K−1∑
k=0

(k + 1)
(
zk+ 1

2
− z∗

)
. (D.1)

Moreover, according to the update rule (3.11c), we have that

KzK −
K−1∑
k=0

zk =

K−1∑
k=0

(k + 1)zk+1 − (k + 1)zk =

K−1∑
k=0

ηk(k + 1)H(zk+ 1
2
). (D.2)

Recalling that ηk = 1
2LH

, combining (D.2) with (D.1) and taking the squared norm on both sides, we conclude that

||K(K + 1)
(
zag
K − z∗) ||2 = ||2

K−1∑
k=0

(k + 1)
(
zk+ 1

2
− z∗

)
||2 ≤ 1

λmin(B⊤B)
||2

K−1∑
k=0

(k + 1)H(zk+ 1
2
)||2

=
16L2

H

λmin(B⊤B)
||KzK −

K−1∑
k=0

zk||2 =
16L2

H

λmin(B⊤B)
||

K−1∑
k=0

[(zK − z∗)− (zk − z∗)] ||2

≤ 16L2
H

λmin(B⊤B)
K ·

K−1∑
k=0

[
2||zK − z∗||2 + 2||zk − z∗||2

]
. (D.3)

Applying non-expansiveness in Lemma D.1 in (D.10), bringing LH =
√

λmax(B⊤B)and rearranging, we conclude that

||zag
K − z∗||2 ≤ 64λmax(B

⊤B)

λmin(B⊤B)(K + 1)2
||z0 − z∗||2.

Restarting every
⌈
8
√

eλmax(B⊤B)
λmin(B⊤B)

⌉
iterates for a total of log

(
||z0−z∗||

ϵ

)
times, we obtain the final sample complexity of

O

(√
λmax(B⊤B)

λmin(B⊤B)
log

(
1

ϵ

))

for the nonstochastic setting. □

D.2. Stochastic Bilinear Game Case

For the stochastic AG-OG with restarting for bilinear case, our iteration spells
zk+ 1

2
= zk − ηkH̃(zk− 1

2
; ζk− 1

2
), (D.4a)

zag
k+1 = (1− αk)z

ag
k + αkzk+ 1

2
, (D.4b)

zk+1 = zk − ηkH̃(zk+ 1
2
; ζk+ 1

2
). (D.4c)

We are able to derive the following theorem.
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Theorem D.2 (Convergence of stochastic AG-OG, bilinear case)). When specified to the stochastic bilinear game case,
setting the parameters as αk = 2

k+2 and ηk = 1
2LH

, the output of update rules (D.4) satisfies for any γ > 0,

E||zag
K − z∗||2 ≤ (1 + γ)

(
128L2

H

λmin(B⊤B)(K + 1)2
||z0 − z∗||2 + 48

λmin(B⊤B)(K + 1)
σ2
H

)
+

4(1 + 1
γ )σ

2
H

3λmin(B⊤B)K
.

Moreover, by operating scheduled restarting technique, it yields a complexity result of

O


√√√√ λmax (B⊤B)

λmin

(
BB⊤

) log


4

√
λmin

(
BB⊤

)
λmax (B⊤B)

σH

+
σ2
H

λmin

(
BB⊤

)
ε2


We begin by proving the following lemma, which is the stochastic version of Lemma D.1. It is worth noting that when setting
σH = 0 and β = 0 in Lemma D.3 below, it reduces to the non-expansiveness of deterministic iterates (3.11). Moreover,
Lemma D.3 holds for any monotonic H(·).
Lemma D.3 (Bounded Iterates (Stochastic)). Following (D.4), for any β > 0, taking ηk = 1

2LH

√
(1+β)

at any iterate

k < K, zk stays within the region defined by the initialization z0:

||zk − z∗||2 ≤ ||z0 − z∗||2 + η2k

(
2 +

1

β

)
Kσ2

H ,

where we recall that z∗ denotes the unique solution of Problem (1.2) with∇f,∇g = 0 and I defined in (3.10).

Proof.[Proof of Lemma D.3] The optimal condition of the problem yields H(z∗) = 0 for z∗ being the solution of the VI.
By the monotonicity of H(·), let z = zk+ 1

2
and z′ = ωz in (2.2), we have that〈

H(zk+ 1
2
)−H(ωz), zk+ 1

2
− ωz

〉
≥ 0, ∀ωz ∈ Z. (D.5)

Let φ1 = zk+ 1
2

, φ2 = zk+1, θ = zk, δ1 = ηkH̃(zk− 1
2
; ζk− 1

2
), δ2 = ηkH̃(zk+ 1

2
; ζk+ 1

2
) and z = ωz in Proposition C.3,

we have

ηk

〈
H̃(zk+ 1

2
; ζk+ 1

2
), zk+ 1

2
− ωz

〉
≤ η2k

2
||H̃(zk+ 1

2
; ζk+ 1

2
)− H̃(zk− 1

2
; ζk− 1

2
)||2 + 1

2

[
||zk − ωz||2 − ||zk+1 − ωz||2 − ||zk − zk+ 1

2
||2
]
. (D.6)

Recalling the results in Lemma C.5 that

E||H̃(zk+ 1
2
; ζk+ 1

2
)− H̃(zk− 1

2
; ζk− 1

2
)||2 ≤ (1 + β)L2

HE||zk+ 1
2
− zk− 1

2
||2 +

(
2 +

1

β

)
σ2
H .

