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Abstract

The rapid evolution of large language models001
(LLMs) has revolutionized natural language002
processing (NLP) tasks such as text genera-003
tion, translation, and comprehension. How-004
ever, the increasing computational demands005
and inference costs of these models present006
significant challenges. This study investigates007
the dynamic and efficient utilization of pre-008
trained weights from open-sourced LLMs of009
varying parameter sizes to achieve an optimal010
balance between computational efficiency and011
task performance. Drawing inspiration from012
the dual-process theory of human cognition, we013
introduce StitchLLM: a dynamic model rout-014
ing framework that employs a powerful bot-015
tom model to process all queries, and uses a016
lightweight routing mechanism to allocate com-017
putational resources appropriately. Our novel018
framework optimizes efficiency and maintains019
performance, leveraging a trainable stitching020
layer for seamless integration of decoder lay-021
ers across different LLMs. Experimental re-022
sults demonstrate that StitchLLM improves023
system throughput while minimizing perfor-024
mance degradation, offering a flexible solution025
for deploying LLMs in resource-constrained026
settings.027

1 Introduction028

The rapid evolution of large language models029

(LLMs), such as GPT-4 (Achiam et al., 2023), has030

transformed natural language processing (NLP),031

enabling significant progress in text generation,032

translation, and comprehension. However, training033

LLMs remains computationally intensive, restrict-034

ing foundation model development to organizations035

with massive compute resources. This bottleneck036

results in limited model size options. For example,037

Llama3 (Grattafiori et al., 2024) offers only five038

variants: 1B, 3B, 8B, 70B, and 405B.039

This limited range of model sizes constrains the040

ability to balance accuracy and resource efficiency041

during inference. For example, a user requiring 042

high accuracy must choose between Llama3 405B 043

and Llama3 70B—two models with vastly different 044

computational demands—without an intermediate 045

option that allows balancing performance and ef- 046

ficiency. Such coarse granularity forces users into 047

suboptimal trade-offs between accuracy and effi- 048

ciency, as intermediate configurations are unavail- 049

able. 050

Existing techniques like distillation (Hinton, 051

2015; Gu et al., 2024; Liang et al., 2020) and prun- 052

ing (Ma et al., 2023; Sun et al., 2023; Kurtic et al., 053

2022) try to create smaller models to address this 054

issue. However, they come with substantial com- 055

putational overhead, requiring extensive parameter 056

updates and long training times. For instance, train- 057

ing a smaller model with Pythia (Biderman et al., 058

2023) can take over 24 GPU days, and generaliza- 059

tion challenges persist (Gudibande et al., 2023). 060

To overcome these challenges, we propose a 061

novel alternative: dynamically composing pre- 062

trained LLM blocks of varying sizes. This ap- 063

proach achieves fine-grained efficiency-accuracy 064

trade-offs without retraining or finetuning, which is 065

crucial for the scalable and sustainable deployment 066

of LLMs in real-world applications, where both 067

high throughput and accuracy must be maintained 068

under resource constraints. 069

Our method draws inspiration from the dual- 070

process theory of human cognition, which dis- 071

tinguishes between System 1 (fast, intuitive, au- 072

tomatic) and System 2 (slow, deliberate, com- 073

putationally intensive) (Kahneman, 2011). Sim- 074

ilarly, effective LLM deployment requires balanc- 075

ing lightweight, efficient inference (System 1) with 076

computationally intensive, high-accuracy reason- 077

ing (System 2). To navigate this trade-off, we intro- 078

duce StitchLLM, a serving system that seamlessly 079

integrates pretrained models, dynamically allocat- 080

ing computational resources to mirror the adaptive 081

interplay of Systems 1 and 2 in human cognition. 082
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The core idea in StitchLLM is shown in Fig-083

