
StitchLLM: Serving LLMs, One Block at a Time

Anonymous ACL submission

Abstract

The rapid evolution of large language models001
(LLMs) has revolutionized natural language002
processing (NLP) tasks such as text genera-003
tion, translation, and comprehension. How-004
ever, the increasing computational demands005
and inference costs of these models present006
significant challenges. This study investigates007
the dynamic and efficient utilization of pre-008
trained weights from open-sourced LLMs of009
varying parameter sizes to achieve an optimal010
balance between computational efficiency and011
task performance. Drawing inspiration from012
the dual-process theory of human cognition, we013
introduce StitchLLM: a dynamic model rout-014
ing framework that employs a powerful bot-015
tom model to process all queries, and uses a016
lightweight routing mechanism to allocate com-017
putational resources appropriately. Our novel018
framework optimizes efficiency and maintains019
performance, leveraging a trainable stitching020
layer for seamless integration of decoder lay-021
ers across different LLMs. Experimental re-022
sults demonstrate that StitchLLM improves023
system throughput while minimizing perfor-024
mance degradation, offering a flexible solution025
for deploying LLMs in resource-constrained026
settings.027

1 Introduction028

The rapid evolution of large language models029

(LLMs), such as GPT-4 (Achiam et al., 2023), has030

transformed natural language processing (NLP),031

enabling significant progress in text generation,032

translation, and comprehension. However, training033

LLMs remains computationally intensive, restrict-034

ing foundation model development to organizations035

with massive compute resources. This bottleneck036

results in limited model size options. For example,037

Llama3 (Grattafiori et al., 2024) offers only five038

variants: 1B, 3B, 8B, 70B, and 405B.039

This limited range of model sizes constrains the040

ability to balance accuracy and resource efficiency041

during inference. For example, a user requiring 042

high accuracy must choose between Llama3 405B 043

and Llama3 70B—two models with vastly different 044

computational demands—without an intermediate 045

option that allows balancing performance and ef- 046

ficiency. Such coarse granularity forces users into 047

suboptimal trade-offs between accuracy and effi- 048

ciency, as intermediate configurations are unavail- 049

able. 050

Existing techniques like distillation (Hinton, 051

2015; Gu et al., 2024; Liang et al., 2020) and prun- 052

ing (Ma et al., 2023; Sun et al., 2023; Kurtic et al., 053

2022) try to create smaller models to address this 054

issue. However, they come with substantial com- 055

putational overhead, requiring extensive parameter 056

updates and long training times. For instance, train- 057

ing a smaller model with Pythia (Biderman et al., 058

2023) can take over 24 GPU days, and generaliza- 059

tion challenges persist (Gudibande et al., 2023). 060

To overcome these challenges, we propose a 061

novel alternative: dynamically composing pre- 062

trained LLM blocks of varying sizes. This ap- 063

proach achieves fine-grained efficiency-accuracy 064

trade-offs without retraining or finetuning, which is 065

crucial for the scalable and sustainable deployment 066

of LLMs in real-world applications, where both 067

high throughput and accuracy must be maintained 068

under resource constraints. 069

Our method draws inspiration from the dual- 070

process theory of human cognition, which dis- 071

tinguishes between System 1 (fast, intuitive, au- 072

tomatic) and System 2 (slow, deliberate, com- 073

putationally intensive) (Kahneman, 2011). Sim- 074

ilarly, effective LLM deployment requires balanc- 075

ing lightweight, efficient inference (System 1) with 076

computationally intensive, high-accuracy reason- 077

ing (System 2). To navigate this trade-off, we intro- 078

duce StitchLLM, a serving system that seamlessly 079

integrates pretrained models, dynamically allocat- 080

ing computational resources to mirror the adaptive 081

interplay of Systems 1 and 2 in human cognition. 082

1

The core idea in StitchLLM is shown in Fig-083

ure 1a: incoming user requests are dynamically084

routed across "blocks" drawn from different mod-085

els. The figure shows four block combinations086

that a request can traverse, spanning two bottom087

blocks and two top blocks, which open up various088

resource/accuracy trade-off points.089

In developing StitchLLM, we overcome two key090

challenges: (i) Different models process query us-091

ing unique intermediate representations, creating092

integration barriers. Additionally, identifying the093

ideal merge points—locations where models can094

be combined without compromising accuracy or095

efficiency—is complicated. (ii) Fragmenting mod-096

els into smaller, reusable blocks, as shown in Fig-097

ure 1a, introduces communication overheads, and098

complicates various aspects such as managing GPU099

utilization and KV caches since different requests100

may use different model blocks.101

To address the first challenge, we build on prior102

work in vision model stitching (Pan et al., 2023)103

by introducing a linear transformation that aligns104

the hidden dimensions of different LLMs (e.g.,105

4096 → 2048 for Llama-8B/Llama-1B), repre-106

sented by the purple block in Figure 1a). Train-107

ing this lightweight layer requires updating only its108

parameters, minimizing overhead. We conduct ex-109

tensive experiments—across 5 datasets and 12 mod-110

els—to evaluate stitching at various locations and111

developed heuristics for optimal placement. Our112

findings indicate that stitching from a larger model113

to a smaller one (e.g., using earlier layers from114

Llama 8B and later layers from 1B) yields a better115

balance between performance and resource effi-116

ciency. Moreover, models within the same family117

exhibit similar stitching patterns, helping to reduce118

the search space for optimal stitching locations.119

To overcome the second challenge, we develop120

end-to-end serving optimizations to enable effec-121

tive model stitching. We employ greedy block-122

level scheduling and locality-aware placement to123

maximize GPU utilization while minimizing inter-124

server communication and KV cache management125

overheads. Unlike approaches taken by Claude126

(Priyanshu et al., 2024) and ChatGPT (Achiam127

et al., 2023), which switch to a lower-capacity128

model during high inference demand, StitchLLM129

can mitigate the stark trade-offs, enhancing overall130

user experience, and offering a fine-grained accu-131

racy vs resource trade-off. As shown in Figure 1c,132

StitchLLM bridges the accuracy-resource gap left133

by coarse-grained model sizes.134

Using real cloud workloads, StitchLLM im- 135

proves average response accuracy by 8% com- 136

pared to state-of-the-art systems, while maintain- 137

ing similar overall performance. It also reduces 138

time-to-first-token by 18%. Our evaluation shows 139

that StitchLLM enhances computational efficiency, 140

lowering 95%ile latency by up to 33.5% and in- 141

creasing GPU utilization by up to 20.1%. Further, 142

StitchLLM excels under peak load scenarios, im- 143

proving serving accuracy by 12.2%. 144

2 Related Work 145

We first provide a brief overview LLM inference 146

and challenges. 147

LLM Workload Pattern. We next study the work- 148

load pattern observed when deploying LLMs, by 149

looking at real-world traces. We first analyze the 150

trace of request arrival patterns for Azure cloud ser- 151

vices (Patel et al., 2024) released by Microsoft. As 152

shown in Figure 1b, we observe that the arrival pat- 153

terns for user-facing applications are quite bursty. 154

This pattern persists across various private deploy- 155

ments (Wang et al., 2024b,a; Patke et al., 2024; 156

Khare et al., 2023; Agrawal et al., 2024), where 157

unpredictable demand spikes force engineers to ei- 158

ther over-provision resources or dynamically trade 159

accuracy for efficiency via smaller models. 160

Accuracy and Resource Trade-off. More com- 161

putationally intensive models generally provide 162

better accuracy at the cost of high resource re- 163

quirements. For example, ResNet-101 achieves 164

higher accuracy over Resnet-50 (He et al., 2016a) 165

on ImageNet (Deng et al., 2009) while requir- 166

ing 2× more FLOPs (4.1B vs 7.8B). This gap 167

is even more pronounced in language models, 168

e.g., Llama3-70B shown 16% gain over Llama3- 169

8B (Grattafiori et al., 2024) (the next smaller 170

model) on MATH (Hendrycks et al., 2021b), with 171

8× higher memory demands (260 GB vs 29 GB), 172

as shown in Table 1. Current practice limits users 173

to a few discrete model sizes-1B, 3B, 8B, 70B, and 174

405B-with no fine-grained control over accuracy 175

vs resource trade-offs between these tiers. Due to 176

the prohibitive costs of training foundation models, 177

practitioners cannot simply train intermediate-sized 178

variants. Next, we review existing approaches to 179

create new models to navigate accuracy and re- 180

source trade-offs. 181

Creating New models Recent work has explored 182

generating smaller LLMs from pre-trained mod- 183

els. Distillation-based approaches (Hsieh et al., 184

2023; Yang et al., 2024; DeepSeek-AI et al., 2025; 185

2

Block B

Block A

Block D

Block C

Stitching
Layer

Top

Bottom

Model A Model B

(a) Requests can be routed from a Bottom
block to a Top block, with different sizes,
configurations, and originating from var-
ious LLMs. The Stitching Layer trans-
former intermediate output from bootom
block to match that of the top block.

18:21
18:28

18:35
18:42

18:49
18:56

19:03
19:10

19:17

Time

0
12
24
36
48
60

of

 re
qu

es
ts

(b) Temporal Heterogeneity: The above
plot is the request arrival pattern observed
from two Azure LLM inference services.
There is a very high temporal heterogene-
ity as the number of requests can change
from 1 to 68 in less than a minute.

4 8 12 16 20 24 28
Memory (GB)

30

40

50

Ac
cu

ra
cy

 (%
)

1B
7B

13B

BLR
MLR

(c) Tradeoff between Accuracy and Re-
sources: accuracy and memory require-
ments for StitchLLM. Stars represent the
trade-off space for existing models, while
the blue dot represents the trade-off space
for StitchLLM.

1B 3B 8B 70B

Memory (GB) 3.8 11.2 29.8 260.4
Price (USD/1M tokens) 0.04 0.06 0.1 0.8
TTFT (ms) 45 53 69 1445
MMLU (%) 33 60 67 80
MATH (%) 10 38 44 60

Table 1: Llama 3 model metrics comparisons.

