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ABSTRACT

Multimodal encoders have pushed the boundaries of visual document retrieval,
matching textual query tokens directly to image patches and achieving state-
of-the-art performance on public benchmarks. Recent models relying on this
paradigm have massively scaled the sizes of their query and document representa-
tions, presenting obstacles to deployment and scalability in real-world pipelines.
Furthermore, purely vision-centric approaches may be constrained by the inher-
ent modality gap still exhibited by modern vision-language models. In this work,
we connect these challenges to the paradigm of hybrid retrieval, investigating
whether a lightweight dense text retriever can enhance a stronger vision-centric
model. Existing hybrid methods, which rely on coarse-grained fusion of ranks
or scores, fail to exploit the rich interactions within each model’s representation
space. To address this, we introduce Guided Query Refinement (GQR), a novel
test-time optimization method that refines a primary retriever’s query embedding
using guidance from a complementary retriever’s scores. Through extensive ex-
periments on visual document retrieval benchmarks, we demonstrate that GQR
allows vision-centric models to match the performance of models with signifi-
cantly larger representations, while being up to 14x faster and requiring 54x less
memory. Our findings show that GQR effectively pushes the Pareto frontier for
performance and efficiency in multimodal retrieval. We release our code fhere.

1 INTRODUCTION

Visual document retrieval is the task of returning relevant documents — typically PDFs containing
figures, tables, and other visual elements — in response to a textual query (Mathew et al., 202 1bjaj [Li
et al.,2024; Zhu et al., 2022; [Faysse et al.,2025). To tackle this task, neural retrieval pipelines often
follow a text-centric approach, relying on OCR or vision-language models to convert source docu-
ments into textual chunks, and then constructing an index using semantic text encoders (Karpukhin
et al., [2020; [Tanaka et al., [2021). An alternative, vision-centric, approach relies instead on mul-
timodal encoder models. Building on the ColBERT (Khattab & Zaharia, 2020) late-interaction
approach, ColPali-based (Faysse et al.| 2025) encoders operate directly on image patches, and yield
multi-vector embedding representations of images and queries.

While this approach achieves state-of-the-art results on public benchmarks of visual document re-
trievaﬂ (Macé et al.,[2025), open challenges within this paradigm remain. First, to pursue state-of-
the-art performance, recent late-interaction multimodal retrieversﬂ massively scale the length and
dimensionality of query and document representations. This can incur a substantial latency and
storage overhead, hindering the ability to provide an efficient and scalable solution. For example,
LLAMA-NEMORETRIEVER-COLEMBED-3B represents each document page with 10 MB of mem-
ory (Xu et al.,[2025), three orders of magnitude more than single-vector dense retrievers (Table 4).
Secondly, a vision-centric approach for matching textual queries to textually rich documents may
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Figure 1: Hybrid retrieval methods. Aggregating the outputs of two retrievers is typically done at
the level of ranks (§2.1)) or scores (§2.2). Utilizing the information of both representations effectively
and efficiently is difficult to achieve in practice. Here we propose a novel approach of Guided Query
Refinement (GQR), using similarity scores from an complementary retriever (leff) at test time, to
inform the query representation of a primary retriever (right).

be limited by the substantial modality gap (Clavié & Brand| 2023} i et al., 2023}, [Role et al., [2025))
exhibited by modern vision-language models. These gaps motivate exploring complementary ap-
proaches for improving the performance of multimodal encoders.

An early concept in the application of neural retrievers has been that of hybrid retrieval
et alll, 2015} [Kuzi et al.| [2020), where the outputs of different retrievers are aggregated at the level
of ranks or query-document similarity scores (see to obtain the final list of retrieved doc-
uments. Hybrid retrieval (or hybrid search) most commonly refers to the combination of a neural
semantic text retriever with a sparse lexical representation (e.g., BM25). More broadly, it reflects the
notion that models relying on different types of representations can capture complementary aspects
of the data, which can in turn be leveraged to boost the overall performance on the task.

In this work, we seek to connect these two threads, testing whether the paradigm of hybrid retrieval
can complement modern multimodal encoders. Dense text retrievers typically have low online la-
tencies and incur a small storage footprint, and they provide a uni-modal signal between the query
and the document representation. Thus, hybrid retrieval between text and image encoders emerges
as a natural candidate for enhancing the performance of a multimodal retrieval system. However, in
this work we argue that standard hybrid retrieval methods rely on a rather coarse-grained view of
the perspective of each retriever — they cannot utilize the rich query-document interactions within
the model representation space (Figure 1J).

Aiming to harness this untapped potential of hybrid retrieval, in this work we propose Guided Query
Refinement (GQR) (Figure 2)), a novel approach for aggregating retriever outputs. Given a query at
test time, GQR iteratively optimizes the query representations of a primary retriever with gradient
descent, using similarity scores from a complementary retriever. The refined query representation
softly incorporates the complementary retriever’s signal, remaining subject to the query—document
interactions in the primary retriever space. This updated query embedding is then used to score the
documents and return an updated document list. Notably, GQR is architecture-agnostic and can be
used to optimize both single- and multi-vector query embeddings.

We conduct extensive experiments on established visual retrieval benchmarks, evaluating nine pairs
of state-of-the-art vision and text retrievers and comparing GQR to standard hybrid retrieval ap-
proaches. Our results (§3.2) demonstrate consistent gains for models using GQR over base models
and other hybrid baselines. Despite the fact that text-centric models achieve lower performance
on the task, we find that the complementary signal they provide through GQR proves useful for
ColPali-based models. On ViDoRe 2, COLNOMIC-EMBED-MULTIMODAL-7B with GQR is nearly



on par with LLAMA-NEMORETRIEVER-COLEMBED-3B, while being ~ x 14 faster and requiring
~ x 54 less memory, and outperforms it while being ~ x 7 faster and requiring ~~ x 24 less memory.
Our results and analysis establish that ColPali-based methods using GQR are on the latency and
memory Pareto-fronts on the task of visual document retrieval.

2 METHODS

Hybrid retrieval variants can be organized into three conceptual levels, reflecting the granularity in
which test-time aggregation is performed (Figure [I): the level of document rankings, the level of
query-document similarity scores, or the level of embedding representations. The earlier the aggre-
gation, the more information is available, and the more informative the exchange between models
can be; however, richer information also increases the burden of normalization and geometrical
alignment across spaces.

We begin this section by outlining prominent methods at each level (§2.1] §2.2). We explain that
while early representation-level aggregation could be desired due to its richness, it is difficult to
achieve in practice. We then present our method, Guided Query Refinement (GOR), which lies
between the levels of scores and of representations (§2.3) and provide the motivation for it (§2.4).

Notations. Given a query ¢ and retriever m, we denote the representation of g by m as el . Sim-
ilarly, given a set of documents D = {d}ZN 1> we have ed' for all d; € D. Document relevance
to the query is estimated using a smnlanty score s,,(q, d;) between the representations 4, and el

typically via cosine similarity (Equation 3)) or MaxSim (Equation 4).

mm(q) denotes the list of the documents returned by retriever m for query ¢. K is the length of the
retrieved list of documents, and we assume it is constant across retrievers. rank,, (d) is the 1-indexed
position of 7, (g) after sorting 7, (¢) by the scores s,,, (g, -) in descending order. If d ¢ 7,,(q), then
rank,,(q,d) = K+1.

Finally, while the formulation is general and applies to any number of retrievers )M, in this work we
focus on the case of M = 2.

2.1 RANKING-LEVEL AGGREGATION

Ranking-level aggregation is the simplest form of information exchange between retrievers: each
query and document pair is reduced to a single integer rank. While limited in its expressivity, it re-
quires no extra normalizations or alignments, and is therefore widely used in production pipeline

Reciprocal Rank Fusion (RRF). RRF (Cormack et al,|2009) combines ranked lists by weighting
each item based on the reciprocal of its rank. The RRF constant x > 0 dampens the impact of very
high ranks and controls how much credit is given to mid-list occurrences.