ure 1a: incoming user requests are dynamically084

routed across "blocks" drawn from different mod-085

els. The figure shows four block combinations086

that a request can traverse, spanning two bottom087

blocks and two top blocks, which open up various088

resource/accuracy trade-off points.089

In developing StitchLLM, we overcome two key090

challenges: (i) Different models process query us-091

ing unique intermediate representations, creating092

integration barriers. Additionally, identifying the093

ideal merge points—locations where models can094

be combined without compromising accuracy or095

efficiency—is complicated. (ii) Fragmenting mod-096

els into smaller, reusable blocks, as shown in Fig-097

ure 1a, introduces communication overheads, and098

complicates various aspects such as managing GPU099

utilization and KV caches since different requests100

may use different model blocks.101

To address the first challenge, we build on prior102

work in vision model stitching (Pan et al., 2023)103

by introducing a linear transformation that aligns104

the hidden dimensions of different LLMs (e.g.,105

4096 → 2048 for Llama-8B/Llama-1B), repre-106

sented by the purple block in Figure 1a). Train-107

ing this lightweight layer requires updating only its108

parameters, minimizing overhead. We conduct ex-109

tensive experiments—across 5 datasets and 12 mod-110

els—to evaluate stitching at various locations and111

developed heuristics for optimal placement. Our112

findings indicate that stitching from a larger model113

to a smaller one (e.g., using earlier layers from114

Llama 8B and later layers from 1B) yields a better115

balance between performance and resource effi-116

ciency. Moreover, models within the same family117

exhibit similar stitching patterns, helping to reduce118

the search space for optimal stitching locations.119

To overcome the second challenge, we develop120

end-to-end serving optimizations to enable effec-121

tive model stitching. We employ greedy block-122

level scheduling and locality-aware placement to123

maximize GPU utilization while minimizing inter-124

server communication and KV cache management125

overheads. Unlike approaches taken by Claude126

(Priyanshu et al., 2024) and ChatGPT (Achiam127

et al., 2023), which switch to a lower-capacity128

model during high inference demand, StitchLLM129

can mitigate the stark trade-offs, enhancing overall130

user experience, and offering a fine-grained accu-131

racy vs resource trade-off. As shown in Figure 1c,132

StitchLLM bridges the accuracy-resource gap left133

by coarse-grained model sizes.134

Using real cloud workloads, StitchLLM im- 135

proves average response accuracy by 8% com- 136

pared to state-of-the-art systems, while maintain- 137

ing similar overall performance. It also reduces 138

time-to-first-token by 18%. Our evaluation shows 139

that StitchLLM enhances computational efficiency, 140

lowering 95%ile latency by up to 33.5% and in- 141

creasing GPU utilization by up to 20.1%. Further, 142

StitchLLM excels under peak load scenarios, im- 143

proving serving accuracy by 12.2%. 144

2 Related Work 145

We first provide a brief overview LLM inference 146

and challenges. 147

LLM Workload Pattern. We next study the work- 148

load pattern observed when deploying LLMs, by 149

looking at real-world traces. We first analyze the 150

trace of request arrival patterns for Azure cloud ser- 151

vices (Patel et al., 2024) released by Microsoft. As 152

shown in Figure 1b, we observe that the arrival pat- 153

terns for user-facing applications are quite bursty. 154

This pattern persists across various private deploy- 155

ments (Wang et al., 2024b,a; Patke et al., 2024; 156

Khare et al., 2023; Agrawal et al., 2024), where 157

unpredictable demand spikes force engineers to ei- 158

ther over-provision resources or dynamically trade 159

accuracy for efficiency via smaller models. 160

Accuracy and Resource Trade-off. More com- 161

putationally intensive models generally provide 162

better accuracy at the cost of high resource re- 163

quirements. For example, ResNet-101 achieves 164

higher accuracy over Resnet-50 (He et al., 2016a) 165

on ImageNet (Deng et al., 2009) while requir- 166

ing 2× more FLOPs (4.1B vs 7.8B). This gap 167

is even more pronounced in language models, 168

e.g., Llama3-70B shown 16% gain over Llama3- 169

8B (Grattafiori et al., 2024) (the next smaller 170

model) on MATH (Hendrycks et al., 2021b), with 171

8× higher memory demands (260 GB vs 29 GB), 172

as shown in Table 1. Current practice limits users 173

to a few discrete model sizes-1B, 3B, 8B, 70B, and 174

405B-with no fine-grained control over accuracy 175

vs resource trade-offs between these tiers. Due to 176

the prohibitive costs of training foundation models, 177

practitioners cannot simply train intermediate-sized 178

variants. Next, we review existing approaches to 179

create new models to navigate accuracy and re- 180

source trade-offs. 181

Creating New models Recent work has explored 182

generating smaller LLMs from pre-trained mod- 183

els. Distillation-based approaches (Hsieh et al., 184

2023; Yang et al., 2024; DeepSeek-AI et al., 2025; 185
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(b) Temporal Heterogeneity: The above
plot is the request arrival pattern observed
from two Azure LLM inference services.
There is a very high temporal heterogene-
ity as the number of requests can change
from 1 to 68 in less than a minute.
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(c) Tradeoff between Accuracy and Re-
sources: accuracy and memory require-
ments for StitchLLM. Stars represent the
trade-off space for existing models, while
the blue dot represents the trade-off space
for StitchLLM.

1B 3B 8B 70B

Memory (GB) 3.8 11.2 29.8 260.4
Price (USD/1M tokens) 0.04 0.06 0.1 0.8
TTFT (ms) 45 53 69 1445
MMLU (%) 33 60 67 80
MATH (%) 10 38 44 60

Table 1: Llama 3 model metrics comparisons.

Sreenivas et al., 2024; Harper et al.) use a larger186

model as a teacher to train a smaller student model,187

but still demands significant resources and train-188

ing time (Hsieh et al., 2023; Sreenivas et al., 2024;189

DeepSeek-AI et al., 2025). Pruning methods sim-190

ilarly reduce computation but often require exten-191

sive fine-tuning (Xia et al., 2024; Men et al., 2025;192

Gromov et al., 2024; Frantar and Alistarh, 2023).193

In contrast, with StitchLLM we aim to design a194

method which dramatically reduces the amount of195

computation required for generating new models.196

Inference System Optimizations. LLM-based197

applications are being rapidly deployed on user-198

facing applications. However, LLMs’ massive199

size (Touvron et al., 2023; Team et al., 2024) and200

high computational demands (Dao, 2023; Sheng201

et al., 2023) make inference challenging. In par-202

ticular, the auto-regressive nature of LLMs makes203

inference stateful, requiring efficient caching of KV204

matrices to prevent redundant recalculations (Rad-205

ford et al., 2019b; Kwon et al., 2023; Prabhu et al.,206

2024). Recent work has focused on optimizing207

KV cache prefill and generation (Agrawal et al.,208

2024; Zhong et al., 2024; Patel et al., 2024), im-209

proving compute density (Dao, 2023), and reduc-210

ing memory fragmentation in KV caches (Kwon211

et al., 2023). These advances are crucial to allevi-212

ate memory and compute constraints, and thus any213

approach to improve accuracy/resource trade-offs214

should be compatible with them.215

We introduce StitchLLM, our solution for creat-216

ing models of various sizes with minimal compute217

and no fine-tuning. StitchLLM enables flexible218

accuracy–latency trade-offs while remaining fully219

compatible with existing optimizations. 220

3 StitchLLM 221

StitchLLM enables efficient creation of new mod- 222

els from existing models by stitching blocks of 223

layers from different models without requiring pa- 224

rameter updates to the LLMs to maintain accuracy. 225

We start by providing an overview of stitching. 226

3.1 Stitching in LLMs 227

Large Language Models (LLMs) consist of stacked 228

decoder layers, where it is widely believed (Zhang 229

et al., 2024b,c; Ju et al., 2024) that layers 230

closer to the input capture broader input pat- 231

terns, and those closer to the output encode entity- 232

specific knowledge-a structural consistency ob- 233

served across model sizes. This property enables 234

the idea of layer stitching: combining lower lay- 235

ers from one LLM with upper layers of another to 236

create a hybrid model. 237

We define a stitched model M(t,p) as two com- 238

ponents: the bottom blocks Mb and the top blocks 239

Mt. The bottom blocks are consecutive decoder 240

layers selected from a model B, while the top 241

blocks are selected from another model T . Dur- 242

ing inference (Figure 1a), an input query q first 243

traverses Mb, producing an intermediate represen- 244

tation Ab. This output is then processed by Mt 245

to generate the final response: A = Mt(Mb(q)), 246

where Mb : Q → Ab and Mt : At → A map a 247

query to intermediate representation, and from in- 248

termediate representation to response, respectively. 249

By selecting Mb and Mt from LLMs of differ- 250

ing sizes, StitchLLM achieves flexibility in balanc- 251

ing efficiency and performance. 252

3.2 Challenges 253

Stitching model blocks with heterogeneous repre- 254

sentations leads to two challenges: 255

Intermediate Dimension Mismatch. Blocks from 256

different models often have incompatible hidden di- 257
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Algorithm 1 Stitching Layer Training
Require: Given two LLMs B and T , selects consecutive

decoder layers from B and T as bottom blockMb and
top blockMt.