Sreenivas et al., 2024; Harper et al.) use a larger186

model as a teacher to train a smaller student model,187

but still demands significant resources and train-188

ing time (Hsieh et al., 2023; Sreenivas et al., 2024;189

DeepSeek-AI et al., 2025). Pruning methods sim-190

ilarly reduce computation but often require exten-191

sive fine-tuning (Xia et al., 2024; Men et al., 2025;192

Gromov et al., 2024; Frantar and Alistarh, 2023).193

In contrast, with StitchLLM we aim to design a194

method which dramatically reduces the amount of195

computation required for generating new models.196

Inference System Optimizations. LLM-based197

applications are being rapidly deployed on user-198

facing applications. However, LLMs’ massive199

size (Touvron et al., 2023; Team et al., 2024) and200

high computational demands (Dao, 2023; Sheng201

et al., 2023) make inference challenging. In par-202

ticular, the auto-regressive nature of LLMs makes203

inference stateful, requiring efficient caching of KV204

matrices to prevent redundant recalculations (Rad-205

ford et al., 2019b; Kwon et al., 2023; Prabhu et al.,206

2024). Recent work has focused on optimizing207

KV cache prefill and generation (Agrawal et al.,208

2024; Zhong et al., 2024; Patel et al., 2024), im-209

proving compute density (Dao, 2023), and reduc-210

ing memory fragmentation in KV caches (Kwon211

et al., 2023). These advances are crucial to allevi-212

ate memory and compute constraints, and thus any213

approach to improve accuracy/resource trade-offs214

should be compatible with them.215

We introduce StitchLLM, our solution for creat-216

ing models of various sizes with minimal compute217

and no fine-tuning. StitchLLM enables flexible218

accuracy–latency trade-offs while remaining fully219

compatible with existing optimizations. 220

3 StitchLLM 221

StitchLLM enables efficient creation of new mod- 222

els from existing models by stitching blocks of 223

layers from different models without requiring pa- 224

rameter updates to the LLMs to maintain accuracy. 225

We start by providing an overview of stitching. 226

3.1 Stitching in LLMs 227

Large Language Models (LLMs) consist of stacked 228

decoder layers, where it is widely believed (Zhang 229

et al., 2024b,c; Ju et al., 2024) that layers 230

closer to the input capture broader input pat- 231

terns, and those closer to the output encode entity- 232

specific knowledge-a structural consistency ob- 233

served across model sizes. This property enables 234

the idea of layer stitching: combining lower lay- 235

ers from one LLM with upper layers of another to 236

create a hybrid model. 237

We define a stitched model M(t,p) as two com- 238

ponents: the bottom blocks Mb and the top blocks 239

Mt. The bottom blocks are consecutive decoder 240

layers selected from a model B, while the top 241

blocks are selected from another model T . Dur- 242

ing inference (Figure 1a), an input query q first 243

traverses Mb, producing an intermediate represen- 244

tation Ab. This output is then processed by Mt 245

to generate the final response: A = Mt(Mb(q)), 246

where Mb : Q → Ab and Mt : At → A map a 247

query to intermediate representation, and from in- 248

termediate representation to response, respectively. 249

By selecting Mb and Mt from LLMs of differ- 250

ing sizes, StitchLLM achieves flexibility in balanc- 251

ing efficiency and performance. 252

3.2 Challenges 253

Stitching model blocks with heterogeneous repre- 254

sentations leads to two challenges: 255

Intermediate Dimension Mismatch. Blocks from 256

different models often have incompatible hidden di- 257

3

Algorithm 1 Stitching Layer Training
Require: Given two LLMs B and T , selects consecutive

decoder layers from B and T as bottom blockMb and
top blockMt.

1: Initialize the stitching layer S based on the hidden size of
Mb andMt.

2: Freeze the weights ofMb andMt.
3: for i = 1, ..., niter do
4: Get next batch of data qi.
5: output =Mt(S(Mb(qi))).
6: loss = MSE(output, qi).
7: Update S using loss.
8: end for

mensions. We address this by introducing a Stitch-258

ing Layer (Section 3.3), which aligns intermediate259

representations across mismatched sizes.260

Optimal Layer Selection. Performance can de-261

pend on where and how many layers are stitched.262

To understand, analyze layer interactions across263

models in Section 3.4 to derive data-driven heuris-264

tics for identifying optimal stitching positions and265

layer counts.266

3.3 Stitching Layer267

We introduce the stitching layers as follows: Given268

a bottom block Mb producing intermediate repre-269

sentations Ab ∈ RS×Hb (sequence length S, hid-270

den size Hb) and a top block Mt requiring inputs271

At ∈ RS×Ht with distinct hidden size Ht, direct272

compatibility is impossible due to dimensional mis-273

match. We propose a lightweight stitching layer274

S ∈ RHb×Ht—implemented as a single MLP—to275

align hidden dimensions. The generation process276

becomes: A = Mt(S(Mb(q))).277

The stitching layer is trained using the same278

cross-entropy loss employed during the pre-279

training stage of the underlying models, leveraging280

the original pre-training dataset (e.g., C4 (Dodge281

et al., 2021) in our experiments). This ensures the282

routing layer generalizes effectively to diverse text283

representations and avoids becoming a bottleneck284

for information flow among bottom/top blocks.285

The training process for the stitching layer is doc-286

umented in Algorithm 1. We select bottom abd top287

blocks (Mb, Mt) from frozen base models B and288

T , then insert trainable a stitching layer S between289

them. The training process is lightweight and takes290

< 2000 gradient steps (Figure 2). This process re-291

quires minimal resources (Table 2)—training even292

large models completes in < 6 GPU hours.293

3.4 Choosing stitching location and models294

The choice of location of stitching and the models295

and their number of layers to stitch can greatly296

0 400 800 1200 1600 2000
Steps

0

5

10

Lo
ss

(a) Llama 3.1 8B and 3.2 3B.

0 400 800 1200 1600 2000
Steps

5

10

Lo
ss

(b) Llama 2 7B and TinyL-
lama 1.1B.

Figure 2: Training losses for randomly sampled stitching
layers on stitched Llama 3 and Llama 2 models. Convergence
achieved after approximately 2000 gradient steps.

Stitching Block GPU hours

(2048, 4096) 2.01
(4096, 5120) 4.33
(5120, 4096) 4.84
(4096, 8192) 5.32
(5120, 8192) 5.85

Table 2: The GPU hours
consumed for training all
stitching layers of various
sizes on A100 GPUs for
Llama Models.

0 4 8 12 16 20 24 28 32
Block ID

0
5

10
15
20
25
30
35
40

Ac
cu

ra
cy

 (%
)

7B-1.1B
7B-1B

Figure 3: MMLU accuracy
across decoder layers: the
blue line shows the accuracy
of stitching Llama 2 7B with
TinyLlama 1.1B; the orange
line shows stitching Llama 2
7B with Llama 3.2 1B.

impact performance. We explain our choices next. 297

Location of Stitching. Prior work shows adjacent 298

layers share similar feature representations (Pan 299

et al., 2023; Kornblith et al., 2019), motivating our 300

bilateral stitching approach. Let B and T be two 301

models with Lb and Lt decoder layers, respectively. 302

For a bottom block comprising the first i layers of 303

B, we stitch it to the top blocks of T starting at 304

layer: j = i × (LB/LA). We insert a stitching 305

layer after each decoder layer in B, resulting in Lb 306

stitching layers overall. 307

Stitching Heuristics. To balance model capac- 308

ity, we assemble blocks from pre-trained networks 309

of varying dimensions. Prior work prioritizes 310

stacking smaller bottom blocks with larger top 311

blocks (Pan et al., 2023; He et al., 2016b; Huang 312

et al., 2016); however, StitchLLM exclusively pairs 313

larger bottom blocks with smaller top blocks. 314

Empirical analysis (Section 5.2) shows small-to- 315

large configurations under-perform their base mod- 316

els, while large-to-small assemblies retain perfor- 317

mance. Larger bottom blocks preserve founda- 318

tional representations by better extracting and re- 319

taining input information, reducing the load on 320

subsequent layers, making them essential for main- 321

taining accuracy. While the choice of top blocks 322

also matters—smaller top blocks can degrade per- 323

formance—the effect is less pronounced than that 324

of bottom blocks (Section 5.2). This method also 325

reduces the number of stitching models and the 326

search space for optimal accuracy-latency tradeoffs. 327

4

For example, larger-smaller stitching for Llama 2328

13B and 7B cuts stitching candidates from 72 to 40,329

a 45% reduction.330

Further, we restrict stitching to blocks from mod-331

els within the same family, as cross-family com-332

binations (e.g., Llama 2 with Llama 3) degrade333

performance due to structural incompatibilities in334

decoder blocks. Empirical results (Figure 3) con-335

firm significant quality loss when mixing families,336

reinforcing the need for intra-family stitching for337

performance preservation. This constraint also re-338

duces the number of stitching layers, lowering both339

training overhead and search space complexity.340

Efficiency-Driven Block Optimization. To opti-341

mize block selection under a memory constraint342

C, we propose a greedy approach that maximizes343

inference accuracy facc by selecting the number344

of bottom blocks nb with embedding size Nb and345

top blocks nt with embedding size Nt, where each346

decoder block takes mem(N) amount of memory:347

max
nb,Nb,nt,Nt

facc(nb, Nb, nt, Nt)348

s.t. nb ·mem(Nb) + nt ·mem(Nt) ≤ C349

nb ≥ 1350

nt ≥ 1 (1)351

This method enables StitchLLM to dynamically352

adjust block selection based on available resources,353

efficiently handle request fluctuations, and natu-354

rally incorporate more parameters when resources355

allow—reinforcing our observations and aligning356

with prior work that larger models yield better per-357

formance (Radford and Narasimhan, 2018; Rad-358

ford et al., 2019a; Brown et al., 2020).359

Additionally, StitchLLM employs accuracy-360

guided pruning. Empirical observations (Sec-361

tion 5.3) show that choosing fewer bottom blocks362

can degrade performance due to feature incompat-363

ibility. Therefore, StitchLLM prunes suboptimal364

stitched models and retains only those within the ac-365

curacy range Ms = {m | αt ≤ accuracy(m) ≤366

αb} where αt is the weaker model’s accuracy and367

αb is the stronger model’s accuracy. By integrating368

our greedy stitching heuristic and accuracy-guided369

pruning, StitchLLM further reduces stitching can-370

didates (e.g., from 72 to 20 for Llama 2 13B and371

7B, a 73% reduction). This efficiency is crucial for372

deployment in resource-constrained environments373

with strict latency requirements, where traditional374

methods are impractical.375

SchedulerR

b1
b2
b3

b8

LLMs
Partitioned into

Blocks

Stitch 1

Stitch 2

...

...