RRF(d 1

Z K+ rank (d)

m=1

We also consider Average Ranking, which directly averages ranks across retrievers; see|Equation 6
for the formal definition.

2.2  SCORE-LEVEL AGGREGATION

Score-level aggregation operates one step deeper than ranking aggregation, operating on the real-
valued similarity scores s,,(q, d;) between the query and documents. To ensure that the scores of
different retrievers are in the same scale and range, the common practice (Bruch et al.l [2023) is to
first apply a normalization function N,,, — yielding 5,, (g, d;) — and then aggregate across retrievers:

m(Qa dl) = Nm«(sm(qadi))v SCOI‘G Q7 M Z Sm qa (2)

m=1

3Milvus docs; [Elasticsearch docs.


https://milvus.io/docs/rrf-ranker.md
https://www.elastic.co/docs/reference/elasticsearch/rest-apis/reciprocal-rank-fusion

In this work, we evaluate two variants with different normalizations, Score Aggregation (Min-Max)
and Score Aggregation (SoftMax). See Appendix [C| for details.

Tuned Variants. More generally, the above methods can be viewed as a weighted aggregation,
where the examples above are the uniform case, with each retriever assigned a weight o = 1/M
(for two retrievers, o = 0.5 for each). Given a development set, these weights can be fit (Bruch et al.,
2023). Here, for M = 2, the two retrievers are assigned relative weights o and 1 — «, yielding the
parameterized variants Average Ranking - Tuned, RRF - Tuned, Score Aggregation (Min-Max)
- Tuned, and Score Aggregation (SoftMax) - Tuned. Details are in Appendix [C]

2.3 GUIDED QUERY REFINEMENT

Representation-level information carries the richest potential for effective aggregation. Embedding-
level projections that align representational spaces are used extensively in modern vision—language
systems to combine visual and textual inputs (Radford et al.| 2021} Jia et al.| 2021} [Li et al., 2021}
2022). At test time, however, operating directly on representations is hindered by heterogeneity:
encoders may use a single vector or many vectors per document and query, and they operate within
differing dimensionalities and scales. Thus, with strict latency and memory budgets and without
access to supervision, aggregation at this level is not trivialE]

Our goal in this work is to exploit the rich information in query and document representations
while remaining architecture-agnostic, lightweight, and practical. To this end, we propose Guided
Query Refinement (GOR), a novel method for combining the outputs of two retrievers — a primary
retriever m; and a complementary retriever mo (Algorithm [I] [Figure 2). GQR refines m;’s query
representation based on the signal of mg’s scores.

At inference time, given a user query ¢, an index search is run with each retriever to obtain its top- K

document list 7y, (¢). The union of these lists, C(q) = U%Zl Tm(q), serves as the candidate pool of
documents. For each retriever m; € {m1, ms}, we define a distribution over C(g) via a Softmax:

exp (s;(g, d:))

p;(d; | €9) = fori=1,...,|C(q)|-
’ D exp (s5(q, dr))

We denote the initial query embedding of m; by z(9) = el (GQR is applicable to both single and
multi-vector embeddings), and we update it at each step ¢, z(*) for T steps. At step t, the consensus
distribution of m; and ms is defined as

Pe(d) = 3 (p1(d ] 20) + pa(d | ef)),
such that only p; depends on ¢ through z(*) and p, is fixed by €.
We minimize

LY = KLYp{y(d) | pr(d | 21)).
Here, KL is the Kullback-Leibler divergence (Equation 12)).
We apply a gradient step on the query representation with step size oﬂ
2D = ) aVZE(z(t)),

where 7" and « are hyperparameters.

We then compute the final scores from retriever m,
s7(g,d) = 51(2),d) ford € C(q).

Finally, we produce the list of retrieval results by sorting C(g) in descending order of ng)(q, d),

returning the first K elements.

4Concatenating single-vector embeddings is feasible, yet under dot-product scoring this reduces to an un-
normalized sum of separate scores, and does not enable interaction between the spaces.

SWe define GQR with gradient descent for simplicity, but in practice we found Adam (Kingma & Bal,2015)
to perform better and use it as the optimizer.
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Figure 2: Guided Query Refinement (GQR). Stage 1: Two retrievers independently encode the
query and retrieve top-K documents, forming a candidate pool. Stage 2: The primary query em-
bedding is iteratively refined (2(*)) over T iterations, by minimizing the KL divergence between a
consensus distribution and the primary distribution.

. J
Stage 1: Candidate Pool Creation

2.4 GQR - MOTIVATION AND RATIONALE

Our approach is inspired by test time optimization methods that rely on pseudo-relevance feedback
from a stronger cross-encoder (Yu et al.l 2021} |Sung et al., [2023; |Gangi Reddy et al., [2025). Min-
imizing KL pushes p;(- | 2(*)) to place higher probability where the other distribution does, and
to reduce probability where the other distribution is low. However, instead of relying on a heavy
cross-encoder, here we utilize feedback from a lightweight bi-encoder whose performance can be
on par or even weaker than the primary encoder, and thus the consensus distribution is set as payg.

Compared to a simple weighted average of scores, GQR operates by updating the query representa-
tion of m; rather than defining a new scoring rule. The complementary distribution pg,)g isused as a
learning signal, and the gradient of £(*) is computed through s, (z,d), so any change in the ranking
must be achievable by moving the query within the primary model’s embedding space. Intuitively,
this allows feedback from ms to influence the query in a way that is constrained by m;’s notion
of similarity, since documents contribute to the update through their embeddings and their relative
probabilities. In score-level fusion, each document’s probability is pulled toward the secondary re-
triever’s distribution by the same fixed amount, so the update is always a uniform weighted average.
In GQR, different documents can shift by different magnitudes along a non-linear trajectory dictated
by the geometry of that space. In cases where mo is weaker or misaligned, this setup can help in-
corporate its signal more softly, since it is filtered through m;’s representation rather than directly
overriding scores.

3 EXPERIMENTS

3.1 SETUP

Task. Visual document retrieval (Mathew et al.| 2021bza}; [L1 et al.l 2024} |Zhu et al.| 2022} |[Faysse
et al., |2025)) assumes a corpus of documents, that contain visual elements such as charts, images,
and tables, and a set of document-grounded textual queries. The goal is to retrieve the most relevant



Table 1: NDCG@5 over ViDoRe 2, by primary and complementary models. Columns show scores
by subset and the overall average. Deltas are absolute changes vs. the No refinement row within the
same base.

Primary Model GQR complementary Avg Biomed Lectures Economics ESG Human  ESG Full
model
val A val A val A val A val A
Jina (text) 53.4 0.0 48.6 0.0 51.4 0.0 59.5 00  54.1 0.0
Ling-Embed 55.3 0.0  58.0 0.0 52.0 00  58.8 00 524 0.0
Qwen3 46.8 0.0  54.0 0.0 44.6 0.0  50.2 00 383 0.0
Colnomic-7B
No refinement 60.3 00  64.3 0.0 54.4 0.0  68.2 00 54.1 0.0
Jina (text) 63.1 1428 64.7 140.4 57.0 1426 70.3 1421 60.2  1+6.1
Ling-Embed 62.8 1425 654 411 56.7 1+23  67.7 |10 61.2 1471
Qwen3 61.0 1+0.7 61.9 124 54.3 0.1 70.2 1420 57.5 1434
Jina (vision)
No refinement 57.2 00 61.6 0.0 53.5 00  61.7 00  52.0 0.0
Jina (text) 60.7 1435  61.7 40.1 55.3 1+18  66.9 1452 58.8 1468
Ling-Embed 61.2 1+40 64.7 P43.1 572 1437  65.7 1440 57.1 1451
Qwen3 59.8 1426  63.2 416 53.6 1+0.1 67.8 1+6.1 54.4 1424
Llama-Nemo
No refinement 63.0 00  63.7 0.0 56.8 0.0 745 0.0  56.9 0.0
Jina (text) 64.2 1412 64.5 140.8 57.6 1+0.8 74.2 103 60.4 1435
Ling-Embed 65.2 1422 66.4 427 56.8 0.0 74.6 1+0.1 62.8 1+59
Qwen3 63.3 1+03  65.0 t+13 554 |14 74.1 |04 58.7  1+1.8

documents for each query. We conduct experiments on ViDoRe 1 (Faysse et al., 2025)), ViDoRe 2
(Macé et al., [2025) and the ViDoRe 3 benchmarks, which are established benchmarks for this task.
Corpus documents are embedded by encoder models, either directly from page images, or following

ingestion of document pages into text (see|{Appendix D).