1: Initialize the stitching layer S based on the hidden size of
Mb andMt.

2: Freeze the weights ofMb andMt.
3: for i = 1, ..., niter do
4: Get next batch of data qi.
5: output =Mt(S(Mb(qi))).
6: loss = MSE(output, qi).
7: Update S using loss.
8: end for

mensions. We address this by introducing a Stitch-258

ing Layer (Section 3.3), which aligns intermediate259

representations across mismatched sizes.260

Optimal Layer Selection. Performance can de-261

pend on where and how many layers are stitched.262

To understand, analyze layer interactions across263

models in Section 3.4 to derive data-driven heuris-264

tics for identifying optimal stitching positions and265

layer counts.266

3.3 Stitching Layer267

We introduce the stitching layers as follows: Given268

a bottom block Mb producing intermediate repre-269

sentations Ab ∈ RS×Hb (sequence length S, hid-270

den size Hb) and a top block Mt requiring inputs271

At ∈ RS×Ht with distinct hidden size Ht, direct272

compatibility is impossible due to dimensional mis-273

match. We propose a lightweight stitching layer274

S ∈ RHb×Ht—implemented as a single MLP—to275

align hidden dimensions. The generation process276

becomes: A = Mt(S(Mb(q))).277

The stitching layer is trained using the same278

cross-entropy loss employed during the pre-279

training stage of the underlying models, leveraging280

the original pre-training dataset (e.g., C4 (Dodge281

et al., 2021) in our experiments). This ensures the282

routing layer generalizes effectively to diverse text283

representations and avoids becoming a bottleneck284

for information flow among bottom/top blocks.285

The training process for the stitching layer is doc-286

umented in Algorithm 1. We select bottom abd top287

blocks (Mb, Mt) from frozen base models B and288

T , then insert trainable a stitching layer S between289

them. The training process is lightweight and takes290

< 2000 gradient steps (Figure 2). This process re-291

quires minimal resources (Table 2)—training even292

large models completes in < 6 GPU hours.293

3.4 Choosing stitching location and models294

The choice of location of stitching and the models295

and their number of layers to stitch can greatly296
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Figure 2: Training losses for randomly sampled stitching
layers on stitched Llama 3 and Llama 2 models. Convergence
achieved after approximately 2000 gradient steps.

Stitching Block GPU hours

(2048, 4096) 2.01
(4096, 5120) 4.33
(5120, 4096) 4.84
(4096, 8192) 5.32
(5120, 8192) 5.85

Table 2: The GPU hours
consumed for training all
stitching layers of various
sizes on A100 GPUs for
Llama Models.
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Figure 3: MMLU accuracy
across decoder layers: the
blue line shows the accuracy
of stitching Llama 2 7B with
TinyLlama 1.1B; the orange
line shows stitching Llama 2
7B with Llama 3.2 1B.

impact performance. We explain our choices next. 297

Location of Stitching. Prior work shows adjacent 298

layers share similar feature representations (Pan 299

et al., 2023; Kornblith et al., 2019), motivating our 300

bilateral stitching approach. Let B and T be two 301

models with Lb and Lt decoder layers, respectively. 302

For a bottom block comprising the first i layers of 303

B, we stitch it to the top blocks of T starting at 304

layer: j = i × (LB/LA). We insert a stitching 305

layer after each decoder layer in B, resulting in Lb 306

stitching layers overall. 307

Stitching Heuristics. To balance model capac- 308

ity, we assemble blocks from pre-trained networks 309

of varying dimensions. Prior work prioritizes 310

stacking smaller bottom blocks with larger top 311

blocks (Pan et al., 2023; He et al., 2016b; Huang 312

et al., 2016); however, StitchLLM exclusively pairs 313

larger bottom blocks with smaller top blocks. 314

Empirical analysis (Section 5.2) shows small-to- 315

large configurations under-perform their base mod- 316

els, while large-to-small assemblies retain perfor- 317

mance. Larger bottom blocks preserve founda- 318

tional representations by better extracting and re- 319

taining input information, reducing the load on 320

subsequent layers, making them essential for main- 321

taining accuracy. While the choice of top blocks 322

also matters—smaller top blocks can degrade per- 323

formance—the effect is less pronounced than that 324

of bottom blocks (Section 5.2). This method also 325

reduces the number of stitching models and the 326

search space for optimal accuracy-latency tradeoffs. 327
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For example, larger-smaller stitching for Llama 2328