Taking expectation over (D.6), combining it with (D.5) and letting ωz = z∗, we obtain

0 = ηkE
〈
H(z∗), zk+ 1

2
− z∗

〉
≤ η2k(1 + β)L2

H

2
E||zk+ 1

2
− zk− 1

2
||2 + 1

2
E
[
||zk − z∗||2 − ||zk+1 − z∗||2 − ||zk − zk+ 1

2
||2
]
+

η2k

(
2 + 1

β

)
2

σ2
H .

(D.7)

Next, we move on to estimate ||zk+ 1
2
− zk− 1

2
||2. As we know that via Young’s and Cauchy-Schwarz’s inequalities and the

update rules (3.11a) and (3.11c), for all k ≥ 1

||zk+ 1
2
− zk− 1

2
||2 ≤ 2||zk+ 1

2
− zk||2 + 2||zk − zk− 1

2
||2

≤ 2||zk+ 1
2
− zk||2 + 2η2k−1L

2
H ||zk− 1

2
− zk− 3

2
||2.
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Multiplying both sides by 2 and moving one term to the right hand gives for all k ≥ 1

||zk+ 1
2
− zk− 1

2
||2 ≤ 4||zk+ 1

2
− zk||2 + 4η2k−1L

2
H ||zk− 1

2
− zk− 3

2
||2 − ||zk+ 1

2
− zk− 1

2
||2.

Bringing this into (E.12) and noting that ηk−1 ≤ 1
2LH

as well as ηk ≤ 1
2LH

, we have

0 ≤ η2k(1 + β)L2
H

2
E||zk+ 1

2
− zk− 1

2
||2 + 1

2
E
[
||zk − z∗||2 − ||zk+1 − z∗||2 − ||zk − zk+ 1

2
||2
]
+

η2k

(
2 + 1

β

)
2

σ2
H

≤ 1

2
E
[
||zk − z∗||2 − ||zk+1 − z∗||2

]
+

η2k(1 + β)L2
H

2
E
[
||zk− 1

2
− zk− 3

2
||2 − ||zk+ 1

2
− zk− 1

2
||2
]

−
(
1

2
− 2η2k(1 + β)L2

H

)
E||zk − zk+ 1

2
||2 +

η2k

(
2 + 1

β

)
2

σ2
H .

Taking ηk satisfying ηk ≤ 1

LH

√
4(1+β)

and by rearraing the above inequality, we have

0 ≤ 1

2
E
[
||zk − z∗||2 − ||zk+1 − z∗||2

]
+

1

8
E
[
||zk− 1

2
− zk− 3

2
||2 − ||zk+ 1

2
− zk− 1

2
||2
]

−
(
1

2
− 1

2

)
E||zk − zk+ 1

2
||2 +

η2k

(
2 + 1

β

)
2

σ2
H

≤ 1

2
E
[
||zk − z∗||2 + 1

4
||zk− 1

2
− zk− 3

2
||2 − ||zk+1 − z∗||2 − 1

4
||zk+ 1

2
− zk− 1

2
||2
]
+

η2k

(
2 + 1

β

)
2

σ2
H .

Rearranging the above inequality and we conclude that

E
[
||zk+1 − z∗||2 + 1

4
||zk+ 1

2
− zk− 1

2
||2
]
≤ E

[
||zk − z∗||2 + 1

4
||zk− 1

2
− zk− 3

2
||2
]
+ η2k

(
2 +

1

β

)
σ2
H .

Telescoping over k = 0, 1, . . . ,K − 1 and noting that z− 1
2
= z− 3

2
= z0 and ηk is taken as a constant for the bilinear case,

we have

||zK − z∗||2 ≤ ||zK − z∗||2 + 1

4
||zK− 1

2
− zK− 3

2
||2 ≤ ||z0 − z∗||2 + η2k

(
2 +

1

β

)
Kσ2

H ,

which concludes our proof of Lemma D.3. □

Recalling that we take αk = 2
k+2 in (D.4b) of (D.4). Thus, we obtain the following

zag
k+1 =

k

k + 2
zag
k +

2

k + 2
zk+ 1

2
.

