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Abstract001

Multimodal large language models (MLLMs)002
have made impressive progress in many ap-003
plications in recent years. However, chemi-004
cal MLLMs that can handle cross-modal un-005
derstanding and generation remain underex-006
plored. To fill this gap, in this paper, we pro-007
pose ChemMLLM, a unified chemical multi-008
modal large language model for molecule un-009
derstanding and generation. Also, we design010
five multimodal tasks across text, molecular011
SMILES strings, and image, and curate the012
datasets. We benchmark ChemMLLM against013
a range of general leading MLLMs and Chem-014
ical LLMs on these tasks. Experimental re-015
sults show that ChemMLLM achieves supe-016
rior performance across all evaluated tasks.017
For example, in molecule image optimiza-018
tion task, ChemMLLM outperforms the best019
baseline (GPT-4o) by 118.9% (4.27 vs 1.95020
property improvement). The code is pub-021
licly available at https://anonymous.4open.022
science/r/ChemMLLM-0D98/.023

1 Introduction024

Multimodal large language models (MLLMs) have025

shown strong abilities in understanding and gener-026

ating content across text, images, and audio (Ope-027

nAI, 2024; Sun et al., 2024; Team, 2024; Liu et al.,028

2024; Zhou et al., 2024; Xie et al., 2024; Wang029

et al., 2024), enabling more natural human–AI030

interaction. Chemistry is inherently multimodal,031

involving textual descriptions, structured formats032

like SMILES (Weininger, 1988)1, and molecular033

images. Recent works have demonstrated initial034

success in adapting MLLMs for chemical appli-035

cations such as property prediction and reaction036

analysis (Cao et al., 2023; Zhang et al., 2024b; Luo037

1A SMILES (Simplified Molecular Input Line Entry Sys-
tem) string is a compact, text-based representation of a
molecule’s structure that encodes its atomic composition and
connectivity in a linear format.

et al., 2024; Li et al., 2025). However, these mod- 038

els largely focus on understanding tasks and treat 039

images only as input. In contrast, molecular visu- 040

als are central to how chemists communicate and 041

reason. Enabling image generation from chemical 042

language or structure would greatly expand the ex- 043

pressiveness of MLLMs in chemistry (Kosenkov 044

and Kosenkov, 2021). Yet, an integrated Chemical 045

MLLM that supports both multimodal understand- 046

ing and generation for chemistry remains lacking. 047

The challenges to build such a model are as fol- 048

lows: (1) Vision-based chemistry tasks and datasets 049

remain underexplored. (2) Specificity of molecule 050

image. Unlike natural images, molecule images 051

are sparse, containing large areas of empty space, 052

and are composed strictly of straight lines. General 053

MLLMs result in unclear and distorted molecules 054

(Figure 15). (3) Challenge for selecting an effec- 055

tive framework for chemical MLLM to seamlessly 056

fuse diverse modalities, including discrete SMILES 057

string/text, and continuous molecule images. 058

To address these issues, we propose ChemM- 059

LLM, a chemical multimodal large language model 060

that understands and generates molecules in a uni- 061

fied framework. Specifically, to handle three chal- 062

lenges above, (1) we identify five multimodal chem- 063

istry tasks with three modalities (text, SMILES, 064

image), which contain both generation and compre- 065

hension tasks; (2) we finetune molecule image- 066

level Vector Quantized Generative Adversarial 067

Network (VQGAN) to bridge the gap between 068

molecule images and natural images; (3) we in- 069

troduce the “Image Tokenizer-LLM-Image De- 070

tokenizer” architecture into multimodal chemical 071

tasks to fuse different modalities in early stages and 072

enable models to generate images directly. Also, 073

we design a two-stage training strategy and prove 074

its effectiveness empirically. 075

Contribution. For ease of exposition, we summa- 076

rize our main contribution as: 077

1
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Figure 1: Overall architecture of ChemMLLM. (a) Image tokenizer and de-tokenizer. The image tokenizer employs
CNN to extract spatial feature maps, where each nz-dimensional spatial code is quantized into a discrete latent code
via vector quantization (VQ). The resulting codebook indices serve as the final image tokens. Image de-tokenizer
uses CNN to reconstruct image from discrete feature map. Then, a patch-based discriminator predicts whether the
patch is fake (f) or real (r) (Section 3.1); (b) SMILES tokenizer and de-tokenizer. SMILES tokenization is consistent
with text, and is mapped into a token sequence via text tokenizer; (c) ChemMLLM Training; (d) ChemMLLM
Inference; (e) two-stage training paradigm for ChemMLLM (Section 3.3).

• A chemical multimodal LLM understanding078

and generating molecule in a unified frame-079

work. We propose and implement ChemMLLM,080

the first unified model to understand and generate081

molecules in text, SMILES, and image modality082

to the best of our knowledge (Section 3).083

• A multimodal chemical dataset suite. We de-084

velop five new datasets to train and evaluate085

the chemical multimodal capability of MLLMs,086

which encompass a diverse spectrum of multi-087

modal processing (Section 4).088

• A variety of reliable evaluation. We bench-089

mark the performance of different models on our090

proposed five tasks and ChemMLLM achieves091

dominating performance. For example, in092

molecule image optimization (image-to-image)093

tasks, ChemMLLM outperforms the best base- 094

line (GPT-4o) by 118.9%, achieving a logP (op- 095

timizing property) increase of 4.27 compared to 096

1.95 (best baseline, GPT-4o) (Section 5). 097

2 Related Work 098

Multimodal LLM (MLLM) With the advance- 099

ment of large language models and multimodal 100

learning, numerous high-performing multimodal 101

large language models (MLLMs) have recently 102

emerged. Notable MLLMs include GPT-4o (Ope- 103

nAI, 2024), which extends GPT-4V (OpenAI, 104

2023) to understand and generate across differ- 105

ent modalities, including text, image, and audio. 106

Emu-3 (Wang et al., 2024) unifies vision under- 107

standing and generation via discrete token model- 108
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Model BLEU-2 (↑) BLEU-4 (↑) ROUGE-1 (↑) ROUGE-2 (↑) ROUGE-L (↑) METEOR (↑)

Qwen-VL-Chat 0.09 ±0.001 0.01 ±0.0009 0.32 ±0.003 0.07 ±0.001 0.22 ±0.002 0.19 ±0.001
InternVL-Chat-v1.5 0.04±0.0008 0.001 ±0.0002 0.38±0.003 0.07 ±0.001 0.26 ±0.002 0.19±0.001
LLaVA-v1.5-7B 0.08 ±0.001 0.004 ±0.0004 0.33 ±0.002 0.07 ±0.001 0.23 ±0.002 0.20 ±0.001
GPT-4o 0.16 ±0.003 0.07±0.002 0.28±0.005 0.13±0.003 0.23±0.004 0.22±0.004

ChemVLM-8B 0.15 ±0.004 0.08 ±0.003 0.28±0.006 0.13 ±0.003 0.23 ±0.005 0.23 ±0.005
ChemMLLM (ours) 0.33 ±0.005* 0.21±0.005* 0.50±0.005* 0.31±0.006* 0.43±0.005* 0.43±0.005*

Table 1: Results on img2caption task (best: bold, second best: underlined, *: significantly better (statistically)).

ing. Chameleon (Team, 2024) aligns modalities at109

the token level for flexible multimodal generation,110

while LlamaGen (Sun et al., 2024) treats images111

as language-like sequences for scalable autoregres-112

sive image generation. Lumina-mGPT (Liu et al.,113

2024) trains a family of models to generate flex-114

ible photorealistic images from text descriptions115

based on Chameleon. Transfusion (Zhou et al.,116

2024) and Show-o (Xie et al., 2024) combine diffu-117

sion and transformer for multimodal understanding118

and generation. For vision understanding, well-119

known models include LLaVA (Liu et al., 2023),120

BLIP-2 (Li et al., 2023), Qwen-VL-Chat (Bai121

et al., 2023), InternVL-Chat (Chen et al., 2023),122

MiniGPT-4 (Zhu et al., 2023), Gemini (Team et al.,123

2023), Flamingo (Alayrac et al., 2022) and Open-124

Flamingo (Awadalla et al., 2023). Although cur-125

rent MLLMs perform well across modalities, these126

models struggle with chemical tasks due to a mis-127

alignment between general and domain-specific128

knowledge.129

Chemical LLM MLLMs have also exhibited130

strong potential in addressing chemistry-related131

tasks, particularly in bridging the modality gap be-132

tween textual descriptions and molecular represen-133

tations. Concretely, Instruct-Mol (Cao et al., 2023)134

and MV-Mol (Luo et al., 2024) utilize LLaVA’s ar-135

chitecture (Liu et al., 2023) and Q-former (Li et al.,136

2023) to align molecular structure and text modal-137

ity, respectively. ChemLLM (Zhang et al., 2024a)138

uses a high-quality chemical dataset to fine-tune139

InternLM2 (Cai et al., 2024). ChemVLM (Li et al.,140

2025) extends ChemLLM (Zhang et al., 2024a) to141

understand images by adopting a projector-based142

method to align vision information and text in-143

formation. UniMoT (Zhang et al., 2024b) uses144

a molecule tokenizer to align the graph modality145

molecule with text. Despite progress in chemical146

tasks, existing models can not generate molecu-147

lar images, limiting their utility in more intuitive,148

visual forms of interaction. To fill this gap, We pro-149

pose ChemMLLM, a unified framework that under-150

stands and generates molecules in text, SMILES, 151

and image formats. 152

3 Method 153

Overview. Our framework uses an image tokenizer 154

to transfer images into discrete tokens, aligning 155

with texts and molecule’s SMILES strings at the to- 156

ken level, known as “Image Tokenizer-LLM-Image 157

De-tokenizer” architecture (Team, 2024). First, 158

Section 3.1 discusses the molecule image tokenizer. 159

Then, Section 3.2 describes how to combine im- 160

ages, texts and SMILES strings. Finally, the train- 161

ing strategy is discussed in Section 3.3. The whole 162

pipeline is shown in Figure 1. For ease of under- 163

standing, we list key mathematical notations in 164

Table 10 in Appendix. 165

3.1 Mol-VQGAN for Molecule Image 166

Generation 167

Following Chameleon (Team, 2024), to enable mul- 168

timodal information alignment in the early stage, 169

images need to be discretized into token sequences 170

similar to text. To proceed it, we train Vector 171

Quantized Generative Adversarial Network (VQ- 172

GAN) (Esser et al., 2021) on molecule images, 173

known as Mol-VQGAN. Mol-VQGAN compresses 174

images into a discrete latent space, which aligns 175

well with the sequential nature of text modeling in 176

large language models. Specifically, Mol-VQGAN 177

uses Vector Quantized Variational Auto-Encoder 178

(VQVAE) (Van Den Oord et al., 2017) as the gen- 179

erator and patch-based discriminator (Isola et al., 180

2017). VQVAE compresses images into discrete 181

spaces and reconstructs images from that space. 182

Mol-VQGAN adds a discriminator and perceptual 183

loss to VQVAE to keep good perceptual quality 184

and improve the performance. Formally, Mol- 185

VQGAN takes an image x ∈ RH×W×3 (H/W 186

are the height/width of the input image), and trans- 187

fers it into discrete representations zq by encod- 188

ing ẑ ∈ Rh×w×nz = E(x) (h/w/nz are the 189

height/width/channels of the feature map), and find- 190

ing the closest codebook entry for each spatial code 191
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MW LogP TPSA