Stitching
Layers

R

Model Zoo

b1 b2

b8Stitch 2

Schedule
Blocks

b3 b4

b1 b2 b3 b4

Node 0

Node 1

R

Figure 4: StitchLLM System Architecture. The framework
enables adaptive model composition through two core mecha-
nisms: (1) Stitching Layers that dynamically route computa-
tions between model blocks, and (2) Resource-Aware Sched-
uler that selects optimal blocks in real-time based on current
system constraints (e.g., memory).

4 StitchLLM Serving 376

StitchLLM is an end-to-end serving system that 377

helps realize the benefits of stitching models over- 378

coming key challenges. In Section 4.1, we first 379

analyze the limitations of existing approaches and 380

demonstrate how we address these gaps. We then 381

decribe the design. 382

4.1 Existing Serving System 383

To manage fluctuating workloads, LLM providers 384

often use Model-Level Routing (MLR), where re- 385

quests are routed to smaller models (e.g., Llama 386

70B to Llama 7B) during peak demand, prioritiz- 387

ing availability over accuracy. However, MLR has 388

several inefficiencies: (1) the trade-off between ac- 389

curacy and resource requirements is coarse. MLR 390

forces providers to choose between discrete model 391

sizes, resulting in abrupt accuracy drops (Fig- 392

ure 1c). (2) During model transitions, GPU mem- 393

ory must store weights of both the original and 394

smaller models, causing "memory bloat" forcing 395

smaller batch sizes and reduced throughput. (3) 396

Smaller batches during transitions degrade GPU 397

utilization, worsening inefficiencies. 398

Our StitchLLM serving system addresses these 399

inefficiencies by unlocking Block-Level Routing, 400

decomposing models into reusable layer blocks, 401

and routing among them. By storing only active 402

blocks, StitchLLM eliminates memory bloat while 403

ensuring high throughput, optimal cluster utiliza- 404

tion, and adaptability to fluctuating workloads. 405

4.2 Overview 406

Figure 4 provides an overview of StitchLLM. 407

Model Zoo. StitchLLM’s "block zoo" repository 408

organizes LLMs by partitioning decoder layers 409

into individual blocks. It not only serves as a 410

storage interface but also integrates a profiler that 411

records key performance metrics (e.g. memory 412

usage, average latency per token, task accuracy, 413

5

Algorithm 2 Determining Stitching Configurations
Require: Stitching CandidatesMs, C
Require: Configs← []
1: for all (bi, ti) ∈Ms do
2: append (bi, ti) to Configs
3: end for
4: Sort Configs s.t. (mbi ,mti) ≼

(mbj ,mtj) if mbi < mbj or (mbi = mbj ∧ mti ≤
mtj), where mbi = nbi ·mem(bi).

5: for all (bi, ti) ∈ Configs do
6: if mbi +mti ≤ C then
7: return (bi, ti)
8: end if
9: end for

10: return null

and architectural details, etc.) while evaluating the414

resource–accuracy trade-offs for each block.415

Scheduler. During inference, the StitchLLM416

scheduler manages resource allocation and block417

placement, processing requests. It schedules blocks418

(denoted as "block instances") onto devices and419

decides how to route requests and what point in420

trade-off space should models "degrade to".421

Agent. A StitchLLM agent on each device in a422

cluster of machines monitors block instances and423

request queues, handles requests, manages the KV424

cache, and transfers outputs among blocks. It pro-425

vides compute and memory utilization statistics to426

the StitchLLM scheduler and enables request mi-427

gration across nodes. Appendix H provides further428

details of StitchLLM’s serving implementation.429

4.3 Online Serving430

Figure 4 illustrates the steps in StitchLLM’s online431

serving process; we provide details below.432

Request Scheduling. StitchLLM’s scheduling433

strategy prioritizes block instances that either hold434

a request’s KV cache or are already loaded in GPU435

memory, provided the device memory can accom-436

modate the request data. If the device memory is in-437

sufficient, StitchLLM estimates the latency of each438

potential block instance and greedily schedules the439

request to the instance with the smallest latency440

increase. Details can be found in Appendix K.441

Block resource allocation. StitchLLM’s sched-442

uler allocates resources for blocks, allowing inde-443

pendent per-block scaling using a queue-length-444

based policy. If the queue length exceeds t% of the445

maximum (configurable by the user), we scale onto446

more devices, starting with the heaviest-loaded in-447

stances. If an instance has requests’ KV cache, we448

balance the load by moving the state along with449

rerouting requests to new instances (Appendix I).450

When memory becomes constrained,451

StitchLLM dynamically prioritizes request 452

throughput by trading accuracy for capacity. 453

StitchLLM first identifies memory usage and 454

searches for smaller stitching configurations to 455

reduce load, enabling higher request volumes. 456

Using the greedy strategy from Eq. 1, it sorts all 457

stitching configurations by descending bottom- 458

block size, then top-block size, and iteratively 459

evaluates them until finding a configuration under 460

the memory budget C (Algorithm 2). This ensures 461

real-time adaptability while balancing efficiency 462

and resource limits. 463

Locality-aware block placement. To mitigate 464

transfer overhead between blocks, StitchLLM 465

places blocks to prioritize locality. During place- 466

ment, StitchLLM ensures blocks with frequent 467

inter-dependencies are placed close together, ide- 468

ally on the same server leveraging high-capacity 469

intra-server connections like NVLink interconnects 470

and avoiding constrained inter-server links. 471

Locality is quantified by monitoring historical 472

traffic and recording inter-dependency frequencies. 473

High-locality block pairs are placed on the same 474

server. Additionally, StitchLLM’s scheduler dy- 475

namically adapts to changing traffic patterns, mi- 476

grating block instances as needed. Appendix F 477

discusses the benefits of locality-aware placement. 478

5 Evaluation 479

Setup. All experiments were conducted on two 480

servers equipped with an Intel(R) Xeon(R) Sil- 481

ver 4314 CPU @ 2.40GHz, supplemented by four 482

NVIDIA A100 GPUs, each with 80GB of RAM. 483

The server runs on Ubuntu 22.04.4 LTS and uses 484

PyTorch 2.4.0 (Paszke et al., 2019). 485

Models. We conduct all experiments using both 486

Llama 2 and Llama 3 models. For Llama 2, we 487

utilize TinyLlama 1.1B (Zhang et al., 2024a), as 488

well as 7B and 13B variants. For Llama 3, we 489

select the 1B, 3B, and 8B versions. In addition, we 490

use Qwen 2.5 models (Bai et al., 2023) to analyze 491

their block stitching behavior, using the 1.5B, 3B, 492

7B, 14B, and 32B variants. 493

Datasets. We choose five representative datasets 494

to evaluate the effectiveness of our methods: 495

MMLU (Hendrycks et al., 2021a), BoolQ (Clark 496

et al., 2019), CommonsenseQA (Talmor et al., 497

2019), Hellaswag (Zellers et al., 2019), and Wino- 498

grande (Sakaguchi et al., 2021). 499

Baselines: To understand fine-grained accuracy- 500

resource trade-offs, we compare stitched models 501

against their base models, where bottom and top 502

6

0 4 8 12 16 20 24 28 32 36 40
Block ID

30

40

50
Ac

cu
ra

cy
 (%

)

1.1b

13b

(a) MMLU performance on
Llama 2 13B and TinyLlama
1.1B.

0 4 8 12 16 20 24 28 32 36 40
Block ID

40

60

Ac
cu

ra
cy

 (%
)

7B
13B

(b) BoolQ performance on
Llama 2 13B and Llama 2 7B.

0 4 8 12 16 20 24 28 32
Block ID

50

60

70

Ac
cu

ra
cy

 (%
) 3B 8B

(c) Winogrande Performance
on Llama 3.1 8B and Llama
3.2 3B.

0 4 8 12 16 20 24 28 32
Block ID

20

40

60

Ac
cu

ra
cy

 (%
)

1B
8B

(d) CommonsenseQA perfor-
mance on Llama 3.1 8B and
Llama 3.2 1B.

Figure 5: Stitching Performance Across Various Decoder Layers.

0 6 12 18 24 30 36 42
Block ID

0

20

40

Ac
cu

ra
cy

 (%
)

1B

13B

13B-1.1B
1.1B-13B

(a) Llama 2 13B and TinyL-
lama 1.1B.

0 4 8 12 16 20 24 28 32
Block ID

0

20

40

60

Ac
cu

ra
cy

 (%
)

1B

8B

8B-1B
1B-8B

(b) Llama 3.1 8B and Llama
3.2 3B.

Figure 6: MMLU Accuracy Across Different Decoder Layers:
The orange line represents using smaller bottom blocks paired
with larger top blocks, while the blue line depicts larger bottom
blocks combined with smaller top blocks.

