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Abstract

Multimodal large language models (MLLMs)
have made impressive progress in many ap-
plications in recent years. However, chemi-
cal MLLMs that can handle cross-modal un-
derstanding and generation remain underex-
plored. To fill this gap, in this paper, we pro-
pose ChemMLLM, a unified chemical multi-
modal large language model for molecule un-
derstanding and generation. Also, we design
five multimodal tasks across text, molecular
SMILES strings, and image, and curate the
datasets. We benchmark ChemMLLM against
arange of general leading MLLMs and Chem-
ical LLMs on these tasks. Experimental re-
sults show that ChemMLLM achieves supe-
rior performance across all evaluated tasks.
For example, in molecule image optimiza-
tion task, ChemMLLM outperforms the best
baseline (GPT-40) by 118.9% (4.27 vs 1.95
property improvement). The code is pub-
licly available at https://anonymous.4open.
science/r/ChemMLLM-0D98/.

1 Introduction

Multimodal large language models (MLLMs) have
shown strong abilities in understanding and gener-
ating content across text, images, and audio (Ope-
nAl, 2024; Sun et al., 2024; Team, 2024; Liu et al.,
2024; Zhou et al., 2024; Xie et al., 2024; Wang
et al., 2024), enabling more natural human—Al
interaction. Chemistry is inherently multimodal,
involving textual descriptions, structured formats
like SMILES (Weininger, 1988)!, and molecular
images. Recent works have demonstrated initial
success in adapting MLLMs for chemical appli-
cations such as property prediction and reaction
analysis (Cao et al., 2023; Zhang et al., 2024b; Luo

'A SMILES (Simplified Molecular Input Line Entry Sys-
tem) string is a compact, text-based representation of a
molecule’s structure that encodes its atomic composition and
connectivity in a linear format.

et al., 2024; Li et al., 2025). However, these mod-
els largely focus on understanding tasks and treat
images only as input. In contrast, molecular visu-
als are central to how chemists communicate and
reason. Enabling image generation from chemical
language or structure would greatly expand the ex-
pressiveness of MLLMs in chemistry (Kosenkov
and Kosenkov, 2021). Yet, an integrated Chemical
MLLM that supports both multimodal understand-
ing and generation for chemistry remains lacking.

The challenges to build such a model are as fol-
lows: (1) Vision-based chemistry tasks and datasets
remain underexplored. (2) Specificity of molecule
image. Unlike natural images, molecule images
are sparse, containing large areas of empty space,
and are composed strictly of straight lines. General
MLLMs result in unclear and distorted molecules
(Figure 15). (3) Challenge for selecting an effec-
tive framework for chemical MLLM to seamlessly
fuse diverse modalities, including discrete SMILES
string/text, and continuous molecule images.

To address these issues, we propose ChemM-
LLM, a chemical multimodal large language model
that understands and generates molecules in a uni-
fied framework. Specifically, to handle three chal-
lenges above, (1) we identify five multimodal chem-
istry tasks with three modalities (text, SMILES,
image), which contain both generation and compre-
hension tasks; (2) we finetune molecule image-
level Vector Quantized Generative Adversarial
Network (VQGAN) to bridge the gap between
molecule images and natural images; (3) we in-
troduce the “Image Tokenizer-LLM-Image De-
tokenizer” architecture into multimodal chemical
tasks to fuse different modalities in early stages and
enable models to generate images directly. Also,
we design a two-stage training strategy and prove
its effectiveness empirically.

Contribution. For ease of exposition, we summa-
rize our main contribution as:
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Figure 1: Overall architecture of ChemMLLM. (a) Image tokenizer and de-tokenizer. The image tokenizer employs
CNN to extract spatial feature maps, where each n.-dimensional spatial code is quantized into a discrete latent code
via vector quantization (VQ). The resulting codebook indices serve as the final image tokens. Image de-tokenizer
uses CNN to reconstruct image from discrete feature map. Then, a patch-based discriminator predicts whether the
patch is fake (f) or real (r) (Section 3.1); (b) SMILES tokenizer and de-tokenizer. SMILES tokenization is consistent
with text, and is mapped into a token sequence via text tokenizer; (¢c) ChemMLLM Training; (d) ChemMLLM
Inference; (e) two-stage training paradigm for ChemMLLM (Section 3.3).

* A chemical multimodal LLM understanding
and generating molecule in a unified frame-
work. We propose and implement ChemMLLM,
the first unified model to understand and generate
molecules in text, SMILES, and image modality
to the best of our knowledge (Section 3).

* A multimodal chemical dataset suite. We de-
velop five new datasets to train and evaluate
the chemical multimodal capability of MLLMs,
which encompass a diverse spectrum of multi-
modal processing (Section 4).

* A variety of reliable evaluation. We bench-
mark the performance of different models on our
proposed five tasks and ChemMLLM achieves
dominating performance. For example, in
molecule image optimization (image-to-image)

tasks, ChemMLLM outperforms the best base-
line (GPT-40) by 118.9%, achieving a logP (op-
timizing property) increase of 4.27 compared to
1.95 (best baseline, GPT-40) (Section 5).

2 Related Work

Multimodal LLM (MLLM) With the advance-
ment of large language models and multimodal
learning, numerous high-performing multimodal
large language models (MLLMs) have recently
emerged. Notable MLLMs include GPT-40 (Ope-
nAl, 2024), which extends GPT-4V (OpenAl,
2023) to understand and generate across differ-
ent modalities, including text, image, and audio.
Emu-3 (Wang et al., 2024) unifies vision under-
standing and generation via discrete token model-



Model BLEU-2(1) BLEU-4(}) ROUGE-1(}) ROUGE-2({) ROUGE-L({) METEOR (1)
Qwen-VL-Chat 0.09 £0.001  0.01 £0.0009  0.32 +£0.003  0.07 £0.001  0.22 £0.002  0.19 £0.001
InternVL-Chat-vl.5  0.04:£0.0008  0.001 £0.0002  0.3840.003  0.07 £0.001  0.26 £0.002  0.1940.001
LLaVA-v1.5-7B 0.08 £0.001  0.004 £0.0004  0.33 £0.002  0.07 £0.001  0.23 £0.002  0.20 £0.001
GPT-4o 0.16 £0.003  0.070.002 0.284+0.005  0.13£0.003  0.23+£0.004  0.2240.004
ChemVLM-8B 0.15+0.004  0.08 £0.003  0.28+0.006  0.134+0.003  0.234£0.005  0.23 +£0.005
ChemMLLM (ours)  0.33 £0.005%  0.2140.005%  0.504+0.005*  0.31£0.006%  0.43£0.005%  0.43-0.005*

Table 1: Results on img2caption task (best: bold, second best: underlined, *: significantly better (statistically)).

ing. Chameleon (Team, 2024) aligns modalities at
the token level for flexible multimodal generation,
while LlamaGen (Sun et al., 2024) treats images
as language-like sequences for scalable autoregres-
sive image generation. Lumina-mGPT (Liu et al.,
2024) trains a family of models to generate flex-
ible photorealistic images from text descriptions
based on Chameleon. Transfusion (Zhou et al.,
2024) and Show-o (Xie et al., 2024) combine diffu-
sion and transformer for multimodal understanding
and generation. For vision understanding, well-
known models include LLaVA (Liu et al., 2023),
BLIP-2 (Li et al., 2023), Qwen-VL-Chat (Bai
et al., 2023), InternVL-Chat (Chen et al., 2023),
MiniGPT-4 (Zhu et al., 2023), Gemini (Team et al.,
2023), Flamingo (Alayrac et al., 2022) and Open-
Flamingo (Awadalla et al., 2023). Although cur-
rent MLLMs perform well across modalities, these
models struggle with chemical tasks due to a mis-
alignment between general and domain-specific
knowledge.

Chemical LLM MLLMs have also exhibited
strong potential in addressing chemistry-related
tasks, particularly in bridging the modality gap be-
tween textual descriptions and molecular represen-
tations. Concretely, Instruct-Mol (Cao et al., 2023)
and MV-Mol (Luo et al., 2024) utilize LLaVA’s ar-
chitecture (Liu et al., 2023) and Q-former (Li et al.,
2023) to align molecular structure and text modal-
ity, respectively. ChemLLM (Zhang et al., 2024a)
uses a high-quality chemical dataset to fine-tune
InternLM2 (Cai et al., 2024). ChemVLM (Li et al.,
2025) extends ChemLLLM (Zhang et al., 2024a) to
understand images by adopting a projector-based
method to align vision information and text in-
formation. UniMoT (Zhang et al., 2024b) uses
a molecule tokenizer to align the graph modality
molecule with text. Despite progress in chemical
tasks, existing models can not generate molecu-
lar images, limiting their utility in more intuitive,
visual forms of interaction. To fill this gap, We pro-
pose ChemMLLM, a unified framework that under-

stands and generates molecules in text, SMILES,
and image formats.

3 Method

Overview. Our framework uses an image tokenizer
to transfer images into discrete tokens, aligning
with texts and molecule’s SMILES strings at the to-
ken level, known as “Image Tokenizer-LLM-Image
De-tokenizer” architecture (Team, 2024). First,
Section 3.1 discusses the molecule image tokenizer.
Then, Section 3.2 describes how to combine im-
ages, texts and SMILES strings. Finally, the train-
ing strategy is discussed in Section 3.3. The whole
pipeline is shown in Figure 1. For ease of under-
standing, we list key mathematical notations in
Table 10 in Appendix.