13B and 7B cuts stitching candidates from 72 to 40,329

a 45% reduction.330

Further, we restrict stitching to blocks from mod-331

els within the same family, as cross-family com-332

binations (e.g., Llama 2 with Llama 3) degrade333

performance due to structural incompatibilities in334

decoder blocks. Empirical results (Figure 3) con-335

firm significant quality loss when mixing families,336

reinforcing the need for intra-family stitching for337

performance preservation. This constraint also re-338

duces the number of stitching layers, lowering both339

training overhead and search space complexity.340

Efficiency-Driven Block Optimization. To opti-341

mize block selection under a memory constraint342

C, we propose a greedy approach that maximizes343

inference accuracy facc by selecting the number344

of bottom blocks nb with embedding size Nb and345

top blocks nt with embedding size Nt, where each346

decoder block takes mem(N) amount of memory:347

max
nb,Nb,nt,Nt

facc(nb, Nb, nt, Nt)348

s.t. nb ·mem(Nb) + nt ·mem(Nt) ≤ C349

nb ≥ 1350

nt ≥ 1 (1)351

This method enables StitchLLM to dynamically352

adjust block selection based on available resources,353

efficiently handle request fluctuations, and natu-354

rally incorporate more parameters when resources355

allow—reinforcing our observations and aligning356

with prior work that larger models yield better per-357

formance (Radford and Narasimhan, 2018; Rad-358

ford et al., 2019a; Brown et al., 2020).359

Additionally, StitchLLM employs accuracy-360

guided pruning. Empirical observations (Sec-361

tion 5.3) show that choosing fewer bottom blocks362

can degrade performance due to feature incompat-363

ibility. Therefore, StitchLLM prunes suboptimal364

stitched models and retains only those within the ac-365

curacy range Ms = {m | αt ≤ accuracy(m) ≤366

αb} where αt is the weaker model’s accuracy and367

αb is the stronger model’s accuracy. By integrating368

our greedy stitching heuristic and accuracy-guided369

pruning, StitchLLM further reduces stitching can-370

didates (e.g., from 72 to 20 for Llama 2 13B and371

7B, a 73% reduction). This efficiency is crucial for372

deployment in resource-constrained environments373

with strict latency requirements, where traditional374

methods are impractical.375
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Figure 4: StitchLLM System Architecture. The framework
enables adaptive model composition through two core mecha-
nisms: (1) Stitching Layers that dynamically route computa-
tions between model blocks, and (2) Resource-Aware Sched-
uler that selects optimal blocks in real-time based on current
system constraints (e.g., memory).

4 StitchLLM Serving 376

StitchLLM is an end-to-end serving system that 377

helps realize the benefits of stitching models over- 378

coming key challenges. In Section 4.1, we first 379

analyze the limitations of existing approaches and 380

demonstrate how we address these gaps. We then 381

decribe the design. 382

4.1 Existing Serving System 383

To manage fluctuating workloads, LLM providers 384

often use Model-Level Routing (MLR), where re- 385

quests are routed to smaller models (e.g., Llama 386

70B to Llama 7B) during peak demand, prioritiz- 387

ing availability over accuracy. However, MLR has 388

several inefficiencies: (1) the trade-off between ac- 389

curacy and resource requirements is coarse. MLR 390

forces providers to choose between discrete model 391

sizes, resulting in abrupt accuracy drops (Fig- 392

ure 1c). (2) During model transitions, GPU mem- 393

ory must store weights of both the original and 394

smaller models, causing "memory bloat" forcing 395

smaller batch sizes and reduced throughput. (3) 396

Smaller batches during transitions degrade GPU 397

utilization, worsening inefficiencies. 398

Our StitchLLM serving system addresses these 399

inefficiencies by unlocking Block-Level Routing, 400

decomposing models into reusable layer blocks, 401

and routing among them. By storing only active 402

blocks, StitchLLM eliminates memory bloat while 403

ensuring high throughput, optimal cluster utiliza- 404

tion, and adaptability to fluctuating workloads. 405

4.2 Overview 406

Figure 4 provides an overview of StitchLLM. 407

Model Zoo. StitchLLM’s "block zoo" repository 408

organizes LLMs by partitioning decoder layers 409

into individual blocks. It not only serves as a 410

storage interface but also integrates a profiler that 411

records key performance metrics (e.g. memory 412

usage, average latency per token, task accuracy, 413
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Algorithm 2 Determining Stitching Configurations
Require: Stitching CandidatesMs, C
Require: Configs← []
1: for all (bi, ti) ∈Ms do
2: append (bi, ti) to Configs
3: end for
4: Sort Configs s.t. (mbi ,mti) ≼

(mbj ,mtj ) if mbi < mbj or (mbi = mbj ∧ mti ≤
mtj ), where mbi = nbi ·mem(bi).

5: for all (bi, ti) ∈ Configs do
6: if mbi +mti ≤ C then
7: return (bi, ti)
8: end if
9: end for