Models. We evaluate a diverse pool of multimodal and textual state-of-the-art retrieval mod-
els. The Colpali-based set includes three encoders: COLNOMIC-EMBED-MULTIMODAL-7B
(Teaml, 2025b)), JINA-EMBEDDINGS-V4 (Gtinther et al., [2025), and LLAMA-NEMORETRIEVER-
COLEMBED-3B (Xu et al., [2025)). The set of text models includes LINQ-EMBED-MISTRAL (Choi
et al.}2024) and QWEN3-EMBEDDING-4B (Zhang et al.,|2025)), as well as JINA-EMBEDDINGS-V4
in its multi-vector textual configuration. This yields 3 text-based models and 3 image-based mod-
els in total. See Table {4 for details on the models. For the ViDoRe 3 benchmark, we excluded
LLAMA-NEMORETRIEVER-COLEMBED-3B due to its high computational overhead, which makes
evaluation impractical over this larger benchmark.

Metrics and Evaluation. We use NDCG@5 as the primary metric for our evaluations (we also
report Recall@5 in[Appendix F|) For each ColPali-based vision-centric model, we test each of the
text-centric models as the complementary retriever used for GQR. This yields 9 GQR pairs in total
for ViDoRe 1 and ViDoRe 2 and 6 for ViDoRe 3, 3 per ColPali-based model. We also evaluate 4
different hybrid methods for each vision-text model pair. See[Appendix D|for technical details about
tuning the hyperparameters for ViDoRe 1 and ViDoRe 2.

To simulate real production use cases, we evaluate both tuned and zero-shot settings. We begin with
the tuned setting on ViDoRe 1 and ViDoRe 2, and then use the findings from ViDoRe 2 to guide a
zero-shot evaluation on ViDoRe 3.

3.2 COMPARISON TO SINGLE-RETRIEVER PIPELINES

Results with Hyperparameter Tuning. reports GQR against the corresponding models
on ViDoRe 2. The first block lists the text-only models, which average between 46.8 for Qwen and
55.3 for Ling. In each subsequent block, a ColPali-based retriever is fixed, and we show its score
alongside the GQR variants, with deltas computed relative to the primary retriever. For Colnomic-



Table 2: NDCG@5 over ViDoRe 3, by primary and complementary models. Columns show subset
scores, average, and deltas relative to the no-refinement baseline within each primary model.

Primary Model GQR complementary Avg cs energy fin_en fin_fr hr industrial pharma physics

model

val A val A val A val A val A val A val A val A val A

Jina (text) 51.6 00 66.6 00 60.2 0.0 54.0 0. 40.1 0 54.5 00 422 0 55.3 00 40.5
Ling-Embed 44.2 00 64.6 00 485 00 40.1 0 28.7 0 42.6 0 30.1 00 57.7 00 414
Qwen3 46.0 00 67.6 00 50.1 00 38.9 0. 27.3 0 44.6 0 37.8 00 581 00 43.9
Colnomic-7B

No refinement 55.7 00 74.0 00 623 00 54.2 0 42.7 0. 57.1 00 495 00 62.0 00 441

Jina (text) 574 1417 748 1408 64.1 1418 58.6 1+a4 44.6 1419 594 1423 50.8 1413 628 1408 445 1404

Ling-Embed 57.1  t+14 751 f+11 634 14l 56.9 1427 439 1412 581 1410 50.8 1413 634 114 457 1416

Qwen3 56.7  1+1.0 752 t+12 631 1408  56.0 1418 42,6 |01 58.0 1+09  50.5 1410 63.1 10 454 1413
Jina (vision)

No refinement 53.4 00 69.2 00 59.4 00 52.4 0 39.8 0 54.7 0 47.8 00 61.2 00 43.0

Jina (text) 55.1 1+17  70.2  1+10 61.5 1421 56.3 1439 42,6 1428 571 1424 481 1403 61.6 1404 435 1405

Ling-Embed 554 1«20 720 ts28 612 f+18 549 1425 4L5 0 1+l 56.6 1419 48.6 1408 63.8 126 451 1421

Qwen3 55.0 1+1.6 723 1431 60.4 1+10 541 1417 397 Lod 55.9 1412 493 1415 631 1419 45.6 126

Table 3: Percentage gain in NDCG@D5 of hybrid retrieval over the primary retriever on ViDoRe 2.
Each cell depicts the average gain over 9 retriever pairs (3 multimodal base retrievers and 3 text
retrievers).

Per-Subset Gain

Method Avg Std

Biomed Lectures Economics ESG Human ESG Full
Average Ranking 1-3.0% 2.5 1-6.6% 140.5% 1-6.4% 140.4%
RRF 1-2.8% 2.6 1-6.5% 140.3% 1-6.2% +1.3%
Score Aggregation (Min-Max) 140.4% 2.6 1-3.0% M41.7% 1-1.8% 44.7%
Score Aggregation (Softmax) +1.5% 1.9 1-0.9% 14+0.8% 140.6% 14+5.4%
Average Ranking (Tuned) 1-0.3% 1.8 1-2.9% +1.3% 1-2.8% 143.2%
RRF (Tuned) 1-01% 1.9 1-2.9% 14+1.2% 1-4.0% 145.5%
Score Aggregation (Min-Max, Tuned)  1+3.4% 2.1 +1.2% 142.9% 142.9% 146.7%
Score Aggregation (Softmax, Tuned) 142.6% 2.3 14+0.3% 140.9% ™M2.2% +7.1%
Guided Query Refinement (GOR) 143.9% 1.9 +1.5% 42.0% 143.3% 14+8.7%

7B, the average score rises from 60.3 to 63.1 with query refinement from Jina (text) (+2.8) and to
62.8 with Ling-Embed (+2.5). For Llama-Nemo, the strongest model on ViDoRe 2 to date, GQR
improves the average from 63.0 to 65.2 with Ling-Embed (+42.2). Notably, the text models clearly
underperform the ColPali-based retrievers, yet with GQR the complementary signal they provide
boosts performance. This is clearest in the Llama-Nemo versus Qwen3 setting, where GQR delivers
a small gain of 14-0.3, despite a 16.2 point gap in base NDCG@5 (Llama-Nemo 63.0 vs. Qwen
46.8). Subsets where GQR harms performance are rare for Colnomic-7B and Llama-Nemo, absent
for Jina (vision), and on average across the benchmark GQR consistently improves retrieval quality.
We observe similar patterns for the Recall@5 metric (Table 12). On ViDoRe 1 (Table 7] in the
Appendix) GQR is generally on par with the base models, yet the benchmark clearly suffers from
saturation, with many subset scores reaching 90 or higher.

Results - Zero Shot. For ViDoRe 3, we use a single hyperparameter configuration across all sub-
sets and model pairs, a choice informed by our hyperparameter investigation on top of ViDoRe 2 in
subsection 4.1} [Table 2| shows that GQR improves performance across all model pairs and bench-
mark subsets, consistently outperforming the no-refinement baseline. For example, on Colnomic-7B
it raises the average NDCG@5 from 55.7 to 57.4 with Jina as the complementary model (a gain of
+1.7), and delivers per-subset gains as high as +4.4 on fin_en. Similar improvements appear for
Jina (vision), where GQR increases the average from 53.4 to 55.4 with Ling-Embed (4-2.0).