3.1 Mol-VQGAN for Molecule Image
Generation

Following Chameleon (Team, 2024), to enable mul-
timodal information alignment in the early stage,
images need to be discretized into token sequences
similar to text. To proceed it, we train Vector
Quantized Generative Adversarial Network (VQ-
GAN) (Esser et al., 2021) on molecule images,
known as Mol-VQGAN. Mol-VQGAN compresses
images into a discrete latent space, which aligns
well with the sequential nature of text modeling in
large language models. Specifically, Mol-VQGAN
uses Vector Quantized Variational Auto-Encoder
(VQVAE) (Van Den Oord et al., 2017) as the gen-
erator and patch-based discriminator (Isola et al.,
2017). VQVAE compresses images into discrete
spaces and reconstructs images from that space.
Mol-VQGAN adds a discriminator and perceptual
loss to VQVAE to keep good perceptual quality
and improve the performance. Formally, Mol-
VQGAN takes an image x € RTXW>3 (/W
are the height/width of the input image), and trans-
fers it into discrete representations zq by encod-
ing 2 € RWwxn: = E(zx) (h/w/n, are the
height/width/channels of the feature map), and find-
ing the closest codebook entry for each spatial code



MW LogP TPSA
Method Pearson (1) MSE (}) MAE () Pearson (1) MSE (}) MAE () Pearson (1) MSE (}) MAE ()  valid%(1)
Qwen-VL-Chat 0.78 £0.02 7073.3 +858.2  58.0+1.8  0.14+0.02 44+046 14+0.04  0.19 £0.02 >le+4 +563.6 82.8 £1.9 99.3%
InternVL-Chat-vl.5  0.59 £0.02 >le+4 £1595.5  83.6+3.6 0.04+0.05 9.2+0.62 2.3+0.08 0.29+0.03 2158.84+432.6 28.7+1.5 55.0%
LLaVA-v1.5-7B 0.36 £0.08  >3e+4£5078.6  115.7£6.9 -0.003£0.05  5.1£1.0 1.6+0.08 0.01£0.04  >5e+4+ >3e+4 99.1+11.9 35.8%
ChemVLM-8B 0.84 £0.02  9573.4 £1992.9 569 +4.5 0.38 £0.05 4.9 £0.58 1.6 £0.08 0.26 +£0.06 5332.0 £747.5 53.66 2.7 31.3%
ChemMLLM (ours) 0.97+0.004*  789.7+162.2*  16.1+0.72*  0.92+0.01*  0.70+£0.14* 0.52+0.02* 0.97-+0.005* 152.6+39.2* 6.0+0.33* 99.6%

Table 2: Results on img2property task: MW, LogP and TPSA (best, 2nd best, *: significantly better (statistically)).

Hbd Hba Rb QED
Method Pearson (1) MSE (1) MAE () Pearson (1) MSE (}) MAE () Pearson (1) MSE (}) MAE () Pearson (1) MSE (}) MAE (})
Qwen-VL-Chat -0.02 £0.008 4.8 £0.75 1.4£0.05 0.05:£0.01 30.5+1.2 4.9+0.08 0.19+40.1  145.4430.8  6.8+0.31 0£0.0 - -
InternVL-Chat-vl.5  0.03£0.05 9.940.89 2.240.09 0.22+0.04 102+0.85  2.4+0.08  0.0440.04  43.6+4.3 4.8+0.19  0.003+0.03 4.0+£3.2 0.440.08
LLaVA-v1.5-7B 0.004 £0.05 ~ 53.3£27.3  3.7£0.33 0.04£0.05 23.7+£5.4 294019  0.03 £0.04 39.9+104  3.8+0.26 -0.11£0.08  >le+5+ >1le+5 24.5+18.6
ChemVLM-8B 0.49 £0.09  42+0.85 13+0.08 0.32+0.07 272£1.95 45+0.14 0.10+0.06 458+£5.02 55+£0.22 -0.003 +£0.06 0.24 £0.02 0.37 +0.01
ChemMLLM (ours)  0.96£0.004*  0.18+0.02*% 0.13£0.01% 0.94+0.007* 0.79+£0.12% 0.4440.02* 0.94+0.01*  1.6+0.33*  0.59£0.03* 0.91+0.006*  0.008-0.0004*  0.06-0.002*

Table 3: Results on img2property task: Hbd, Hba, Rb, and QED (best, 2nd best, *: significantly better (statistically)).

Z;j € R™= (also known as vector quantization (VQ)
process, denoted q(+)):

Zq = Q(i) = (arggclé% ||;3U _ Zk”) c RhX’anz’

(1)
where Z is codebook, a set of learnable vectors, and
2k € Z = {z};, C R"™. Then, Mol-VQGAN
reconstructs image & € RZ>*W>3 from z:

&= G(z) = G(q(E(2))). 2)

The discretization and reconstruction process is
illustrated in Figure 1(a).
The VQGAN’s objective function is:
i L E .G, Z
Erfl(inz mgx [ quae( y Uy )
+ Alﬁperceptual(Eu Ga Z)
+ A2£GA]\7({-EI7 G7 Z}7 D)] )

3)

where (1) the first term Lyquee(E, G, Z) = ||z —
G (2—s59(3—20)) B+ 5912 — 2| [3+Isglzg] — 2113
is VQVAE loss, where L. = ||z — G(2 — sg(2 —
2q))||3 is reconstruction loss. Since the quantiza-
tion process is non-differentiable, a stop-gradient
operation sg|-| is used so that the forward pass op-
erates on quantized vectors, whereas the backward
pass leverages continuous vectors for gradient com-
putation (Van Den Oord et al., 2017); (2) the second
term Lyperceptual(E, G, Z) = ||P(z) — P(G(2 —
sg(2 — 24)))||3 is perceptual loss, P denotes a
perceptual model like Learned Perceptual Image
Patch Similarity (LPIPS) (Zhang et al., 2018),
which is used to extract the high-level semantic fea-
tures; (3) the third term Loan({E, G, Z}, D) =
log D(x)+log(1—D(2—sg(2—z24))) is GAN loss,
D is a patch-based discriminator (Isola et al., 2017)
aiming to differentiate original and reconstructed

images. A1 is a hyperparameter and A, is an adap-
tive weight computed dynamically to balance the
weight of L5 4N and stabilize training, following
VQGAN (Esser et al., 2021).

3.2 ChemMLLM

Chemical molecules are typically encoded in the
format of Simplified Molecular Input Line Entry
System (SMILES) (Weininger, 1988), a compact
ASCII string, serving as a distinct modality in com-
putational chemistry (Anderson et al., 1987). In
ChemMLLM, SMILES tokenization is the same as
the text. Specifically, SMILES is mapped into a to-
ken sequence via Chaemelon (Team, 2024) text to-
kenizer trained based on Byte Pair Encoding (BPE)
algorithm (Sennrich et al., 2015). The process is
shown in Figure 1(b).

After training the Mol-VQGAN, ChemMLLM
uses it as image tokenizer to align image and text at
token level, unifying the training and inference for
image and text by maximizing the standard next-
token prediction cross-entropy loss:

L
Lriv =Y logpo(silst, ., si-1)
i=1

§ )
+ A (log > exp(zp,))?,
k Jj=1

where A is a hyper-parameter; in the first term, L
is the length of total sequence tokens; s; € S =
{S1,S7r}. Sris the image tokens sequence tok-
enized by the image tokenizer, and St is the tex-
t/SMILES token sequence tokenized by the text
tokenizer. The second term is z-loss, a regulariza-
tion term to mitigate the problem of logit shift in
the final softmax and stabilize training (Chowdhery



MW LogP TPSA

Method Pearson (1) MSE (1) MAE(})  Pearson (1) MSE (}) MAE (|) Pearson (1) MSE (}) MAE(})  valid%(1)
IntenVL-Chat-vl.5  0.04£0.05 > le+5+>1le+5 210.5429.4  -0.02+0.11 234493 2964031 0.04+0.11 > le+4+6205.6  58.9+8.1 75.0%
LLaVA-v1.5-7B 0.0740.27 >2 +6+>9e+5 8949+285.0 -0.52+0.16 110445223 18.046.7 048 +0.27 >le+5+>le+5 1463+885  8.5%
GPT-40 0.7740.04  7633.24+1954.0 5574+4.7%  0.48+0.07 5.740.87 L7+0.11  0.69+0.04 1209.24211.1 243417 99.0%
ChemLLM-7B-Chat -0.25+0.08 > Te+4+ >1le+4 24484162 0.0005£0.05  10.0+£1.2  27+0.19 -0.35+0.09 7666.0+937.2 80.6+4.3  35.0%
ChemVLM-8B 0.1440.15 > 2e+5+ > le+5 197.39+30.9  0.08+0.08 9.0+1.5 224014 02240.22 >2e+4+>2+4 625+£11.0  100.0%
ChemMLLM (ours)  0.7140.05 > 3e+4+ >1le+4 11954121  0.4240.05 132490  1.840.26  0.7140.05 1191.6+183.6 265+1.91  65.5%

Table 4: Results on property2img task: MW, LogP and TPSA (best, 2nd best, *: significantly better (statistically)).