10: return null

and architectural details, etc.) while evaluating the414

resource–accuracy trade-offs for each block.415

Scheduler. During inference, the StitchLLM416

scheduler manages resource allocation and block417

placement, processing requests. It schedules blocks418

(denoted as "block instances") onto devices and419

decides how to route requests and what point in420

trade-off space should models "degrade to".421

Agent. A StitchLLM agent on each device in a422

cluster of machines monitors block instances and423

request queues, handles requests, manages the KV424

cache, and transfers outputs among blocks. It pro-425

vides compute and memory utilization statistics to426

the StitchLLM scheduler and enables request mi-427

gration across nodes. Appendix H provides further428

details of StitchLLM’s serving implementation.429

4.3 Online Serving430

Figure 4 illustrates the steps in StitchLLM’s online431

serving process; we provide details below.432

Request Scheduling. StitchLLM’s scheduling433

strategy prioritizes block instances that either hold434

a request’s KV cache or are already loaded in GPU435

memory, provided the device memory can accom-436

modate the request data. If the device memory is in-437

sufficient, StitchLLM estimates the latency of each438

potential block instance and greedily schedules the439

request to the instance with the smallest latency440

increase. Details can be found in Appendix K.441

Block resource allocation. StitchLLM’s sched-442

uler allocates resources for blocks, allowing inde-443

pendent per-block scaling using a queue-length-444

based policy. If the queue length exceeds t% of the445

maximum (configurable by the user), we scale onto446

more devices, starting with the heaviest-loaded in-447

stances. If an instance has requests’ KV cache, we448

balance the load by moving the state along with449

rerouting requests to new instances (Appendix I).450

When memory becomes constrained,451

StitchLLM dynamically prioritizes request 452

throughput by trading accuracy for capacity. 453

StitchLLM first identifies memory usage and 454

searches for smaller stitching configurations to 455

reduce load, enabling higher request volumes. 456

Using the greedy strategy from Eq. 1, it sorts all 457

stitching configurations by descending bottom- 458

block size, then top-block size, and iteratively 459

evaluates them until finding a configuration under 460

the memory budget C (Algorithm 2). This ensures 461

real-time adaptability while balancing efficiency 462

and resource limits. 463

Locality-aware block placement. To mitigate 464

transfer overhead between blocks, StitchLLM 465

places blocks to prioritize locality. During place- 466

ment, StitchLLM ensures blocks with frequent 467

inter-dependencies are placed close together, ide- 468

ally on the same server leveraging high-capacity 469

intra-server connections like NVLink interconnects 470

and avoiding constrained inter-server links. 471

Locality is quantified by monitoring historical 472

traffic and recording inter-dependency frequencies. 473

High-locality block pairs are placed on the same 474

server. Additionally, StitchLLM’s scheduler dy- 475

namically adapts to changing traffic patterns, mi- 476

grating block instances as needed. Appendix F 477

discusses the benefits of locality-aware placement. 478

5 Evaluation 479

Setup. All experiments were conducted on two 480

servers equipped with an Intel(R) Xeon(R) Sil- 481

ver 4314 CPU @ 2.40GHz, supplemented by four 482

NVIDIA A100 GPUs, each with 80GB of RAM. 483

The server runs on Ubuntu 22.04.4 LTS and uses 484

PyTorch 2.4.0 (Paszke et al., 2019). 485

Models. We conduct all experiments using both 486

Llama 2 and Llama 3 models. For Llama 2, we 487

utilize TinyLlama 1.1B (Zhang et al., 2024a), as 488

well as 7B and 13B variants. For Llama 3, we 489

select the 1B, 3B, and 8B versions. In addition, we 490

use Qwen 2.5 models (Bai et al., 2023) to analyze 491

their block stitching behavior, using the 1.5B, 3B, 492

7B, 14B, and 32B variants. 493

Datasets. We choose five representative datasets 494

to evaluate the effectiveness of our methods: 495

MMLU (Hendrycks et al., 2021a), BoolQ (Clark 496

et al., 2019), CommonsenseQA (Talmor et al., 497

2019), Hellaswag (Zellers et al., 2019), and Wino- 498

grande (Sakaguchi et al., 2021). 499

Baselines: To understand fine-grained accuracy- 500

resource trade-offs, we compare stitched models 501

against their base models, where bottom and top 502
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Figure 5: Stitching Performance Across Various Decoder Layers.
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Figure 6: MMLU Accuracy Across Different Decoder Layers:
The orange line represents using smaller bottom blocks paired
with larger top blocks, while the blue line depicts larger bottom
blocks combined with smaller top blocks.

blocks are selected. For end-to-end inference im-503

provements, we compare StitchLLM with model-504

level routing (MLR), where requests are routed to505

available LLMs instead of different blocks. These506

baselines meticulously validate our observations.507

5.1 Stitching LLMs508

We first analyze the performance of StitchLLM,509

using Llama 2 and Llama 3 models. By apply-510

ing Algorithm 2, we create 112 stitching layers511

for Llama 2 models (13B-1.1B, 13B-7B, and 7B-512

1B) and 92 stitching layers for Llama 3 mod-513

els (8B-3B, 8B-1B, and 3B-1B). As illustrated514

in Figure 5, our stitched models provide fine-515

grained accuracy-latency tradeoffs on four differ-516

ent datasets: MMLU, BoolQ, Winogrande, and517

HellaSwag, filling the gap left by their base mod-518

els. This indicates that StitchLLM successfully519

achieves stitching across a variety of tasks. Addi-520

tional evaluations are included in Appendix A.521

5.2 Stitching Direction522

In Figure 6 we evaluate two neural network stitch-523

ing strategies using Llama 2 and 3: (1) smaller524

bottom blocks paired with larger top blocks (2)525

larger bottom blocks combined with smaller top526

blocks. We observe that models with larger bottom527

blocks and smaller top blocks consistently outper-528

form the reverse configuration across both archi-529

tectures. This suggests that foundational lower lay-530

ers play a disproportionately critical role in knowl-531

edge retention and reasoning. Our findings indicate532

that the size of bottom blocks is crucial for achiev-533

ing maximum performance. Using larger models 534

(Llama 2 13B and Llama 3 8B) as bottom blocks 535

significantly outperforms using smaller ones, lead- 536

ing us to prefer larger models for bottom blocks. 537

More evaluations can be found in Appendix A. 538

Furthermore, we identify a performance bound- 539

ing effect, smaller bottom blocks act as an irre- 540

versible bottleneck, capping overall model perfor- 541

mance at the level of their source architecture even 542

when augmented with larger or more capable top 543

blocks. We include more analysis in Appendix B. 544

5.3 Existence of Performance Boundary 545

For each model, we observe a distinct performance 546

boundary—a specific decoder block, where, on 547

one side, performance remains largely constant, 548

and on the other side, it suddenly changes. Fig- 549

ure 7 demonstrates this phenomenon on the MMLU 550

benchmark for both Llama 2 and Qwen 2.5 models. 551

This boundary separates two regions: a cold region, 552

where stitching positions yield low and stable per- 553

formance, and a hot region, where performance 554

improves dramatically. For example, the perfor- 555

mance boundaries occur at block 15 for Llama 2 556

13B, and block 7 and 47 for Qwen 2.5 32B. We 557

include more evaluations in Appendix C. 558

Each model family also exhibits a unique per- 559

formance boundary pattern. First, the ratios of 560

the hot and cold regions are remarkably consistent 561

within each family: Llama 2 models show a hot-to- 562

cold ratio of approximately 1.3:1, while Llama 3 563

models display a ratio of roughly 1:2.33. Second, 564

models within the same family tend to share a sim- 565

ilar boundary layout regardless of their overall size, 566

as shown in Figure 7. Specifically, Llama 2 mod- 567

els typically have their performance boundary in 568

the middle of the decoder layers, Llama 3 models 569

near the end, and Qwen models feature two bound- 570

aries—one near the beginning and another near the 571

end. We include more evaluations in Appendix C. 572
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Figure 9: Throughput and
GPU utilization comparison:
We observe that StitchLLM
when compared to MLR pro-
vides high throughput and
GPU utilization.

Llama 2 Llama 3
MLR StitchLLM MLR StitchLLM

TTFT (ms) 112 101.6 99 91
Accuracy (%) 30 38 39.7 42.7
Parameters used (B) 12.29 10.75 5.96 5.07

Table 3: Performance comparison between StitchLLM and
MLR using Llama 2 (1.1B, 7B, 13B), and Llama 3 (1B, 3B,
8B).