3.3 COMPARISON TO HYBRID RETRIEVAL PIPELINES

depicts the aggregated performance of the different hybrid retrieval methods on ViDoRe
2, presented as the average percentage gain relative to the base retriever over all pairs in
the appendix lists the average absolute values). The Std column captures the standard deviation of
performance across the pairs for each method. It shows that the ranking aggregation methods (RRF,
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Figure 3: Latency—quality tradeoff in online querying. The z axis is runtime in milliseconds for
a single query, on a log scale, and the y axis is the average evaluation score (NDCG@5). Empty
squares indicating the primary retriever alone (without applying GQR).

Average Ranking) generally lead to a deterioration in performance. All aggregation methods benefit
from parameter tuning, with tuned score aggregation methods achieving consistent gains over the
base retriever. [Table 3| in [Appendix H shows the results in zero-shot settings on ViDoRe 3 (see
for how the baseline zero-shot configuration is chosen).

Across the benchmarks, GQR outperforms all other hybrid retrieval variants, with the largest average
gains over the base multimodal retriever, while also emerging as the most stable positive method with
a low standard deviation across pairs.

3.4 RESULTS - EFFICIENCY

Online Querying Latency. To characterize the test-time costs of GQR and ColPali-based retriev-
ers, we ran latency measurements on a single NVIDIA A100 GPU, measuring document retrieval for
randomly sampled queries from each ViDoRe 2 subset (averaging across 100 runs). [Figure 3|depicts
the quality-latency trade-offs of the different retrievers, where each point on the graph represents ei-
ther a base retriever or a retriever with GQR shows full values). The plot illustrates the
substantial costs of the strongest base model — Llama-Nemo (orange square, right) — which attains
NDCG@5 = 62.9 at a cost of 2,591 ms per query. Notably, our Colnomic GQR hybrid, with Ling
as the refinement model (green diamond, left), reaches NDCG@Q5 = 62.7 at 181 ms (=214 x faster),
and the Colnomic hybrid with Jina (green circle) attains NDCG@5 = 63.0 at 350 ms (=7 x faster),
surpassing Nemo. Across base models, applying GQR increases latency by small relative measures
with large gains in performance, shifting the Pareto frontier left and upwards. shows
that GQR is also on the index-storage Pareto frontier.

4 ANALYSIS

4.1 HYPERPARAMETER INVESTIGATION

GQR relies on two hyperparameters - the learning rate « and the number of optimization steps 7. We
evaluate performance over the Cartesian product {1 x 107>, 5 x 1075, 1074, 5 x 107%, 1073, 5 x
1073} x {5,10,15,...,90,95,100} of o and 7. We run this analysis over 6 model pairs, excluding
LLAMA-NEMORETRIEVER-COLEMBED-3B due to its computational overhead.

[Figure 4]depicts GQR performance on ViDoRe 2 for each combination of « and T', averaged over the
6 model pairs. It shows that high learning rates (10~3, 5 x 10~%) are compatible with small T" values
(10-25), where beyond that performance starts decreasing. Medium learning rates (10~4, 5x 107?),
show consistent improvement and stable optimization, yet require more steps (75-100) to reach
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Figure 4: Hyperparameter sweep over GQR’s  Figure 5: Online latency breakdown of GQR for
learning rate v and optimization steps 7', aver- 7T = 25and T = 50.
aged over six model pairs on ViDoRe 2.

higher performance. The smallest (10~°) and largest (5 x 10~3) learning rates are suboptimal,
where the latter even results in performance degradation relative to the primary retriever.

The results capture a tradeoff between latency and stability. Higher learning rates can provide a
performance boost faster, but might deteriorate quickly past a certain 7" value, while medium learn-
ing rates are more stable yet require more online optimization steps. Overall, three configurations
emerge as the most promising for GQR: (1) = 1073 with 5 < T < 15, (2) @ = 5 x 10~ with
15 < T < 30, and (3) a = 10~* with 50 < T' < 75. We leave it to future work to explore methods
for optimizing this tradeoff, potentially by incorporating learning-rate scheduling procedures.

4.2 ONLINE LATENCY BREAKDOWN

describes the online latency breakdown of GQR, for ' = 25 and T" = 50. The primary
model used is COLNOMIC-EMBED-MULTIMODAL-7B and the complementary is LINQ-EMBED-
MISTRAL. Latencies are collected with an A100 gpu over the ViDoRe 2 benchmark.

The test-time optimization accounts for 50 ms of a 192 ms total latency for 7' = 25 and 99 ms of a
241 ms total for 7" = 50, averaging roughly 2 ms per optimization step. The procedure is shown here
in a sequential form, although with sufficient GPU memory the query encoding and index search for
the two retrievers can be parallelized, reducing overall latency.

4.3 RERANKER COMPARISON

Cross-encoder rerankers are widely used in retrieval pipelines, applying full query to document
interaction via self-attention to the top-K documents. Similarly to GQR, rerankers operate at test
time on a candidate pool returned by a bi-encoder, and thus provide a natural point of comparison.
We evaluate GQR against lightonai/MonoQwen2-VL-v0.1, an open-weights multimodal reranker
(Chaffin & Lacl [2024). [Figure 6]illustrates the latency-performance characteristics of GQR against
reranking the top-5 (on the left) and the top-10 (on the right) candidates returned by each retriever.
GQR is run with a default K = 10 configuration and with Ling-Embed as the refinement model.
The left plot illustrates that GQR outperforms a top-5 reranking pipeline on both the latency and
performance axes. Against the top-10 reranking pipelines (right), GQR achieves close performance
while being 21 x faster for Colnomic, 16 faster for Jina (vision), and 2x faster for Nemo. Across
both comparisons, GQR remains on the Pareto front and indicates attractive latency performance

trade-offs. We report the full results in

4.4 GQR DESIGN CHOICES

Extra search stage. Prior works on test-time query optimization often run a second index search
with the optimized query z(™), aiming to retrieve documents beyond the initial top-K and increase
recall (Sung et al.| 2023} |Gangi Reddy et all [2025). This extra pass adds latency as it repeats
index traversal and candidate generation. We test this modification to GQR where we perform an



additional search with the optimized query over the full index, and observe no improvement in
performance (Table 16). This suggests that the effects of GQR in our setting are largely confined to
the original pool C(g) of candidate documents.

Choice of objective. The GQR optimization process minimizes the KL-divergence between the
distribution of the primary retriever and a consensus distribution of the two retrievers, KL(payg || p1)-
We additionally test two other loss functions: The Jensen-Shannon divergence, JS(pz2||p1) =
LKL ps || pave) + %Kl(pl || Pave) and KL with the target distribution po, i.e., KI(p2| p1). We find
that these GQR variants generally perform similarly well, indicating that GQR applies
across different loss formulations of the two distributions.

We conduct additional experiments on GQR design choices in

5 RELATED WORKS

Multimodal Retrieval. Recent advances in visual document retrieval have been dominated by
late-interaction, multi-vector architectures. This paradigm, first introduced to the multimodal do-
main by ColPali (Faysse et al., 2025), adapts the ColBERT framework (Khattab & Zaharial [2020)
by treating image patches as visual tokens that interact with textual query tokens via MaxSim op-
erations. Subsequent models built on this foundation — such as Llama-NemoRetriever-ColEmbed
(Xu et al.} |2025) and ColNomic-Embed-Multimodal (Team, [2025b) — have established state-of-the-
art performance by capturing fine-grained interactions that are lost in single-vector representations.
However, this performance comes at a significant cost: to achieve their results, these models rely
on massively scaled representations, leading to substantial latency and storage overheads that can
hinder practical deployment. This pressing trade-off between performance and efficiency motivates
our work. Instead of pursuing ever-larger monolithic models, we investigate an alternative direc-
tion: enhancing these powerful vision-centric retrievers by fusing their signal with a complementary
lightweight text-based encoder at test time.