Hbd Hba Rb QED

Method Pearson (1) MSE (/) MAE(]) Pearson (1) MSE () MAE ({)  Pearson (1) MSE () MAE ()  Pearson (1) MSE (}) MAE (})

InternVL-Chat-vl.5  -0.1£0.08  7.3£3.8 1.5+£0.18  0.09+0.08 553+31.1 3.4+0.52  0.06+0.08 44.9+15.5 4.3+0.41  0.07£0.08 0.0940.009  0.2440.01
LLaVA-v1.5-7B 0.040.0 - - 0.4440.27 529.7+495.4  9.3+5.0 -0.2440.26  5789.7+3515.2 37.5+15.7 0.11£0.24  0.10+0.03  0.2540.04
GPT-40 0.58+0.07 1.840.35 0.86+0.07 0.5740.07 6.2+1.0 1.74£0.12  0.45+0.07 11.9+2.1 244+0.17  0.59+0.04* 0.03£0.003 0.15+0.008
ChemLLM-7B-Chat -0.234+0.07 3.44+0.82 1.5+0.14 -0.224+0.06 30.3+4.3 4.940.31  -0.2240.07 46.9+6.5 594043 -0.074+0.03 0.07£0.009  0.24+0.01
ChemVLM-8B 0.4740.30  6.04+0.99 1.7£0.12  0.0240.13 75.6+£58.4  3.49+0.56  0.4440.29 25.8+4.3 3.74£0.24  0.10£0.06  0.08+0.007  0.24+0.01
ChemMLLM (ours)  0.45+£0.08 1.5+£0.32 0.83+0.08 0.66-£0.06 5.84+0.84 1.840.13  0.62+0.05* 17.348.1 244029  0.344+0.08 0.08+0.009 0.24+0.01

Table 5: Results on property2img Task: Hbd, Hba, Rb, and QED (best, 2nd best, *: significantly better).

etal., 2023), where z;, ; denotes the logit in the last
layer, V' denotes the size of the vocabulary.

Specifically, ChemMLLM adopts Chameleon
VQGAN as the image tokenizer/de-tokenizer and
Chameleon-7B as the language model. The image
tokenizer takes images of 256x256 resolution as in-
put. Simultaneously, text and SMILES information
passes through the text tokenizer to be converted to
text tokens. The text, SMILES and image tokens
are then concatenated to form a unified token se-
quence to feed into the LLM during training and
inference.

3.3 Training

ChemMLLM’s training can be divided into two
stages: (1) Mol-VQGAN training and (ii) ChemM-
LLM supervised fine-tuning (SFT) training, as
shown in Figure 1(e).

(i) Mol-VQGAN training. The original
Chameleon VQGAN is only trained on the natural
image dataset and can not discrete and reconstruct
molecule images well. So, the first stage focuses
on improving VQGAN’s performance in encoding
and decoding molecule images. Concretely, we
use the well-trained VQGAN (trained on natural
images) as the initialization and then fine-tune it
on molecule image datasets.

(ii) ChemMLLM Supervised Fine-Tuning Train-
ing. In the second stage, we freeze the Mol-
VQGAN and only finetune the language model on 5
downstream tasks. We utilize Lumina-mGPT (Liu
et al., 2024) as training framework to train our
ChemMLLM and uses Chameleon-7B as the base
model. The weight related to the image tokens
in the last layer will first be initialized as zero
during finetuning. LLM uses the output of Mol-

VQGAN as finetuning data, i.e., the data is first
pre-tokenized by Mol-VQGAN and text tokenizer
into token sequences and then fed into LLM.

Task Input Output Source # train/test
molecule image image chebi-20 (Edwards et al., 2022)
captioning (img2caption) +text text mol-instruct (Fang et al., 2023) TOK/3K
molecule image property image . S
prediction (img2property) Hext text PubChem (Kim et al., 2021) 95K/5K
image-to-SMILES UMABE  SMILES  PubChem (Kimetal,2021)  95K/SK
conversion (img2smiles) +text
controllable multi-objective
molecule image design text image PubChem (Kim et al., 2021) 95K/5K
(property2img)
molecule image Mage mage TDC (Huang et al., 2021) 157K/17K

optimization (img2img) +text

Table 6: Tasks and datasets.

4 Tasks and Data Curation

In this paper, we design five vision-based chemistry
research tasks, defined as follows.

(1) Molecule image captioning (img2caption) is
an image-to-text task, where the models are ex-
pected to generate a caption concerning the source,
functionality, structure feature and usage for each
molecule image. This image-to-caption task re-
quires models to translate molecule images into
natural language descriptions, which is a process
mirroring how chemists annotate experimental data.
Examples for this task are shown in Table 11.

(2) Molecule image property prediction
(img2property) is an image-to-text task, where
models are expected to generate the value of seven
different important properties for each molecule
image, including molecule weight (MW), Partition
Coefficient (P) of a solute between octanol and
water (LogP), Topological Polar Surface Area
(TPSA), Hydrogen Bond Donor (Hbd), Hydrogen
Bond Acceptor (Hba), Rotatable Bond (Rb), and
Quantitative Estimate of Drug-likeness (QED).
More details for the properties can be found in



Model domain architecture txt2txt  img2txt txt2img img2img
Qwen-VL-Chat general text tokenizer, vision encoder v v X X
InternVL-Chat-v1.5 general text tokenizer, vision encoder v v X X
LLaVA-v1.5-7B general text tokenizer, vision encoder v v X X
GPT-40 general close-sourced v v v v
ChemLLM-7B-Chat  chemistry text tokenizer v X X X
ChemVLM-8B chemistry text tokenizer, vision encoder v v X X
ChemMLLM (ours)  chemistry text tokenizer, vision tokenizer/de-tokenizer v v v v

Table 7: Architectures and capabilities of MLLMs and Chemical LLMs approaches.

Appendix G. This image-to-property prediction
task evaluates a model’s ability to infer key chemi-
cal properties directly from 2D molecular images,
enabling researchers to extract actionable insights
from molecular images without specialized
software, which could accelerate high-throughput
screening in drug/material design (Lu et al., 2021).
Table 12 shows some examples.

(3) Image-to-SMILES conversion (img2smiles)
is a fundamental chemistry task, where models are
expected to recognize the SMILES in each molecu-
lar image. The image-to-SMILES translation task
challenges models to convert 2D molecular images
into SMILES strings, requiring precise recognition
of atoms, bonds, rings, and stereochemistry. Exam-
ples for this task are shown in Table 13.

(4) Controllable multi-objective molecule image
design (property2img) is the inverse problem of
molecule image property prediction and is a text-to-
image task, where models are expected to generate
the image of a molecule conditioned on target prop-
erties. It is the core of molecule design (Du et al.,
2022). The challenge lies in simultaneously opti-
mizing multiple property constraints while main-
taining chemical validity. Examples for this task
are shown in Table 14.

(5) Molecule image optimization (img2img) is an
image-to-image task, where models take a molec-
ular structure with less desirable molecular prop-
erties (e.g., LogP) as input and generate a similar
molecular structure with more desirable properties
while preserving desired chemical properties. It
imitates the process of lead optimization, a funda-
mental problem in drug discovery (Huang et al.,
2021; Fu et al., 2020). Examples for this task are
shown in Table 15.

4.1 Data Curation

We employ RDKit (Landrum et al., 2006) to con-
vert the original SMILES strings into molecular
images across all five tasks. We primarily follow
the methodology of SketchMol (Wang et al., 2025)

and ChemVLM (Li et al., 2025) for data curation
and diversity natural language templates synthesis.
The input/output modalities, raw data sources, and
sizes of training/test sets for all tasks are shown
in Table 6. Further details on data curation are
provided in Appendix A.

S Experiment

5.1 Experimental Setup

Baseline Methods cover both general multimodal
LLM and chemical LLM. For general-domain
multimodal LLM, we chose Qwen-VL-Chat (Bai
et al., 2023), InternVL-Chat-v1.5 (Chen et al.,
2023), LLaVA-v1.5-7B (Liu et al., 2023) and GPT-
40 (OpenAl, 2024). For chemical LLM, we chose
ChemLLM-7B-Chat (Zhang et al., 2024a) and
ChemVLM-8B (Li et al., 2025). We compare their
capabilities in Table 7. Please refer to Appendix D
for more descriptions.

Evaluation metrics and implementation de-
tails are elaborated in Appendix F and H,
respectively. The code is publicly avail-
able at https://anonymous.4open.science/r/
ChemMLLM-0D98/.

5.2 Result

Molecule image captioning (img2caption). We
compare our model with various multimodal LLMs
(MLLMs) including Qwen-VL-Chat (Bai et al.,
2023), InternVL-Chat-v1.5 (Chen et al., 2023),
LLaVA-v1.5-7B (Liu et al., 2023), GPT-40 (Ope-
nAl, 2024), ChemVLM-8B (Li et al., 2025). The
evaluation results are shown in Table 1. Our model
exhibits strong performance on this task, outper-
forming all competing MLLM models on all six
metrics. An example is shown in Figure 2. Our
model generates captions that closely match the
ground truth, while Qwen-VL-Chat includes fewer
semantically informative details.

Molecule image property prediction
(img2property). GPT-40 can not predict


https://anonymous.4open.science/r/ChemMLLM-0D98/
https://anonymous.4open.science/r/ChemMLLM-0D98/
https://anonymous.4open.science/r/ChemMLLM-0D98/

Question:
Provide a detailed description of this molecular structure.
SR Ground Truth:
Oy ~IAAX 6",. The molecule is an acyl-CoA that results from the formal
x condensation of the thiol group of coenzyme A with the
carboxy group of oscr#12. It derives from an oscr#12. It is
a conjugate acid of an oscr#12-CoA(4-).

Qwen-VL-Chat:

The image shows the molecular structure of
a compound, which is represented in blue,
yellow, and red colors. The compound has a
long chain-like structure composed of
several carbon atoms, hydrogen atoms, and
oxygen atoms. The carbon atoms are
represented in black, and hydrogen atoms
are represented in white. The oxygen atoms

ChemMLLM(ours):

The molecule is an acyl-CoA
resulting from the formal
condensation of the thiol group
of coenzyme A with the
carboxy group of oscr#21. It
derives from an oscr#21. Itis a
conjugate acid of an oscr#21-

: CoA(4-).
are represented in red and blue. The
molecular structure is drawn on a white
background.
8 X <  BLEU:083

Figure 2: An example on img2caption task, comparison
between Qwen-VL-Chat and our ChemMLLM.

properties from image directly, so in this task
we do not compare with GPT-40. As shown in
Table 2 and 3, our model consistently outperforms
competing methods across all seven molecular
properties, yielding the highest Pearson correlation
coefficients alongside the lowest MSE and MAE
values. An example is shown in Figure 3. Among
the properties predicted, our model has 5 accurate
values and 2 close values while Qwen-VL-Chat
has 2 close values and 5 inaccurate values.