Subtracting both sides by z∗ and multiplying both sides by (k + 1)(k + 2), we have

(k + 1)(k + 2)
(
zag
k+1 − z∗) = k(k + 1)

(
zag
k − z∗)+ 2(k + 1)

(
zk+ 1

2
− z∗

)
.

Telescoping over k = 0, . . . ,K − 1 and we conclude that

K(K + 1)
(
zag
K − z∗) = 2

K−1∑
k=0

(k + 1)
(
zk+ 1

2
− z∗

)
. (D.8)

Moreover, according to the update rule (D.4c), we have that

KzK −
K−1∑
k=0

zk =

K−1∑
k=0

(k + 1)zk+1 − (k + 1)zk =

K−1∑
k=0

ηk(k + 1)H̃(zk+ 1
2
, ζk+ 1

2
)

=

K−1∑
k=0

ηk(k + 1)
[
H(zk+ 1

2
) + ∆

k+ 1
2

h

]
. (D.9)
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Recalling that ηk = 1

LH

√
4(1+β)

, combining (D.9) with (D.8) and taking the squared norm on both sides, we conclude that

||K(K + 1)
(
zag
K − z∗) ||2

= ||2
K−1∑
k=0

(k + 1)
(
zk+ 1

2
− z∗

)
||2 ≤ 1

λmin(B⊤B)
||2

K−1∑
k=0

(k + 1)H(zk+ 1
2
)||2

=
16(1 + β)(1 + γ)L2

H

λmin(B⊤B)
||KzK −

K−1∑
k=0

zk||2 +
4(1 + 1

γ )

λmin(B⊤B)
||

K−1∑
k=0

(k + 1)∆
k+ 1

2

h ||2

≤ 16(1 + β)(1 + γ)L2
H

λmin(B⊤B)
K ·

K−1∑
k=0

[
2||zK − z∗||2 + 2||zk − z∗||2

]
+

4(1 + 1
γ )

λmin(B⊤B)
||

K−1∑
k=0

(k + 1)∆
k+ 1

2

h ||2. (D.10)

Dividing both sides of (D.10) by K2(K + 1)2 and taking expectation, we have

E||zag
K − z∗||2 ≤ 16(1 + β)(1 + γ)L2

H

λmin(B⊤B)K(K + 1)2

K−1∑
k=0

E
[
2||zK − z∗||2 + 2||zk − z∗||2

]
+

4(1 + 1
γ )

λmin(B⊤B)K2(K + 1)2

K−1∑
k=0

(k + 1)2E||∆k+ 1
2

h ||2

≤ 64(1 + β)(1 + γ)L2
H

λmin(B⊤B)(K + 1)2

[
||z0 − z∗||2 + η2k(2 +

1

β
)Kσ2

H

]
+

4(1 + 1
γ )σ

2
H

3λmin(B⊤B)K

=
64(1 + β)(1 + γ)L2

H

λmin(B⊤B)(K + 1)2
||z0 − z∗||2 +

16(1 + γ)(2 + 1
β )

λmin(B⊤B)(K + 1)
σ2
H +

4(1 + 1
γ )σ

2
H

3λmin(B⊤B)K
,

Minimize over β, we have β = σH

√
K+1

2LH ||z0−z∗|| and the first two terms become

64(1 + γ)L2
H

λmin(B⊤B)(K + 1)2
||z0 − z∗||2 + 32(1 + γ)

λmin(B⊤B)(K + 1)
σ2
H +

32(1 + γ)LHσH

λmin(B⊤B)(K + 1)3/2
||z0 − z∗||

If we take β = 1, the above reduces to

E||zag
K − z∗||2 ≤ 128(1 + γ)L2

H

λmin(B⊤B)(K + 1)2
||z0 − z∗||2 + 48(1 + γ)

λmin(B⊤B)(K + 1)
σ2
H +

4(1 + 1
γ )σ

2
H

3λmin(B⊤B)K

= (1 + γ)

(
128L2

H

λmin(B⊤B)(K + 1)2
||z0 − z∗||2 + 48

λmin(B⊤B)(K + 1)
σ2
H

)
+

4(1 + 1
γ )σ

2
H

3λmin(B⊤B)K

Further minimizing over γ, we conclude that so

√
E||zag

K − z∗||2 ≤

√
128L2

H

λmin(B⊤B)(K + 1)2
||z0 − z∗||2 + 48

λmin(B⊤B)(K + 1)
σ2
H +

√
4σ2

H

3λmin(B⊤B)K

≤

√
128L2

H

λmin(B⊤B)(K + 1)2
||z0 − z∗||2 +

√
48σ2

H

λmin(B⊤B)(K + 1)
+

√
4σ2

H

3λmin(B⊤B)K

≤ 1√
λmin(B⊤B)

(
8
√
2LH ||z0 − z∗||

K + 1
+

8.083σH√
K

)