Hybrid Search. Numerous works apply hybrid retrieval in the context of combining dense seman-
tic text retrieval with sparse lexical representations (Karpukhin et al.| 2020} |[Kuzi et al.| 2020} [Luan
et al., 2021; |Chen et al., 2022). Bruch et al.| (2023) conduct a theoretical and empirical analysis of
the different ways to perform such dense-sparse fusions. Specifically, they compare RRF (Cormack
et al., |2009) to score-based fusion, and analyze the sensitivity to the choice of tuned weights and
normalizations. [Hsu & Tzeng| (2025) propose to set the score-fusion weights dynamically for each
query at test time, based on (costly) feedback from an LLM judge. In contrast, GQR departs from
these approaches by operating at test time on the representation level of the primary retriever.

Test-time query refinement. Prior work optimizes query representations during inference in text-
only setups using pseudo-relevance feedback, often distilling from a cross-encoder re-ranker to a
single-vector dense retriever (Yu et al., 2021} [Sung et al.l [2023}; |Gangi Reddy et al., [2025). Cross-
encoders provide rich interactions, but incur substantial test-time cost. Here we replace the cross-
encoder with a complementary bi-encoder (possibly of a different modality), which preserves low
latency while still providing a strong guidance signal.

6 CONCLUSION

In this work, we introduced Guided Query Refinement (GQR), a novel test-time hybrid retrieval
method that refines the query representations of a primary retriever using signals from a comple-
mentary one. Unlike traditional hybrid techniques that operate on rankings or scores, GQR leverages
representation-level interactions while maintaining efficiency and modularity.

Through extensive experiments on the ViDoRe benchmarks, we demonstrated that GQR consistently
improves retrieval performance across diverse model pairs, pushing ColPali-based retrievers to the
latency—memory Pareto frontier. Our findings highlight that even weaker retrievers can provide
valuable complementary guidance, underscoring the potential for resource-efficient retrieval systems
in multimodal large-scale settings.
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A BACKGROUND

Neural Information Retrieval represents a fundamental shift from traditional lexical matching meth-
ods like BM25 (Robertson et al., |1995), TF-IDF (Salton & Buckley, [1988)), and other term-based
approaches (Zhai & Laffertyl [2017). Unlike these sparse retrieval methods that rely on exact term
matches and statistical properties, neural approaches learn dense semantic representations that cap-
ture conceptual similarity, enabling retrieval based on meaning rather than just shared vocabulary.

DENSE ENCODERS have transformed information retrieval by learning semantic representations of
queries and passages in a shared embedding space. These models typically produce a single dense
vector representation for each passage and query, enabling efficient similarity computation through
operations like cosine similarity or inner product. Early work by |Karpukhin et al.[(2020) introduced
Dense Passage Retrieval (DPR), demonstrating that dense representations could outperform tradi-
tional sparse methods like BM25 for open-domain question answering. For query, ¢ and passage p,
The similarity score .S is defined as:
S(g,p) = L 3
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The BERT-based bi-encoder architecture, where queries and passages are independently encoded
using separate or shared BERT models, became the foundational paradigm for neural retrieval. This
framework has shaped the field, with numerous dense retrieval models building upon it (Reimers &
Gurevychl 2019} Xiong et al.| |2020; |Qu et al., 2020; [zacard et al., 2021). The bi-encoder design
enables pre-computation of passage embeddings, making real-time retrieval feasible at scale. Re-
cently, advanced models such as Ling-Embed-Mistral (Choti et al.l 2024) and Qwen3-Embedding
(Zhang et al.| [2025) extend this paradigm by leveraging larger language models as the underlying
encoder to create more powerful dense representations.

LATE-INTERACTION MODELS compute query-document similarity through more fine-grained in-
teraction mechanisms. Rather than compressing all information into a single vector, these models
preserve individual token embeddings for both queries and passages. ColBERT (Khattab & Zaharial
2020) pioneered this approach with its MaxSim operation, which computes the maximum similar-
ity between each query token and all passage tokens, then aggregates these scores. The MaxSim
equation, as defined in ColBERT (see eq. [)), finds for query token embedding ¢; the maximum
similarity (dot product) with any passage token embedding p;. These maximum scores are then
summed up to get the final relevance score.

@l
I
S(a,p) = Y maxa; -pj )
i=1

This approach balances effectiveness and efficiency, as passage representations can still be pre-
computed and indexed while the token-level matching captures finer details than single-vector ap-
proaches. Subsequent work improved efficiency and retrieval quality through various optimizations
(Santhanam et al., 2021} 2022).

CONTRASTIVE TRAINING forms the backbone of modern retrieval model optimization. These
methods learn representations by pulling positive query-passage pairs closer while pushing nega-
tive pairs apart in the embedding space. The InfoNCE loss (Oord et al.| |2018)), which maximizes
the similarity of positive pairs relative to negative ones through a softmax-like normalization, has
become the dominant training objective across retrieval architectures.

exp(sim(q,p™)/7)

L = —log X A A —
exp(sim(q,p™)/7) + >_;_, exp(sim(q, p; )/T)

(&)

CROSS-ENCODER RE-RANKERS represent a different paradigm where query and passage are jointly
encoded, enabling deep self-attention between their representations. Unlike bi-encoders that in-
dependently encode queries and passages, cross-encoders process query-passage pairs through a
single model, allowing full attention across all tokens. This joint encoding is computationally ex-
pensive, making it impractical for first-stage retrieval over large corpora. However, cross-encoders
excel as re-rankers, refining the top-K results from efficient first-stage retrievers. Examples include
MonoBERT (Nogueira et al.l [2019) for text retrieval and |Chatfin & Lac| (2024); Wasserman et al.
(2025) for visual document retrieval.

A.1 VISUAL DOCUMENT RETRIEVAL

VERBALIZATION-BASED METHODS were the dominant approach before the advent of end-to-end
vision models. These pipelines convert visual documents into text through various techniques: tra-
ditional Optical Character Recognition (OCR) tools like docling (Auer et al., 2024) extract printed
text, while Vision-Language Models (VLMs) can generate textual descriptions of visual elements
such as charts, diagrams, and infographics. After verbalization, these methods apply standard text
retrieval techniques to the extracted content. While verbalization-based approaches can leverage
powerful text-only retrieval models, they inherently lose spatial relationships and visual context
during the text extraction process.

COLPALI ARCHITECTURES introduced a new approach to visual document retrieval by directly
encoding document images without intermediate text extraction. These VLM-based embedding
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Table 4: Different retrieval models evaluated in our work. The modality column describes the
representation used for the documents — page-level text, or page-level images.

# Vectors Token # Floats Storage per

Model Size  per Page Dim  per Page 1M Docs (GB) Page Modality
LINQ-EMBED-MISTRAL 7.1B 1 4096 4096 7.63  Text
QWEN3-EMBEDDING-4B 4B 1 2560 2560 477  Text
JINA-EMBEDDINGS-V4 (Text) 3.8B - 128 - - Text
JINA-EMBEDDINGS-V4 (Image) 3.8B 767 128 98176 182.87 Image
COLNOMIC-EMBED-MULTIMODAL-7B 7B 767 128 98176 182.87 Image
LLAMA-NEMORETRIEVER-COLEMBED-3B  4.4B 1802 3072 5535744 10311.13  Image

models transform pre-trained generative Vision-Language Models (such as PaliGemma, Beyer et al.,
2024/and Qwen-VL, Wang et al.,|2024) into multi-vector embedding models optimized for retrieval.