Method Pearson (↑) MSE (↓) MAE (↓) Pearson (↑) MSE (↓) MAE (↓) Pearson (↑) MSE (↓) MAE (↓) valid%(↑)

Qwen-VL-Chat 0.78 ±0.02 7073.3 ±858.2 58.0 ±1.8 0.14 ±0.02 4.4 ±0.46 1.4 ±0.04 0.19 ±0.02 >1e+4 ±563.6 82.8 ±1.9 99.3%
InternVL-Chat-v1.5 0.59 ±0.02 >1e+4 ±1595.5 83.6±3.6 0.04±0.05 9.2±0.62 2.3±0.08 0.29±0.03 2158.8±432.6 28.7 ±1.5 55.0%
LLaVA-v1.5-7B 0.36 ±0.08 >3e+4±5078.6 115.7±6.9 -0.003±0.05 5.1±1.0 1.6±0.08 0.01±0.04 >5e+4± > 3e+ 4 99.1±11.9 35.8%

ChemVLM-8B 0.84 ±0.02 9573.4 ±1992.9 56.9 ±4.5 0.38 ±0.05 4.9 ±0.58 1.6 ±0.08 0.26 ±0.06 5332.0 ±747.5 53.66 ±2.7 31.3%
ChemMLLM (ours) 0.97±0.004* 789.7±162.2* 16.1±0.72* 0.92±0.01* 0.70±0.14* 0.52±0.02* 0.97±0.005* 152.6±39.2* 6.0±0.33* 99.6%

Table 2: Results on img2property task: MW, LogP and TPSA (best, 2nd best, *: significantly better (statistically)).

Hbd Hba Rb QED

Method Pearson (↑) MSE (↓) MAE (↓) Pearson (↑) MSE (↓) MAE (↓) Pearson (↑) MSE (↓) MAE (↓) Pearson (↑) MSE (↓) MAE (↓)

Qwen-VL-Chat -0.02 ±0.008 4.8 ±0.75 1.4±0.05 0.05±0.01 30.5±1.2 4.9±0.08 0.19±0.1 145.4±30.8 6.8±0.31 0±0.0 - -
InternVL-Chat-v1.5 0.03±0.05 9.9±0.89 2.2±0.09 0.22±0.04 10.2±0.85 2.4±0.08 0.04±0.04 43.6±4.3 4.8±0.19 0.003±0.03 4.0±3.2 0.4±0.08
LLaVA-v1.5-7B 0.004 ±0.05 53.3±27.3 3.7±0.33 0.04±0.05 23.7±5.4 2.9±0.19 0.03 ±0.04 39.9±10.4 3.8±0.26 -0.11±0.08 >1e+5± > 1e+ 5 24.5±18.6

ChemVLM-8B 0.49 ±0.09 4.2 ±0.85 1.3 ±0.08 0.32 ±0.07 27.2 ±1.95 4.5 ±0.14 0.10 ±0.06 45.8 ±5.02 5.5 ±0.22 -0.003 ±0.06 0.24 ±0.02 0.37 ±0.01
ChemMLLM (ours) 0.96±0.004* 0.18±0.02* 0.13±0.01* 0.94±0.007* 0.79±0.12* 0.44±0.02* 0.94±0.01* 1.6±0.33* 0.59±0.03* 0.91±0.006* 0.008±0.0004* 0.06±0.002*

Table 3: Results on img2property task: Hbd, Hba, Rb, and QED (best, 2nd best, *: significantly better (statistically)).

ẑij ∈ Rnz (also known as vector quantization (VQ)192

process, denoted q(·)):193

zq = q(ẑ) =
(
arg min

zk∈Z
∥ẑij − zk∥

)
∈ Rh×w×nz ,

(1)194

where Z is codebook, a set of learnable vectors, and195

zk ∈ Z = {zi}ni=1 ⊂ Rnz . Then, Mol-VQGAN196

reconstructs image x̂ ∈ RH×W×3 from zq:197

x̂ = G(zq) = G(q(E(x))). (2)198

The discretization and reconstruction process is199

illustrated in Figure 1(a).200

The VQGAN’s objective function is:201

min
E,G,Z

max
D

[
Lvqvae(E,G,Z)

+ λ1Lperceptual(E,G,Z)

+ λ2LGAN ({E,G,Z}, D)
]
,

(3)202

where (1) the first term Lvqvae(E,G,Z) = ||x −203

G(ẑ−sg(ẑ−zq))||22+||sg[ẑ]−zq||22+||sg[zq]−ẑ||22204

is VQVAE loss, where Lrec = ||x−G(ẑ− sg(ẑ−205

zq))||22 is reconstruction loss. Since the quantiza-206

tion process is non-differentiable, a stop-gradient207

operation sg[·] is used so that the forward pass op-208

erates on quantized vectors, whereas the backward209

pass leverages continuous vectors for gradient com-210

putation (Van Den Oord et al., 2017); (2) the second211

term Lperceptual(E,G,Z) = ||P (x) − P (G(ẑ −212

sg(ẑ − zq)))||22 is perceptual loss, P denotes a213

perceptual model like Learned Perceptual Image214

Patch Similarity (LPIPS) (Zhang et al., 2018),215

which is used to extract the high-level semantic fea-216

tures; (3) the third term LGAN ({E,G,Z}, D) =217

logD(x)+log(1−D(ẑ−sg(ẑ−zq))) is GAN loss,218

D is a patch-based discriminator (Isola et al., 2017)219

aiming to differentiate original and reconstructed220

images. λ1 is a hyperparameter and λ2 is an adap- 221

tive weight computed dynamically to balance the 222

weight of LGAN and stabilize training, following 223

VQGAN (Esser et al., 2021). 224

3.2 ChemMLLM 225

Chemical molecules are typically encoded in the 226

format of Simplified Molecular Input Line Entry 227

System (SMILES) (Weininger, 1988), a compact 228

ASCII string, serving as a distinct modality in com- 229

putational chemistry (Anderson et al., 1987). In 230

ChemMLLM, SMILES tokenization is the same as 231

the text. Specifically, SMILES is mapped into a to- 232

ken sequence via Chaemelon (Team, 2024) text to- 233

kenizer trained based on Byte Pair Encoding (BPE) 234

algorithm (Sennrich et al., 2015). The process is 235

shown in Figure 1(b). 236

After training the Mol-VQGAN, ChemMLLM 237

uses it as image tokenizer to align image and text at 238

token level, unifying the training and inference for 239

image and text by maximizing the standard next- 240

token prediction cross-entropy loss: 241

LLLM =
L∑
i=1

log pθ(si|s1, ..., si−1)

+ λ
∑
k

(log

V∑
j=1

exp(zk,j))
2,

(4) 242

where λ is a hyper-parameter; in the first term, L 243

is the length of total sequence tokens; si ∈ S = 244

{SI , ST }. SI is the image tokens sequence tok- 245

enized by the image tokenizer, and ST is the tex- 246

t/SMILES token sequence tokenized by the text 247

tokenizer. The second term is z-loss, a regulariza- 248

tion term to mitigate the problem of logit shift in 249

the final softmax and stabilize training (Chowdhery 250
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MW LogP TPSA

Method Pearson (↑) MSE (↓) MAE (↓) Pearson (↑) MSE (↓) MAE (↓) Pearson (↑) MSE (↓) MAE (↓) valid%(↑)

InternVL-Chat-v1.5 0.04±0.05 > 1e+ 5± > 1e+ 5 210.5±29.4 -0.02±0.11 23.4±9.3 2.96±0.31 0.04±0.11 > 1e+ 4± 6205.6 58.9±8.1 75.0%
LLaVA-v1.5-7B 0.07±0.27 > 2e+ 6± > 9e+ 5 894.9±285.0 -0.52±0.16 1104.4±522.3 18.0±6.7 0.48 ±0.27 > 1e+ 5± > 1e+ 5 146.3±88.5 8.5%
GPT-4o 0.77±0.04 7633.2±1954.0 55.7±4.7* 0.48±0.07 5.7±0.87 1.7±0.11 0.69±0.04 1209.2±211.1 24.3±1.7 99.0%

ChemLLM-7B-Chat -0.25±0.08 > 7e+ 4± > 1e+ 4 244.8±16.2 0.0005±0.05 10.0±1.2 2.7±0.19 -0.35±0.09 7666.0±937.2 80.6±4.3 35.0%
ChemVLM-8B 0.14±0.15 > 2e+ 5± > 1e+ 5 197.39±30.9 0.08±0.08 9.0±1.5 2.2±0.14 0.22±0.22 > 2e+ 4± > 2e+ 4 62.5±11.0 100.0%
ChemMLLM (ours) 0.71±0.05 > 3e+ 4± > 1e+ 4 119.5±12.1 0.42±0.05 13.2±9.0 1.8±0.26 0.71±0.05 1191.6±183.6 26.5±1.91 65.5%

Table 4: Results on property2img task: MW, LogP and TPSA (best, 2nd best, *: significantly better (statistically)).