5.4 Serving Performance573

Accuracy. We first utilized production Azure574

traces to examine how accuracy is impacted by575

variations in the request arrival rate and perform576

evaluation on the standard MMLU benchmark. As577

shown in Figure 8, the average accuracy fluctuates578

over time under different cluster configurations.579

Here, "Low" represents the use of 2 GPUs, "Mid"580

represents 4 GPUs, and "High" represents 8 GPUs.581

The models evaluated in this study include Llama582

2 at 1.1B, 7B, and 13B parameters. Incoming re-583

quests prioritize the highest-accuracy blocks (13B)584

unless those resources are unavailable.585

Additionally, we analyze how StitchLLM im-586

proves accuracy and TTFT over MLR using the587

Azure production traces with 2 GPUs. Table 3588

shows that the average accuracy achieved by589

StitchLLM is 38%, which is 8% higher than us-590

ing MLR. Similarly, Table 3 shows that the average591

accuracy achieved by StitchLLM is 42.7%, which592

is 3% higher than using MLR. When request arrival593

rates are low, StitchLLM shares the same blocks594

to save memory as observed by the average num-595

ber of parameters invoked per request. Which is596

lower when using StitchLLM. Higher request ar-597

rival rates cause StitchLLM to redirect traffic to598

faster blocks (1.1B) more frequently, but the ac-599
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Figure 10: GPU Utiliza-
tion: The above figure high
GPU utilization change over
time. We observe that com-
pared MLR , StitchLLM con-
sistently provides higher GPU
utilization.
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Figure 11: Latency CDF:
The above figure show the
CDF of request comple-
tion time of StitchLLM.
StitchLLM improves both job
completion and make span .

curacy degradation process is more gradual than 600

MLR, resulting in a gradual decline in accuracy. 601

Latency and throughput. Figure 11 depicts 602

the CDF of the latency of completing a request 603

in StitchLLM. StitchLLM reduces the 95%ile 604

latency by 33.5% compared with MLR. The 605

throughput of StitchLLM is 1.71x of MLR. (Fig- 606

ure 9). By decomposing models into more granular 607

blocks, StitchLLM enhances efficiency of process- 608

ing larger batch sizes. This approach significantly 609

reduces tail latency, especially under high request 610

rates. 611

GPU utilization. In Figure 10 we monitor the end- 612

to-end serving process, and observe that the aver- 613

age GPU utilization is improved by 20.1% com- 614

pared with MLR. StitchLLM efficiently dispatches 615

requests under the existing deployment status to 616

avoid frequent model loading and unloading. We 617

provide memory measurement and additional met- 618

rics in Appendix G. 619

6 Conclusion 620

We present StitchLLM, a finer-grained serving sys- 621

tem tailored for LLM workloads. In StitchLLM, 622

we show the effectiveness of improving throughput 623

by allowing model component reuse with blocks. 624

We enable adaptive serving, effectively coordinat- 625

ing multiple requests’ KV cache, and mitigating 626

the communication costs to improve serving ef- 627

ficiency. Our experiments show that StitchLLM 628

achieve significant efficiency improvement. 629
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Limitations630

Our approach relies on empirically derived heuris-631

tics for greedy block selection and accuracy-guided632

pruning, which may not generalize to novel model633

families or emerging architectures. In addition,634

heterogeneous block execution poses challenges635

for GPU memory management, particularly when636

handling large batches. Furthermore, StitchLLM637

requires multiple model variants for effective stitch-638

ing. Its ability to merge blocks from different639

models is contingent on specific compatibility fac-640

tors—such as consistent tokenizers and vocabulary641

sizes—within the same model family. However,642

our observations indicate that these incompatibility643

issues are infrequent, suggesting that the use of644

routing layers remains broadly feasible.645
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A Performance across Tasks975