blocks are selected. For end-to-end inference im-503

provements, we compare StitchLLM with model-504

level routing (MLR), where requests are routed to505

available LLMs instead of different blocks. These506

baselines meticulously validate our observations.507

5.1 Stitching LLMs508

We first analyze the performance of StitchLLM,509

using Llama 2 and Llama 3 models. By apply-510

ing Algorithm 2, we create 112 stitching layers511

for Llama 2 models (13B-1.1B, 13B-7B, and 7B-512

1B) and 92 stitching layers for Llama 3 mod-513

els (8B-3B, 8B-1B, and 3B-1B). As illustrated514

in Figure 5, our stitched models provide fine-515

grained accuracy-latency tradeoffs on four differ-516

ent datasets: MMLU, BoolQ, Winogrande, and517

HellaSwag, filling the gap left by their base mod-518

els. This indicates that StitchLLM successfully519

achieves stitching across a variety of tasks. Addi-520

tional evaluations are included in Appendix A.521

5.2 Stitching Direction522

In Figure 6 we evaluate two neural network stitch-523

ing strategies using Llama 2 and 3: (1) smaller524

bottom blocks paired with larger top blocks (2)525

larger bottom blocks combined with smaller top526

blocks. We observe that models with larger bottom527

blocks and smaller top blocks consistently outper-528

form the reverse configuration across both archi-529

tectures. This suggests that foundational lower lay-530

ers play a disproportionately critical role in knowl-531

edge retention and reasoning. Our findings indicate532

that the size of bottom blocks is crucial for achiev-533

ing maximum performance. Using larger models 534

(Llama 2 13B and Llama 3 8B) as bottom blocks 535

significantly outperforms using smaller ones, lead- 536

ing us to prefer larger models for bottom blocks. 537

More evaluations can be found in Appendix A. 538

Furthermore, we identify a performance bound- 539

ing effect, smaller bottom blocks act as an irre- 540

versible bottleneck, capping overall model perfor- 541

mance at the level of their source architecture even 542

when augmented with larger or more capable top 543

blocks. We include more analysis in Appendix B. 544

5.3 Existence of Performance Boundary 545

For each model, we observe a distinct performance 546

boundary—a specific decoder block, where, on 547

one side, performance remains largely constant, 548

and on the other side, it suddenly changes. Fig- 549

ure 7 demonstrates this phenomenon on the MMLU 550

benchmark for both Llama 2 and Qwen 2.5 models. 551

This boundary separates two regions: a cold region, 552

where stitching positions yield low and stable per- 553

formance, and a hot region, where performance 554

improves dramatically. For example, the perfor- 555

mance boundaries occur at block 15 for Llama 2 556

13B, and block 7 and 47 for Qwen 2.5 32B. We 557

include more evaluations in Appendix C. 558

Each model family also exhibits a unique per- 559

formance boundary pattern. First, the ratios of 560

the hot and cold regions are remarkably consistent 561

within each family: Llama 2 models show a hot-to- 562

cold ratio of approximately 1.3:1, while Llama 3 563

models display a ratio of roughly 1:2.33. Second, 564

models within the same family tend to share a sim- 565

ilar boundary layout regardless of their overall size, 566

as shown in Figure 7. Specifically, Llama 2 mod- 567

els typically have their performance boundary in 568

the middle of the decoder layers, Llama 3 models 569

near the end, and Qwen models feature two bound- 570

aries—one near the beginning and another near the 571

end. We include more evaluations in Appendix C. 572

7

0 5 10 15 20 25 30 35 40
Block ID

20

30

40

50
Ac

cu
ra

cy
 (%

)

1.1B

13B

(a) Llama 2 13B and TinyL-
lama 1.1B.

0 5 10 15 20 25 30
Block ID

20

40

Ac
cu

ra
cy

 (%
)

3B

8B

(b) Llama 3.1 8B and Llama
3.2 3B.

0 6 12 18 24 30 36 42 48
Block ID

0

25

50

75

Ac
cu

ra
cy

 (%
)

7B 14B

(c) Qwen 2.5 14B and 7B.

0 8 16 24 32 40 48 56 64
Block ID

0

25

50

75

Ac
cu

ra
cy

 (%
)

14B 32B

(d) Qwen 2.5 32B and 14B.

Figure 7: MMLU performance using differnt stitching block configurations on LLama 2, 3, and Qwen 2.5.

Low Mid High
Cluster Size

0

20

40

Ac
cu

ra
cy

 (%
) StitchLLM Baseline

Figure 8: Accuracy advan-
tage: When sizing the clus-
ter to support peak load, aver-
age load and minimum load
in the Azure trace, we ob-
serve StitchLLM outperforms
MLR.

MLR StitchLLM10
15
20
25
30

Th
ro

ug
hp

ut
 (#

/s
)

60
70
80
90
100

G
PU

 U
til

iz
at

io
n

Throughput
GPU Utilization

Figure 9: Throughput and
GPU utilization comparison:
We observe that StitchLLM
when compared to MLR pro-
vides high throughput and
GPU utilization.

Llama 2 Llama 3
MLR StitchLLM MLR StitchLLM

TTFT (ms) 112 101.6 99 91
Accuracy (%) 30 38 39.7 42.7
Parameters used (B) 12.29 10.75 5.96 5.07

Table 3: Performance comparison between StitchLLM and
MLR using Llama 2 (1.1B, 7B, 13B), and Llama 3 (1B, 3B,
8B).

5.4 Serving Performance573

Accuracy. We first utilized production Azure574

traces to examine how accuracy is impacted by575

variations in the request arrival rate and perform576

evaluation on the standard MMLU benchmark. As577

shown in Figure 8, the average accuracy fluctuates578

over time under different cluster configurations.579

Here, "Low" represents the use of 2 GPUs, "Mid"580

represents 4 GPUs, and "High" represents 8 GPUs.581

The models evaluated in this study include Llama582

2 at 1.1B, 7B, and 13B parameters. Incoming re-583

quests prioritize the highest-accuracy blocks (13B)584

unless those resources are unavailable.585

Additionally, we analyze how StitchLLM im-586

proves accuracy and TTFT over MLR using the587

Azure production traces with 2 GPUs. Table 3588

shows that the average accuracy achieved by589

StitchLLM is 38%, which is 8% higher than us-590

ing MLR. Similarly, Table 3 shows that the average591

accuracy achieved by StitchLLM is 42.7%, which592

is 3% higher than using MLR. When request arrival593

rates are low, StitchLLM shares the same blocks594

to save memory as observed by the average num-595

ber of parameters invoked per request. Which is596

lower when using StitchLLM. Higher request ar-597

rival rates cause StitchLLM to redirect traffic to598

faster blocks (1.1B) more frequently, but the ac-599

0 5 10 15 20 25 30 35 4040
50
60
70
80
90

100

G
PU

 U
til

iz
at

io
n

MLR
StitchLLM

Figure 10: GPU Utiliza-
tion: The above figure high
GPU utilization change over
time. We observe that com-
pared MLR , StitchLLM con-
sistently provides higher GPU
utilization.

0 2 4 6 8 10 12 14 16
Latency (minutes)

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ili

ty

MLR
StitchLLM

Figure 11: Latency CDF:
The above figure show the
CDF of request comple-
tion time of StitchLLM.
StitchLLM improves both job
completion and make span .

curacy degradation process is more gradual than 600

MLR, resulting in a gradual decline in accuracy. 601

Latency and throughput. Figure 11 depicts 602

the CDF of the latency of completing a request 603

in StitchLLM. StitchLLM reduces the 95%ile 604

latency by 33.5% compared with MLR. The 605

throughput of StitchLLM is 1.71x of MLR. (Fig- 606

ure 9). By decomposing models into more granular 607

blocks, StitchLLM enhances efficiency of process- 608

ing larger batch sizes. This approach significantly 609

reduces tail latency, especially under high request 610

rates. 611

GPU utilization. In Figure 10 we monitor the end- 612

to-end serving process, and observe that the aver- 613

age GPU utilization is improved by 20.1% com- 614

pared with MLR. StitchLLM efficiently dispatches 615

requests under the existing deployment status to 616

avoid frequent model loading and unloading. We 617

provide memory measurement and additional met- 618

rics in Appendix G. 619

6 Conclusion 620

We present StitchLLM, a finer-grained serving sys- 621

tem tailored for LLM workloads. In StitchLLM, 622

we show the effectiveness of improving throughput 623

by allowing model component reuse with blocks. 624

We enable adaptive serving, effectively coordinat- 625

ing multiple requests’ KV cache, and mitigating 626

the communication costs to improve serving ef- 627

ficiency. Our experiments show that StitchLLM 628

achieve significant efficiency improvement. 629

8

Limitations630

Our approach relies on empirically derived heuris-631

tics for greedy block selection and accuracy-guided632

pruning, which may not generalize to novel model633

families or emerging architectures. In addition,634

heterogeneous block execution poses challenges635

for GPU memory management, particularly when636

handling large batches. Furthermore, StitchLLM637

requires multiple model variants for effective stitch-638

ing. Its ability to merge blocks from different639

models is contingent on specific compatibility fac-640

tors—such as consistent tokenizers and vocabulary641

sizes—within the same model family. However,642

our observations indicate that these incompatibility643

issues are infrequent, suggesting that the use of644

routing layers remains broadly feasible.645

References646

Reyna Abhyankar, Zijian He, Vikranth Srivatsa, Hao647
Zhang, and Yiying Zhang. 2024. Infercept: Effi-648
cient intercept support for augmented large language649
model inference. Preprint, arXiv:2402.01869.650

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama651
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,652
Diogo Almeida, Janko Altenschmidt, Sam Altman,653
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.654
arXiv preprint arXiv:2303.08774.655

Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree656
Mohan, Nipun Kwatra, Bhargav S Gulavani, Alexey657
Tumanov, and Ramachandran Ramjee. 2024. Tam-658
ing throughput-latency tradeoff in llm inference with659
sarathi-serve. Proceedings of 18th USENIX Sympo-660
sium on Operating Systems Design and Implementa-661
tion, 2024, Santa Clara.662

Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-663
Young Yun. 2023. Fast and robust early-exiting664
framework for autoregressive language models with665
synchronized parallel decoding. In The 2023 Con-666
ference on Empirical Methods in Natural Language667
Processing.668

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,669
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei670
Huang, et al. 2023. Qwen technical report. arXiv671
preprint arXiv:2309.16609.672

Stella Biderman, Hailey Schoelkopf, Quentin Gregory673
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-674
lahan, Mohammad Aflah Khan, Shivanshu Purohit,675
USVSN Sai Prashanth, Edward Raff, et al. 2023.676
Pythia: A suite for analyzing large language mod-677
els across training and scaling. In International678
Conference on Machine Learning, pages 2397–2430.679
PMLR.680

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie681
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind682

Neelakantan, Pranav Shyam, Girish Sastry, Amanda 683
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 684
Gretchen Krueger, Tom Henighan, Rewon Child, 685
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 686
Clemens Winter, Christopher Hesse, Mark Chen, 687
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin 688
Chess, Jack Clark, Christopher Berner, Sam Mc- 689
Candlish, Alec Radford, Ilya Sutskever, and Dario 690
Amodei. 2020. Language models are few-shot learn- 691
ers. Preprint, arXiv:2005.14165. 692

Yanxi Chen, Xuchen Pan, Yaliang Li, Bolin Ding, and 693
Jingren Zhou. 2023. Ee-llm: Large-scale training and 694
inference of early-exit large language models with 695
3d parallelism. ArXiv, abs/2312.04916. 696

Christopher Clark, Kenton Lee, Ming-Wei Chang, 697
Tom Kwiatkowski, Michael Collins, and Kristina 698
Toutanova. 2019. BoolQ: Exploring the surprising 699
difficulty of natural yes/no questions. In Proceedings 700
of the 2019 Conference of the North American Chap- 701
ter of the Association for Computational Linguistics: 702
Human Language Technologies, Volume 1 (Long and 703
Short Papers), pages 2924–2936, Minneapolis, Min- 704
nesota. Association for Computational Linguistics. 705

Luciano Del Corro, Allie Del Giorno, Sahaj Agarwal, 706
Bin Yu, Ahmed Awadallah, and Subhabrata Mukher- 707
jee. 2023. Skipdecode: Autoregressive skip decoding 708
with batching and caching for efficient llm inference. 709
Preprint, arXiv:2307.02628. 710