By operating restarting techniques the same way as in the explanation of Corollary 3.2 in Du et al. (2022), we conclude
Theorem D.2.
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E. Proof of Auxiliary Lemmas
E.1. Proof of Lemma C.1

Proof.[Proof of Lemma C.1]

Since F (z) is L-smooth and µ-strongly convex. For the rest of this proof, we observe that the saddle definition of z∗

satisfies the first-order stationary condition:

∇F (z∗) +H(z∗) = 0. (E.1)

Furthermore, we have
F (z)− F (z∗) + ⟨H(z∗), z − z∗⟩

≥ ⟨∇F (z∗), z − z∗⟩+ µ

2
∥z − z∗∥2 + ⟨H(z∗), z − z∗⟩

= ⟨∇F (z∗) +H(z∗), z − z∗⟩+ µ

2
∥z − z∗∥2 =

µ

2
∥z − z∗∥2 ,

where in both of the two displays, the inequality holds due to the µ-strong convexity of F , and the equality holds due to the
first-order stationary condition (E.1). This completes the proof. □

E.2. Proof of Lemma 3.1

Proof.[Proof of Lemma 3.1] Following (C.9), we let ωz = z∗. Due to the non-negativity of V (·, z∗), we can eliminate the
V terms and have:(

2L+

√
2

c
LH(K + 1)

)
∥zK − z∗∥2 ≤

(
2L+

√
2

c
LH

)
||z0 − z∗||2 +

√
2

c
LH

K−1∑
k=0

∥zk − z∗∥2 .

We adopt a ”bootstrapping” argument.We define MK = max0≤k≤K−1 ||zk − z∗||2 and taking a maximum on each term on
the right hand side of the above inequality, we conclude that(

2L+

√
2

c
LH(K + 1)

)
∥zK − z∗∥2 ≤

(
2L+

√
2

c
LH

)
MK−1 +

√
2

c
LH

K−1∑
k=0

MK−1

=

(
2L+

√
2

c
LH(K + 1)

)
MK−1.

Thus, we know that ||zK − z∗||2 ≤ MK−1 and hence MK = MK−1 always holds. That yields MK = M0, and we
conclude the proof of Lemma 3.1. □

E.3. Proof of Lemma C.7

Proof.[Proof of Lemma C.7] Starting from (C.15) that

[
(K + 1)2 − 1

]
EV (zag

K , z∗) +
K + 1

ηK−1
E||zK − z∗||2

≤ 2

η0
E||z0 − z∗||2 + 2√

c
LH

K−1∑
k=1

E ∥zk − z∗∥2 +
K−1∑
k=0

(k + 2)ηkσ
2 −

K−1∑
k=0

EV (zag
k+1, z

∗).

We first omit the V (·, ·) terms and have

K + 1

ηK−1
E||zK − z∗||2 ≤ 2

η0
E||z0 − z∗||2 + 2√

c
LH

K−1∑
k=1

||zk − z∗||2 +
K−1∑
k=0

(k + 2)ηkσ
2. (E.2)
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Rewrite ||zK − z∗||2 as the difference between two summations, we obtain:

K + 1

ηK−1

(
K∑

k=1

−
K−1∑
k=1

)
E||zk − ωz||2 ≤

2

η0
E||z0 − z∗||2 + 2√

c
LH

K−1∑
k=1

E||zk − z∗||2 +
K−1∑
k=0

(k + 2)ηkσ
2.

Rearranging the terms and by the first condition (a) that k+2
ηk
− k+1

ηk−1
= 2√

c
LH , we have:

K + 1

ηK−1

K∑
k=1

E||zk − z∗||2 ≤ 2

η0
E||z0 − z∗||2 + K + 2

ηK

K−1∑
k=1

E||zk − ωz||2 +
K−1∑
k=0

(k + 2)ηkσ
2.

To construct a valid iterative rule, we divide both sides of the above inequality with (K+1)(K+2)
ηK−1ηK

and obtain the following:

ηK
K + 2

K∑
k=1

E||zk − z∗||2 ≤ ηK−1

K + 1

K−1∑
k=1

E||zk − ωz||2 +
ηK−1ηK

(K + 1)(K + 2)

[
2

η0
E||z0 − z∗||2 +

K−1∑
k=0

(k + 2)ηkσ
2

]
.

Here we slightly abuse the notations and use K to denote an arbitrary iteration during the process of the algorithm and use
K to denote the fixed total number of iterates. Thus,

∑K−1
k=0 (k + 2)ηkσ

2 ≤
∑K−1

k=0 (k + 2)ηkσ
2 is an upper bound that does

not change with the choice of K. It follows that:

ηK
K + 2

K∑
k=1

E||zk − z∗||2 ≤ ηK−1

K + 1

K−1∑
k=1

E||zk − ωz||2 +
√
c

2LH

[
ηK−1

K + 1
− ηK

K + 2

][
2

η0
E||z0 − z∗||2 +

K−1∑
k=0

(k + 2)ηkσ
2

]

≤
√
c

2LH

[
η0
2
− ηK

K + 2

] [
2

η0
E||z0 − z∗||2 +

K−1∑
k=0

(k + 2)ηkσ
2

]
.