Hbd Hba Rb QED

Method Pearson (↑) MSE (↓) MAE (↓) Pearson (↑) MSE (↓) MAE (↓) Pearson (↑) MSE (↓) MAE (↓) Pearson (↑) MSE (↓) MAE (↓)

InternVL-Chat-v1.5 -0.1±0.08 7.3±3.8 1.5±0.18 0.09±0.08 55.3±31.1 3.4±0.52 0.06±0.08 44.9±15.5 4.3±0.41 0.07±0.08 0.09±0.009 0.24±0.01
LLaVA-v1.5-7B 0.0±0.0 - - 0.44±0.27 529.7±495.4 9.3±5.0 -0.24±0.26 5789.7±3515.2 37.5±15.7 0.11±0.24 0.10±0.03 0.25±0.04
GPT-4o 0.58±0.07 1.8±0.35 0.86±0.07 0.57±0.07 6.2±1.0 1.7±0.12 0.45±0.07 11.9±2.1 2.4±0.17 0.59±0.04* 0.03±0.003 0.15±0.008

ChemLLM-7B-Chat -0.23±0.07 3.4±0.82 1.5±0.14 -0.22±0.06 30.3±4.3 4.9±0.31 -0.22±0.07 46.9±6.5 5.9±0.43 -0.07±0.03 0.07±0.009 0.24±0.01
ChemVLM-8B 0.47±0.30 6.0±0.99 1.7±0.12 0.02±0.13 75.6±58.4 3.49±0.56 0.44±0.29 25.8±4.3 3.7±0.24 0.10±0.06 0.08±0.007 0.24±0.01
ChemMLLM (ours) 0.45±0.08 1.5±0.32 0.83±0.08 0.66±0.06 5.8±0.84 1.8±0.13 0.62±0.05* 17.3±8.1 2.4±0.29 0.34±0.08 0.08±0.009 0.24±0.01

Table 5: Results on property2img Task: Hbd, Hba, Rb, and QED (best, 2nd best, *: significantly better).

et al., 2023), where zk,j denotes the logit in the last251

layer, V denotes the size of the vocabulary.252

Specifically, ChemMLLM adopts Chameleon253

VQGAN as the image tokenizer/de-tokenizer and254

Chameleon-7B as the language model. The image255

tokenizer takes images of 256×256 resolution as in-256

put. Simultaneously, text and SMILES information257

passes through the text tokenizer to be converted to258

text tokens. The text, SMILES and image tokens259

are then concatenated to form a unified token se-260

quence to feed into the LLM during training and261

inference.262

3.3 Training263

ChemMLLM’s training can be divided into two264

stages: (i) Mol-VQGAN training and (ii) ChemM-265

LLM supervised fine-tuning (SFT) training, as266

shown in Figure 1(e).267

(i) Mol-VQGAN training. The original268

Chameleon VQGAN is only trained on the natural269

image dataset and can not discrete and reconstruct270

molecule images well. So, the first stage focuses271

on improving VQGAN’s performance in encoding272

and decoding molecule images. Concretely, we273

use the well-trained VQGAN (trained on natural274

images) as the initialization and then fine-tune it275

on molecule image datasets.276

(ii) ChemMLLM Supervised Fine-Tuning Train-277

ing. In the second stage, we freeze the Mol-278

VQGAN and only finetune the language model on 5279

downstream tasks. We utilize Lumina-mGPT (Liu280

et al., 2024) as training framework to train our281

ChemMLLM and uses Chameleon-7B as the base282

model. The weight related to the image tokens283

in the last layer will first be initialized as zero284

during finetuning. LLM uses the output of Mol-285

VQGAN as finetuning data, i.e., the data is first 286

pre-tokenized by Mol-VQGAN and text tokenizer 287

into token sequences and then fed into LLM. 288

Task Input Output Source # train/test

molecule image
captioning (img2caption)

image
+text text chebi-20 (Edwards et al., 2022)

mol-instruct (Fang et al., 2023) 70K/3K

molecule image property
prediction (img2property)

image
+text text PubChem (Kim et al., 2021) 95K/5K

image-to-SMILES
conversion (img2smiles)

image
+text SMILES PubChem (Kim et al., 2021) 95K/5K

controllable multi-objective
molecule image design

(property2img)
text image PubChem (Kim et al., 2021) 95K/5K

molecule image
optimization (img2img)

image
+text image TDC (Huang et al., 2021) 157K/17K

Table 6: Tasks and datasets.

4 Tasks and Data Curation 289

In this paper, we design five vision-based chemistry 290

research tasks, defined as follows. 291

(1) Molecule image captioning (img2caption) is 292

an image-to-text task, where the models are ex- 293

pected to generate a caption concerning the source, 294

functionality, structure feature and usage for each 295

molecule image. This image-to-caption task re- 296

quires models to translate molecule images into 297

natural language descriptions, which is a process 298

mirroring how chemists annotate experimental data. 299

Examples for this task are shown in Table 11. 300

(2) Molecule image property prediction 301

(img2property) is an image-to-text task, where 302

models are expected to generate the value of seven 303

different important properties for each molecule 304

image, including molecule weight (MW), Partition 305

Coefficient (P) of a solute between octanol and 306

water (LogP), Topological Polar Surface Area 307

(TPSA), Hydrogen Bond Donor (Hbd), Hydrogen 308

Bond Acceptor (Hba), Rotatable Bond (Rb), and 309

Quantitative Estimate of Drug-likeness (QED). 310

More details for the properties can be found in 311

5



Model domain architecture txt2txt img2txt txt2img img2img

Qwen-VL-Chat general text tokenizer, vision encoder ✓ ✓ × ×
InternVL-Chat-v1.5 general text tokenizer, vision encoder ✓ ✓ × ×
LLaVA-v1.5-7B general text tokenizer, vision encoder ✓ ✓ × ×
GPT-4o general close-sourced ✓ ✓ ✓ ✓

ChemLLM-7B-Chat chemistry text tokenizer ✓ × × ×
ChemVLM-8B chemistry text tokenizer, vision encoder ✓ ✓ × ×
ChemMLLM (ours) chemistry text tokenizer, vision tokenizer/de-tokenizer ✓ ✓ ✓ ✓

Table 7: Architectures and capabilities of MLLMs and Chemical LLMs approaches.

Appendix G. This image-to-property prediction312

task evaluates a model’s ability to infer key chemi-313

cal properties directly from 2D molecular images,314

enabling researchers to extract actionable insights315

from molecular images without specialized316

software, which could accelerate high-throughput317

screening in drug/material design (Lu et al., 2021).318

Table 12 shows some examples.319

(3) Image-to-SMILES conversion (img2smiles)320

is a fundamental chemistry task, where models are321

expected to recognize the SMILES in each molecu-322

lar image. The image-to-SMILES translation task323

challenges models to convert 2D molecular images324

into SMILES strings, requiring precise recognition325

of atoms, bonds, rings, and stereochemistry. Exam-326

ples for this task are shown in Table 13.327

(4) Controllable multi-objective molecule image328

design (property2img) is the inverse problem of329

molecule image property prediction and is a text-to-330

image task, where models are expected to generate331

the image of a molecule conditioned on target prop-332

erties. It is the core of molecule design (Du et al.,333

2022). The challenge lies in simultaneously opti-334

mizing multiple property constraints while main-335

taining chemical validity. Examples for this task336

are shown in Table 14.337

(5) Molecule image optimization (img2img) is an338

image-to-image task, where models take a molec-339

ular structure with less desirable molecular prop-340

erties (e.g., LogP) as input and generate a similar341

molecular structure with more desirable properties342

while preserving desired chemical properties. It343

imitates the process of lead optimization, a funda-344

mental problem in drug discovery (Huang et al.,345

2021; Fu et al., 2020). Examples for this task are346

shown in Table 15.347

4.1 Data Curation348

We employ RDKit (Landrum et al., 2006) to con-349

vert the original SMILES strings into molecular350

images across all five tasks. We primarily follow351

the methodology of SketchMol (Wang et al., 2025)352

and ChemVLM (Li et al., 2025) for data curation 353

and diversity natural language templates synthesis. 354

The input/output modalities, raw data sources, and 355

sizes of training/test sets for all tasks are shown 356

in Table 6. Further details on data curation are 357

provided in Appendix A. 358

5 Experiment 359

5.1 Experimental Setup 360

Baseline Methods cover both general multimodal 361

LLM and chemical LLM. For general-domain 362

multimodal LLM, we chose Qwen-VL-Chat (Bai 363

et al., 2023), InternVL-Chat-v1.5 (Chen et al., 364

2023), LLaVA-v1.5-7B (Liu et al., 2023) and GPT- 365

4o (OpenAI, 2024). For chemical LLM, we chose 366

ChemLLM-7B-Chat (Zhang et al., 2024a) and 367

ChemVLM-8B (Li et al., 2025). We compare their 368

capabilities in Table 7. Please refer to Appendix D 369

for more descriptions. 370

Evaluation metrics and implementation de- 371

tails are elaborated in Appendix F and H, 372

respectively. The code is publicly avail- 373

able at https://anonymous.4open.science/r/ 374

ChemMLLM-0D98/. 375

5.2 Result 376

Molecule image captioning (img2caption). We 377

compare our model with various multimodal LLMs 378

(MLLMs) including Qwen-VL-Chat (Bai et al., 379

2023), InternVL-Chat-v1.5 (Chen et al., 2023), 380

LLaVA-v1.5-7B (Liu et al., 2023), GPT-4o (Ope- 381

nAI, 2024), ChemVLM-8B (Li et al., 2025). The 382

evaluation results are shown in Table 1. Our model 383

exhibits strong performance on this task, outper- 384

forming all competing MLLM models on all six 385

metrics. An example is shown in Figure 2. Our 386

model generates captions that closely match the 387

ground truth, while Qwen-VL-Chat includes fewer 388

semantically informative details. 389

Molecule image property prediction 390

(img2property). GPT-4o can not predict 391
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Qwen-VL-Chat:
The image shows the molecular structure of
a compound, which is represented in blue,
yellow, and red colors. The compound has a
long chain-like structure composed of
several carbon atoms, hydrogen atoms, and
oxygen atoms. The carbon atoms are
represented in black, and hydrogen atoms
are represented in white. The oxygen atoms
are represented in red and blue. The
molecular structure is drawn on a white
background.

ChemMLLM(ours):
The molecule is an acyl-CoA
resulting from the formal
condensation of the thiol group
of coenzyme A with the
carboxy group of oscr#21. It
derives from an oscr#21. It is a
conjugate acid of an oscr#21-
CoA(4-).

BLEU: 0.83BLEU: <0.01

Question:
Provide a detailed description of this molecular structure.
Ground Truth:
The molecule is an acyl-CoA that results from the formal
condensation of the thiol group of coenzyme A with the
carboxy group of oscr#12. It derives from an oscr#12. It is
a conjugate acid of an oscr#12-CoA(4-).

Figure 2: An example on img2caption task, comparison
between Qwen-VL-Chat and our ChemMLLM.

properties from image directly, so in this task392

we do not compare with GPT-4o. As shown in393

Table 2 and 3, our model consistently outperforms394

competing methods across all seven molecular395

properties, yielding the highest Pearson correlation396

coefficients alongside the lowest MSE and MAE397

values. An example is shown in Figure 3. Among398

the properties predicted, our model has 5 accurate399

values and 2 close values while Qwen-VL-Chat400

has 2 close values and 5 inaccurate values.401

Model Avg Sim (↑) Tani@1.0 (↑) valid%(↑)

Qwen-VL-Chat 0.08 ±0.006 0.0 ±0.0 8.2%
InternVL-Chat-v1.5 0.09 ±0.003 0.0 ±0.0 20.7%
LLaVA-v1.5-7B 0.05 ±0.004 0.0 ±0.0 11.1%
GPT-4o 0.29±0.005 0.01 ±0.004 74.5%

ChemVLM-8B 0.55 ±0.009 0.15 ±0.01 85.2%
ChemMLLM (ours) 0.75±0.009* 0.49±0.01* 97.1%

Table 8: Results on img2smiles Task. Tanimoto similar-
ities are written as Avg Sim, and Tanimoto@1.0 written
as Tani@1.0 (best, 2nd best, *: significantly better).