Tri Dao. 2023. Flashattention-2: Faster attention with 711
better parallelism and work partitioning. arXiv 712
preprint arXiv:2307.08691. 713

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, 714
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, 715
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, 716
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, and 717
more authors. 2025. Deepseek-r1: Incentivizing rea- 718
soning capability in llms via reinforcement learning. 719
Preprint, arXiv:2501.12948. 720

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, 721
and Li Fei-Fei. 2009. Imagenet: A large-scale hier- 722
archical image database. In 2009 IEEE Conference 723
on Computer Vision and Pattern Recognition, pages 724
248–255. 725

Jesse Dodge, Maarten Sap, Ana Marasović, William 726
Agnew, Gabriel Ilharco, Dirk Groeneveld, Margaret 727
Mitchell, and Matt Gardner. 2021. Documenting 728
large webtext corpora: A case study on the colossal 729
clean crawled corpus. Preprint, arXiv:2104.08758. 730

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas- 731
sive language models can be accurately pruned in 732
one-shot. Preprint, arXiv:2301.00774. 733

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 734
Abhinav Pandey, Abhishek Kadian, Ahmad Al- 735
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, 736
Alex Vaughan, and more authors. 2024. The llama 3 737
herd of models. Preprint, arXiv:2407.21783. 738

9

https://arxiv.org/abs/2402.01869
https://arxiv.org/abs/2402.01869
https://arxiv.org/abs/2402.01869
https://arxiv.org/abs/2402.01869
https://arxiv.org/abs/2402.01869
https://openreview.net/forum?id=eeP1y7zPQ7
https://openreview.net/forum?id=eeP1y7zPQ7
https://openreview.net/forum?id=eeP1y7zPQ7
https://openreview.net/forum?id=eeP1y7zPQ7
https://openreview.net/forum?id=eeP1y7zPQ7
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://api.semanticscholar.org/CorpusID:266149909
https://api.semanticscholar.org/CorpusID:266149909
https://api.semanticscholar.org/CorpusID:266149909
https://api.semanticscholar.org/CorpusID:266149909
https://api.semanticscholar.org/CorpusID:266149909
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://arxiv.org/abs/2307.02628
https://arxiv.org/abs/2307.02628
https://arxiv.org/abs/2307.02628
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://arxiv.org/abs/2104.08758
https://arxiv.org/abs/2104.08758
https://arxiv.org/abs/2104.08758
https://arxiv.org/abs/2104.08758
https://arxiv.org/abs/2104.08758
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783

Andrey Gromov, Kushal Tirumala, Hassan Shapourian,739
Paolo Glorioso, and Daniel A. Roberts. 2024. The740
unreasonable ineffectiveness of the deeper layers.741
Preprint, arXiv:2403.17887.742

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. 2024.743
Minillm: Knowledge distillation of large language744
models. In The Twelfth International Conference on745
Learning Representations.746

Arnav Gudibande, Eric Wallace, Charlie Snell, Xinyang747
Geng, Hao Liu, Pieter Abbeel, Sergey Levine, and748
Dawn Song. 2023. The false promise of imitating749
proprietary llms. arXiv preprint arXiv:2305.15717.750

Eric Harper, Somshubra Majumdar, Oleksii Kuchaiev,751
Li Jason, Yang Zhang, Evelina Bakhturina, Vahid752
Noroozi, Sandeep Subramanian, Koluguri Nithin,753
Huang Jocelyn, Fei Jia, Jagadeesh Balam, Xuesong754
Yang, Micha Livne, Yi Dong, Sean Naren, and Boris755
Ginsburg. NeMo: a toolkit for Conversational AI756
and Large Language Models.757

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian758
Sun. 2016a. Deep residual learning for image recog-759
nition. In Proceedings of the IEEE Conference on760
Computer Vision and Pattern Recognition (CVPR).761

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian762
Sun. 2016b. Deep residual learning for image recog-763
nition. In 2016 IEEE Conference on Computer Vision764
and Pattern Recognition (CVPR), pages 770–778.765

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,766
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.767
2021a. Measuring massive multitask language under-768
standing. Preprint, arXiv:2009.03300.769

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul770
Arora, Steven Basart, Eric Tang, Dawn Song, and771
Jacob Steinhardt. 2021b. Measuring mathematical772
problem solving with the math dataset. NeurIPS.773

Geoffrey Hinton. 2015. Distilling the knowledge in a774
neural network. arXiv preprint arXiv:1503.02531.775

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh,776
Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,777
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister.778
2023. Distilling step-by-step! outperforming larger779
language models with less training data and smaller780
model sizes. arXiv preprint arXiv:2305.02301.781

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger.782
2016. Densely connected convolutional networks.783
CoRR, abs/1608.06993.784

Ajay Kumar Jaiswal, Bodun Hu, Lu Yin, Yeonju Ro,785
Tianlong Chen, Shiwei Liu, and Aditya Akella. 2024.786
FFN-SkipLLM: A hidden gem for autoregressive de-787
coding with adaptive feed forward skipping. In Pro-788
ceedings of the 2024 Conference on Empirical Meth-789
ods in Natural Language Processing, pages 16943–790
16956, Miami, Florida, USA. Association for Com-791
putational Linguistics.792

Tianjie Ju, Weiwei Sun, Wei Du, Xinwei Yuan, 793
Zhaochun Ren, and Gongshen Liu. 2024. How large 794
language models encode context knowledge? a layer- 795
wise probing study. In Proceedings of the 2024 Joint 796
International Conference on Computational Linguis- 797
tics, Language Resources and Evaluation (LREC- 798
COLING 2024), pages 8235–8246, Torino, Italia. 799
ELRA and ICCL. 800

Daniel Kahneman. 2011. Thinking, fast and slow. Far- 801
rar, Straus and Giroux. 802

Alind Khare, Dhruv Garg, Sukrit Kalra, Snigdha 803
Grandhi, Ion Stoica, and Alexey Tumanov. 2023. Su- 804
perserve: Fine-grained inference serving for unpre- 805
dictable workloads. Preprint, arXiv:2312.16733. 806

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault 807
Castells, Shinkook Choi, Junho Shin, and Hyoung- 808
Kyu Song. 2024. Shortened llama: Depth pruning for 809
large language models with comparison of retraining 810
methods. Preprint, arXiv:2402.02834. 811

Simon Kornblith, Mohammad Norouzi, Honglak Lee, 812
and Geoffrey Hinton. 2019. Similarity of neural net- 813
work representations revisited. In Proceedings of 814
the 36th International Conference on Machine Learn- 815
ing, volume 97 of Proceedings of Machine Learning 816
Research, pages 3519–3529. PMLR. 817

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Fran- 818
tar, Mark Kurtz, Benjamin Fineran, Michael Goin, 819
and Dan Alistarh. 2022. The optimal bert surgeon: 820
Scalable and accurate second-order pruning for large 821
language models. arXiv preprint arXiv:2203.07259. 822

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 823
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon- 824
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient 825
memory management for large language model serv- 826
ing with pagedattention. In Proceedings of the 29th 827
Symposium on Operating Systems Principles, pages 828
611–626. 829

Kevin J Liang, Weituo Hao, Dinghan Shen, Yufan 830
Zhou, Weizhu Chen, Changyou Chen, and Lawrence 831
Carin. 2020. Mixkd: Towards efficient distilla- 832
tion of large-scale language models. arXiv preprint 833
arXiv:2011.00593. 834

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023. 835
Llm-pruner: On the structural pruning of large lan- 836
guage models. Advances in neural information pro- 837
cessing systems, 36:21702–21720. 838

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, 839
Hongyu Lin, Yaojie Lu, Xianpei Han, and weipeng 840
chen. 2025. ShortGPT: Layers in large language 841
models are more redundant than you expect. 842

Zizheng Pan, Jianfei Cai, and Bohan Zhuang. 2023. 843
Stitchable neural networks. In Proceedings of the 844
IEEE/CVF Conference on Computer Vision and Pat- 845
tern Recognition, pages 16102–16112. 846

10

https://arxiv.org/abs/2403.17887
https://arxiv.org/abs/2403.17887
https://arxiv.org/abs/2403.17887
https://github.com/NVIDIA/NeMo
https://github.com/NVIDIA/NeMo
https://github.com/NVIDIA/NeMo
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/1608.06993
https://doi.org/10.18653/v1/2024.emnlp-main.941
https://doi.org/10.18653/v1/2024.emnlp-main.941
https://doi.org/10.18653/v1/2024.emnlp-main.941
https://aclanthology.org/2024.lrec-main.722/
https://aclanthology.org/2024.lrec-main.722/
https://aclanthology.org/2024.lrec-main.722/
https://aclanthology.org/2024.lrec-main.722/
https://aclanthology.org/2024.lrec-main.722/
https://arxiv.org/abs/2312.16733
https://arxiv.org/abs/2312.16733
https://arxiv.org/abs/2312.16733
https://arxiv.org/abs/2312.16733
https://arxiv.org/abs/2312.16733
https://arxiv.org/abs/2402.02834
https://arxiv.org/abs/2402.02834
https://arxiv.org/abs/2402.02834
https://arxiv.org/abs/2402.02834
https://arxiv.org/abs/2402.02834
https://proceedings.mlr.press/v97/kornblith19a.html
https://proceedings.mlr.press/v97/kornblith19a.html
https://proceedings.mlr.press/v97/kornblith19a.html
https://openreview.net/forum?id=JMNht3SmcG
https://openreview.net/forum?id=JMNht3SmcG
https://openreview.net/forum?id=JMNht3SmcG

Adam Paszke, Sam Gross, Francisco Massa, Adam847
Lerer, James Bradbury, Gregory Chanan, Trevor848
Killeen, Zeming Lin, Natalia Gimelshein, Luca849
Antiga, Alban Desmaison, Andreas Köpf, Edward850
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,851
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-852
jie Bai, and Soumith Chintala. 2019. PyTorch: an853
imperative style, high-performance deep learning li-854
brary. Curran Associates Inc., Red Hook, NY, USA.855

Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka856
Shah, Íñigo Goiri, Saeed Maleki, and Ricardo Bian-857
chini. 2024. Splitwise: Efficient generative llm in-858
ference using phase splitting. In 2024 ACM/IEEE859
51st Annual International Symposium on Computer860
Architecture (ISCA), pages 118–132. IEEE.861