Dividing both sides by ηK

K+2 , the result follows:

K∑
k=1

E||zk − z∗||2 ≤
√
c

2LH

[
η0(K + 2)

2ηK
− 1

] [
2

η0
E||z0 − z∗||2 +

K−1∑
k=0

(k + 2)ηkσ
2

]
.

Bringing this into Eq. (E.2), we conclude that

K + 1

ηK−1
E||zK − z∗||2 ≤ η0(K + 1)

2ηK−1

[
2

η0
E||z0 − z∗||2 +

K−1∑
k=0

(k + 2)ηkσ
2

]
.

Dividing both sides by K+1
ηK−1

and we have:

E||zK − z∗||2 ≤ η0
2

[
2

η0
E||z0 − z∗||2 +

K−1∑
k=0

(k + 2)ηkσ
2

]
.

Now we change back using the notation K to denote the total iterates and k is the iterates indexes, we have

E||zk − z∗||2 ≤ E||z0 − z∗||2 + η0
2

K−1∑
k=0

(k + 2)ηkσ
2,

which concludes the proof of (a) of Lemma C.7. Additionally, if ηk ≤ k+2
D for some quantity D, we have

K−1∑
k=0

(k + 2)ηk ≤
K−1∑
k=0

(k + 2)2

D
≤ (K + 1)(K + 2)(2K + 3)

6D
.

We use A(K) =
√
(K + 1)(K + 2)(2K + 3)/6 and noting that η0 ≤ 2

D , we have

E||zk − z∗||2 ≤ E||z0 − z∗||2 + A(K)2σ2

D2
,

which concludes our proof of (b). And (c) follows by straightforward calculations. □

28



Rate-Optimal Separable Minimax Optimization

E.4. Proof of Lemma C.2

Proof.[Proof of Lemma C.2] Recalling that F is L-smooth. To upper-bound the difference in pointwise primal-dual gap
between iterates, we first estimate the difference in function values of f via gradients at the extrapolation point zmd

k . For any
given u ∈ Z , the convexity and L-smoothness of F (·) implies that

F (zag
k+1)− F (u) = F (zag

k+1)− F (zmd
k )−

(
F (u)− F (zmd

k )
)

≤
〈
∇F (zmd

k ), zag
k+1 − zmd

k

〉
+

L

2

∥∥zag
k+1 − zmd

k

∥∥2 − 〈∇F (zmd
k ),u− zmd

k

〉
.

Taking u = ωz and u = zag
k respectively, we conclude that

F (zag
k+1)− F (ωz) ≤

〈
∇F (zmd

k ), zag
k+1 − zmd

k

〉
+

L

2

∥∥zag
k+1 − zmd

k

∥∥2 − 〈∇F (zmd
k ), ωz − zmd

k

〉
, (E.3)

F (zag
k+1)− F (zag

k ) ≤
〈
∇F (zmd

k ), zag
k+1 − zmd

k

〉
+

L

2

∥∥zag
k+1 − zmd

k

∥∥2 − 〈∇F (zmd
k ), zag

k − zmd
k

〉
. (E.4)

Multiplying (E.3) by αk and (E.4) by (1− αk) and adding them up, we have

F (zag
k+1)− αkF (ωz)− (1− αk)F (zag

k ) ≤
〈
∇F (zmd

k ), zag
k+1 − (1− αk)z

ag
k − αkωz

〉
+

L

2
||zag

k+1 − zmd
k ||2

= αk

〈
∇F (zmd

k ), zk+ 1
2
− ωz

〉
︸ ︷︷ ︸

I(a)

+
Lα2

k

2

∥∥∥zk+ 1
2
− zk

∥∥∥2︸ ︷︷ ︸
II

, (E.5)

where by substracting Line 2 from Line 4 of Algorithm 1 and by Line 4 itself, the last equality of (E.5) follows.

Recalling that zag
k corresponds to regular iterates and zmd

k corresponds to the extrapolated iterates of Nesterov’s acceleration
scheme. The squared error term II in (E.5) is brought by gradient evaluated at the extrapolated point instead of the regular
point. Note that if we do an implicit version of Nesterov such that zmd

k−1 = zag
k , this squared term goes to zero, and the

convergence analysis would be the same as in OGDA. This could potentially result in a new implicit algorithm with better
convergence guarantee.