ChemMLLM(ours):
The MW is 389.49, LogP is 3.62,
TPSA is 73.86, HBD is 1, HBA
is 6, RB is 5 and QED is 0.78

Qwen-VL-Chat:
The MW is 406.4, LogP is 3.8,
TPSA is 144.4, HBD is 0, HBA
is 0 RB is 0 and QED is 0

Question:
Predict the following properties of the molecule:
MW, LogP, TPSA, HBD, HBA, RB and QED.
Ground Truth:
The MW is 389.47, LogP is 3.93, TPSA is 73.86,
HBD is 1, HBA is 6, RB is 5 and QED is 0.78

5-accurate & 2-close 2-close & 5-inaccurate

Figure 3: A comparison of answers on img2property
task on Qwen-VL-Chat and our ChemMLLM. Accurate
answers are highlighted in bottle-green, close answers
are highlighted in light-green and inaccurate answers
are highlighted in red.

Image-to-SMILES conversion (img2smiles). 402

The evaluation results are shown in Table 8. 403

ChemMLLM performances best in both Tanimoto 404

similarity and Tanimoto@1 metrics. For Tanimoto 405

similarity, ChemMLLM (0.75) surpasses domain- 406

specific model ChemVLM (0.55) by 36.4%. An 407

example is shown in Figure 4. Our model recog- 408

nizes SMILES from images successfully, while 409

GPT-4o predicts wrong SMILES with low Tani- 410

moto similarity. 411

Question:
What is the SMILES of the molecule in 
this image?
Ground Truth:
CC[C@@H](C)N=C1C=C(OC2=C1C=C
(C=C2)C)C3=CC=C(C=C3)C

GPT-4o:
The molecule in the image is 
modafinil, a wakefulness-
promoting agent. Its SMILES 
(Simplified Molecular Input 
Line Entry System) notation is:
CC(C)C(=O)NC(C)C1=CC=CC
=C1OC2=CC=CC=C2

ChemMLLM(ours):
The SMILES of the 
molecule in the image is 
CC[C@@H](C)N=C1C=C
(OC2=C1C=C(C=C2)C)
C3=CC=C(C=C3)C.

tanimoto sim: 1.0tanimoto sim: 0.09

Figure 4: A comparison of GPT-4o’s and ChemM-
LLM’s answers on img2smiles task.

Controllable multi-objective molecule image de- 412

sign (property2img). Since the GPT-4o API 413

does not perform as well on this task as its web 414

interface, and other MLLMs lack the capability 415

to generate images, we treat this task as a purely 416

text-based problem when evaluating other MLLMs. 417

Specifically, our model is used to generate molecu- 418

lar images, while other MLLMs are tasked with 419

directly generating the corresponding SMILES 420

strings in text form. Given this setting, we also 421

include ChemLLM-Chat-7B (Zhang et al., 2024a), 422

a domain-specific chemical language model, in our 423

evaluation. Furthermore, we exclude Qwen-VL- 424

Chat (Bai et al., 2023) from comparison on this 425

task, as it fails to generate valid SMILES strings on 426

all test samples. The evaluation results are shown 427

in Table 4 and 5. Our model achieves top-2 or 428

better performance on 90% of the evaluation met- 429

rics. Several examples are shown in Figure 5. Our 430

model generates the image molecules with desired 431

properties directly. For more result examples for 432

this task, please refer to Figure 12. 433

Molecule image optimization (img2img). Since 434

the GPT-4o API does not achieve the same level 435

of performance on this task as its web-based inter- 436

face and other MLLMs lack the ability to generate 437
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ChemMLLM(ours):
The molecular diagram is shown below:

User:
Generate an image of 256x256 according to the following
prompt:\nImage of a molecule whose MW is 274.36, LogP
is 3.81, TPSA is 35.53, HBD is 0, HBA is 3, RB is 4 and
QED is 0.62

MW: 280.33,LogP: 3.34,TPSA: 40.07, 
HBD: 0, HBA: 4, RB: 0,  QED: 0.5

MW is 230.24, LogP is 1.01, HBA is 4

MW:212.25, LogP: 1.08, HBA: 4

LogP is 5.5, RB is 5, QED is 0.62

LogP: 5.74, RB: 5, QED: 0.54

TPSA is 49.85, HBD is 0, HBA is 4,
RB is 3
TPSA: 48.67, HBD: 0, HBA: 4, RB:3

Figure 5: Examples on property2img task on our
ChemMLLM. Accurate answers are highlighted in
bottle-green, close answers are highlighted in light-
green.

images, we formulate the evaluation as an image-to-438

text task for these models. Specifically, our model439

generates molecular images directly given opti-440

mized molecule images, while other MLLMs are441

required to generate SMILES strings. As GPT-4o442

cannot directly generate SMILES with optimized443

LogP from molecular images, we instead treat its444

evaluation as a text-to-text task, by providing the in-445

put SMILES in textual form rather than as images.446

As shown in Table 9, ChemMLLM achieves the447

highest increase in LogP, outperforms GPT-4o by448

118.9%. Several examples are shown in Figure 6.449

Our model generates molecule images with higher450

LogP directly. For more result examples for this451

task, please refer to Figure 13.452

Model Increased LogP (↑) Diversity (↑) Novelty (↑) valid%(↑)

Qwen-VL-Chat -2.0 ±0.11 0.95±0.01 1.0±0.0 4.0%
InternVL-Chat-v1.5 -0.77±0.17 0.90±0.004 1.0±0.0 48.0%
LLaVA-v1.5-7B -0.86±0.59 0.96±0.005 1.0±0.0 37.5%
GPT-4o 1.95±0.08 0.86±0.002 1.0±0.0 99.0%

ChemVLM-8B 0.45 ±0.14 0.87±0.002 0.97±0.01 92.5%
ChemMLLM (ours) 4.2±0.44 0.88±0.001 1.0±0.0 91.0%

Table 9: Results on img2img task (best, 2nd best).

5.3 Ablation Study453

We conduct an ablation study on property2img454

task (see Appendix I) to assess the effects of Mol-455

VQGAN training and data augmentation (espe-456

ChemMLLM(ours):
Here is a new similar molecule with better LogP.

User:
LogP (Partition Coefficient) measures a molecule's
solubility in fats versus water by quantifying its distribution
between octanol (fat-like) and water phases. ..., Here is an
image of a molecule, please generate an image of a new
similar molecule whose LogP is better.

LogP: 4.17

LogP: 1.65

LogP: 0.91

LogP: -0.74

LogP: 0.57

LogP: 6.56

LogP: 5.97

LogP: 4.31

Figure 6: Examples of ChemMLLM on img2img task.

cially image rotation). Results show that both com- 457

ponents significantly improve the correlation be- 458

tween generated images and molecular properties, 459

with their combination yielding the best overall 460

performance. This highlights the importance of 461

high-quality visual representations in enhancing 462

multimodal chemical tasks. 463

6 Conclusion 464

This paper has proposed ChemMLLM, a chemi- 465

cal multimodal large language model that handles 466

molecule comprehension and generation across 467

three modalities (text, SMILES string, molecule 468

image). By jointly modeling text, SMILES strings, 469

and molecule images, ChemMLLM enables seam- 470

less cross-modal comprehension and generation, 471

outperforming state-of-the-art MLLMs and special- 472

ized chemical LLMs across a range of tasks. Also, 473

we design five cross-modal chemistry tasks and cu- 474

rate datasets, providing a valuable resource for mul- 475

timodal AI in chemistry. The experimental results 476

demonstrate ChemMLLM’s strong performance, 477

highlighting its potential for real-world drug and 478

material discovery. 479
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Limitations480

Despite its promising capabilities, our work has481

several limitations that point to important direc-482

tions for future research: Currently, ChemMLLM483

incorporates only three modalities — text, SMILES484

strings, and 2D molecule images. Real-world485

chemical data often includes richer modalities such486

as 3D molecular structures, quantum mechanical487

properties, or spectroscopic data. Incorporating488

these would significantly enhance the model’s abil-489

ity to capture complex molecular behaviors and490

interactions. Also, our evaluation is primarily fo-491

cused on proof-of-concept chemistry tasks. Fur-492

ther studies are needed to validate the model’s per-493

formance in real-world applications such as drug494

discovery, materials design, or chemical synthesis495

planning.496

Ethics Statement497

The development and application of chemical AI498

models, such as ChemMLLM, raise important eth-499

ical considerations. We ensure that all datasets500

used in this work are sourced from publicly avail-501

able, non-sensitive chemical data and do not in-502

volve personal or private information. The model503

is designed for scientific research purposes, includ-504

ing drug discovery and materials science, with the505

aim of advancing chemical understanding and in-506

novation. We advocate for responsible use of AI507

in chemistry and encourage transparency, repro-508

ducibility, and fairness in future deployments of509

such technologies.510
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A Data Curation Details 726