ColPali (Faysse et al., 2025) was the first model to introduce this approach, building upon
PaliGemma (Beyer et al., 2024) and adapting the late-interaction framework to vision-language
models by treating image patches as visual tokens that interact with textual query tokens through
MaxSim operations. ColPali provides native text-query support due to its VLM-based design.
Queries remain text, are encoded by the model’s language tower, and are matched directly against
visual page/passage tokens, eliminating any OCR at query time. Training is contrastive, typically
InfoNCE-style with in-batch/hard negatives to align query tokens with relevant visual tokens. This
architecture preserves spatial layout information and visual features that verbalization-based meth-
ods discard. Following ColPali’s success, subsequent models have adopted and extended this ColPali
paradigm by leveraging different base VLMs: Llama-NemoRetriever-ColEmbed (Xu et al.| 2025)),
Colnomic-Embed-Multimodal (Teaml 2025b), Granite-Vision-Embedding (Team) 2025a)) and Jina-
Embeddings-v4 (Giinther et al., 2025).

B MODEL INFORMATION

depicts the details of the models evaluated in our work. Storage assumes a 16-bit represen-
tation and follows official reports (Xu et al.| 2025)). JINA-EMBEDDINGS-V4 supports both text and
image document representations, single-vector and multi-vector retrieval, and flexible embedding
sizes via a Matryoshka scheme (Kusupati et al.|[2022). In its multi-vector textual configuration, the
number of vectors per page for Jina varies between pages.

C ADDITIONAL DEFINITIONS

Average Ranking Computes the average rank across retrievers.

M
AvgRank(d) = % > rank,, (d) (6)
m=1

Min-Max normalization

Sm(Qa dz) - mindj €mm(q) Sm(% dj)

gm, q, dz == N 5 (7)
(4, di) MaXy, en,, (q) Sm(q; dj) — ming, cx (q) Sm(q,d;j) + ¢
with a small ¢ for numerical stability.
Softmax normalization
d:
§m(q7di) exp(sm(q, z)) (8)

B Zdjé'frm(q) eXp(Sm(q, d])) .

If d; ¢ 7, (q) we set §,,(q,d;) =0
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Average Ranking - Tuned (for M=2)
AvgRank(d) = a rank, (d) + (1 — &) ranky,,(d) )

RREF - Tuned (for M=2)
2 2(1 — «)

F(d) = 1
RRF(d) Kk +rank,,, (d) = k+ rank,,(d) (19)
Score aggregation - Tuned (for M=2)
Score(q,di) = gml (Qa dl) + (1 - Oé) gmz (q; dz) (11)
KL divergence.
P(d)
KI(PQ) = Y P(d) log 53 (12)

deC(q)
where P and @ are distributions over C(q).

D IMPLEMENTATION DETAILS

Offline indexing.  For each model and dataset, we construct an offline index of page-level docu-
ment representations. For ColPali-based models, multi-page documents are rendered as page images
and encoded directly. For text-only embedding models, for the ViDoRe 1 and ViDoRe 2 datasets an
ingestion pipeline converts each page to text. We use DoclinﬂTeam, 2024) to ingest the images.
Docling is an open library providing OCR capabilities combined with document layout analysis,
allowing us to recover page content via simple function calls. The resulting text is stored alongside
the page images without any chunking, ensuring consistent alignment between visual and textual
page representations across the datasets. We run the document converter from Docling v2.34 using
default parameters. For ViDoRe 3, we use the official markdown of the benchmark as the text input
for the embedding models.

For JINA-EMBEDDINGS-V4 (Gtinther et al.| 2025)), a single model accepts both image and text
input documents. We thus use it in both a vision configuration and in a text configuration, denoted
Jina (Vision) and Jina (Text), both running in a multi-vector setting. Jina (Text) is thus used to test
the applicability of GQR where a multi-vector architecture is used as the the GQR complementary
encoder.

Hyperparameters For RRF we set x = 60, a common default (Chen et al.|[2022; |Cormack et al.,
2009). For tuning the weighted hybrid baselines and GQR, we follow previous works (Sung et al.,
2023} |Gangi Reddy et al., 2025} Bruch et al.l [2023) and rely on an in-domain development set of
queries. We reserve 10% of each subset and tune the hyperparameters, 7', and « for each, select-
ing by development set NDCG@5 performance. The splits are fixed for all experiments. For the
weighted hybrid variants, the weight « is tuned over {0.1,0.2,...,0.9} for each subset. For GQR,
the learning rates are {1 x 1075, 5 x 1075, 1074, 5 x 107%, 1073, 5 x 1073}, and we consider
T € {10,25,50}. We report the selected hyperparameters for all methods in Tables We
opted for Adam (Kingma & Bal 2015)) as the optimizer for GQR, based on preliminary experiments
comparing different optimizer choices. We use K = 10 across all retrievers and methods.

E ADDITIONAL DESIGN CHOICES FOR GQR

Candidate pool policy. In our implementation the pool C(q) of candidate documents used for
query refinement is a union of the top-K documents from the primary and complementary retrievers.
One alternative is to opt for a reranker-like setup, where the only documents considered are those
initially returned in the top-K of the primary retriever. Our analysis shows that this modi-
fication does not have a consistent positive or negative effect compared to a union pool of candidates.
While the complementary dense retriever’s index search is relatively quick, this configuration can
be adopted in sensitive deployments of GQR for additional latency gains.

Shttps://docling-project.github.io/docling/
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Figure 6: Latency—quality tradeoff in online querying. The x axis is runtime in milliseconds for a
single query, on a log scale, and the y axis is the average evaluation score (NDCG@5). Marker color
encodes the primary model; marker shape encodes the usage of GQR or reranking with top 5 (left)
or top 10 (right) candidates. The dashed lines represent the Pareto frontier.

Algorithm 1 Guided Query Refinement (GQR)

Require: Query ¢, primary encoder mj, complementary encoder mo, iterations 7', step size «,
top-K value K

1: 20« ¢f > Initialize the primary encoder’s query embedding
2: C(q) + CANDIDATEPOOL(q, m1, ma, K) > Union of per-encoder top-K lists
3: {s2(q,di)}a,ec(q) < SCOREn,(q,C(q)) > Fixed guidance scores
4: pa(d; | €3) < softmax(s2(q,d;)) for d; € C(q) > Normalize mz’s scores over C(q)
5: fort =0toT — 1do

6:  pi(d; | 2V) « softmax(s1 (2", d;)) for d; € C(q) &> Primary distribution on C(q)
7 pavg(di | 2®) = $(p1(di | 2®) + pa(d; | €3)) > Consensus (average) distribution
8  Lxr < KL(pavg(di | 20) | p1(d; | z2®)) > Compute the loss
9: 2D 2 oV Lk, > Gradient step on the query representation
10: end for
11: ng)(di) — s1(d; | 2M) for d; € C(q) > Final primary scores after refinement
12: R(q) + topKyee(q) ng) (¢,d) > Return ordered top-K by score
13: return R(q)

Primary and complementary roles We evaluate text-centric and vision-centric retrievers as both
primary and complementary retrievers within GQR, reporting results in Across model
pairs, both role assignments improve over the base retrievers. The alternative role configuration
yields larger gains relative to the primary encoder alone, while the default GQR attains the strongest
absolute score on ViDoRe 2.

F ADDITIONAL RESULTS

Tablepresents the results on ViDoRe 1. It is noticeable that this benchmark suffers from saturation,
with many subset scores reaching 90 or higher (and indeed this was the direct motivation for the
release of ViDoRe 2, Macé et al.| |2025). Nevertheless, our method does not harm performance, in
contrast to other hybrid retrieval methods, as seen in Tables[§]and [0

Storage. in the Appendix shows that the added storage in GQR is modest. As in the
latency plot, GQR dominates the strongest base model by a wide margin. The Llama-Nemo index
represents each document with 10.6 MB of memory, whereas the Colnomic hybrid, using Linq as
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Figure 7: Baseline results on ViDoRe 2 across different values of the weight «, averaged over
6 model pairs. It shows that the optimal weight for each method varies. Generally the softmax
variant emerges as the most stable, while the min-max variant reaches the best performance if tuned
correctly. The values for the zero-shot configuration for each baseline in[Table 5| were selected based
on this plot.