On the other hand, for the coupling term of the updates, we have

〈
H(ωz), z

ag
k+1 − ωz

〉
− (1− αk)

〈
H(ωz), z

ag
k − ωz

〉
= αk

〈
H(ωz), zk+ 1

2
− ωz

〉
≤ αk

〈
H(zk+ 1

2
), zk+ 1

2
− ωz

〉
︸ ︷︷ ︸

I(b)

,

(E.6)

where the last equality comes from the monotonicity property of H(·) that〈
H(zk+ 1

2
)−H(ωz), zk+ 1

2
− ωz

〉
≥ 0.

Summing both sides of Eq. (E.5) and Eq. (E.6) we obtain the following:

F (zag
k+1)− αkF (ωz)− (1− αk)F (zag

k ) +
〈
H(ωz), z

ag
k+1 − ωz

〉
− (1− αk)

〈
H(ωz), z

ag
k − wz

〉
≤ αk

〈
∇F (zmd

k ) +H(zk+ 1
2
), zk+ 1

2
− ωz

〉
︸ ︷︷ ︸

I

+
Lα2

k

2

∥∥∥zk+ 1
2
− zk

∥∥∥2︸ ︷︷ ︸
II

,

where I is the summation of I(a) and I(b). This concludes our proof of Lemma C.2 by bringing in the definitions of
V (zag

k+1, z
∗) and V (zag

k , z∗). □
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E.5. Proof of Lemma C.4

Proof.[Proof of Lemma C.4] We focus on k = 1, . . . ,K−1 since the k = 0 case holds automatically. By Young’s inequality
and Cauchy-Schwarz inequality, we have that∥∥∥zk+ 1

2
− zk− 1

2

∥∥∥2 ≤ 2
∥∥∥zk+ 1

2
− zk

∥∥∥2 + 2
∥∥∥zk − zk− 1

2

∥∥∥2
(a)

≤ 2
∥∥∥zk+ 1

2
− zk

∥∥∥2 + 2η2k−1L
2
H

∥∥∥zk− 1
2
− zk− 3

2

∥∥∥2 (b)

≤ 2
∥∥∥zk+ 1

2
− zk

∥∥∥2 + c
∥∥∥zk− 1

2
− zk− 3

2

∥∥∥2 , (E.7)

where (a) is due to Lines 3 and 5 of Algorithm 1 and the definition of LH , and (b) is due to the condition in Lemma C.4 that
ηkLH ≤

√
c
2 . Recursively applying the above gives (C.8) which is repeated as:

∥∥∥zk+ 1
2
− zk− 1

2

∥∥∥2 ≤ 2ck
k∑

ℓ=0

c−ℓ
∥∥∥zℓ+ 1

2
− zℓ

∥∥∥2 . (C.8)

Indeed, from (E.7)

c−k
∥∥∥zk+ 1

2
− zk− 1

2

∥∥∥2 − c−(k−1)
∥∥∥zk− 1

2
− zk− 3

2

∥∥∥2 ≤ 2c−k
∥∥∥zk+ 1

2
− zk

∥∥∥2 ,
so telescoping over k = 1, . . . ,K gives

c−K
∥∥∥zK+ 1

2
− zK− 1

2

∥∥∥2 − ∥∥∥z 1
2
− z− 1

2

∥∥∥2 ≤ 2

K∑
k=1

c−k
∥∥∥zk+ 1

2
− zk

∥∥∥2 ,
which simply reduces to (due to z0 = z− 1

2
)

c−K
∥∥∥zK+ 1

2
− zK− 1

2

∥∥∥2 ≤ 2

K∑
k=1

c−k
∥∥∥zk+ 1

2
− zk

∥∥∥2 + ∥∥∥z 1
2
− z0

∥∥∥2 ≤ 2

K∑
k=0

c−k
∥∥∥zk+ 1

2
− zk

∥∥∥2 .
This gives (C.8) and the entire Lemma C.4. □

E.6. Proof of Lemma C.5

Proof.[Proof of Lemma C.5] We recall that we denote

∆
k+ 1

2

h = H̃(zk+ 1
2
; ζk+ 1

2
)−H(zk+ 1

2
), ∆k

f = ∇F̃ (zmd
k ; ξk)−∇F (zmd

k ).

Then, we have

E||H̃(zk+ 1
2
; ζk+ 1

2
)− H̃(zk− 1

2
; ζk− 1

2
)||2 = E||H(zk+ 1

2
)−H(zk− 1

2
) + ∆

k+ 1
2

h −∆
k− 1

2

h ||2.

By first taking expectation over ζk+ 1
2

condition on zk+ 1
2

given, we have

LHS ≤ E||H(zk+ 1
2
)−H(zk− 1

2
)−∆

k− 1
2

h ||2 + E||∆k+ 1
2

h ||2

≤ (1 + β)E||H(zk+ 1
2
)−H(zk− 1

2
)||2 + (1 +

1

β
)E||∆k− 1

2

h ||2 + E||∆k+ 1
2

h ||2

≤ (1 + β)L2
HE||zk+ 1

2
− zk− 1

2
||2 + (1 +

1

β
)E||∆k− 1

2

h ||2 + E||∆k+ 1
2

h ||2.