Model Avg Sim (1) Tani@1.0 (1) valid%(1)
Qwen-VL-Chat 0.08 £0.006 0.0 £0.0 8.2%
InternVL-Chat-vl.5  0.09 £0.003 0.0 £0.0 20.7%
LLaVA-v1.5-7B 0.05 +0.004 0.0 0.0 11.1%
GPT-40 0.29+0.005 0.01 £0.004 74.5%
ChemVLM-8B 0.55 +0.009 0.15 £0.01 85.2%
ChemMLLM (ours)  0.754+0.009*  0.49+0.01* 97.1%

Table 8: Results on img2smiles Task. Tanimoto similar-
ities are written as Avg Sim, and Tanimoto@ 1.0 written
as Tani@1.0 (best, 2nd best, *: significantly better).

Question:

Predict the following properties of the molecule:
MW, LogP, TPSA, HBD, HBA, RB and QED.
Ground Truth:

The MW is 389.47, LogP is 3.93, TPSAis 73.86,
HBD is 1, HBAis 6, RB is 5 and QED is 0.78

Qwen-VL-Chat: ChemMLLM(ours):

The MW is , LogP is The MW is , LogP is

TPSAis ,HBD is 0, HBA TPSAis 73.86, HBD is 1, HBA

is 0 RBis 0 and QED is is 6, RBis 5 and QED is 0.78
X \/ 5-accurate & 2-close

Figure 3: A comparison of answers on img2property
task on Qwen-VL-Chat and our ChemMLLM. Accurate
answers are highlighted in bottle-green, close answers
are highlighted in light-green and inaccurate answers
are highlighted in red.

Image-to-SMILES conversion (img2smiles).
The evaluation results are shown in Table 8.
ChemMLLM performances best in both Tanimoto
similarity and Tanimoto@ 1 metrics. For Tanimoto
similarity, ChemMLLM (0.75) surpasses domain-
specific model ChemVLM (0.55) by 36.4%. An
example is shown in Figure 4. Our model recog-
nizes SMILES from images successfully, while
GPT-4o0 predicts wrong SMILES with low Tani-
moto similarity.

Question:
Q What is the SMILES of the molecule in
\ this image?
N Ground Truth:
r~ CCIC@@H](C)N=C1C=C(0C2=C1C=C

(C=C2)C)C3=CC=C(C=C3)C

GPT-40:

The molecule in the image is
modafinil, a wakefulness-
promoting agent. Its SMILES
(Simplified Molecular Input
Line Entry System) notation is:

ChemMLLM(ours):

The SMILES of the
molecule in the image is
CCIC@@H](C)N=C1C=C
(OC2=C1C=C(C=C2)C)
C3=CC=C(C=C3)C.

X v

Figure 4: A comparison of GPT-40’s and ChemM-
LLM’s answers on img2smiles task.

tanimoto sim: 1.0

Controllable multi-objective molecule image de-
sign (property2img). Since the GPT-40 API
does not perform as well on this task as its web
interface, and other MLLMs lack the capability
to generate images, we treat this task as a purely
text-based problem when evaluating other MLLM:s.
Specifically, our model is used to generate molecu-
lar images, while other MLLMs are tasked with
directly generating the corresponding SMILES
strings in text form. Given this setting, we also
include ChemLLM-Chat-7B (Zhang et al., 2024a),
a domain-specific chemical language model, in our
evaluation. Furthermore, we exclude Qwen-VL-
Chat (Bai et al., 2023) from comparison on this
task, as it fails to generate valid SMILES strings on
all test samples. The evaluation results are shown
in Table 4 and 5. Our model achieves top-2 or
better performance on 90% of the evaluation met-
rics. Several examples are shown in Figure 5. Our
model generates the image molecules with desired
properties directly. For more result examples for
this task, please refer to Figure 12.

Molecule image optimization (img2img). Since
the GPT-40 API does not achieve the same level
of performance on this task as its web-based inter-
face and other MLLMs lack the ability to generate



User:

Generate an image of 256x256 according to the following
prompt:\nimage of a molecule whose MW is 274.36, LogP
is 3.81, TPSAis 35.53, HBD is 0, HBA is 3, RB is 4 and
QED is 0.62

®

ChemMLLM(ours): <=
The molecular diagram is shown below: mﬂ
N MW:

S HBD: 0, HBA:

s

LogP: © 4, TPSA:
. RB: 0, QED:

TPSAis 49.85, HBD is 0, HBA is 4,

C Q RB s 3
NPRLES

@ MW is 230.24, LogP is 1.01, HBAis 4

, HBD: 0, HBA: 4, RB:3

O mw: , LogP: 1.0, HBA: 4

® LogP is 5.5, RB is 5, QED is 0.62

QOQ LogP:

R

, RB: 5, QED:

Figure 5: Examples on property2img task on our
ChemMLLM. Accurate answers are highlighted in
bottle-green, close answers are highlighted in light-
green.

images, we formulate the evaluation as an image-to-
text task for these models. Specifically, our model
generates molecular images directly given opti-
mized molecule images, while other MLLMs are
required to generate SMILES strings. As GPT-40
cannot directly generate SMILES with optimized
LogP from molecular images, we instead treat its
evaluation as a text-to-text task, by providing the in-
put SMILES in textual form rather than as images.
As shown in Table 9, ChemMLLM achieves the
highest increase in LogP, outperforms GPT-40 by
118.9%. Several examples are shown in Figure 6.
Our model generates molecule images with higher
LogP directly. For more result examples for this
task, please refer to Figure 13.

Model Increased LogP (1)  Diversity (1) Novelty (1)  valid% (1)
Qwen-VL-Chat -2.0+0.11 0.954+0.01 1.0+0.0 4.0%
InternVL-Chat-v1.5 -0.774+0.17 0.904-0.004 1.0+0.0 48.0%
LLaVA-v1.5-7B -0.86+0.59 0.96£0.005 1.0£0.0 37.5%
GPT-40 1.95+0.08 0.86+0.002 1.0+0.0 99.0%
ChemVLM-8B 0.45 +0.14 0.87+0.002 0.97+0.01 92.5%
ChemMLLM (ours) 4.240.44 0.88+0.001 1.04+0.0 91.0%

Table 9: Results on img2img task (best, 2nd best).

5.3 Ablation Study

We conduct an ablation study on property2img
task (see Appendix I) to assess the effects of Mol-
VQGAN training and data augmentation (espe-

@sr:

LogP (Partition Coefficient) measures a molecule's
solubility in fats versus water by quantifying its distribution
between octanol (fat-like) and water phases. ..., Here is an
image of a molecule, please generate an image of a new
similar molecule whose LogP is better.

’

avate.

LogP: 0.91

\_ /

ChemMLLM(ours):
Here is a new similar molecule with better LogP.

&

/\/O\’l*’j:) LogP: 4.17
® ©
LogP: 1.65 peset LogP: 6.56 d—‘c&?ﬁy
® | @
LogP: -0.74 D/\*O LogP: 5.97 oo
® ©

LogP: 0.57 rO o LogP: 4.31 0L
Figure 6: Examples of ChemMLLM on img2img task.

cially image rotation). Results show that both com-
ponents significantly improve the correlation be-
tween generated images and molecular properties,
with their combination yielding the best overall
performance. This highlights the importance of
high-quality visual representations in enhancing
multimodal chemical tasks.

6 Conclusion

This paper has proposed ChemMLLM, a chemi-
cal multimodal large language model that handles
molecule comprehension and generation across
three modalities (text, SMILES string, molecule
image). By jointly modeling text, SMILES strings,
and molecule images, ChemMLLM enables seam-
less cross-modal comprehension and generation,
outperforming state-of-the-art MLLMs and special-
ized chemical LLLMs across a range of tasks. Also,
we design five cross-modal chemistry tasks and cu-
rate datasets, providing a valuable resource for mul-
timodal Al in chemistry. The experimental results
demonstrate ChemMLLM’s strong performance,
highlighting its potential for real-world drug and
material discovery.



Limitations

Despite its promising capabilities, our work has
several limitations that point to important direc-
tions for future research: Currently, ChemMLLM
incorporates only three modalities — text, SMILES
strings, and 2D molecule images. Real-world
chemical data often includes richer modalities such
as 3D molecular structures, quantum mechanical
properties, or spectroscopic data. Incorporating
these would significantly enhance the model’s abil-
ity to capture complex molecular behaviors and
interactions. Also, our evaluation is primarily fo-
cused on proof-of-concept chemistry tasks. Fur-
ther studies are needed to validate the model’s per-
formance in real-world applications such as drug
discovery, materials design, or chemical synthesis
planning.

Ethics Statement

The development and application of chemical Al
models, such as ChemMLLM, raise important eth-
ical considerations. We ensure that all datasets
used in this work are sourced from publicly avail-
able, non-sensitive chemical data and do not in-
volve personal or private information. The model
is designed for scientific research purposes, includ-
ing drug discovery and materials science, with the
aim of advancing chemical understanding and in-
novation. We advocate for responsible use of Al
in chemistry and encourage transparency, repro-
ducibility, and fairness in future deployments of
such technologies.
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A Data Curation Details

(1) img2caption: The dataset used for this task is
sourced from chebi-20 (Edwards et al., 2022)and
mol-instruct (Fang et al., 2023). The original
datasets contain SMILES-caption pairs. We uti-
lize RDKit (Landrum et al., 2006) to transfer
the SMILES into 256x256 image to form image-
caption pairs. For mol-instruct, we filter captions
shorter than 150 words to screen clearer descrip-
tions. We only use the test set of chebi-20 as the
test set and the partitioning of the dataset is the
same as chebi-20 (Edwards et al., 2022).