(1) img2caption: The dataset used for this task is 727

sourced from chebi-20 (Edwards et al., 2022)and 728

mol-instruct (Fang et al., 2023). The original 729

datasets contain SMILES-caption pairs. We uti- 730

lize RDKit (Landrum et al., 2006) to transfer 731

the SMILES into 256×256 image to form image- 732

caption pairs. For mol-instruct, we filter captions 733

shorter than 150 words to screen clearer descrip- 734

tions. We only use the test set of chebi-20 as the 735

test set and the partitioning of the dataset is the 736

same as chebi-20 (Edwards et al., 2022). 737

(2) img2property: The dataset used for this task 738

is sourced from PubChem (Kim et al., 2021). 739

For one compound, there are three fileds re- 740

lated to it’s SMILES, i.e., "PUBCHEM_SMILES" 741

which means The Simplified Molecular Linear 742

Input Specification (SMILES) for compounds, it 743

is a string used to represent the chemical struc- 744

ture, "PUBCHEM_OPENEYE_CAN_SMILES" 745

which means Canonical SMILES generated us- 746

ing the OpenEye tool (Software, 2023) and "PUB- 747

CHEM_OPENEYE_ISO_SMILES" which means 748

The isomer SMILES generated using the OpenEye 749

tool. The processing steps are as follows: 750

1. Extract all the three fields from PubChem and 751

remove the duplicate SMILES. 752

2. Use the Draw.MolToImage() function in RD- 753

Kit (Landrum et al., 2006) to transfer SMILES 754

into images. 755

3. Sample 100,000 SMILES for this work. 756

4. Choose 7 important properties as the prediction 757

objective, i.e., MW, LogP, TPSA, HBD, HBA, 758

RB and QED. Then use RDKit to calculate the 759

7 properties for each sampled SMILES. 760

5. Use natural language templates to integrate 761

properties into natural language to form the final 762

image-property answer pairs. 763

6. Divide the dataset into training and test set by 764

the ratio of 95:5. 765

(3) img2smiles: The dataset and the construction 766

steps are the same as the img2property task, the 767

difference is that this task only apply templates for 768

SMILES to construct image-SMILES answer pairs. 769

(4) property2img: This task is a reverse task of 770

img2property. By swapping the question and an- 771

swer of the img2property dataset, we construct 772

property prompt-image pairs for property2img 773

task. 774
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(5) img2img: The dataset for this task is sourced775

from TDC (Huang et al., 2021). The original776

dataset contains SMILES-SMILES pairs. The777

previous molecule’s LogP is lower while the lat-778

ter molecule’s LogP is higher. We also use779

Draw.MolToImage() function in RDKit (Landrum780

et al., 2006) to transfer them into image-image781

pairs. For data partitioning, we divide the training782

set and test set by the ratio of 9:1.783

All the data used in this paper is publicly avail-784

able.785

B Mathematical Notations786

For ease of understanding, we list key mathematical787

notations in Table 10 in Appendix.788

C Data Examples789

(1) Molecule image captioning (img2caption).790

As shown in Table 11, the input/output for791

img2caption task is text/image-text pair. The input792

is a question asking models to give captions for793

molecule images and the output is a caption con-794

cerning the source, functionality, structure feature795

and usage for each molecule image.796

(2) Molecule image property prediction797

(img2property). As shown in Table 12, the798

input/output for img2property task is text/image-799

text pair. The input is a question asking models800

to predict seven properties for given molecule801

images and the output is a natural language answer802

describing the seven properties.803

(3) Image-to-SMILES conversion (img2smiles).804

As shown in Table 13, the input/output for805

img2smiles task is text/image-text/SMILES pair.806

The input is a question asking models to recognize807

the SMILES in the given molecule images and the808

output is a natural language answer describing the809

SMILES in the image.810

(4) Controllable multi-objective molecule im-811

age design (property2img). As shown in Ta-812

ble 14, the input/output for property2img task is813

text-text/image pair. The input is a question asking814

models to generate images according to the given815

values of the seven properties, and the output is the816

generated molecule image with the given values of817

the seven properties.818

(5) Molecule image optimization (img2img). As819

shown in Table 15, the input/output for img2img820

task is text/image-text/image pair. The input is821

a question describing the meaning of LogP and822

then asking models to optimize the LogP property823

for given molecule images, and the output is the 824

optimized molecule image with better LogP. 825

D Baseline Methods 826

• Qwen-VL-Chat (Bai et al., 2023) is an open- 827

source multimodal conversational model devel- 828

oped by Alibaba Cloud, extending the Qwen-VL 829

architecture to support complex visual-language 830

interaction through instruction tuning. It inte- 831

grates a frozen CLIP-ViT-G/14 vision encoder 832

with the Qwen-7B language model via a train- 833

able vision-language connector. Images are en- 834

coded into 1024-dimensional patch embeddings 835

by the vision encoder, which are then linearly 836

projected into the token embedding space of the 837

language model (hidden size 4096). The lan- 838

guage backbone consists of 32 transformer de- 839

coder layers, each employing multi-head masked 840

self-attention with rotary position embeddings 841

(RoPE), followed by a SwiGLU-activated feed- 842

forward network with an intermediate dimension 843

of 11008. Qwen-VL-Chat uses a 2048-token con- 844

text window and supports dynamic multimodal 845

prompts comprising text, images, and region 846

boxes. It is instruction-tuned on a large-scale, 847

GPT-generated multimodal dataset containing 848

both single- and multi-turn visual conversations, 849

enabling capabilities in visual question answer- 850

ing, dense captioning, document OCR, and multi- 851

image reasoning. The model achieves high per- 852

formance on benchmarks such as MME, SEED- 853

Bench, and MMBench, demonstrating strong 854

alignment between visual and linguistic modali- 855

ties. 856

• InternVL-Chat-V1.5 (Chen et al., 2023) is 857

an open-source vision-language instruction- 858

following model developed by OpenGVLab, de- 859

signed to support high-resolution, multilingual, 860

and multi-turn visual conversations. The model 861

integrates a powerful ViT-based vision encoder, 862

InternViT-6B, with the InternLM2-Chat-20B lan- 863

guage model via a trainable multi-layer percep- 864

tron (MLP) connector. InternViT encodes im- 865

ages into patch embeddings with dynamic reso- 866

lution support, allowing the model to process 867

up to 40 image tiles of size 448×448, effec- 868

tively supporting 4K-level inputs. These embed- 869

dings are projected into the language model’s 870

token space to enable seamless multimodal in- 871

teraction. The language backbone consists of 872

64 transformer decoder layers with rotary posi- 873
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Table 10: Mathematical notations.

Notations Descriptions
x/x̂ ∈ RH×W×3 the input/reconstructed molecule image

H/W the height/width of the input image
h/w the height/width of the feature map
nz the channels of the feature map, same as the dimension of the codebook vector
E the encoder of VQGAN, a convolutional neural network (CNN) that extracts

features from original image
ẑ ∈ Rh×w×nz the continuous feature map encoded by E(x)
ẑij ∈ Rnz the spatial code ∈ Rnz at position i, j in the feature map; (i, j) ∈

{0, 1, . . . , h} × {0, 1, . . . , w}
q vector quantization process in VQGAN, which transfers continuous feature into

discrete feature
Z = {zi}ni=1 ⊂ Rnz the codebook in VQGAN, a dictionary that represents the latent discrete space

zk ∈ Rnz entry in the codebook
zq ∈ Rh×w×nz the quantized feature map quantified by q(ẑ)

G the decoder of VQGAN, a CNN that reconstructs image from latent discrete
space

sg[·] the stop-gradient operation
Lvqvae origin VQVAE training loss
Lrec the reconstruction loss

Lperceptual the perceptual loss
LGAN GAN loss
D the discriminator to identify x and x̂, a patch-based discriminator (Isola et al.,

2017)
LLLM next-token prediction cross-entropy loss with z-loss for training large language

model
pθ(si|s1, . . . , si−1) the probability of si given s1, . . . , si−1

SI image token sequence tokenized by image tokenizer
ST text/SMILES token sequence tokenized by text tokenizer
S the concatenated sequence of image token sequence and text/SMILES token

sequence
L the size of total sequence tokens
V the size of vocabulary

zk,j ∈ R the logit at last layer.
λ, λ1, λ2 hyper-parameters or adaptively calculated parameters to adjust the weight of

different loss functions

tional embeddings (RoPE), multi-head masked874

self-attention, and SwiGLU-activated feedfor-875

ward layers. The model uses a maximum context876

length of 4096 tokens and is instruction-tuned on877

a high-quality bilingual dataset containing docu-878

ment images, natural images, and complex multi-879

modal dialogues. InternVL-Chat-V1.5 achieves880

strong performance on benchmarks including881

MME, MMBench, and AI2D, demonstrating ro-882

bust capabilities in visual question answering,883

document OCR, visual reasoning, and bilingual884

understanding. The total parameter count is ap-885

proximately 25.5 billion, with both the vision886

encoder and language model jointly fine-tuned887

during the instruction-following phase.888

• LLaVA-v1.5-7B (Large Language and Vision889

Assistant) (Liu et al., 2023) is an open-source 890

vision-language instruction-tuned model that 891

integrates a pre-trained CLIP-ViT-L/14 vision 892

encoder with the LLaMA-7B language model 893

through a projection network. LLaVA-7B pro- 894

cesses visual inputs by encoding images into 895

1024-dimensional patch embeddings via the vi- 896

sion encoder, which are then projected into the 897

language model’s token space through a train- 898

able linear layer (hidden size 4096). The lan- 899

guage model comprises 32 transformer decoder 900

blocks, each with masked self-attention (key/- 901

query size 4096, 32 attention heads), followed by 902

a feed-forward network with SwiGLU activation 903

and an intermediate dimension of 11008. The 904

self-attention layers use RoPE (rotary positional 905
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input output
Give an overview of this
molecule’s properties.

The molecule is a steroid ester that is methyl (17E)-pregna-4,17-dien-21-
oate substituted by oxo groups at positions 3 and 11. It is a 3-oxo-Delta(4)
steroid, an 11-oxo steroid, a steroid ester and a methyl ester. It derives
from a hydride of a pregnane.

Explain the key traits of this
molecule.

The molecule is an epoxy(hydroxy)icosatrienoate that is the conjugate
base of 11 hydroxy-(14R,15S)-epoxy-(5Z,8Z,12E)-icosatrienoic acid,
obtained by deprotonation of the carboxy group; major species at pH 7.3.
It is a conjugate base of an 11 hydroxy-(14R,15S)-epoxy-(5Z,8Z,12E)-
icosatrienoic acid.

Provide a detailed description of
this molecular structure.

The molecule is a tetracyclic triterpenoid that is 4,4,8-trimethylandrosta-
1,14-diene substituted by an oxo group at position 3, an acetoxy group
at position 7 and a furan-3-yl group at position 17. Isolated from
Azadirachta indica, it exhibits antiplasmodial and antineoplastic activi-
ties. It has a role as an antineoplastic agent, an antiplasmodial drug and a
plant metabolite. It is an acetate ester, a cyclic terpene ketone, a member
of furans, a limonoid and a tetracyclic triterpenoid.

List the notable attributes of this
molecule.

The molecule is a member of the class of N-nitrosoureas that is urea in
which one of the nitrogens is substituted by methyl and nitroso groups.
It has a role as a carcinogenic agent, a mutagen, a teratogenic agent and
an alkylating agent.