Recalling that by Assumption 2.2, E||∆k+ 1
2

h ||2 ≤ σ2
H and E||∆k− 1

2

h ||2 ≤ σ2
H , we conclude our proof of Lemma C.5. □
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E.7. Proof of Lemma C.6

Proof.[Proof of Lemma C.6] By inequality (C.14), we have

EV (zag
k+1, ωz)− (1− αk)EV (zag

k , ωz)

≤ αkηk
2

[
2L2

HE||zk+ 1
2
− zk− 1

2
||2 + 3σ2

H

]
+ αkE

〈
∆k

f +∆
k+ 1

2

h , zk+ 1
2
− ωz

〉
+

Lα2
k

2
E||zk+ 1

2
− zk||2 +

αk

2ηk
E
[
||zk − ωz||2 − ||zk+1 − ωz||2 − ||zk+ 1

2
− zk||2

]
The inner product term can be decomposed into

E
〈
∆k

f +∆
k+ 1

2

h , zk+ 1
2
− ωz

〉
= E

〈
∆

k+ 1
2

h , zk+ 1
2
− ωz

〉
+ E

〈
∆k

f , zk − ωz

〉
+ E

〈
∆k

f , zk+ 1
2
− zk

〉
= E

〈
∆k

f , zk+ 1
2
− zk

〉
,

Where the expectation of the first two terms all equals 0. Thus, we obtain

EV (zag
k+1, ωz)− (1− αk)EV (zag

k , ωz)

≤ αkηk
2

[
2L2

HE||zk+ 1
2
− zk− 1

2
||2 + 3σ2

H

]
+ αkE

〈
∆k

f , zk+ 1
2
− zk

〉
+

αk

2ηk
E
[
||zk − ωz||2 − ||zk+1 − ωz||2

]
−
(

αk

2ηk
− Lα2

k

2

)
E||zk+ 1

2
− zk||2.

For any r > 0, we pair up

− (1− r)αk

2ηk
E||zk+ 1

2
− zk||2 + αkE

〈
∆k

f , zk+ 1
2
− zk

〉
≤ αkηk

2(1− r)
E||∆k

f ||2,

and thus

EV (zag
k+1, ωz)− (1− αk)EV (zag

k , ωz)

≤ αkηk
2

[
2L2

HE||zk+ 1
2
− zk− 1

2
||2 + 3σ2

H

]
+

αkηk
2(1− r)

E||∆k
f ||2

+
αk

2ηk
E
[
||zk − ωz||2 − ||zk+1 − ωz||2

]
−
(
rαk

2ηk
− Lα2

k

2

)
E||zk+ 1

2
− zk||2. (E.8)

Next, we connect ||zk+ 1
2
− zk− 1

2
||2 with the squared norms ||zℓ+ 1

2
− zℓ||2. For ηk satisfying ηkLH ≤

√
c
2 , we have

E
∥∥∥zk+ 1

2
− zk− 1

2

∥∥∥2 ≤ 2E||zk+ 1
2
− zk||2 + 2E||zk − zk− 1

2
||2

= 2E||zk+ 1
2
− zk||2 + 2η2k−1E||H̃(zk− 1

2
)− H̃(zk− 3

2
)||2

= 2E||zk+ 1
2
− zk||2 + 2η2k−1E||H(zk− 1

2
)−H(zk− 3

2
) + ∆

k− 3
2

h ||2 + 2η2k−1E||∆
k− 1

2

h ||2

≤ 2E||zk+ 1
2
− zk||2 + 4η2k−1L

2
HE||zk− 1

2
− zk− 3

2
||2 + 6η2k−1σ

2
H

= 2

k∑
ℓ=0

ck−ℓE||zℓ+ 1
2
− zℓ||2 + 6

k∑
ℓ=0

ck−ℓη2ℓ−1σ
2
H .

(E.9)
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Bringing Eq. (E.9) into (E.8), we have

EV (zag
k+1, ωz)− (1− αk)EV (zag

k , ωz)

≤ αkηk
2

[
4L2

H

k∑
ℓ=0

ck−ℓE||zℓ+ 1
2
− zℓ||2 + 12L2

H

k∑
ℓ=0

ck−ℓη2ℓ−1σ
2
H + 3σ2

H

]
+

αkηk
2(1− r)

σ2
F

+
αk

2ηk
E
[
||zk − ωz||2 − ||zk+1 − ωz||2

]
−
(
rαk

2ηk
− Lα2

k

2

)
E||zk+ 1

2
− zk||2

≤ αkηk
2

[
4L2

H

k∑
ℓ=0

ck−ℓE||zℓ+ 1
2
− zℓ||2 + 3

c

1− c
σ2
H + 3σ2

H

]
+

αkηk
2(1− r)