Archit Patke, Dhemath Reddy, Saurabh Jha, Hao-862
ran Qiu, Christian Pinto, Shengkun Cui, Chandra863
Narayanaswami, Zbigniew Kalbarczyk, and Ravis-864
hankar Iyer. 2024. One queue is all you need: Resolv-865
ing head-of-line blocking in large language model866
serving. Preprint, arXiv:2407.00047.867

Ramya Prabhu, Ajay Nayak, Jayashree Mohan, Ra-868
machandran Ramjee, and Ashish Panwar. 2024. vat-869
tention: Dynamic memory management for serving870
llms without pagedattention.871

Aman Priyanshu, Yash Maurya, and Zuofei Hong. 2024.872
Ai governance and accountability: An analysis of an-873
thropic’s claude. arXiv preprint arXiv:2407.01557.874

Alec Radford and Karthik Narasimhan. 2018. Im-875
proving language understanding by generative pre-876
training.877

Alec Radford, Jeff Wu, Rewon Child, David Luan,878
Dario Amodei, and Ilya Sutskever. 2019a. Language879
models are unsupervised multitask learners.880

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,881
Dario Amodei, Ilya Sutskever, et al. 2019b. Lan-882
guage models are unsupervised multitask learners.883
OpenAI blog, 1(8):9.884

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-885
ula, and Yejin Choi. 2021. Winogrande: an adver-886
sarial winograd schema challenge at scale. Commun.887
ACM, 64(9):99–106.888

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuo-889
han Li, Max Ryabinin, Beidi Chen, Percy Liang,890
Christopher Ré, Ion Stoica, and Ce Zhang. 2023.891
Flexgen: high-throughput generative inference of892
large language models with a single gpu. In Inter-893
national Conference on Machine Learning, pages894
31094–31116. PMLR.895

Sharath Turuvekere Sreenivas, Saurav Muralidharan,896
Raviraj Joshi, Marcin Chochowski, Ameya Sunil Ma-897
habaleshwarkar, Gerald Shen, Jiaqi Zeng, Zijia Chen,898
Yoshi Suhara, Shizhe Diao, Chenhan Yu, Wei-Chun899
Chen, Hayley Ross, Oluwatobi Olabiyi, Ashwath900
Aithal, Oleksii Kuchaiev, Daniel Korzekwa, Pavlo901
Molchanov, Mostofa Patwary, Mohammad Shoeybi,902

Jan Kautz, and Bryan Catanzaro. 2024. Llm pruning 903
and distillation in practice: The minitron approach. 904
Preprint, arXiv:2408.11796. 905

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico 906
Kolter. 2023. A simple and effective pruning ap- 907
proach for large language models. arXiv preprint 908
arXiv:2306.11695. 909

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and 910
Jonathan Berant. 2019. CommonsenseQA: A ques- 911
tion answering challenge targeting commonsense 912
knowledge. In Proceedings of the 2019 Conference 913
of the North American Chapter of the Association for 914
Computational Linguistics: Human Language Tech- 915
nologies, Volume 1 (Long and Short Papers), pages 916
4149–4158, Minneapolis, Minnesota. Association for 917
Computational Linguistics. 918

Gemma Team, Thomas Mesnard, Cassidy Hardin, 919
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, 920
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, 921
Juliette Love, et al. 2024. Gemma: Open models 922
based on gemini research and technology. arXiv 923
preprint arXiv:2403.08295. 924

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 925
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 926
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 927
Bhosale, et al. 2023. Llama 2: Open founda- 928
tion and fine-tuned chat models. arXiv preprint 929
arXiv:2307.09288. 930

Yuxin Wang, Yuhan Chen, Zeyu Li, Xueze Kang, Zhen- 931
heng Tang, Xin He, Rui Guo, Xin Wang, Qiang Wang, 932
Amelie Chi Zhou, and Xiaowen Chu. 2024a. Burst- 933
gpt: A real-world workload dataset to optimize llm 934
serving systems. Preprint, arXiv:2401.17644. 935

Yuxin Wang, Yuhan Chen, Zeyu Li, Zhenheng Tang, 936
Rui Guo, Xin Wang, Qiang Wang, Amelie Chi Zhou, 937
and Xiaowen Chu. 2024b. Towards efficient and 938
reliable llm serving: A real-world workload study. 939
arXiv preprint arXiv:2401.17644. 940

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi 941
Chen. 2024. Sheared LLaMA: Accelerating lan- 942
guage model pre-training via structured pruning. In 943
The Twelfth International Conference on Learning 944
Representations. 945

Chuanpeng Yang, Yao Zhu, Wang Lu, Yidong Wang, 946
Qian Chen, Chenlong Gao, Bingjie Yan, and Yiqiang 947
Chen. 2024. Survey on knowledge distillation for 948
large language models: Methods, evaluation, and 949
application. ACM Trans. Intell. Syst. Technol. Just 950
Accepted. 951

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 952
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma- 953
chine really finish your sentence? In Proceedings of 954
the 57th Annual Meeting of the Association for Com- 955
putational Linguistics, pages 4791–4800, Florence, 956
Italy. Association for Computational Linguistics. 957

11

https://arxiv.org/abs/2407.00047
https://arxiv.org/abs/2407.00047
https://arxiv.org/abs/2407.00047
https://arxiv.org/abs/2407.00047
https://arxiv.org/abs/2407.00047
https://arxiv.org/abs/2405.04437
https://arxiv.org/abs/2405.04437
https://arxiv.org/abs/2405.04437
https://arxiv.org/abs/2405.04437
https://arxiv.org/abs/2405.04437
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://arxiv.org/abs/2408.11796
https://arxiv.org/abs/2408.11796
https://arxiv.org/abs/2408.11796
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://arxiv.org/abs/2401.17644
https://arxiv.org/abs/2401.17644
https://arxiv.org/abs/2401.17644
https://arxiv.org/abs/2401.17644
https://arxiv.org/abs/2401.17644
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=09iOdaeOzp
https://doi.org/10.1145/3699518
https://doi.org/10.1145/3699518
https://doi.org/10.1145/3699518
https://doi.org/10.1145/3699518
https://doi.org/10.1145/3699518
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and958
Wei Lu. 2024a. Tinyllama: An open-source small959
language model. Preprint, arXiv:2401.02385.960

Yang Zhang, Yanfei Dong, and Kenji Kawaguchi. 2024b.961
Investigating layer importance in large language mod-962
els. arXiv preprint arXiv:2409.14381.963

Yang Zhang, Yanfei Dong, and Kenji Kawaguchi. 2024c.964
Investigating layer importance in large language mod-965
els. In Proceedings of the 7th BlackboxNLP Work-966
shop: Analyzing and Interpreting Neural Networks967
for NLP, pages 469–479, Miami, Florida, US. Asso-968
ciation for Computational Linguistics.969

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu,970
Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao Zhang.971
2024. Distserve: Disaggregating prefill and decoding972
for goodput-optimized large language model serving.973
Preprint, arXiv:2401.09670.974

A Performance across Tasks975

We evaluate the commonsense reasoning (Com-976

monsenseQA, Figure 12), coreference resolution977

(Winogrande, Figure 13), commonsense inference978

(HellaSwag, Figure 14), knowledge-intensive un-979

derstanding (MMLU, Figure 15), and Boolean rea-980

soning (BoolQ, Figure 16) capabilities of Llama 2981

(13B/7B/1.1B) and Llama 3 (8B/3B/1B), with full982

results visualized in their respective figures.983

B More on Stitching Direction984

Figure 17 provides additional evaluations com-985

paring large-small and small-large stitching using986

Llama 3 (3B and 1B) and Llama 2 (7B) with TinyL-987

lama (1.1B). The dataset used is MMLU.988

C More on Performance Boundary989

Figure 18 presents additional evaluations of the990

performance boundary patterns for Llama 2, Llama991

3, and Qwen 2.5. The dataset used is MMLU.992

D Compare To Block Skipping993

Block stitching and block skipping (Jaiswal et al.,994

2024; Chen et al., 2023; Men et al., 2025; Corro995

et al., 2023; Kim et al., 2024; Bae et al., 2023),996

are two approaches designed to lower the resource997

requirements of LLMs. In Figure 19, we com-998

pare their performance on MMLU. Our results999

show that block stitching delivers a more stable bal-1000

ance between accuracy and resource efficiency than1001

block skipping. Moreover, combining these two1002

strategies may yield even more favorable accuracy-1003

resource tradeoffs.1004

E More Complex Stitching Layer 1005

We investigate whether more complex stitching 1006

layer designs can further boost the accuracy of 1007

stitched models. In our experiments, we com- 1008

bine the bottom blocks from Llama 3 8B with 1009

the top blocks from both Llama 3 1B and 3B. For 1010

the 8B-to-3B stitching, we use a three-layer MLP 1011

with dimensions 4096 × 4096, 4096 × 3072, and 1012

3072× 3072, inserting ReLU activations between 1013

layers. For the 8B-to-1B stitching, we similarly use 1014

three MLP layers sized 4096× 4096, 4096× 2048, 1015

and 2048×2048. As shown in Figure 20 (evaluated 1016

on MMLU), the complex stitching layers improve 1017

overall performance and yield smoother accuracy- 1018

resource tradeoffs. This finding reinforces the po- 1019

tential of LLM stitching and opens up opportuni- 1020

ties to create heterogeneous LLMs with decoders 1021

of varying sizes. 1022

F Locality-aware Block Placement 1023

We compare the communication costs between 1024

StitchLLM’s locality-aware placement and the 1025

widely adopted fragmentation-minimized (frag- 1026

min) placement. Figure 21 shows the average per- 1027

formance change of using the frag-min placement. 1028

The median and 95%ile latency is increased by 1029

12.6% and 18.2%. The communication costs of 1030

one request sum up all the transfer costs, therefore 1031

presenting a significant inflation of 73.4%. The 1032

locality-aware placement has reduced 72.3% inter- 1033

server communications compared with the frag- 1034

min placement strategy. 1035

G More on GPU Utilization 1036

In Figure 22, we show the memory consumption 1037

of model parameters and request-related data, in- 1038

cluding input, intermediate activations, output, and 1039

the KV cache. In the optimal scenario, BlockLLM 1040

utilizes 16.1% less space for model parameters and 1041

24.1% more space for request-related data, indicat- 1042

ing that more requests are being processed. This 1043

increase is attributed to our ability to share smaller 1044

top blocks among multiple top blocks, thereby free- 1045

ing up more memory for request processing. 1046

H Implementation Details 1047

We have implemented a prototype of StitchLLM on 1048

top of vLLM (Kwon et al., 2023). It is compatible 1049

with HuggingFace models. We use NCCL for data 1050

transfer among servers. 1051

Profiling. To support the online serving system, 1052

12

https://arxiv.org/abs/2401.02385
https://arxiv.org/abs/2401.02385
https://arxiv.org/abs/2401.02385
https://doi.org/10.18653/v1/2024.blackboxnlp-1.29
https://doi.org/10.18653/v1/2024.blackboxnlp-1.29
https://doi.org/10.18653/v1/2024.blackboxnlp-1.29
https://arxiv.org/abs/2401.09670
https://arxiv.org/abs/2401.09670
https://arxiv.org/abs/2401.09670

0 4 8 12 16 20 24 28 32 36 40
Block ID

20

30

40
Ac

cu
ra

cy
 (%

)

7B
13B

(a) Stitching Llama 2 13B with 7B.