We evaluate the commonsense reasoning (Com-976

monsenseQA, Figure 12), coreference resolution977

(Winogrande, Figure 13), commonsense inference978

(HellaSwag, Figure 14), knowledge-intensive un-979

derstanding (MMLU, Figure 15), and Boolean rea-980

soning (BoolQ, Figure 16) capabilities of Llama 2981

(13B/7B/1.1B) and Llama 3 (8B/3B/1B), with full982

results visualized in their respective figures.983

B More on Stitching Direction984

Figure 17 provides additional evaluations com-985

paring large-small and small-large stitching using986

Llama 3 (3B and 1B) and Llama 2 (7B) with TinyL-987

lama (1.1B). The dataset used is MMLU.988

C More on Performance Boundary989

Figure 18 presents additional evaluations of the990

performance boundary patterns for Llama 2, Llama991

3, and Qwen 2.5. The dataset used is MMLU.992

D Compare To Block Skipping993

Block stitching and block skipping (Jaiswal et al.,994

2024; Chen et al., 2023; Men et al., 2025; Corro995

et al., 2023; Kim et al., 2024; Bae et al., 2023),996

are two approaches designed to lower the resource997

requirements of LLMs. In Figure 19, we com-998

pare their performance on MMLU. Our results999

show that block stitching delivers a more stable bal-1000

ance between accuracy and resource efficiency than1001

block skipping. Moreover, combining these two1002

strategies may yield even more favorable accuracy-1003

resource tradeoffs.1004

E More Complex Stitching Layer 1005

We investigate whether more complex stitching 1006

layer designs can further boost the accuracy of 1007

stitched models. In our experiments, we com- 1008

bine the bottom blocks from Llama 3 8B with 1009

the top blocks from both Llama 3 1B and 3B. For 1010

the 8B-to-3B stitching, we use a three-layer MLP 1011

with dimensions 4096 × 4096, 4096 × 3072, and 1012

3072× 3072, inserting ReLU activations between 1013

layers. For the 8B-to-1B stitching, we similarly use 1014

three MLP layers sized 4096× 4096, 4096× 2048, 1015

and 2048×2048. As shown in Figure 20 (evaluated 1016

on MMLU), the complex stitching layers improve 1017

overall performance and yield smoother accuracy- 1018

resource tradeoffs. This finding reinforces the po- 1019

tential of LLM stitching and opens up opportuni- 1020

ties to create heterogeneous LLMs with decoders 1021

of varying sizes. 1022

F Locality-aware Block Placement 1023

We compare the communication costs between 1024

StitchLLM’s locality-aware placement and the 1025

widely adopted fragmentation-minimized (frag- 1026

min) placement. Figure 21 shows the average per- 1027

formance change of using the frag-min placement. 1028

The median and 95%ile latency is increased by 1029

12.6% and 18.2%. The communication costs of 1030

one request sum up all the transfer costs, therefore 1031

presenting a significant inflation of 73.4%. The 1032

locality-aware placement has reduced 72.3% inter- 1033

server communications compared with the frag- 1034

min placement strategy. 1035

G More on GPU Utilization 1036

In Figure 22, we show the memory consumption 1037

of model parameters and request-related data, in- 1038

cluding input, intermediate activations, output, and 1039

the KV cache. In the optimal scenario, BlockLLM 1040

utilizes 16.1% less space for model parameters and 1041

24.1% more space for request-related data, indicat- 1042

ing that more requests are being processed. This 1043

increase is attributed to our ability to share smaller 1044

top blocks among multiple top blocks, thereby free- 1045

ing up more memory for request processing. 1046

H Implementation Details 1047

We have implemented a prototype of StitchLLM on 1048

top of vLLM (Kwon et al., 2023). It is compatible 1049

with HuggingFace models. We use NCCL for data 1050

transfer among servers. 1051

Profiling. To support the online serving system, 1052
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Figure 12: CommonsenseQA performance across different decoder blocks.
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Figure 13: Winogrande performance across different decoder blocks.

StitchLLM profiles blocks by measuring compu-1053

tation time across various batch sizes, including1054

surrogate computations and multiplexing perfor-1055

mance. It also evaluates communication latency1056

between devices using NCCL primitives and quan-1057

tifies the overhead of loading the block engine from1058

disk into host and device memory.1059

Batching. While larger batch sizes improve com-1060

putational efficiency, enforcing a fixed large batch1061

size complicates request reorganization. To bal-1062

ance flexibility and efficiency, StitchLLM loosely1063

encourages batching within each block instance.1064

When a new batch arrives, StitchLLM ’s agent1065

queues it and attempts to merge it with neighbor-1066

ing requests, ensuring the combined batch remains1067

within the upper batch size limit. If no queued re- 1068

quests are available, the agent processes the batch 1069

immediately. Requests reaching EOS are removed 1070

and forwarded to the scheduler. 1071

Request dispatching. StitchLLM ’s agents em- 1072

ploy a FIFO + priority queue, giving precedence to 1073

requests that have exited KV cache memory. Each 1074

block instance maintains a countdown clock for 1075

auto-regressive requests, ensuring their timely pro- 1076

cessing. The scheduler and agents handle dispatch- 1077

ing differently: agents identify candidate blocks, 1078

pack requests, and broadcast them to available 1079

agents, while the scheduler maintains a live record 1080

of block placements, streamlining dispatching. 1081
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Figure 14: Hellaswag performance across different decoder blocks.

0 6 12 18 24 30 36 42
Block ID

20

30

40

50

Ac
cu

ra
cy

 (%
)

7B

13B

(a) Stitching Llama 2 13B with 7B.

0 6 12 18 24 30 36 42
Block ID

30

40

50

Ac
cu

ra
cy

 (%
)

1.1B

13B

(b) Stitching Llama 2 13B with TinyL-
lama 1.1B.

0 6 12 18 24 30
Block ID

20

30

40

Ac
cu

ra
cy

 (%
)

1.1B

7B

(c) Stitching Llama 2 7B with TinyL-
lama 1.1B.

0 6 12 18 24 30
Block ID

20

30

40

50

Ac
cu

ra
cy

 (%
)

3B

8B

(d) Stitching Llama 3 8B with 3B.

0 6 12 18 24 30
Block ID

20

40

60

Ac
cu

ra
cy

 (%
)

1B

8B

(e) Stitching Llama 3 8B with 1B.

0 6 12 18 24 30
Block ID

0

20

40

Ac
cu

ra
cy

 (%
)

1B

3B

(f) Stitching Llama 3 3B with 1B.

Figure 15: MMLU performance across different decoder blocks.

I KV Cache Coordination1082

Memory bandwidth-bound KV cache. Efficient1083

stateful coordination of the KV cache is crucial for1084

auto-regressive LLMs in StitchLLM, as memory1085

bandwidth constraints on the KV cache have been1086

identified as a significant bottleneck in numerous1087

studies. Existing systems process one batch of re-1088

quests at a time, weighing the trade-off between1089

recalculating the KV matrices and caching them1090

in device memory. This trade-off reaches a point—1091

determined by factors such as device type, model1092

architecture, and request sequence length—where1093

caching becomes more efficient than recalculation.1094

However, as request sequences lengthen, mem-1095

ory bandwidth constraints become a performance- 1096

bounding factor when loading the KV cache (Kwon 1097

et al., 2023). 1098

I/O and recalculation cost. As mentioned in Sec- 1099

tion 3, StitchLLM’s design complicates the prob- 1100

lem. The assumption that requests are consistently 1101

processed by the same block instances no longer 1102

holds, making I/O costs for transferring KV caches 1103

between instances unavoidable. 1104

To migrate the KV cache from device di to dj , 1105

we optimize the process by overlapping KV cache 1106

recomputation with copying, thereby minimizing 1107

migration time. Given the fully known context, we 1108

employ chunked pre-filling for efficient recompu- 1109

tation. For sequences to be migrated, denoted as 1110
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Figure 16: BoolQ Performance across different decoder blocks.
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Figure 17: MMLU Accuracy Across Different Decoder Lay-
ers: The orange line represents using smaller bottom blocks
paired with larger top blocks, while the blue line depicts larger
bottom blocks combined with smaller top blocks.