Table 11: Example for img2caption task.

embeddings) and support a context window of906

2048 tokens. LLaVA-7B leverages instruction-907

tuning on 558K GPT-4 generated multimodal908

instruction-following samples, aligning visual909

and textual representations for tasks such as vi-910

sual QA and image captioning. The total number911

of trainable parameters is approximately 7 billion,912

with the vision encoder frozen during fine-tuning.913

• GPT-4o (OpenAI, 2024) (Generative Pre-trained914

Transformer 4 Omni) is a state-of-the-art multi-915

modal foundation model developed by OpenAI,916

designed to natively process and reason across917

text, images, and audio modalities. Unlike previ-918

ous GPT-4 variants that rely on separate vision919

encoders, GPT-4o employs a unified transformer920

architecture that jointly encodes multimodal in-921

puts, enabling low-latency and high-fidelity in-922

teractions. The model supports up to 128k to-923

kens of context and exhibits strong performance924

across a wide range of tasks, including natural925

language understanding, image captioning, docu-926

ment analysis, and spoken language comprehen- 927

sion. GPT-4o achieves significant improvements 928

in visual reasoning (e.g., charts, diagrams, OCR), 929

math problem solving, and multilingual capabil- 930

ity, surpassing the capabilities of GPT-4-turbo 931

while operating with lower inference latency. It 932

is instruction-tuned on a diverse and extensive 933

corpus of text and multimodal data, and opti- 934

mized for both conversational fluency and factual 935

grounding. We also utilized GPT-4o to assist in 936

the writing of this paper. 937

• ChemLLM-7B-Chat (Zhang et al., 2024a) is 938

an open-source domain-specific large language 939

model framework tailored for chemical sciences, 940

designed to address the limitations of general- 941

purpose LLMs in structured scientific domains. 942

The model is instruction-tuned using ChemData, 943

a templated dataset that transforms structured 944

chemical knowledge (e.g., molecular properties, 945

SMILES strings, compound databases) into natu- 946

ral language instructions across a variety of chem- 947
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input output
Predict the following properties of the molecule:
MW, LogP, TPSA, HBD, HBA, RB and QED.

The MW is 1022.34, LogP is 4.8, TPSA is 304.6,
HBD is 9, HBA is 11, RB is 24 and QED is 0.05

Predict the following properties of the molecule:
MW, LogP, TPSA, HBD, HBA, RB and QED.

The MW is 305.42, LogP is 5.42, TPSA is 25.5, HBD
is 0, HBA is 2, RB is 3 and QED is 0.63

Predict the following properties of the molecule:
MW, LogP, TPSA, HBD, HBA, RB and QED.

The MW is 181.3, LogP is 2.56, TPSA is 3.24, HBD
is 0, HBA is 2, RB is 1 and QED is 0.64

Predict the following properties of the molecule:
MW, LogP, TPSA, HBD, HBA, RB and QED.

The MW is 479.99, LogP is 4.88, TPSA is 61.88,
HBD is 1, HBA is 4, RB is 7 and QED is 0.49

Table 12: Example for img2property task.

ical tasks. ChemLLM adopts a decoder-only948

transformer architecture based on InternLM2-949

Base-7B (Cai et al., 2024), and is fine-tuned to950

handle both single- and multi-turn dialogues. The951

model supports tasks such as molecular property952

prediction, compound generation, synthetic route953

planning, and reaction condition recommenda-954

tion.955

• ChemVLM-8B is an open-source multimodal956

domain-specific large language model specifi-957

cally designed for chemistry-related tasks, aim-958

ing to bridge the gap between vision and lan-959

guage understanding in the chemical domain.960

The model adopts a ViT-MLP-LLM architec-961

ture, integrating a vision encoder based on Vi-962

sion Transformer (ViT), a multi-layer percep-963

tron (MLP) as a projection layer, and a 20-964

billion-parameter decoder-only language model965

ChemLLM-20B (Zhang et al., 2024a) as the back-966

bone. ChemVLM processes visual inputs such as967

molecular structures, chemical reaction schemes,968

and spectra by encoding images into patch em- 969

beddings through ViT, which are then linearly 970

projected to the token space of the language 971

model. It is instruction-tuned on a constructed 972

dataset of 1.2M multimodal samples covering 973

tasks like molecule captioning, reaction classifi- 974

cation, and chemical structure understanding. 975

E More Visual Result 976

To better visualize results for different run on five 977

tasks, we draw metric bar for each tasks. The met- 978

ric bar for img2caption, img2property, img2smiles, 979

property2img, img2img task is shown in Figure 7, 980

Figure 8, Figure 10, Figure 11, Figure 9, respec- 981

tively. 982

For the two image generation task, we provide 983

more examples to better display the ability of 984

ChemMLLM. More examples for property2img 985

task are shown in Figure 12. More examples for 986

img2imgtask are shown in Figure 13. 987
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input output
What is the SMILES of the molecule in this image? The SMILES of the molecule in the image is C1=CC

=C(C=C1)COC(=O)/C=C/C2=CC=C(O2)[N+](=O)
[O-].

What is the SMILES of the molecule in this image? The SMILES of the molecule in the image is CC1=
CC2=C(C=C1C)OC(=O)C=C2CN3CCC[C@@H]
3C4=CC=CN4C.

What is the SMILES of the molecule in this image? The SMILES of the molecule in the image is CC(C)(
C)OC(=O)C1CC(C(N1C(=O)CNC(=O)NC2=CC=
CC(=C2)C(=O)O)C3=CC=CC=C3)S(=O)(=O)C4=
CC=CC=C4.

What is the SMILES of the molecule in this image? The SMILES of the molecule in the image is COC1
=CC(=C(C=C1)C=N/N=C(\\N)/NO)OC.

Table 13: Example for img2smiles task.

input output
Generate an image of 256x256 according to the fol-
lowing prompt:\n Image of a molecule whose MW
is 354.46, LogP is 3.91, TPSA is 81.57, HBD is 2,
HBA is 5, RB is 6 and QED is 0.66

The molecular diagram is shown below:

Generate an image of 256x256 according to the fol-
lowing prompt:\n Image of a molecule whose MW
is 461.36, LogP is 2.34, TPSA is 84.91, HBD is 3,
HBA is 5, RB is 6 and QED is 0.62

See the molecular depiction:

Generate an image of 256x256 according to the fol-
lowing prompt:\n Image of a molecule whose MW is
353.4, LogP is 1.37, TPSA is 90.85, HBD is 0, HBA
is 9, RB is 2 and QED is 0.45

The molecular diagram is shown below:

Generate an image of 256x256 according to the fol-
lowing prompt:\n Image of a molecule whose MW is
594.8, LogP is 6.15, TPSA is 76.15, HBD is 0, HBA
is 6, RB is 13 and QED is 0.19

See the molecular depiction:

Table 14: Example for property2img task.
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input output
LogP (Partition Coefficient) measures a molecule’s solubility in fats ver-
sus water by quantifying its distribution between octanol (fat-like) and wa-
ter phases. Calculated as the logarithm of the concentration ratio (LogP =
log[octanol]/[water]), it predicts drug absorption and permeability—higher
values (>0) indicate greater fat solubility, while lower values (<0) suggest water
solubility. Ideal drug candidates typically have LogP between 0-3 for optimal
bioavailability. Here is an image of a molecule, please generate an image of a
new similar molecule whose LogP is better.

Here is a new similar
molecule with better
LogP.

LogP (Partition Coefficient) measures a molecule’s solubility in fats versus wa-
ter by quantifying its distribution between octanol (fat-like) and water phases....
Here is an image of a molecule, please generate an image of a new similar
molecule whose LogP is better.

Here is a new similar
molecule with better
LogP.

LogP (Partition Coefficient) measures a molecule’s solubility in fats versus
water by quantifying its distribution between octanol (fat-like) and water
phases....Here is an image of a molecule, please generate an image of a new
similar molecule whose LogP is better.

Here is a new similar
molecule with better
LogP.

LogP (Partition Coefficient) measures a molecule’s solubility in fats versus
water by quantifying its distribution between octanol (fat-like) and water
phases....Here is an image of a molecule, please generate an image of a new
similar molecule whose LogP is better.

Here is a new similar
molecule with better
LogP.

Table 15: Example for img2img task.

F Evaluation Metrics988

(1) img2caption: We use BLEU-2/4, ROUGE-989

1/2/L, and METEOR to evaluate the quality of990

generated captions against reference texts; (2)991

img2property: We extract seven molecular proper-992

ties from LLM-generated outputs and evaluate the993

accuracy using Mean Squared Error (MSE), Mean994

Absolute Error (MAE), and Pearson correlation; (3)995

img2smiles: We extract SMILES strings from the996

LLM outputs and adopt Tanimoto similarity and997

Tanimoto hit 1.0 (tanimoto@1.0) that measures the 998

percentage of exact matches (similarity = 1.0); (4) 999

property2img: Generated molecular images are 1000

converted to SMILES via MolScribe (Qian et al., 1001

2023), from which properties are computed and 1002

evaluated using MSE, MAE, and Pearson correla- 1003

tion. Each model is run five times, and the best 1004

result is reported; (5) img2img: We use Increased 1005

LogP, as well as molecular diversity and novelty 1006

to measure the optimized molecule. Other settings 1007
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Figure 7: Metric bar for different runs of img2caption
task.

Figure 8: Metric bar for different runs of img2property
task. pc_mw means the Pearson correlation between the
predicted molecule weight and groundtruth and pc_tpsa
means the Pearson correlation between the predicted
topological polar surface area and groundtruth.

are the same as property2img.1008

The detailed explanations of each metric are as1009

follows:1010

• BLEU-N (Bilingual Evaluation Understudy)1011

is an automatic evaluation metric for machine-1012

generated text that assesses how closely a can-1013

didate sentence matches one or more refer-1014

ence sentences. It uses the modified precision1015

of n-grams up to length N . It is defined as1016

BLEU-N = BP · exp

(
1

N

N∑
n=1

log pn

)
, (5)1017

where pn denotes the modified n-gram pre-1018

cision for n-grams of size n, and BP is the1019

brevity penalty, which penalizes short can-1020

didate sentences to prevent artificially high1021

Figure 9: Metric bar for different runs of img2imgtask.
LogP Improve means Increased LogP, which is the in-
crease in LogP of the optimized molecule relative to the
original molecule.