(2) img2property: The dataset used for this task
is sourced from PubChem (Kim et al., 2021).
For one compound, there are three fileds re-
lated to it’s SMILES, i.e., "PUBCHEM_SMILES"
which means The Simplified Molecular Linear
Input Specification (SMILES) for compounds, it
is a string used to represent the chemical struc-
ture, "PUBCHEM_OPENEYE_CAN_SMILES"
which means Canonical SMILES generated us-
ing the OpenEye tool (Software, 2023) and "PUB-
CHEM_OPENEYE_ISO_SMILES" which means
The isomer SMILES generated using the OpenEye
tool. The processing steps are as follows:

1. Extract all the three fields from PubChem and
remove the duplicate SMILES.

Use the Draw.MolTolmage() function in RD-
Kit (Landrum et al., 2006) to transfer SMILES
into images.

Sample 100,000 SMILES for this work.
Choose 7 important properties as the prediction
objective, i.e., MW, LogP, TPSA, HBD, HBA,
RB and QED. Then use RDK:it to calculate the
7 properties for each sampled SMILES.

. Use natural language templates to integrate
properties into natural language to form the final
image-property answer pairs.

Divide the dataset into training and test set by
the ratio of 95:5.
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(3) img2smiles: The dataset and the construction
steps are the same as the img2property task, the
difference is that this task only apply templates for
SMILES to construct image-SMILES answer pairs.
(4) property2img: This task is a reverse task of
img2property. By swapping the question and an-
swer of the img2property dataset, we construct
property prompt-image pairs for property2img
task.



(5) img2img: The dataset for this task is sourced
from TDC (Huang et al., 2021). The original
dataset contains SMILES-SMILES pairs. The
previous molecule’s LogP is lower while the lat-
ter molecule’s LogP is higher. We also use
Draw.MolTolmage() function in RDKit (Landrum
et al., 2006) to transfer them into image-image
pairs. For data partitioning, we divide the training
set and test set by the ratio of 9:1.

All the data used in this paper is publicly avail-
able.

B Mathematical Notations

For ease of understanding, we list key mathematical
notations in Table 10 in Appendix.

C Data Examples

(1) Molecule image captioning (img2caption).
As shown in Table 11, the input/output for
img2caption task is text/image-text pair. The input
is a question asking models to give captions for
molecule images and the output is a caption con-
cerning the source, functionality, structure feature
and usage for each molecule image.

(2) Molecule image property prediction
(img2property). As shown in Table 12, the
input/output for img2property task is text/image-
text pair. The input is a question asking models
to predict seven properties for given molecule
images and the output is a natural language answer
describing the seven properties.

(3) Image-to-SMILES conversion (img2smiles).
As shown in Table 13, the input/output for
img2smiles task is text/image-text/SMILES pair.
The input is a question asking models to recognize
the SMILES in the given molecule images and the
output is a natural language answer describing the
SMILES in the image.

(4) Controllable multi-objective molecule im-
age design (property2img). As shown in Ta-
ble 14, the input/output for property2img task is
text-text/image pair. The input is a question asking
models to generate images according to the given
values of the seven properties, and the output is the
generated molecule image with the given values of
the seven properties.

(5) Molecule image optimization (img2img). As
shown in Table 15, the input/output for img2img
task is text/image-text/image pair. The input is
a question describing the meaning of LogP and
then asking models to optimize the LogP property
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for given molecule images, and the output is the
optimized molecule image with better LogP.

D Baseline Methods

* Qwen-VL-Chat (Bai et al., 2023) is an open-
source multimodal conversational model devel-
oped by Alibaba Cloud, extending the Qwen-VL
architecture to support complex visual-language
interaction through instruction tuning. It inte-
grates a frozen CLIP-ViT-G/14 vision encoder
with the Qwen-7B language model via a train-
able vision-language connector. Images are en-
coded into 1024-dimensional patch embeddings
by the vision encoder, which are then linearly
projected into the token embedding space of the
language model (hidden size 4096). The lan-
guage backbone consists of 32 transformer de-
coder layers, each employing multi-head masked
self-attention with rotary position embeddings
(RoPE), followed by a SwiGLU-activated feed-
forward network with an intermediate dimension
of 11008. Qwen-VL-Chat uses a 2048-token con-
text window and supports dynamic multimodal
prompts comprising text, images, and region
boxes. It is instruction-tuned on a large-scale,
GPT-generated multimodal dataset containing
both single- and multi-turn visual conversations,
enabling capabilities in visual question answer-
ing, dense captioning, document OCR, and multi-
image reasoning. The model achieves high per-
formance on benchmarks such as MME, SEED-
Bench, and MMBench, demonstrating strong
alignment between visual and linguistic modali-
ties.

InternVL-Chat-V1.5 (Chen et al., 2023) is
an open-source vision-language instruction-
following model developed by OpenGVLab, de-
signed to support high-resolution, multilingual,
and multi-turn visual conversations. The model
integrates a powerful ViT-based vision encoder,
InternViT-6B, with the InternLM?2-Chat-20B lan-
guage model via a trainable multi-layer percep-
tron (MLP) connector. InternViT encodes im-
ages into patch embeddings with dynamic reso-
lution support, allowing the model to process
up to 40 image tiles of size 448x448, effec-
tively supporting 4K-level inputs. These embed-
dings are projected into the language model’s
token space to enable seamless multimodal in-
teraction. The language backbone consists of
64 transformer decoder layers with rotary posi-



Table 10: Mathematical notations.

Notations Descriptions
x/i € RITXW>3 the input/reconstructed molecule image
H/W the height/width of the input image
h/w the height/width of the feature map
N the channels of the feature map, same as the dimension of the codebook vector
E the encoder of VQGAN, a convolutional neural network (CNN) that extracts
features from original image
5 € Rhxwxnz the continuous feature map encoded by F(z)
Zi; € R"* the spatial code € R™* at position 4,7 in the feature map; (i,j) €
{0,1,...,h} x{0,1,...,w}
q vector quantization process in VQGAN, which transfers continuous feature into
discrete feature
7Z ={zi}i=1 CR™ | the codebook in VQGAN, a dictionary that represents the latent discrete space
zr € R™= entry in the codebook
24 € RMXwxnz the quantized feature map quantified by q(2)
G the decoder of VQGAN, a CNN that reconstructs image from latent discrete
space
sq['] the stop-gradient operation
Loygvae origin VQVAE training loss
Lorec the reconstruction loss
Loperceptual the perceptual loss
Lcan GAN loss
D the discriminator to identify = and %, a patch-based discriminator (Isola et al.,
2017)
Loy next-token prediction cross-entropy loss with z-loss for training large language
model
po(si|s1,...,8i—1) | the probability of s; given s1,...,si—1
St image token sequence tokenized by image tokenizer
St text/SMILES token sequence tokenized by text tokenizer
S the concatenated sequence of image token sequence and text/SMILES token
sequence
L the size of total sequence tokens
V the size of vocabulary
zK,j €R the logit at last layer.
A, AL, A2 hyper-parameters or adaptively calculated parameters to adjust the weight of

different loss functions

tional embeddings (RoPE), multi-head masked
self-attention, and SwiGLU-activated feedfor-
ward layers. The model uses a maximum context
length of 4096 tokens and is instruction-tuned on
a high-quality bilingual dataset containing docu-
ment images, natural images, and complex multi-
modal dialogues. InternVL-Chat-V1.5 achieves
strong performance on benchmarks including
MME, MMBench, and AI2D, demonstrating ro-
bust capabilities in visual question answering,
document OCR, visual reasoning, and bilingual
understanding. The total parameter count is ap-
proximately 25.5 billion, with both the vision
encoder and language model jointly fine-tuned
during the instruction-following phase.

Assistant) (Liu et al., 2023) is an open-source
vision-language instruction-tuned model that
integrates a pre-trained CLIP-ViT-L/14 vision
encoder with the LLaMA-7B language model
through a projection network. LLaVA-7B pro-
cesses visual inputs by encoding images into
1024-dimensional patch embeddings via the vi-
sion encoder, which are then projected into the
language model’s token space through a train-
able linear layer (hidden size 4096). The lan-
guage model comprises 32 transformer decoder
blocks, each with masked self-attention (key/-
query size 4096, 32 attention heads), followed by
a feed-forward network with SwiGLU activation
and an intermediate dimension of 11008. The
self-attention layers use RoPE (rotary positional

* LLaVA-v1.5-7B (Large Language and Vision
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input

output

Give an overview of this

molecule’s properties.

Explain the key traits of this
molecule.

h &3—\;
Provide a detailed description of
this molecular structure.

hg

List the notable attributes of this
molecule.

The molecule is a steroid ester that is methyl (17E)-pregna-4,17-dien-21-
oate substituted by oxo groups at positions 3 and 11. It is a 3-oxo-Delta(4)
steroid, an 11-oxo steroid, a steroid ester and a methyl ester. It derives
from a hydride of a pregnane.

The molecule is an epoxy(hydroxy)icosatrienoate that is the conjugate
base of 11 hydroxy-(14R,15S)-epoxy-(5Z,8Z,12E)-icosatrienoic acid,
obtained by deprotonation of the carboxy group; major species at pH 7.3.
It is a conjugate base of an 11 hydroxy-(14R,15S)-epoxy-(5Z,8Z,12E)-
icosatrienoic acid.