Table 5: Percentage gain in NDCG@5 of hybrid retrieval over the primary retriever on ViDoRe 3.
Each cell reports the average gain and standard deviation over 6 retriever pairs (2 multimodal base
retrievers and 3 text retrievers). The Hyperparameters column indicates which hyperparameters
were selected for zero-shot evaluation.

Method Avg Std Hyperparameters
Average Ranking (Tuned) 1+0.28% 1.0 a=0.9
RRF (Tuned) 1+0.13% 0.57 a=0.5

Score Aggregation (Min-Max, Tuned) T42.66% 0.91 a=0.7
Score Aggregation (Softmax, Tuned) T+1.53% 1.05 a=04

Guided Query Refinement (GQR) 142.89% 0.67 Ir=10"% T =50

the refinement model, nearly matches its quality with 0.20 MB per document (= 54 % less). Using
Jina, GQR surpasses Nemo while requiring 0.37 MB per document (/= 28 x less).

G ANALYZING PER-QUERY DYNAMICS

As we explain in the dynamics in GQR differ from a simple weighted average of
scores — the distribution changes are constrained by the geometry of the primary model’s embedding
space, and different documents can shift by different magnitudes. To demonstrate this more directly,
in[Figure 8|we visualize the changes in document ranks for a given query as a function of the number
of GQR steps ¢, and as a function of the weight o of the Score Aggregation (Min-Max) baseline.
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Table 6: NDCG@5 for hybrid retrieval on ViDoRe 2. Results are averaged across 9 model pairs.

Method Avg Biomed Lectures Economics ESG Human ESG Full
Average Ranking 58.1 59.0 55.1 63.6 54.5
RRF 58.2 59.1 55.0 63.8 55.0
Score Aggregation (Min-Max) 60.2 61.3 55.8 66.7 56.8
Score Aggregation (Softmax) 60.9 62.6 553 68.4 57.2
Average Ranking - Tuned 59.8 61.3 55.6 66.2 56.0
RRF - Tuned 59.9 61.4 55.5 65.3 57.3
Score Aggregation (Min-Max) - Tuned 62.1 63.9 56.5 70.0 58.0
Score Aggregation (SoftMax) - Tuned 61.6 63.4 55.4 69.5 58.2
Guided Query Refinement (GOR) 62.3 64.2 56.0 70.2 59.0

Table 7: NDCG@5 over ViDoRe 1, by primary and complementary models. Deltas are absolute
changes vs. the No refinement row within the same base.

Primary Model GQR complementary Avg ArXivQA  DocVQA  InfoVQA  TabFQuAD  TATDQA  ShiftProj  SynDocQA Al SynDocQA Energy SynDocQA Gov SynDocQA Health
model
val A val A val A val A val A val A val A val A val A val A val A
Jjina (text) 80.9 a 42.9 0 43.7 97.6 ). 824 a 85.6 00 100.0 ). 94.4 ). 98.9 .0 94.4
Ling-Embed 738 o0 453 360 905 00 459 00 756 00 944 0 889 0o 90,0 0o 933
Qwen3 76.4 0 48.2 ) 369 97.2 . 48.7 0 7.8 0.0 97.8 . 91.1 0.0 97.8 .0 91.1
Colnomic-7B
No refinement 898 00 886 00 602 o0 924 00 967 00 812 o0 887 00 996 00 959 0 951 o0 992
Jina (text) 89.7 0. 86.9 | 613 1 924 00 96.7 . 81.2 0.0 88.7 00 99.6 .0 95.9 0.0 95.1 .0 99.2
Ling-Embed 89.8 0.0 88.6 - 60.7 405 92.0 0.4 96.7 . 813 10 88.7 0.0 99.6 0.0 95.9 0.0 95.1 .0 99.2
Qwen3 89.8 0.0 88.4  Lo02 59.9 103 924 0.0 972 1405 812 0.0 88.7 0.0 99.6 0.0 95.9 ). 95.1 .0 99.2
Jina (vision)
No refinement 899 00 886 624 00 920 00 962 o0 T84 00 9LS 00 992 o0 961 0 965 00 985 !
Jina (text) 808 01 879 07 624 00 920 o0 962 o0 785 o1 9LS o0 992 o0 961 0 965 o0 o7 08
Ling-Embed 808 01 888 02 6LO L4 921 a0 962 o0 784 00 9LS o0 992 00 961 0 965 00 985 )
Qwen3 89.6 03 889 103 598 26 92.0 00 96.2 . 784 0 915 0.0 99.2 . 96.1 0.0 96.5 0.0 97.7 08
Llama-Nemo
No refinement 9.0 0.0 88.0 D 66.2 .0 949 00 96.7 . 81.0 0.0 89.9 0.0 100.0 .0 96.3 0.0 97.7 .0 99.2
Jina (text) 9.0 0.0 88.0 ) 65.9  Lo03 94.7 0.2 97.0 03 815 05 89.6 103 100.0 0.0 96.3 . 97.7 .0 99.2
Ling-Embed 9.0 0.0 88.0 0.0 )4 04 96.9 +02 809 0. 89.7 02 100.0 0.0 96.7 0.4 98.1 0.4 99.2
Qwen3 90.8 02 87.2 Los 00 96.6 0. 80.8 0.2 89.7 0.2 100.0 .0 95.8 0.5 98.1 0.4 99.2

As can be seen in the figure, for some queries the dynamics of GQR and score aggregation are
relatively similar, whereas for others the effects and dynamics are starkly different. Notably, while
score aggregation operates across all candidate documents, the effects of GQR are often focused on
a specific subset of documents.

20



Document rank

%

o 9

HETHEEN 7] I .
|
Document rank

1 o o o o c o oo Hamwuweon~ oo M m o ©C 0000000 HAamM<Yin©On @ Qg
Ranks @ N @ § 4 © =~ ® ® § S 6 S o S o S o o Ranks Ranks M S M@~ ®aS 5636 o o S S o o Ranks
T T T T T T T A T I
e L 5% u s 5w 8oy - w5 5 858 8 o885y
GQR Step Score Aggregation Weight GQR Step Score Aggregation Weight

x x
€ =
o 4
€ €
S s
£ E
3 3
3 3
3 3
a o
[
M o 009 9090000 dam<e®non oo M M o 0o 00090900900 Aam<®nonwoaoa M
Ranks ™ & ™ ¥ 0 © = ® ® § S 5 S S o o S o o Ranks Ranks © N ™ ¥ 0 © 5 ® © S S S S S o S S o o Ranks
B T R T T T R ] T O T T
~ 5 3 5 5 8 BB Sy 4 v 8T 55 8w B Sy
GQR Step Score Aggregation Weight GQR Step Score Aggregation Weight
x x
€ =
e e
€ €
s 5
£ E
3 3
3 3
3 3
a o
M o 09092 9099 990 Aaumenuenoaoa M M © 009 999 9 90 Aame®naonoa M
Ranks ¥ & ™ § 0 © =~ ® © § S S o o o o S S o Ranks Ranks © & ™ § 0 © =~ @ & 5 S S S o o o © S o Ranks
T T T I T T T T B
e R T R I - T e R T R I T T
GQR Step Score Aggregation Weight GQR Step Score Aggregation Weight

Figure 8: Query-level dynamics of GQR versus score aggregation. The heat maps depict examples
of how the document ranks change as a function of either the GQR optimization step ¢ (center left
panels), or the weight « of a linear score aggregation baseline (Score Aggregation - Min-Max, center
right panels). For both methods we see a gradual progression from the ranks of the primary retriever
my (left) towards those of the complementary retriever mo (right). However, the dynamics differ
across queries, as well as across documents within a query. Examples are taken from the ESG subset
of ViDoRe 2, for the model pair COLNOMIC-EMBED-MULTIMODAL-7B,LINQ-EMBED-MISTRAL
(using a GQR learning rate of 10~4).
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Table 8: NDCG@5 for hybrid retrieval on ViDoRe 1. Results are averaged across 9 retriever pairs.