Figure 10: Metric bar for different runs of img2smiles
task.

scores. The BLEU-N score ranges from 0 to 1022

1, where a higher score indicates better over- 1023

lap with the reference text in terms of n-gram 1024

content. A higher BLEU-N value generally 1025

reflects better fluency and adequacy in the gen- 1026

erated text. In our experimental evaluation, 1027

we use the word_tokenize() function from the 1028

NLTK library (Bird et al., 2009) to do to- 1029

kenization and employ the sentence_bleu() 1030

metric with uniform weights for all n-gram 1031

precision calculations (i.e., equal weights for 1032

1- to 4-gram contributions). 1033

• ROUGE-N (Recall-Oriented Understudy for 1034

Gisting Evaluation) is a recall-based metric 1035

that measures the overlap of n-grams between 1036

a candidate text and one or more reference 1037
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Figure 11: Metric bar for different runs of property2img
task. pc_tpsa means the Pearson correlation between
the predicted topological polar surface area and ground
truth, and pc_rb means the Pearson correlation between
the predicted rotatable bond and ground truth.

texts. It is defined as1038

ROUGE-N =

∑
S∈{Ref}

∑
gramn∈S∑

S∈{Ref}
∑

gramn∈S

Countmatch(gramn)

Count(gramn)
,

(6)1039

where n denotes the length of the n-grams1040

(e.g., ROUGE-1 for unigrams, ROUGE-21041

for bigrams), and Countmatch(gramn) is the1042

number of n-grams in the reference that1043

also appear in the candidate text. ROUGE-1044

N values range from 0 to 1 and a higher1045

ROUGE-N value indicates better perfor-1046

mance. In our experimental evaluation, we1047

employ the rouge_scorer() metric from the1048

rouge_score (Lin, 2004) library.1049

• ROUGE-L evaluates the quality of generated1050

text by measuring the longest common sub-1051

sequence (LCS) between the candidate and1052

reference texts. It is defined as1053

ROUGE-L =
(1 + β2) · Precision · Recall

Recall + β2 · Precision
,

(7)1054

where Precision = LCS(X,Y )
|X| and Recall =1055

LCS(X,Y )
|Y | , with X and Y denoting the candi-1056

date and reference sequences, respectively. β1057

is typically set to favor recall (β = 1.2 in com-1058

mon settings). ROUGE-L scores range from1059

0 to 1, with higher values indicating better1060

preservation of the reference’s sequence and1061

structure.1062

• METEOR (Metric for Evaluation of Trans- 1063

lation with Explicit ORdering) is a metric 1064

designed to evaluate the quality of machine- 1065

generated text by aligning it to one or more 1066

reference texts. It is defined as 1067

METEOR = Fmean · (1− Penalty), (8) 1068

where Fmean = 10·P ·R
R+9P , with P and R de- 1069

noting unigram precision and recall, respec- 1070

tively. The penalty is a function of the number 1071

of chunks in the alignment, designed to pe- 1072

nalize disordered matches. METEOR scores 1073

range from 0 to 1, with higher scores indicat- 1074

ing better alignment with the reference text. 1075

In our experimental evaluation, we perform 1076

tokenization using the word_tokenize() func- 1077

tion and employ the METEOR metric (me- 1078

teor_score()), both implemented in the NLTK 1079

library (Bird et al., 2009). 1080

• Mean Squared Error (MSE) measures the 1081

average of the squares of the difference be- 1082

tween the forecasted value and the actual 1083

value. It is defined as 1084

MSE =
1

N

N∑
i=1

(yi − ŷi)
2, (9) 1085

where N is the size of the test set; yi and ŷi 1086

denote the ground truth and predicted score 1087

of the i-th data sample in the test set, respec- 1088

tively. MSE value ranges from 0 to positive 1089

infinity. A lower MSE value indicates better 1090

performance. 1091

• Mean Absolute Error (MAE) measures the 1092

absolute value of the difference between the 1093

predicted value and the actual value. It is 1094

defined as 1095

MAE =
1

N

N∑
i=1

|yi − ŷi|, (10) 1096

where N is the size of the test set; yi and ŷi 1097

denote the ground truth and predicted score of 1098

the i-th data sample in the test set, respectively. 1099

MAE value ranges from 0 to positive infinity. 1100

It emphasizes the ranking order of the predic- 1101

tion instead of the absolute value. A lower 1102

MAE value indicates better performance. 1103

• Pearson Correlation (PC) is defined as the 1104

covariance of the prediction and the ground 1105
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LogP is 2.69, HBD is 1, QED is 0.59

LogP: 2.22, HBD: 1, QED: 0.65

LogP is 3.45, TPSA is 82.06, HBA is 5

LogP: 3.42, HBD: 79.46, HBA: 5

MW is 204.27, TPSA is 24.83, HBA is 2

MW: 211.26, HBD: 21.26, HBA: 2

MW is 286.37, HBD is 0, HBA is 3

MW: 285.34, HBD:0, HBA: 4

LogP is 2.65, HBA is 5, QED is 0.58

LogP: 3.1, HBA: 6, QED: 0.56

MW is 175.19, HBD is 1, HBA is 3

MW: 194.17, HBD: 2, HBA: 3

HBA is 6, RB is 3, QED is 0.8

HBA: 7, RB: 2, QED: 0.78

TPSA is 99.0, HBD is 1, RB is 5 

TPSA: 100.43, HBD:1, RB: 4

Figure 12: More examples for property2img task.

truth divided by the product of their standard1106

deviations. For two random variables x and y,1107

Pearson Correlation is formally defined as1108

PC =
E[(x− µx)(y − µy)]

σxσy
, (11)1109

In the regression task, suppose there are N1110

data points in the test set, yi is the ground truth1111

of the i-th data sample, ŷi is the prediction for1112

i-th data, Pearson Correlation becomes1113

PC =

∑N
i=1

(
(yi − µy)(ŷi − µŷ)

)
σyσŷ

, (12)1114

where µy = 1
N

∑N
j=1 yj and µŷ =1115

1
N

∑N
j=1 ŷj are mean of ground truth and1116

prediction, respectively. σy =
∑N

i=1(yi −1117
1
N

∑N
j=1 yj)

2 and σŷ =
∑N

i=1(ŷi −1118
1
N

∑N
j=1 ŷj)

2 are the standard deviations of1119

ground truth and prediction, respectively. The1120

value ranges from -1 to 1. A higher Pear-1121

son correlation value indicates better perfor-1122

mance.1123

• Tanimoto similarity is to measure the simi-1124

larity between two molecules. Tanimoto simi-1125

larity is also known as the Jaccard coefficient,1126

i.e., the ratio of their intersection to their union1127

over two chemical fingerprint vectors.1128

sim(X,Y ) =
|bX ∩ bY |
|bX ∪ bY |

, (13)1129

where bX is the binary fingerprint vector for 1130

the molecule X . Tanimoto distance between 1131

two molecules is defined as one minus Tani- 1132

moto similarity. 1133

Tanimoto-distance(X,Y ) = 1− sim(X,Y ),
(14) 1134

Also, given a set of chemical compounds, 1135

we are typically interested in their diversity, 1136

which is defined based on Tanimoto distance. 1137

Specifically, diversity is defined as the aver- 1138

age pairwise Tanimoto distance between the 1139

molecular fingerprints, 1140

diversity(Z) =1− 1

|Z|(|Z| − 1)
·∑

X,Y ∈Z,X ̸=Y

sim(X,Y ),

(15) 1141

where Z is the set of generated molecules to 1142

evaluate. 1143

• Tanimoto@1 is to measures the proportion 1144

of generated molecules that exactly match the 1145

ground-truth molecule in terms of Tanimoto 1146

similarity. Specifically, it computes the ratio 1147

of generated molecules whose Tanimoto sim- 1148

ilarity with the corresponding ground-truth 1149
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LogP: -1.13 LogP: 4.23

LogP: -0.05 LogP: 2.34

LogP: 2.9 LogP: 4.54

LogP: 1.86 LogP: 4.23

LogP: -0.26 LogP: 5.52

LogP: 1.12 LogP: 1.59

LogP: -0.38 LogP: 4.01

LogP: 0.44 LogP: 3.83

Figure 13: More examples for img2img task.

molecule is equal to 1. It is defined as1150

Tanimoto@1 =
1

N

N∑
i=1

I
[
Tanimoto(fgen

i , f true
i ) = 1

]
,

(16)1151

where N is the number of generated1152

molecules, fgen
i and f true

i are the Morgan fin-1153

gerprints of the i-th generated and ground-1154

truth molecules, respectively, and I[·] is the1155

indicator function. The score ranges from 01156

to 1, where a higher Tanimoto@1 indicates1157

better exact matching performance between1158

generated and reference molecules.1159

• Increased LogP is to evaluate molecular op-1160

timization performance. It measures the av-1161

erage increase in the LogP of molecules after1162

optimization. For each molecule, the improve-1163

ment is computed as the difference between1164

the LogP value of the optimized molecule and1165

that of the original molecule. The final score1166

is the mean improvement across all molecule1167

pairs. It is defined as1168

Increased LogP =
1

N

N∑
i=1(

LogP(mopt
i )− LogP(morig

i )
)
,

(17)1169

where N is the number of molecule pairs, 1170

m
orig
i and m

opt
i denote the i-th original and 1171

optimized molecules, respectively. A higher 1172

LogP Improvement value indicates a greater 1173

enhancement of the LogP property through 1174

the optimization process. 1175

• Diversity is a metric used to quantify the struc- 1176

tural variety within a set of molecules. It is 1177

defined as the average pairwise Tanimoto dis- 1178

tance between the Morgan fingerprints of the 1179

molecules: 1180

Diversity =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

(1− Tanimoto(fi, fj)) ,

(18) 1181

where N is the number of molecules in the 1182

set, and fi and fj are the Morgan fingerprints 1183

of the i-th and j-th molecules, respectively. 1184

The Tanimoto similarity measures the over- 1185

lap between two binary fingerprints, and the 1186

distance is computed as 1 − Tanimoto. The 1187

diversity values range from 0 to 1, with higher 1188

values indicating greater chemical diversity. 1189

• Novelty evaluates the proportion of generated 1190

molecules that are not present in the training 1191
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Figure 14: Training curve from start to the best check point, we apply GAN loss after training in E,G, and Z for a
period of steps for stability. As shown in the validation loss curve, GAN loss is introduced at 45000 steps and cause
the oscillation of validation loss and finally converge to stable result.