0 4 8 12 16 20 24 28 32 36 40
Block ID

20

30

40

Ac
cu

ra
cy

 (%
)

1.1B

13B

(b) Stitching Llama 2 13B with TinyL-
lama 1.1B.

0 4 8 12 16 20 24 28 32
Block ID

20

25

30

Ac
cu

ra
cy

 (%
)

1.1B

7B

(c) Stitching Llama 2 7B with TinyL-
lama 1.1B.

0 4 8 12 16 20 24 28 32
Block ID

20

40

60

Ac
cu

ra
cy

 (%
)

3B
8B

(d) Stitching Llama 3 8B with 3B.

0 4 8 12 16 20 24 28 32
Block ID

20

40

60

Ac
cu

ra
cy

 (%
)

1B
8B

(e) Stitching Llama 3 8B with 1B.

0 4 8 12 16 20 24 28
Block ID

20

40

60

Ac
cu

ra
cy

 (%
)

1B
3B

(f) Stitching Llama 3 3B with 1B.

Figure 12: CommonsenseQA performance across different decoder blocks.

0 4 8 12 16 20 24 28 32 36 40
Block ID

50

60

70

Ac
cu

ra
cy

 (%
)

7B
13B

(a) Stitching Llama 2 13B with 7B.

0 4 8 12 16 20 24 28 32 36 40
Block ID

50

60

70

Ac
cu

ra
cy

 (%
)

1.1B

13B

(b) Stitching Llama 2 13B with TinyL-
lama 1.1B.

0 4 8 12 16 20 24 28 32
Block ID

50

60

Ac
cu

ra
cy

 (%
)

1.1B
7B

(c) Stitching Llama 2 7B with TinyL-
lama 1.1B.

0 4 8 12 16 20 24 28 32
Block ID

50

60

70

Ac
cu

ra
cy

 (%
) 3B 8B

(d) Stitching Llama 3 8B with 3B.

0 4 8 12 16 20 24 28 32
Block ID

50

60

70

Ac
cu

ra
cy

 (%
)

1B

8B

(e) Stitching Llama 3 8B with 1B.

0 4 8 12 16 20 24 28
Block ID

50

55

60

65

Ac
cu

ra
cy

 (%
)

1B
3B

(f) Stitching Llama 3 3B with 1B.

Figure 13: Winogrande performance across different decoder blocks.

StitchLLM profiles blocks by measuring compu-1053

tation time across various batch sizes, including1054

surrogate computations and multiplexing perfor-1055

mance. It also evaluates communication latency1056

between devices using NCCL primitives and quan-1057

tifies the overhead of loading the block engine from1058

disk into host and device memory.1059

Batching. While larger batch sizes improve com-1060

putational efficiency, enforcing a fixed large batch1061

size complicates request reorganization. To bal-1062

ance flexibility and efficiency, StitchLLM loosely1063

encourages batching within each block instance.1064

When a new batch arrives, StitchLLM ’s agent1065

queues it and attempts to merge it with neighbor-1066

ing requests, ensuring the combined batch remains1067

within the upper batch size limit. If no queued re- 1068

quests are available, the agent processes the batch 1069

immediately. Requests reaching EOS are removed 1070

and forwarded to the scheduler. 1071

Request dispatching. StitchLLM ’s agents em- 1072

ploy a FIFO + priority queue, giving precedence to 1073

requests that have exited KV cache memory. Each 1074

block instance maintains a countdown clock for 1075

auto-regressive requests, ensuring their timely pro- 1076

cessing. The scheduler and agents handle dispatch- 1077

ing differently: agents identify candidate blocks, 1078

pack requests, and broadcast them to available 1079

agents, while the scheduler maintains a live record 1080

of block placements, streamlining dispatching. 1081

13

0 4 8 1216202428323640
Block ID

40

50

60
Ac

cu
ra

cy
 (%

) 7B 13B

(a) Stitching Llama 2 13B with 7B.

0 4 8 1216202428323640
Block ID

40

50

60

Ac
cu

ra
cy

 (%
)

1.1B

13B

(b) Stitching Llama 2 13B with TinyL-
lama 1.1B.

0 4 8 12 16 20 24 28 32
Block ID

40

50

Ac
cu

ra
cy

 (%
)

1.1B
7B

(c) Stitching Llama 2 7B with TinyL-
lama 1.1B.

0 4 8 12 16 20 24 28 32
Block ID

40

50

60

Ac
cu

ra
cy

 (%
) 3B 8B

(d) Stitching Llama 3 8B with 3B.

0 4 8 12 16 20 24 28 32
Block ID

40

50

60

Ac
cu

ra
cy

 (%
)

1B
8B

(e) Stitching Llama 3 8B with 1B.

0 4 8 12 16 20 24 28
Block ID

35

40

45

50

Ac
cu

ra
cy

 (%
)

1B
3B

(f) Stitching Llama 3 3B with 1B.

Figure 14: Hellaswag performance across different decoder blocks.

0 6 12 18 24 30 36 42
Block ID

20

30

40

50

Ac
cu

ra
cy

 (%
)

7B

13B

(a) Stitching Llama 2 13B with 7B.

0 6 12 18 24 30 36 42
Block ID

30

40

50

Ac
cu

ra
cy

 (%
)

1.1B

13B

(b) Stitching Llama 2 13B with TinyL-
lama 1.1B.

0 6 12 18 24 30
Block ID

20

30

40

Ac
cu

ra
cy

 (%
)

1.1B

7B

(c) Stitching Llama 2 7B with TinyL-
lama 1.1B.

0 6 12 18 24 30
Block ID

20

30

40

50

Ac
cu

ra
cy

 (%
)

3B

8B

(d) Stitching Llama 3 8B with 3B.

0 6 12 18 24 30
Block ID

20

40

60

Ac
cu

ra
cy

 (%
)

1B

8B

(e) Stitching Llama 3 8B with 1B.

0 6 12 18 24 30
Block ID

0

20

40

Ac
cu

ra
cy

 (%
)

1B

3B

(f) Stitching Llama 3 3B with 1B.

Figure 15: MMLU performance across different decoder blocks.

I KV Cache Coordination1082

Memory bandwidth-bound KV cache. Efficient1083

stateful coordination of the KV cache is crucial for1084

auto-regressive LLMs in StitchLLM, as memory1085

bandwidth constraints on the KV cache have been1086

identified as a significant bottleneck in numerous1087

studies. Existing systems process one batch of re-1088

quests at a time, weighing the trade-off between1089

recalculating the KV matrices and caching them1090

in device memory. This trade-off reaches a point—1091

determined by factors such as device type, model1092

architecture, and request sequence length—where1093

caching becomes more efficient than recalculation.1094

However, as request sequences lengthen, mem-1095

ory bandwidth constraints become a performance- 1096

bounding factor when loading the KV cache (Kwon 1097

et al., 2023). 1098

I/O and recalculation cost. As mentioned in Sec- 1099

tion 3, StitchLLM’s design complicates the prob- 1100

lem. The assumption that requests are consistently 1101

processed by the same block instances no longer 1102

holds, making I/O costs for transferring KV caches 1103

between instances unavoidable. 1104

To migrate the KV cache from device di to dj , 1105

we optimize the process by overlapping KV cache 1106

recomputation with copying, thereby minimizing 1107

migration time. Given the fully known context, we 1108

employ chunked pre-filling for efficient recompu- 1109

tation. For sequences to be migrated, denoted as 1110

14

0 4 8 12 16 20 24 28 32 36 40
Block ID

40

60

Ac
cu

ra
cy

 (%
)

7B
13B

(a) Stitching Llama 2 13B with 7B.

0 4 8 12 16 20 24 28 32 36 40
Block ID

40

60

Ac
cu

ra
cy

 (%
)

1.1B
13B

(b) Stitching Llama 2 13B with TinyL-
lama 1.1B.

0 4 8 12 16 20 24 28 32
Block ID

40

60

Ac
cu

ra
cy

 (%
)

1.1B
7B

(c) Stitching Llama 2 7B with TinyL-
lama 1.1B.

0 4 8 12 16 20 24 28 32
Block ID

40

60

80

Ac
cu

ra
cy

 (%
) 3B 8B

(d) Stitching Llama 3 8B with 3B.

0 4 8 12 16 20 24 28 32
Block ID

40

60

80

Ac
cu

ra
cy

 (%
) 1B 8B

(e) Stitching Llama 3 8B with 1B.

0 4 8 12 16 20 24 28
Block ID

40

50

60

70

Ac
cu

ra
cy

 (%
) 1B 3B

(f) Stitching Llama 3 3B with 1B.

Figure 16: BoolQ Performance across different decoder blocks.

0 4 8 12 16 20 24 28 32
Block ID

0

20

40

Ac
cu

ra
cy

 (%
)

1b

7b

7B-1.1B
1.1B-7B

(a) Llama 2 7B and TinyL-
lama 1.1B.

0 4 8 12 16 20 24 28
Block ID

0

20

40

Ac
cu

ra
cy

 (%
)

1B

3B

3B-1B
1B-3B

(b) Llama 3.2 1B and 3B.

Figure 17: MMLU Accuracy Across Different Decoder Lay-
ers: The orange line represents using smaller bottom blocks
paired with larger top blocks, while the blue line depicts larger
bottom blocks combined with smaller top blocks.