The molecule is a tetracyclic triterpenoid that is 4,4,8-trimethylandrosta-
1,14-diene substituted by an oxo group at position 3, an acetoxy group
at position 7 and a furan-3-yl group at position 17. Isolated from
Azadirachta indica, it exhibits antiplasmodial and antineoplastic activi-
ties. It has a role as an antineoplastic agent, an antiplasmodial drug and a
plant metabolite. It is an acetate ester, a cyclic terpene ketone, a member
of furans, a limonoid and a tetracyclic triterpenoid.

The molecule is a member of the class of N-nitrosoureas that is urea in
which one of the nitrogens is substituted by methyl and nitroso groups.
It has a role as a carcinogenic agent, a mutagen, a teratogenic agent and

N—N

N

an alkylating agent.

Table 11: Example for img2caption task.

embeddings) and support a context window of
2048 tokens. LLaVA-7B leverages instruction-
tuning on 558K GPT-4 generated multimodal
instruction-following samples, aligning visual
and textual representations for tasks such as vi-
sual QA and image captioning. The total number
of trainable parameters is approximately 7 billion,
with the vision encoder frozen during fine-tuning.

GPT-40 (OpenAl, 2024) (Generative Pre-trained
Transformer 4 Omni) is a state-of-the-art multi-
modal foundation model developed by OpenAl,
designed to natively process and reason across
text, images, and audio modalities. Unlike previ-
ous GPT-4 variants that rely on separate vision
encoders, GPT-40 employs a unified transformer
architecture that jointly encodes multimodal in-
puts, enabling low-latency and high-fidelity in-
teractions. The model supports up to 128k to-
kens of context and exhibits strong performance
across a wide range of tasks, including natural
language understanding, image captioning, docu-

14

ment analysis, and spoken language comprehen-
sion. GPT-40 achieves significant improvements
in visual reasoning (e.g., charts, diagrams, OCR),
math problem solving, and multilingual capabil-
ity, surpassing the capabilities of GPT-4-turbo
while operating with lower inference latency. It
is instruction-tuned on a diverse and extensive
corpus of text and multimodal data, and opti-
mized for both conversational fluency and factual
grounding. We also utilized GPT-40 to assist in
the writing of this paper.

ChemLLM-7B-Chat (Zhang et al., 2024a) is
an open-source domain-specific large language
model framework tailored for chemical sciences,
designed to address the limitations of general-
purpose LLMs in structured scientific domains.
The model is instruction-tuned using ChemData,
a templated dataset that transforms structured
chemical knowledge (e.g., molecular properties,
SMILES strings, compound databases) into natu-
ral language instructions across a variety of chem-



input

output

Predict the following properties of the molecule:
MW, LogP, TPSA, HBD, HBA, RB and QED.

Predict the following properties of the molecule:
MW, LogP, TPSA, HBD, HBA, RB and QED.

O~

A\

Predict the following properties of the molecule:
MW, LogP, TPSA, HBD, HBA, RB and QED.

\ 7

/

Predict the following properties of the molecule:
MW, LogP, TPSA, HBD, HBA, RB and QED.

@(‘ Ao

&

The MW is 1022.34, LogP is 4.8, TPSA is 304.6,

HBD is 9, HBA is 11, RB is 24 and QED is 0.05

The MW is 305.42, LogP is 5.42, TPSA is 25.5, HBD

is 0, HBA is 2, RB is 3 and QED is 0.63

The MW is 181.3, LogP is 2.56, TPSA is 3.24, HBD

is 0, HBA is 2, RB is 1 and QED is 0.64

The MW is 479.99, LogP is 4.88, TPSA is 61.88,

HBD is 1, HBA is 4, RB is 7 and QED is 0.49

Table 12: Example for

ical tasks. ChemLLM adopts a decoder-only
transformer architecture based on InternLM?2-
Base-7B (Cai et al., 2024), and is fine-tuned to
handle both single- and multi-turn dialogues. The
model supports tasks such as molecular property
prediction, compound generation, synthetic route
planning, and reaction condition recommenda-
tion.

ChemVLM-8B is an open-source multimodal
domain-specific large language model specifi-
cally designed for chemistry-related tasks, aim-
ing to bridge the gap between vision and lan-
guage understanding in the chemical domain.
The model adopts a ViT-MLP-LLM architec-
ture, integrating a vision encoder based on Vi-
sion Transformer (ViT), a multi-layer percep-
tron (MLP) as a projection layer, and a 20-
billion-parameter decoder-only language model
ChemLLM-20B (Zhang et al., 2024a) as the back-
bone. ChemVLM processes visual inputs such as
molecular structures, chemical reaction schemes,
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img2property task.

and spectra by encoding images into patch em-
beddings through ViT, which are then linearly
projected to the token space of the language
model. It is instruction-tuned on a constructed
dataset of 1.2M multimodal samples covering
tasks like molecule captioning, reaction classifi-
cation, and chemical structure understanding.

E More Visual Result

To better visualize results for different run on five
tasks, we draw metric bar for each tasks. The met-
ric bar for img2caption, img2property, img2smiles,
property2img, img2img task is shown in Figure 7,
Figure 8, Figure 10, Figure 11, Figure 9, respec-
tively.

For the two image generation task, we provide
more examples to better display the ability of
ChemMLLM. More examples for property2img
task are shown in Figure 12. More examples for
img2imgtask are shown in Figure 13.



input

output

What is the SMILES of the molecule in this image?

What is the SMILES of the molecule in this image?

> A\
What is the SMILES of the molecule in this image?
o X
gﬁhﬁ
What is the SMILES of the molecule in this image?

~

T
\J@/\ T

The SMILES of the molecule in the image is C1=CC
=C(C=C1)COC(=0)/C=C/C2=CC=C(O2)[N+](=0)
[O-].

The SMILES of the molecule in the image is CCl1=
CC2=C(C=C1C)OC(=0)C=C2CN3CCC[C@ @H]
3C4=CC=CN4cC.

The SMILES of the molecule in the image is CC(C)(
C)OC(=0)CICC(C(N1C(=0)CNC(=0O)NC2=CC=
CC(=C2)C(=0)0)C3=CC=CC=C3)S(=0)(=0)C4=
CC=CC=C4.

The SMILES of the molecule in the image is COC1
=CC(=C(C=C1)C=N/N=C(\N)/NO)OC.

Table 13: Example for img2smiles task.

input

output

Generate an image of 256x256 according to the fol-
lowing prompt:\n Image of a molecule whose MW
is 354.46, LogP is 3.91, TPSA is 81.57, HBD is 2,
HBA is 5, RB is 6 and QED is 0.66

Generate an image of 256x256 according to the fol-
lowing prompt:\n Image of a molecule whose MW
is 461.36, LogP is 2.34, TPSA is 84.91, HBD is 3,
HBA is 5, RB is 6 and QED is 0.62

Generate an image of 256x256 according to the fol-
lowing prompt:\n Image of a molecule whose MW is
353.4, LogP is 1.37, TPSA is 90.85, HBD is 0, HBA
is 9, RB is 2 and QED is 0.45

Generate an image of 256x256 according to the fol-
lowing prompt:\n Image of a molecule whose MW is
594.8, LogP is 6.15, TPSA is 76.15, HBD is 0, HBA
is 6, RB is 13 and QED is 0.19

The molecular diagram is shown below:

”\\\
Cor U

See the molecular depiction:

QOW»«,Q—

The molecular diagram is shown below:
-

See the molecular depiction:

Table 14: Example for property2img task.
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input

output

LogP (Partition Coefficient) measures a molecule’s solubility in fats ver-
sus water by quantifying its distribution between octanol (fat-like) and wa-
ter phases. Calculated as the logarithm of the concentration ratio (LogP =
log[octanol]/[water]), it predicts drug absorption and permeability—higher
values (>0) indicate greater fat solubility, while lower values (<0) suggest water
solubility. Ideal drug candidates typically have LogP between 0-3 for optimal
bioavailability. Here is an image of a molecule, please generate an image of a
new similar molecule whose LogP is better.

o
It
LogP (Partition Coefficient) measures a molecule’s solubility in fats versus wa-
ter by quantifying its distribution between octanol (fat-like) and water phases....

Here is an image of a molecule, please generate an image of a new similar
molecule whose LogP is better.

LogP (Partition Coefficient) measures a molecule’s solubility in fats versus
water by quantifying its distribution between octanol (fat-like) and water
phases....Here is an image of a molecule, please generate an image of a new
similar molecule whose LogP is better.

Lo O

LogP (Partition Coefficient) measures a molecule’s solubility in fats versus
water by quantifying its distribution between octanol (fat-like) and water
phases....Here is an image of a molecule, please generate an image of a new
similar molecule whose LogP is better.

\

~ ‘ .
\_/
s !

Here is a new similar
molecule with better
LogP.

“:\O\(/\\\

~

Here is a new similar
molecule with better
LogP.

Loy

Here is a new similar
molecule with better
LogP.

3%@

Here is a new similar
molecule with better
LogP.

Ratatvat

Table 15: Example for img2img task.