S = si
n
1 , we begin by recomputing the KV cache1111

from the start of sequence s1 while simultaneously1112

copying the cache starting from the end of sequence1113

sn. The process concludes when recomputation en-1114

counters a KV cache page that has already been1115

copied, indicating the completion of migration.1116

This approach is chosen for two key reasons.1117

First, each token’s KV cache depends on the KV1118

caches of all preceding tokens. Recomputing the1119

KV cache from the beginning of a sequence en-1120

sures the accuracy of the entire cache. In contrast,1121

copying can take place independently, without rely-1122

ing on preceding caches. Second, ongoing requests1123

on the target device may introduce latency during1124

recomputation. By employing chunked prefill, we1125

improve GPU utilization and mitigate the impact1126

of KV cache recomputation on other tasks.1127

Proactive KV Cache Migration. As StitchLLM1128

may redirect requests to blocks lacking the nec-1129

essary KV caches, this can introduce additional1130

migration latency. While this overhead cannot be1131

completely eliminated, it can be mitigated by proac-1132

tively migrating KV caches in advance, thereby 1133

removing it from the critical path. 1134

To ensure that migration does not introduce la- 1135

tency, it is essential to predict whether the KV 1136

cache will be used before the migration completes. 1137

The feasibility of predicting KV cache usage has 1138

been demonstrated in (Abhyankar et al., 2024). We 1139

adopt the method proposed in (Abhyankar et al., 1140

2024) to estimate the interception time: TINT = 1141

tnow− tcall, where tnow is the current time updated 1142

for each iteration, and tcall is the time when the 1143

last interception was initiated. Figure 23 shows an 1144

illustration of our approach. 1145

Memory Efficiency. Modern LLM inference serv- 1146

ing systems support paged attention (Kwon et al., 1147

2023), a technique that partitions the KV cache 1148

into smaller pages. This approach eliminates the 1149

need to store the entire KV cache in contiguous 1150

memory and allows for the sharing of KV cache 1151

pages across multiple requests, thereby enhancing 1152

memory efficiency. However, dynamically rout- 1153

ing requests to blocks that lack the required KV 1154

cache can result in the creation of new KV cache 1155

pages. Since each device maintains its own ded- 1156

icated KV cache page table, generating the same 1157

KV cache page on a different device leads to the 1158

duplication of KV pages. This duplication, which 1159

otherwise would only require a single KV page 1160

with an incremented reference counter, undermines 1161

the advantages of memory sharing. 1162

To prevent memory waste, we prioritize migrat- 1163

ing pages referenced by fewer requests before those 1164

referenced by more. We denote all KV pages as 1165
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(c) Llama 3.1 8B and Llama
3.2 3B.
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(d) Llama 3.2 3B and Llama
3.2 1B.
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(e) Qwen 2.5 7B and 1.5B.
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Figure 18: MMLU performance using differnt stitching block configurations on Llama 2, Llama 3, and Qwen 2.5.
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Figure 19: Accuracy on MMLU: Block Stitching vs. Block
Skipping. The orange line shows performance when stitching
is applied at every decoder block, while the blue line represents
skipping all subsequent decoder blocks after a given block.
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(a) Stitching Llama 3 8B and
3B.
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(b) Stitching Llama 3 8B and
1B.

Figure 20: Accuracy on MMLU: Single Linear Stitching vs.
Multi-Layer Stitching. The blue line shows performance with
a single linear stitching layer, while the orange line reflects
results using larger stitching blocks composed of multiple
linear layers with activation functions.

C = {c1, c2, ...cn}, where each ci represents the1166

underlying consecutive KV pages of request si, and1167

n is the total number of requests tracked by the sys-1168

tem. We use ref(ci) to calculate the total number1169

of pages referenced by more than one request in1170

sequence si. For KV cache pages ci ∈ C, we have1171

ref(ci) ≤ ref(ci+1). If ref(ci) = ref(ci+1),1172

then resumeTime(ci) <= resumeTime(ci+1),1173

where resumeTime(ci) is the estimated time the1174

pages ci will be reused by the intercepted request1175

si.1176

Prioritize KV cache owner. Transferring KV1177
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Figure 21: StitchLLM compared with fragmentation-
minimized placement.
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Figure 22: Memory used for parameters: Memory usage of
parameters and request-related data. We observe that due to
performing block level merging, StitchLLM is able to mini-
mize memory used for parameters.

caches to a new block instance can introduce la- 1178

tency, impacting request processing times. This 1179

latency is subject to network bandwidth and vary- 1180

ing network conditions. Although recalculating 1181

the KV cache can sometimes be more efficient 1182

than direct copying, it may still disrupt ongoing 1183

requests on the target device. Therefore, we pri- 1184

oritize block instances that already possess the re- 1185

quired KV cache before redirecting requests to a 1186

new device. This approach follows the principle 1187

of best-effort coordination. When candidate block 1188

instances have the same status (e.g., queuing time), 1189

StitchLLM’s agent prioritizes dispatching the re- 1190

quest to the block instance that holds the associated 1191

KV cache. In Appendix K, we provide a detailed 1192

discussion on how StitchLLM’agent selects the ap- 1193
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Figure 23: Illustration of coordinating KV cache when using
block-granularity provisioning.
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Figure 24: Ablation study of KV cache coordination strategy.

propriate block instance.1194

J Best-effort KV cache coordination.1195

StitchLLM performs best-effort dispatching by1196

prioritizing the device with its KV cache mem-1197

ory. We consider two other solutions to verify if1198

StitchLLM’s strategy is efficient: (1) All the KV1199

cache are obtained using recalculation. (2) We1200

always route the request back to the least busy1201

device and let the KV cache owner transfer the1202

cache to the instance. Figure 24 shows the median1203

and 95%ile latency, throughput, and communica-1204

tion costs normalized to StitchLLM. The 95%ile1205

latency is increased by 1.23x using recalculation1206

and by 1.36x using least-busy-device routing. The1207

communication costs are reduced significantly to1208

0.36 of StitchLLM when using recalculation and1209

increased to 1.28x when using least-busy-device1210

routing.1211

K Scheduler Formulation1212

Latencydc = Tqueue + Tcompute + Ttransfer + Tload,

Tqueue =
n∑

i=1

Comp(reqi),

Tcompute = Comp(req),

Ttransfer =
Dreq

Bnet(s, dc)
scheduler dispatches,

Tload =


Db −Db′

Bmem(dc)
Memory,

Db −Db′

Bnet(dc)
Network.

1213

We incorporate four key factors: queu-1214

ing (Tqueue), computation (Tcompute), transfer 1215

(Ttransfer), and the overhead associated with block 1216

switching (Tload). Tqueue accounts for the duration 1217

required to process all n queuing request batches. 1218

Ttransfer, denotes the time needed for scheduler s 1219

to send requests to target node. Here, Dreq is the 1220

size of the request token, and Bnet(s, dj) denotes 1221

the network bandwidth between two devices. Tload 1222

denotes the time needed to transfer the needed 1223

blocks to the target device. Db is the total size 1224

of the blocks needed, and D′
b is the sizes of blocks 1225

already exists on target devices. The transfer will 1226

use CPU memory, or resort to network transfer if 1227

the needed block is not in memory. Bmem(dc) is 1228

the device memory bandwidth of candidate dc. 1229
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