σ2
F

+
αk

2ηk
E
[
||zk − ωz||2 − ||zk+1 − ωz||2

]
−
(
rαk

2ηk
− Lα2

k

2

)
E||zk+ 1

2
− zk||2

≤ 2αkηkL
2
H

k∑
ℓ=0

ck−ℓE||zℓ+ 1
2
− zℓ||2 +

3αkηk
2(1− c)

σ2
H +

αkηk
2(1− r)

σ2
F

+
αk

2ηk
E
[
||zk − ωz||2 − ||zk+1 − ωz||2

]
−
(
rαk

2ηk
− Lα2

k

2

)
E||zk+ 1

2
− zk||2,

which concludes our proof of Lemma C.6. □

E.8. Proof of Lemma D.1

Proof.[Proof of Lemma D.1] The optimal condition of the problem yields H(z∗) = 0 for z∗ being the solution of the VI.
By the monotonicity of H(·), let z = zk+ 1

2
and z′ = ωz in (2.2), we have that

〈
H(zk+ 1

2
)−H(ωz), zk+ 1

2
− ωz

〉
≥ 0, ∀ωz ∈ Z. (E.10)

Let φ1 = zk+ 1
2

, φ2 = zk+1, θ = zk, δ1 = ηkH(zk− 1
2
), δ2 = ηkH(zk+ 1

2
) and z = ωz in Proposition C.3, we have

ηk

〈
H(zk+ 1

2
), zk+ 1

2
− ωz

〉
≤ η2k

2
||H(zk+ 1

2
)−H(zk− 1

2
)||2 + 1

2

[
||zk − ωz||2 − ||zk+1 − ωz||2 − ||zk − zk+ 1

2
||2
]

≤ η2kL
2
H

2
||zk+ 1

2
− zk− 1

2
||2 + 1

2

[
||zk − ωz||2 − ||zk+1 − ωz||2 − ||zk − zk+ 1

2
||2
]
,

(E.11)

where the last inequality follows by the LH -Lipschitzness of the H operator. Combining (E.11) with (E.10), we obtain

0 = ηk

〈
H(ωz), zk+ 1

2
− ωz

〉
≤ η2kL

2
H

2
||zk+ 1

2
− zk− 1

2
||2 + 1

2

[
||zk − ωz||2 − ||zk+1 − ωz||2 − ||zk − zk+ 1

2
||2
]
.

(E.12)

Next, we move on to estimate ||zk+ 1
2
− zk− 1

2
||2. As we know that via Young’s and Cauchy-Schwarz’s inequalities and the

update rules (3.11a) and (3.11c), for all k ≥ 1

||zk+ 1
2
− zk− 1

2
||2 ≤ 2||zk+ 1

2
− zk||2 + 2||zk − zk− 1

2
||2

≤ 2||zk+ 1
2
− zk||2 + 2η2k−1L

2
H ||zk− 1

2
− zk− 3

2
||2.

Multiplying both sides by 2 and moving one term to the right hand gives for all k ≥ 1

||zk+ 1
2
− zk− 1

2
||2 ≤ 4||zk+ 1

2
− zk||2 + 4η2k−1L

2
H ||zk− 1

2
− zk− 3

2
||2 − ||zk+ 1

2
− zk− 1

2
||2.
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Bringing this into (E.12) and noting that ηk−1 ≤ 1
2LH

as well as ηk ≤ 1
2LH

, we have

0 ≤ η2kL
2
H

2
||zk+ 1

2
− zk− 1

2
||2 + 1

2

[
||zk − ωz||2 − ||zk+1 − ωz||2 − ||zk − zk+ 1

2
||2
]

≤ 1

2

[
||zk − ωz||2 − ||zk+1 − ωz||2

]
+

η2kL
2
H

2

[
||zk− 1

2
− zk− 3

2
||2 − ||zk+ 1

2
− zk− 1

2
||2
]
−
(
1

2
− 2η2kL

2
H

)
||zk − zk+ 1

2
||2

≤ 1

2

[
||zk − ωz||2 +

1

4
||zk− 1

2
− zk− 3

2
||2 − ||zk+1 − ωz||2 −

1

4
||zk+ 1

2
− zk− 1

2
||2
]
.

Rearranging the above inequality and take ωz = z∗ and we conclude that

||zk+1 − z∗||2 + 1

4
||zk+ 1

2
− zk− 1

2
||2 ≤ ||zk − z∗||2 + 1

4
||zk− 1

2
− zk− 3

2
||2.

Telescoping over k = 0, 1, . . . ,K − 1 and noting that z− 1
2
= z− 3

2
= z0, we have

||zK − z∗||2 ≤ ||zK − z∗||2 + 1

4
||zK− 1

2
− zK− 3

2
||2 ≤ ||z0 − z∗||,

which concludes our proof of Lemma D.1. □
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