set. It reflects the ability of a generative model1192

to produce novel chemical structures, rather1193

than simply memorizing and replicating the1194

training data. It is defined as1195

Novelty =
|G \ T |
|G|

, (19)1196

where G denotes the set of generated1197

molecules, and T denotes the set of molecules1198

in the training set. The numerator counts the1199

number of molecules in G that are not in T .1200

The score ranges from 0 to 1, with higher val-1201

ues indicating greater novelty.1202

• Valid% is to evaluate the structural and syn-1203

tactic validity of model outputs in instruction-1204

following tasks involving molecule generation.1205

It measures the proportion of outputs that are1206

both (1) successfully parsed according to a1207

predefined structured format (i.e., instruction-1208

following), and (2) contain syntactically valid1209

SMILES strings, if any are present. It is de-1210

fined as1211

Valid Rate =
1

N

N∑
i=1

I [structured(oi) ∧ valid(oi)] ,

(20)1212

where N is the total number of model out- 1213

puts, oi is the i-th output, structured(·) checks 1214

whether the output follows the expected struc- 1215

tured format, and valid(·) verifies the syntac- 1216

tic validity of any SMILES strings present in 1217

the output. The score ranges from 0 to 1, with 1218

a higher Valid% indicates better adherence 1219

to the required output format and chemical 1220

validity. 1221

Also, we conduct statistical testing to check if the 1222

improvement is statistically significant. 1223

G Molecular Properties 1224

• MW: Molecular Weight (MW) is the sum 1225

of atomic masses of all atoms in a molecule 1226

(units: g/mol or Da). It influences physico- 1227

chemical properties such as solubility, diffu- 1228

sion rate, and bioavailability. MW should be 1229

below 500 Da for optimal oral bioavailability. 1230

• LogP: Octanol-water Partition Coefficient 1231

(LogP) assesses the solubility and synthetic 1232

accessibility of a chemical compound. The 1233

LogP score of a molecule ranges from −∞ to 1234

+∞. 1235

• TPSA: Topological Polar Surface Area 1236
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(TPSA) quantifies the surface area contributed1237

by polar atoms, typically oxygen and nitrogen,1238

including their attached hydrogens. The the-1239

oretical TPSA ranges from 0 to several hun-1240

dreds or even thousands of Å2 for highly polar1241

or large biomolecules.1242

• HBD: Hydrogen Bond Donor (HBD) counts1243

the number of polar functional groups (e.g.,1244

-OH, -NH) in a molecule that can donate hy-1245

drogen atoms to form hydrogen bonds.1246

• HBA: Hydrogen Bond Acceptor (HBA)1247

counts the number of atoms (e.g., O, N, S,1248

F) in a molecule capable of accepting hydro-1249

gen bonds via lone electron pairs. Typical1250

small-molecule drugs containing 2–10 HBA1251

sites.1252

• RB: Rotatable Bond (RB) counts the number1253

of non-ring single bonds (e.g., C-C, C-O, C-N)1254

in a molecule that allow free rotation at room1255

temperature. Optimal drug-like compounds1256

typically contain ≤10 rotatable bonds (RB).1257

• QED: Quantitative Estimate of Drug-likeness1258

(QED) is an integrative score to evaluate com-1259

pounds’ favorability to become a drug. The1260

QED value ranges from 0 to 1. A higher value1261

is more desirable.1262

H Implementation Details1263

For the first training stage, Mol-VQGAN is trained1264

on 8 NVIDIA A800×80G GPUs for two epochs.1265

The batch size is set to 16 and the base learning1266

rate is set to 4.5e-06. We use Adam (Kingma and1267

Ba, 2014) as optimizer and Lrec + λ1Lperceptual1268

as monitor to validate the model and save the best1269

checkpoint during 2-epoch training. For the sec-1270

ond training stage, ChemMLLM is trained on 81271

NVIDIA A800×80G GPUs for three epochs. The1272

batch size is set to be 16, the base learning rate1273

is set to be 2e-5 and z-loss weight is set to be1274

1e-5. We use AdamW (Loshchilov and Hutter,1275

2017) as optimizer and employ mixed-precision1276

training, utilizing brain floating point 16 precision1277

(bf16) (Kalamkar et al., 2019) for forward prop-1278

agation and 32-bit floating point precision (fp32)1279

for backward propagation to balance the training1280

efficiency and stability. To handle distributed train-1281

ing, we apply PyTorch Fully Shared Data Parallel1282

(FSDP) (Zhao et al., 2023) strategy. We train three1283

variants of ChemMLLM for different tasks.1284

Mol-VQGAN Training For Mol-VQGAN train- 1285

ing code, we use the official implementation code 1286

of original VQGAN (Esser et al., 2021). Specifi- 1287

cally, we utilize the synthesized image datasets to 1288

let the original Chameleon VQGAN learn how to 1289

understand and generate molecule images. We sam- 1290

ple 1,000,000 molecule images from PubChem syn- 1291

thesized by RDKit (Landrum et al., 2006) and com- 1292

bine them with all images synthesized in 5 down- 1293

stream tasks as training dataset for Mol-VQGAN. 1294

All parameters of Encoder, Decoder and codebook 1295

of VQGAN are trained. We first train VQGAN 1296

on this 1 million-level molecule image dataset for 1297

two epochs and save the best check point according 1298

to Lrec + λ1Lperceptual. After the initial training, 1299

we find that it can not reconstruct image well on 1300

the dataset with less data size like img2caption 1301

dataset, so we do continuous training based on the 1302

best checkpoint using small-size datasets. Specifi- 1303

cally, we continue training the 1-million best check 1304

point on img2caption images for five epochs and 1305

save the best checkpoint. Finally, we get the well- 1306

trained Mol-VQGAN to tokenize molecule im- 1307

ages.The original VQGAN will result in unclear 1308

and distorted images when encoding and decod- 1309

ing molecule images. After training, Mol-VQGAN 1310

can encode and decode molecule image almost the 1311

same with original image. Several examples are 1312

shown in Figure 15. The validation curve from start 1313

to the best checkpoint is shown in Figure 14. 1314

ChemMLLM Supervised FineTuning Training 1315

For ChemMLLM training code, we utilize Lumina- 1316

mGPT framework (Liu et al., 2024). We train three 1317

variants ChemMLLM ChemMLLM-pro2img and 1318

ChemMLLM-img2img. 1319

For ChemMLLM, we train it on img2caption, 1320

img2property, img2smiles and property2img 1321

datasets. Apart from the four datasets, we 1322

also train it on SMILES molecule image gener- 1323

ation (smiles2img) and text based drug design 1324

dataset (caption2img), which is the inverse task of 1325

img2smiles and img2caption. smiles2img requires 1326

model to receive a SMILES and output the corre- 1327

sponding image and caption2img ask model to out- 1328

put molecule image according to molecule caption. 1329

We train ChemMLLM on the six datasets for three 1330

epochs; For property2img task, we train and eval- 1331

uate ChemMLLM-pro2img. We find that directly 1332

training the model on raw data can not achieve good 1333

performance, so we do data augmentation by rotat- 1334

ing images by 90◦,180◦, and 270◦ so as to generate 1335

augmented data that is four times the size of the 1336
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origin
molecule 

image

image encode 
and decode

 by Mol-VQGAN

image encode 
and decode

 by origin VQGAN

Figure 15: Examples of origin VQGAN and Mol-VQGAN. The origin images is shown in the first row. As shown in
the second row, the origin VQGAN can not encode and decode molecule image clearly and accurately, resulting in
distorted atoms and bonds which are hard to distinguish. As shown in the third row, our well-trained Mol-VQGAN
can encode and decode molecule images with clear atoms and bonds, which is almost the same as the origin
molecule images.

original dataset. We train ChemMLLM-pro2img1337

on the augmented dataset for two epochs; For1338

img2img task, we train and evaluate ChemMLLM-1339

img2img. we train it on img2img dataset for two1340

epochs. The training hyper-parameters primarily1341

follow Lumina-mGPT (Liu et al., 2024).1342

The details of data information for training dif-1343

ferent ChemMLLM variants are shown in Table 16.1344

The details of training settings for training different1345

ChemMLLM variants are shown in Table 17.1346

Model task # Training # Test

ChemMLLM
img2caption 69,799 3,300
img2property 95,000 5,000
img2smiles 95,000 5,000

property2img 95,000 5,000
smiles2img 95,000 5,000
caption2img 72,143 3301

ChemMLLM-pro2img property2img 380,000 20,000

ChemMLLM-img2img img2img 157,673 17,520

Table 16: Detailed dataset information for training dif-
ferent ChemMLLM variants.

I Ablation Study1347

We conduct ablation study on property2img task1348

with a focus on evaluating the impact of Mol-1349

VQGAN training and data augmentation. The ef-1350

Settings ChemMLLM ChemMLLM-pro2img ChemMLLM-img2img

z-loss weight 1e-05 1e-05 1e-05
warmup epochs 0.01 0.01 0.01

learning rate 2e-05 2e-05 2e-05
weight decay 0.1 0.1 0.1

drop rate 0.05 0.05 0.05
total bacth size 16× 8× 1 16× 8× 1 8× 4× 1

GPUs for training 8×A800 (80G) 8× A800 (80G) 4× A800 (80G)
GPUs hours(h) 65 30.6 25.4

Table 17: Detailed training settings for training different
ChemMLLM variants.

fectiveness of the generated molecular images is as- 1351

sessed through the Pearson correlation coefficients 1352

between the predicted and ground truth values of 1353

several molecular properties, including MW, LogP, 1354

TPSA, Hbd, Hba, Rb, and QED. we use a subset of 1355

200 samples of he property2img task and do 5-shot 1356

evaluation. 1357

The result is shown in Table 18. When both 1358

fine-tuned VQGAN and data augmentation are em- 1359

ployed, the model achieves the highest correlation 1360

scores across all evaluated properties. Notably, 1361

the correlations for MW (0.71), TPSA (0.71), Hba 1362

(0.66), and Rb (0.62) indicate that the generated im- 1363

ages capture molecular structure and features that 1364

align well with the original textual descriptions. 1365

This demonstrates the efficacy of our approach in 1366

enhancing the semantic fidelity and chemical rele- 1367
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data augmentation VQGAN MW Pearson (↑) LogP Pearson (↑) TPSA Pearson (↑) Hbd Pearson (↑) Hba Pearson (↑) Rb Pearson (↑) QED Pearson (↑)

✓ ✓ 0.71 0.42 0.71 0.45 0.66 0.62 0.34
× ✓ 0.46 0.04 0.40 0.08 0.53 0.17 0.26
× × 0.55 0.06 -0.05 0.06 -0.06 0.31 0.35

Table 18: Ablation study.

vance of the generated visual representations. Re-1368

moving data augmentation while retaining the fine-1369

tuned VQGAN leads to a significant drop in per-1370

formance, especially for properties such as LogP1371

(reduced to 0.04) and TPSA (0.40), highlighting1372

the importance of data augmentation in improv-1373

ing the model’s generalization and robustness dur-1374

ing training. The performance further deteriorates1375

when both fine-tuning and data augmentation are1376

removed. In this setting, the model yields the low-1377

est correlations, with some properties (e.g., TPSA1378

at -0.05 and Hba at -0.06) exhibiting negative corre-1379

lation, suggesting that the general VQGAN trained1380

on natural images fails to preserve critical molecu-1381

lar features necessary for reliable property predic-1382

tion.1383

In summary, these results clearly demonstrate1384

that both fine-tuning Mol-VQGAN and applying1385

data augmentation play complementary and cru-1386

cial roles in enhancing the quality and accuracy of1387

chemical multimodal tasks.1388
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