F Evaluation Metrics

(1) img2caption: We use BLEU-2/4, ROUGE-
1/2/L, and METEOR to evaluate the quality of
generated captions against reference texts; (2)
img2property: We extract seven molecular proper-
ties from LLM-generated outputs and evaluate the
accuracy using Mean Squared Error (MSE), Mean
Absolute Error (MAE), and Pearson correlation; (3)
img2smiles: We extract SMILES strings from the
LLM outputs and adopt Tanimoto similarity and
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Tanimoto hit 1.0 (tanimoto @1.0) that measures the
percentage of exact matches (similarity = 1.0); (4)
property2img: Generated molecular images are
converted to SMILES via MolScribe (Qian et al.,
2023), from which properties are computed and
evaluated using MSE, MAE, and Pearson correla-
tion. Each model is run five times, and the best
result is reported; (5) img2img: We use Increased
LogP, as well as molecular diversity and novelty
to measure the optimized molecule. Other settings
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Figure 7: Metric bar for different runs of img2caption
task.
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Figure 8: Metric bar for different runs of img2property
task. pc_mw means the Pearson correlation between the
predicted molecule weight and groundtruth and pc_tpsa
means the Pearson correlation between the predicted
topological polar surface area and groundtruth.

are the same as property2img.
The detailed explanations of each metric are as
follows:

* BLEU-N (Bilingual Evaluation Understudy)
is an automatic evaluation metric for machine-
generated text that assesses how closely a can-
didate sentence matches one or more refer-
ence sentences. It uses the modified precision
of n-grams up to length N. It is defined as

N
1
BLEU-N = BP-exp N E logpn |, (5)
n=1

where p,, denotes the modified n-gram pre-
cision for n-grams of size n, and BP is the
brevity penalty, which penalizes short can-
didate sentences to prevent artificially high
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Figure 9: Metric bar for different runs of img2imgtask.
LogP Improve means Increased LogP, which is the in-
crease in LogP of the optimized molecule relative to the
original molecule.
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Figure 10: Metric bar for different runs of img2smiles
task.

scores. The BLEU-N score ranges from 0 to
1, where a higher score indicates better over-
lap with the reference text in terms of n-gram
content. A higher BLEU-N value generally
reflects better fluency and adequacy in the gen-
erated text. In our experimental evaluation,
we use the word_tokenize() function from the
NLTK library (Bird et al., 2009) to do to-
kenization and employ the sentence_bleu()
metric with uniform weights for all n-gram
precision calculations (i.e., equal weights for
1- to 4-gram contributions).

* ROUGE-N (Recall-Oriented Understudy for
Gisting Evaluation) is a recall-based metric
that measures the overlap of n-grams between
a candidate text and one or more reference
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Figure 11: Metric bar for different runs of property2img
task. pc_tpsa means the Pearson correlation between
the predicted topological polar surface area and ground
truth, and pc_rb means the Pearson correlation between
the predicted rotatable bond and ground truth.

texts. It is defined as

ROUGE-N = ZSE{Ref} Zgralmnes

ZSG{Ref} Zgramnes (6)
Countpgecn (gram,,)
Count(gram,,)

where n denotes the length of the n-grams
(e.g., ROUGE-1 for unigrams, ROUGE-2
for bigrams), and Countmaecn(gram,,) is the
number of n-grams in the reference that
also appear in the candidate text. ROUGE-
N values range from O to 1 and a higher
ROUGE-N value indicates better perfor-
mance. In our experimental evaluation, we
employ the rouge_scorer() metric from the
rouge_score (Lin, 2004) library.

* ROUGE-L evaluates the quality of generated
text by measuring the longest common sub-
sequence (LCS) between the candidate and
reference texts. It is defined as

(1 + B?) - Precision - Recall
Recall + 32 - Precision
(N
where Precision = LES(X.Y) and Recall =

|X]
%, with X and Y denoting the candi-

date and reference sequences, respectively.
is typically set to favor recall (6 = 1.2 in com-
mon settings). ROUGE-L scores range from
0 to 1, with higher values indicating better
preservation of the reference’s sequence and
structure.

ROUGE-L =
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* METEOR (Metric for Evaluation of Trans-
lation with Explicit ORdering) is a metric
designed to evaluate the quality of machine-
generated text by aligning it to one or more
reference texts. It is defined as

METEOR = Fjpean - (1 — Penalty),  (8)

where Fiean = gﬁ;ﬁ, with P and R de-
noting unigram precision and recall, respec-
tively. The penalty is a function of the number
of chunks in the alignment, designed to pe-
nalize disordered matches. METEOR scores
range from O to 1, with higher scores indicat-
ing better alignment with the reference text.
In our experimental evaluation, we perform
tokenization using the word_tokenize() func-
tion and employ the METEOR metric (me-
teor_score()), both implemented in the NLTK
library (Bird et al., 2009).

* Mean Squared Error (MSE) measures the
average of the squares of the difference be-
tween the forecasted value and the actual
value. It is defined as

N
1 =~\2
MSE = NZ;(yi—ya O

where N is the size of the test set; y; and 7;
denote the ground truth and predicted score
of the ¢-th data sample in the test set, respec-
tively. MSE value ranges from 0O to positive
infinity. A lower MSE value indicates better
performance.

¢ Mean Absolute Error (MAE) measures the
absolute value of the difference between the

predicted value and the actual value. It is
defined as

N
1 ~
MAE = = Z; i — i,  (10)
1=

where N is the size of the test set; y; and ¥;
denote the ground truth and predicted score of
the i-th data sample in the test set, respectively.
MAE value ranges from 0 to positive infinity.
It emphasizes the ranking order of the predic-
tion instead of the absolute value. A lower
MAE value indicates better performance.

* Pearson Correlation (PC) is defined as the
covariance of the prediction and the ground
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Figure 12: More examples for property2img task.

truth divided by the product of their standard

deviations. For two random variables x and v,

Pearson Correlation is formally defined as
El(z — pa)(y — py)]

PC = — ,
Ox0y

an

In the regression task, suppose there are N
data points in the test set, y; is the ground truth
of the i-th data sample, y; is the prediction for
i-th data, Pearson Correlation becomes

N .

pe — Zimt (Wi =)@ = 1g)
oyoy

_ 1N _

where p, = §>3;,y; and py =

+ Z;V: 1 y; are mean of ground truth and
prediction, respectively. o, = Zfil(y, —
1N 2 _ N =

N Zj:l y))° and o5 = 3l (Vi

+ Zjvzl y;)? are the standard deviations of
ground truth and prediction, respectively. The
value ranges from -1 to 1. A higher Pear-
son correlation value indicates better perfor-
mance.

* Tanimoto similarity is to measure the simi-
larity between two molecules. Tanimoto simi-
larity is also known as the Jaccard coefficient,
i.e., the ratio of their intersection to their union
over two chemical fingerprint vectors.

|bX ﬂby‘

im(X,Y) =
Slm( Y ) |bXUbY‘7

(13)
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where by is the binary fingerprint vector for
the molecule X . Tanimoto distance between
two molecules is defined as one minus Tani-
moto similarity.

Tanimoto-distance(X,Y) = 1 —sim(X,Y),

(14)
Also, given a set of chemical compounds,
we are typically interested in their diversity,
which is defined based on Tanimoto distance.
Specifically, diversity is defined as the aver-
age pairwise Tanimoto distance between the
molecular fingerprints,

1
diversity(2) =1 — —————-
1Z[(12] = 1)
> sim(X,Y),
X,YEZ XAY

15)
where Z is the set of generated molecules to
evaluate.

* Tanimoto@1 is to measures the proportion
of generated molecules that exactly match the
ground-truth molecule in terms of Tanimoto
similarity. Specifically, it computes the ratio
of generated molecules whose Tanimoto sim-
ilarity with the corresponding ground-truth
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Figure 13: More examples for img2img task.

molecule is equal to 1. It is defined as

. 1
Tanimoto@1 = N E 1
1=
I [Tanimoto( /5", fi™¢) = 1],

(16)

where N is the number of generated
molecules, ffen and f{"™¢ are the Morgan fin-
gerprints of the ¢-th generated and ground-
truth molecules, respectively, and I[-] is the
indicator function. The score ranges from 0
to 1, where a higher Tanimoto@1 indicates
better exact matching performance between
generated and reference molecules.

* Increased LogP is to evaluate molecular op-
timization performance. It measures the av-
erage increase in the LogP of molecules after
optimization. For each molecule, the improve-
ment is computed as the difference between
the LogP value of the optimized molecule and
that of the original molecule. The final score
is the mean improvement across all molecule
pairs. It is defined as

N

1
Increased LogP = — Z

N (17)
(LogP(m{™) ~ LogP(m{"™))
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where N is the number of molecule pairs,
m;-mg %' denote the i-th original and
optimized molecules, respectively. A higher
LogP Improvement value indicates a greater
enhancement of the LogP property through
the optimization process.

and m,

Diversity is a metric used to quantify the struc-
tural variety within a set of molecules. It is
defined as the average pairwise Tanimoto dis-
tance between the Morgan fingerprints of the
molecules:

N N
> 2
1:1] 1+1
(1 — Tanimoto(f;, f;)),

Di t
iversity = N( _1

where N is the number of molecules in the
set, and f; and f; are the Morgan fingerprints
of the ¢-th and j-th molecules, respectively.
The Tanimoto similarity measures the over-
lap between two binary fingerprints, and the
distance is computed as 1 — Tanimoto. The
diversity values range from 0 to 1, with higher
values indicating greater chemical diversity.

Novelty evaluates the proportion of generated
molecules that are not present in the training
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Figure 14: Training curve from start to the best check point, we apply GAN loss after training in E,G, and Z for a
period of steps for stability. As shown in the validation loss curve, GAN loss is introduced at 45000 steps and cause
the oscillation of validation loss and finally converge to stable result.

set. It reflects the ability of a generative model
to produce novel chemical structures, rather
than simply memorizing and replicating the
training data. It is defined as

G\ TI
gl

where G denotes the set of generated
molecules, and 7 denotes the set of molecules
in the training set. The numerator counts the
number of molecules in G that are not in 7.
The score ranges from O to 1, with higher val-
ues indicating greater novelty.