S = si
n
1 , we begin by recomputing the KV cache1111

from the start of sequence s1 while simultaneously1112

copying the cache starting from the end of sequence1113

sn. The process concludes when recomputation en-1114

counters a KV cache page that has already been1115

copied, indicating the completion of migration.1116

This approach is chosen for two key reasons.1117

First, each token’s KV cache depends on the KV1118

caches of all preceding tokens. Recomputing the1119

KV cache from the beginning of a sequence en-1120

sures the accuracy of the entire cache. In contrast,1121

copying can take place independently, without rely-1122

ing on preceding caches. Second, ongoing requests1123

on the target device may introduce latency during1124

recomputation. By employing chunked prefill, we1125

improve GPU utilization and mitigate the impact1126

of KV cache recomputation on other tasks.1127

Proactive KV Cache Migration. As StitchLLM1128

may redirect requests to blocks lacking the nec-1129

essary KV caches, this can introduce additional1130

migration latency. While this overhead cannot be1131

completely eliminated, it can be mitigated by proac-1132

tively migrating KV caches in advance, thereby 1133

removing it from the critical path. 1134

To ensure that migration does not introduce la- 1135

tency, it is essential to predict whether the KV 1136

cache will be used before the migration completes. 1137

The feasibility of predicting KV cache usage has 1138

been demonstrated in (Abhyankar et al., 2024). We 1139

adopt the method proposed in (Abhyankar et al., 1140

2024) to estimate the interception time: TINT = 1141

tnow− tcall, where tnow is the current time updated 1142

for each iteration, and tcall is the time when the 1143

last interception was initiated. Figure 23 shows an 1144

illustration of our approach. 1145

Memory Efficiency. Modern LLM inference serv- 1146

ing systems support paged attention (Kwon et al., 1147

2023), a technique that partitions the KV cache 1148

into smaller pages. This approach eliminates the 1149

need to store the entire KV cache in contiguous 1150

memory and allows for the sharing of KV cache 1151

pages across multiple requests, thereby enhancing 1152

memory efficiency. However, dynamically rout- 1153

ing requests to blocks that lack the required KV 1154

cache can result in the creation of new KV cache 1155

pages. Since each device maintains its own ded- 1156

icated KV cache page table, generating the same 1157

KV cache page on a different device leads to the 1158

duplication of KV pages. This duplication, which 1159

otherwise would only require a single KV page 1160

with an incremented reference counter, undermines 1161

the advantages of memory sharing. 1162

To prevent memory waste, we prioritize migrat- 1163

ing pages referenced by fewer requests before those 1164

referenced by more. We denote all KV pages as 1165

15

0 5 10 15 20 25 30 35 40
Block ID

20

30

40

50
Ac

cu
ra

cy
 (%

)

1.1B

13B

(a) Llama 2 13B and TinyL-
lama 1.1B.

0 5 10 15 20 25 30 35 40
Block ID

20

30

40

50

Ac
cu

ra
cy

 (%
)

7B

13B

(b) Llama 2 13B and Llama 2
7B.

0 5 10 15 20 25 30
Block ID

20

40

Ac
cu

ra
cy

 (%
)

3B

8B

(c) Llama 3.1 8B and Llama
3.2 3B.

0 5 10 15 20 25 30
Block ID

0

20

40

Ac
cu

ra
cy

 (%
)

1B

3B

(d) Llama 3.2 3B and Llama
3.2 1B.

0 5 10 15 20 25 30
Block ID

0

25

50

75

Ac
cu

ra
cy

 (%
)

1.5B
7B

(e) Qwen 2.5 7B and 1.5B.

0 6 12 18 24 30 36 42 48
Block ID

0

25

50

75

Ac
cu

ra
cy

 (%
)

7B 14B

(f) Qwen 2.5 14B and 7B.

0 8 16 24 32 40 48 56 64
Block ID

0

25

50

75

Ac
cu

ra
cy

 (%
)

7B 32B

(g) Qwen 2.5 32B and 7B.

0 8 16 24 32 40 48 56 64
Block ID

0

25

50

75

Ac
cu

ra
cy

 (%
)

14B 32B

(h) Qwen 2.5 32B and 14B.
Figure 18: MMLU performance using differnt stitching block configurations on Llama 2, Llama 3, and Qwen 2.5.

0 4 8 12 16 20 24 28 32 36 40
Block ID

0

20

40

Ac
cu

ra
cy

 (%
)

1.1B

13B

Skip
Stitch

(a) ⋆: Tiny Llama ⋆: Llama 2
13B

0 4 8 12 16 20 24 28 32
Block ID

0
8

16
24
32
40
48
56

Ac
cu

ra
cy

 (%
)

1.1B

8BSkip
Stitch

(b) ⋆: Llama 3 1B ⋆: Llama 3
8B

Figure 19: Accuracy on MMLU: Block Stitching vs. Block
Skipping. The orange line shows performance when stitching
is applied at every decoder block, while the blue line represents
skipping all subsequent decoder blocks after a given block.

0 6 12 18 24 30
Block ID

20

40

Ac
cu

ra
cy

 (%
)

3B

8B
baseline
bigger

(a) Stitching Llama 3 8B and
3B.

0 6 12 18 24 30
Block ID

20

40

60

Ac
cu

ra
cy

 (%
)

1B

8B
baseline
bigger

(b) Stitching Llama 3 8B and
1B.

Figure 20: Accuracy on MMLU: Single Linear Stitching vs.
Multi-Layer Stitching. The blue line shows performance with
a single linear stitching layer, while the orange line reflects
results using larger stitching blocks composed of multiple
linear layers with activation functions.

C = {c1, c2, ...cn}, where each ci represents the1166

underlying consecutive KV pages of request si, and1167

n is the total number of requests tracked by the sys-1168

tem. We use ref(ci) to calculate the total number1169

of pages referenced by more than one request in1170

sequence si. For KV cache pages ci ∈ C, we have1171

ref(ci) ≤ ref(ci+1). If ref(ci) = ref(ci+1),1172

then resumeTime(ci) <= resumeTime(ci+1),1173

where resumeTime(ci) is the estimated time the1174

pages ci will be reused by the intercepted request1175

si.1176

Prioritize KV cache owner. Transferring KV1177

Median
Latency

95%ile
Latency

Throughput Comm
Costs

Inter-server
Comm

0.0
0.4
0.8
1.2
1.6
2.0

N

or
m

. t
o

St
itc

hL
LM Locality-aware

Min fragmentation

Figure 21: StitchLLM compared with fragmentation-
minimized placement.

0
20
40
60
80

100

M
em

or
y

(%
)

MLR StitchLLM
Max.

Request Parameter

MLR StitchLLM
Min.

Figure 22: Memory used for parameters: Memory usage of
parameters and request-related data. We observe that due to
performing block level merging, StitchLLM is able to mini-
mize memory used for parameters.

caches to a new block instance can introduce la- 1178

tency, impacting request processing times. This 1179

latency is subject to network bandwidth and vary- 1180

ing network conditions. Although recalculating 1181

the KV cache can sometimes be more efficient 1182

than direct copying, it may still disrupt ongoing 1183

requests on the target device. Therefore, we pri- 1184

oritize block instances that already possess the re- 1185

quired KV cache before redirecting requests to a 1186

new device. This approach follows the principle 1187

of best-effort coordination. When candidate block 1188

instances have the same status (e.g., queuing time), 1189

StitchLLM’s agent prioritizes dispatching the re- 1190

quest to the block instance that holds the associated 1191

KV cache. In Appendix K, we provide a detailed 1192

discussion on how StitchLLM’agent selects the ap- 1193

16

R
Model T

R
Model T

(a) Per-model provision.

R

R

Block A1 Block B

T

T

Block A2
No KV cache

(b) Block provision.

Figure 23: Illustration of coordinating KV cache when using
block-granularity provisioning.

Median
 Latency

95%ile
 Latency

Throughput Comm
 Costs

0.0

0.5

1.0

1.5

2.0

N
or

m
. t

o
St

itc
hL

LM Recalculation
Transfer

Recal+trans
Proactive

Figure 24: Ablation study of KV cache coordination strategy.

propriate block instance.1194

J Best-effort KV cache coordination.1195

StitchLLM performs best-effort dispatching by1196

prioritizing the device with its KV cache mem-1197

ory. We consider two other solutions to verify if1198

StitchLLM’s strategy is efficient: (1) All the KV1199

cache are obtained using recalculation. (2) We1200

always route the request back to the least busy1201

device and let the KV cache owner transfer the1202

cache to the instance. Figure 24 shows the median1203

and 95%ile latency, throughput, and communica-1204

tion costs normalized to StitchLLM. The 95%ile1205

latency is increased by 1.23x using recalculation1206

and by 1.36x using least-busy-device routing. The1207

communication costs are reduced significantly to1208

0.36 of StitchLLM when using recalculation and1209

increased to 1.28x when using least-busy-device1210

routing.1211

K Scheduler Formulation1212

Latencydc = Tqueue + Tcompute + Ttransfer + Tload,

Tqueue =
n∑

i=1

Comp(reqi),

Tcompute = Comp(req),

Ttransfer =
Dreq

Bnet(s, dc)
scheduler dispatches,

Tload =

Db −Db′

Bmem(dc)
Memory,

Db −Db′

Bnet(dc)
Network.

1213

We incorporate four key factors: queu-1214

ing (Tqueue), computation (Tcompute), transfer 1215

(Ttransfer), and the overhead associated with block 1216

switching (Tload). Tqueue accounts for the duration 1217

required to process all n queuing request batches. 1218

Ttransfer, denotes the time needed for scheduler s 1219

to send requests to target node. Here, Dreq is the 1220

size of the request token, and Bnet(s, dj) denotes 1221

the network bandwidth between two devices. Tload 1222

denotes the time needed to transfer the needed 1223

blocks to the target device. Db is the total size 1224

of the blocks needed, and D′
b is the sizes of blocks 1225

already exists on target devices. The transfer will 1226

use CPU memory, or resort to network transfer if 1227

the needed block is not in memory. Bmem(dc) is 1228

the device memory bandwidth of candidate dc. 1229

17

	Introduction
	Related Work
	StitchLLM
	Stitching in LLMs
	Challenges
	Stitching Layer
	Choosing stitching location and models

	StitchLLM Serving
	Existing Serving System
	Overview
	Online Serving

	Evaluation
	Stitching LLMs
	Stitching Direction
	Existence of Performance Boundary
	Serving Performance

	Conclusion
	Performance across Tasks
	More on Stitching Direction
	More on Performance Boundary
	Compare To Block Skipping
	More Complex Stitching Layer
	Locality-aware Block Placement
	More on GPU Utilization
	Implementation Details
	KV Cache Coordination
	Best-effort KV cache coordination.
	Scheduler Formulation