Novelty = (19)

Valid % is to evaluate the structural and syn-
tactic validity of model outputs in instruction-
following tasks involving molecule generation.
It measures the proportion of outputs that are
both (1) successfully parsed according to a
predefined structured format (i.e., instruction-
following), and (2) contain syntactically valid
SMILES strings, if any are present. It is de-
fined as
| N
Valid Rate = N Z
i=1
[ [structured(o;) A valid(o;)] ,

(20)
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where N is the total number of model out-
puts, o; is the i-th output, structured(-) checks
whether the output follows the expected struc-
tured format, and valid(-) verifies the syntac-
tic validity of any SMILES strings present in
the output. The score ranges from 0 to 1, with
a higher Valid% indicates better adherence
to the required output format and chemical
validity.

Also, we conduct statistical testing to check if the
improvement is statistically significant.

G Molecular Properties

* MW: Molecular Weight (MW) is the sum
of atomic masses of all atoms in a molecule
(units: g/mol or Da). It influences physico-
chemical properties such as solubility, diffu-
sion rate, and bioavailability. MW should be
below 500 Da for optimal oral bioavailability.

* LogP: Octanol-water Partition Coefficient
(LogP) assesses the solubility and synthetic
accessibility of a chemical compound. The
LogP score of a molecule ranges from —oo to
+00.

* TPSA: Topological Polar Surface Area



(TPSA) quantifies the surface area contributed
by polar atoms, typically oxygen and nitrogen,
including their attached hydrogens. The the-
oretical TPSA ranges from 0 to several hun-
dreds or even thousands of A2 for highly polar
or large biomolecules.

HBD: Hydrogen Bond Donor (HBD) counts
the number of polar functional groups (e.g.,
-OH, -NH) in a molecule that can donate hy-
drogen atoms to form hydrogen bonds.

HBA: Hydrogen Bond Acceptor (HBA)
counts the number of atoms (e.g., O, N, S,
F) in a molecule capable of accepting hydro-
gen bonds via lone electron pairs. Typical
small-molecule drugs containing 2—10 HBA
sites.

RB: Rotatable Bond (RB) counts the number
of non-ring single bonds (e.g., C-C, C-O, C-N)
in a molecule that allow free rotation at room
temperature. Optimal drug-like compounds
typically contain <10 rotatable bonds (RB).

QED: Quantitative Estimate of Drug-likeness
(QED) is an integrative score to evaluate com-
pounds’ favorability to become a drug. The
QED value ranges from 0 to 1. A higher value
is more desirable.

H Implementation Details

For the first training stage, Mol-VQGAN is trained
on 8 NVIDIA A800x80G GPUs for two epochs.
The batch size is set to 16 and the base learning
rate is set to 4.5e-06. We use Adam (Kingma and
Ba, 2014) as optimizer and Lycc + A Lperceptual
as monitor to validate the model and save the best
checkpoint during 2-epoch training. For the sec-
ond training stage, ChemMLLM is trained on 8
NVIDIA A800x80G GPUs for three epochs. The
batch size is set to be 16, the base learning rate
is set to be 2e-5 and z-loss weight is set to be
le-5. We use AdamW (Loshchilov and Hutter,
2017) as optimizer and employ mixed-precision
training, utilizing brain floating point 16 precision
(bf16) (Kalamkar et al., 2019) for forward prop-
agation and 32-bit floating point precision (fp32)
for backward propagation to balance the training
efficiency and stability. To handle distributed train-
ing, we apply PyTorch Fully Shared Data Parallel
(FSDP) (Zhao et al., 2023) strategy. We train three
variants of ChemMLLM for different tasks.
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Mol-VQGAN Training For Mol-VQGAN train-
ing code, we use the official implementation code
of original VQGAN (Esser et al., 2021). Specifi-
cally, we utilize the synthesized image datasets to
let the original Chameleon VQGAN learn how to
understand and generate molecule images. We sam-
ple 1,000,000 molecule images from PubChem syn-
thesized by RDKit (Landrum et al., 2006) and com-
bine them with all images synthesized in 5 down-
stream tasks as training dataset for Mol-VQGAN.
All parameters of Encoder, Decoder and codebook
of VQGAN are trained. We first train VQGAN
on this 1 million-level molecule image dataset for
two epochs and save the best check point according
t0 Lrec + M Lperceptual- After the initial training,
we find that it can not reconstruct image well on
the dataset with less data size like img2caption
dataset, so we do continuous training based on the
best checkpoint using small-size datasets. Specifi-
cally, we continue training the 1-million best check
point on img2caption images for five epochs and
save the best checkpoint. Finally, we get the well-
trained Mol-VQGAN to tokenize molecule im-
ages.The original VQGAN will result in unclear
and distorted images when encoding and decod-
ing molecule images. After training, Mol-VQGAN
can encode and decode molecule image almost the
same with original image. Several examples are
shown in Figure 15. The validation curve from start
to the best checkpoint is shown in Figure 14.
ChemMLLM Supervised FineTuning Training
For ChemMLLM training code, we utilize Lumina-
mGPT framework (Liu et al., 2024). We train three
variants ChemMLLM ChemMLLM-pro2img and
ChemMLLM-img2img.

For ChemMLLM, we train it on img2caption,
img2property, img2smiles and property2img
datasets.  Apart from the four datasets, we
also train it on SMILES molecule image gener-
ation (smiles2img) and text based drug design
dataset (caption2img), which is the inverse task of
img2smiles and img2caption. smiles2img requires
model to receive a SMILES and output the corre-
sponding image and caption2img ask model to out-
put molecule image according to molecule caption.
We train ChemMLLM on the six datasets for three
epochs; For property2img task, we train and eval-
uate ChemMLLM-pro2img. We find that directly
training the model on raw data can not achieve good
performance, so we do data augmentation by rotat-
ing images by 90°,180°, and 270° so as to generate
augmented data that is four times the size of the
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Figure 15: Examples of origin VQGAN and Mol-VQGAN. The origin images is shown in the first row. As shown in
the second row, the origin VQGAN can not encode and decode molecule image clearly and accurately, resulting in
distorted atoms and bonds which are hard to distinguish. As shown in the third row, our well-trained Mol-VQGAN
can encode and decode molecule images with clear atoms and bonds, which is almost the same as the origin
molecule images.

Original dataset We train ChemMLLM—prOZImg Settings ChemMLLM  ChemMLLM-pro2img ChemMLLM-img2img
z-loss weight le-05 le-05 le-05

on the augmented dataset for two epochs; For warmup epochs 0.01 0.01 0.01

. . . learni 2e-05 2e-05 2e-05

img2img task, we train and evaluate ChemMLLM- weight docay ol o1 o1

: 4 LI : o drop rate 0.05 0.05 0.05

img2img. we train it on img2img dataset for two ol sl I Sden

epochs. The training hyper—parameters primarily GPUs for training  8xA800 (80G) 8x A800 (80G) 4x A800 (80G)
GPUs hours(h) 65 30.6 254

follow Lumina-mGPT (Liu et al., 2024).
The details of data information for training dif-  Table 17: Detailed training settings for training different

ferent ChemMLLM variants are shown in Table 16. ~ ChemMLLM variants.

The details of training settings for training different

ChemMLLM variants are shown in Table 17.

fectiveness of the generated molecular images is as-

Model task # Training  # Test . .
£ sessed through the Pearson correlation coefficients
img2caption 69,799 3,300 .
ChemMLLM img2property 95000 5,000 between the predicted and ground truth values of

img2smiles 95,000 5,000 several molecular properties, including MW, LogP,
property2img 95,000 5,000 TPSA, Hbd, Hba, Rb, and QED. we use a subset of

smiles2img 95,000 5,000 .
caption2img 72143 3301 200 sanpples of he property2img task and do 5-shot
evaluation.

ChemMLLM-pro2img property2img 380,000 20,000

ChemMLLM-img2img img2img 157,673 17,520 The result is shown in Table 18. When both
fine-tuned VQGAN and data augmentation are em-
Table 16: Detailed dataset information for training dif- p]oyed, the model achieves the highest correlation
ferent ChemMLLM variants. scores across all evaluated properties. Notably,
the correlations for MW (0.71), TPSA (0.71), Hba
(0.66), and Rb (0.62) indicate that the generated im-
ages capture molecular structure and features that
We conduct ablation study on property2img task  align well with the original textual descriptions.
with a focus on evaluating the impact of Mol-  This demonstrates the efficacy of our approach in
VQGAN training and data augmentation. The ef-  enhancing the semantic fidelity and chemical rele-

I Ablation Study
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data augmentation VQGAN MW Pearson (1) LogP Pearson (f) TPSA Pearson (1) Hbd Pearson (1)

Hba Pearson (1)

Rb Pearson (1)

QED Pearson (1)

v v 0.71 0.42 0.71 0.45
X v 0.46 0.04 0.40 0.08
X X 0.55 0.06 -0.05 0.06

0.66
0.53
-0.06

0.62
0.17
0.31

0.34
0.26
0.35

Table 18: Ablation study.

vance of the generated visual representations. Re-
moving data augmentation while retaining the fine-
tuned VQGAN leads to a significant drop in per-
formance, especially for properties such as LogP
(reduced to 0.04) and TPSA (0.40), highlighting
the importance of data augmentation in improv-
ing the model’s generalization and robustness dur-
ing training. The performance further deteriorates
when both fine-tuning and data augmentation are
removed. In this setting, the model yields the low-
est correlations, with some properties (e.g., TPSA
at -0.05 and Hba at -0.06) exhibiting negative corre-
lation, suggesting that the general VQGAN trained
on natural images fails to preserve critical molecu-
lar features necessary for reliable property predic-
tion.

In summary, these results clearly demonstrate
that both fine-tuning Mol-VQGAN and applying
data augmentation play complementary and cru-
cial roles in enhancing the quality and accuracy of
chemical multimodal tasks.
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