Method Avg arXivQA DocVQA InfoVQA TabFQuAD TATDQA ShiftProj SynthAI SynthEnergy SynthGov SynthHealth
Average Ranking 718 556 44.0 76.2 93.4 61.1 785 96.0 89.8 91.0 92.7
RRF 780 538 44.1 76.5 93.5 61.7 79.0 96.1 90.3 91.4 93.3
Score Aggregation (Min-Max) 844  74.4 53.0 855 95.4 69.4 832 97.9 94.0 954 95.9
Score Aggregation (Softmax) 88.6 833 57.7 91.0 96.5 78.3 88.2 99.6 96.0 96.6 98.6
Average Ranking - Tuned 855 795 573 87.0 95.5 744 86.0 97.8 883 923 96.9
RRF - Tuned 845  76.6 55.8 859 95.7 73.4 84.4 97.6 88.0 923 95.2
Score Aggregation (Min-Max) - 88.5  88.0 622 92.6 96.1 79.6 88.4 97.7 88.9 93.9 98.0
Tuned

Score Aggregation (SoftMax) - 89.4  87.7 62.4 924 96.5 80.2 86.9 99.1 95.3 96.0 97.6
Tuned

Guided Query Refinement 90.1  88.1 62.5 93.0 96.6 80.2 90.0 99.6 96.1 96.5 98.8

(GOR)

Table 9: Percentage gain, in NDCG@5, of hybrid retrieval over the primary retriever for ViDoRe 1.
Each cell depicts average gain over 9 retriever pairs (3 multimodal base retrievers X 3 text retrievers).

Method Avg arXivQA  DocVQA  InfoVQA  TabFQUAD TATDQA  ShiftProj SynthAl ~ SynthEnergy SynthGov — SynthHealth
Average Ranking 147%  1-37.1% 1-29.9% 1-18.1% 1-3.3% 1-23.9% 1-12.8%  1-3.7% 1-6.6% 1-5.6% 1-6.3%
RRF 1- o 1-39.1% 1-29.9% 1-17.9% 1- 1-23.1% 1-3.5% 1-6.0% 1-5.2% 1-5.7%
Score Aggregation (Min-Max) 1-7.0% 1-15.8% 1-15.7% 1-8.1% }-12% 1-13.5% 1-17% 1-22% 1-1.1% 1-3.1%
Score Aggregation (Softmax) 1-2.1% 1-5.8% 1-8.1% 1-22% 0.0 1-2.3% 0.0 1-0.1% 140.2% 1-0.4%
Average Ranking - Tuned 1-5.5% 1-10.1% 1-8.9% 1-6.6% 1-1.0% 1-7.2% 1-1.8% 1-8.1% 1-4.3% 1-2.1%
RREF - Tuned 1-6.6% 1-13.4% 1-11.4% 1-7.7% 1-0.9% 1-8.5% 1-2.0% 1-8.4% 1-4.3% 1-3.8%
Score Aggregation (Min-Max) - Tuned ~ |-1.8% 1-0.4% 1-1.1% 1-0.5% 1-0.4% 1-0.7% 1-1.9% 1-7.5% 1-2.7% 1-1.0%
Score Aggregation (SoftMax) - Tuned 1-0.9% 1-0.8% 1-0.8% 1-0.7% 1-0.1% 0.0 1-0.5% 1-0.8% 1-0.4% 1-1.3%
Guided Query Refinement (GOR) 1-0.1% 1-0.4% 1-0.7% 1-0.1% +0.1% 14+0.1% 0.0 0.0 T4+0.1% 1-0.2%

Table 10: Performance, latency (ms per query), and memory (MB per document) by primary and
complementary models.

Primary Model Complementary Model  Performance Latency  Latency Diff  Memory (MB)
Colnomic-7b No refinement 60.25 115.98 0.20
Colnomic-7b Ling-Embed 62.75 181.21 65.23 0.20
Colnomic-7b Qwen3 60.98 196.16 80.15 0.20
Colnomic-7b Jina (text) 63.05 350.13 194.15 0.39
Jina (vision) No refinement 57.20 153.45 0.20
Jina (vision) Ling-Embed 61.18 213.97 60.5 0.20
Jina (vision) Qwen3 59.75 233.06 79.61 0.20
Jina (vision) Jina (text) 60.68 394.64 241.19 0.39
Llama-Nemo No refinement 62.98 2591.14 11.07
Llama-Nemo Ling-Embed 65.15 2674.84 83.7 11.08
Llama-Nemo Qwen3 63.30 2712.12 120.98 11.08
Llama-Nemo Jina (text) 64.18 2934.61 343.47 11.27
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Figure 9: Storage—quality tradeoff. The x axis is memory in MB, on a log scale, and the y axis
is the average evaluation score (NDCG@5). Marker color encodes the primary retriever; marker
shape encodes the GQR complementary retriever, with squares indicating the primary retriever alone
(without applying GQR).

Table 11: Performance and end-to-end latency of reranking pipelines against GQR. Rows are
grouped by reranker candidate size k. A dedicated block reports GQR.

Reranking & Retriever Latency  NDCG@5 Recall@5
Colnomic-7B (multi) 115.98 60.25 57.32
No-reranking  Jina (vision, multi) 153.45 57.20 56.17
Llama Nemo 3B (multi) 2591.14 62.97 59.75
Colnomic-7B (multi) 181.21 62.75 58.0
GQR Jina (vision, multi) 213.97 61.0 57.6
Llama Nemo 3B (multi) 2674.83 65.15 60.1
Colnomic-7B (multi) 1823.03 62.12 57.32
5  Jina (vision, multi) 1860.714  60.70 56.17
Llama Nemo 3B (multi) 4332.55 64.72 59.75
Colnomic-7B (multi) 3586.809 64.37 59.92
10 Jina (vision, multi) 3585.946  63.27 58.8
Llama Nemo 3B (multi) 6027.078 66.10 61.8
Colnomic-7B (multi) 7035.953  65.07 60.27
20  Jina (vision, multi) 7251.81 64.10 59.6
Llama Nemo 3B (multi) 9470.134  65.77 61.02
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Table 12: Recall@5 on ViDoRe 2, by primary and complementary models.

Avg Biomed Lectures Economics ESG Human ESG Full

Primary Model Complementary Model
Jina-Embeddings (Text) 50.2 50.7 26.3 68.1 55.5
Ling-Embed 50.1 60.3 25.7 62.7 51.8
Qwen3-Embedding 44.6 57.5 25.5 53.6 419
Colnomic-Embed 57.3 66.9 30.9 74.2 57.3
Jina-Embeddings (Text) 58.7 67.1 30.1 74.9 62.7
Ling-Embed 58.0 68.3 29.7 72.6 61.5
Qwen3-Embedding 58.7 65.1 30.8 71.3 61.4
Jina-Embeddings 56.2 64.2 29.6 71.8 59.1
Jina-Embeddings (Text) 57.5 64.2 27.7 75.9 62.1
Ling-Embed 57.6 66.9 29.4 72.3 61.7
Qwen3-Embedding 56.9 66.2 29.4 71.7 60.2
Llama-Nemoretriever 59.8 66.5 30.7 80.1 61.7
Jina-Embeddings (Text) 60.2 65.9 30.5 80.1 64.1
Ling-Embed 60.1 68.4 28.4 79.5 64.1
Qwen3-Embedding ~ 59.9 67.1 30.4 79.3 62.7

Table 13: Recall@5 for hybrid retrieval on ViDoRe 2. Results are averaged across 9 retriever pairs.

Method Avg Biomed Lectures Economics ESG Human ESG Full
Average Ranking 54.3 61.4 29.1 69.4 57.3
RRF 54.6 61.5 29.1 69.7 58.0
Score Aggregation (Min-Max) 56.7 64.7 29.7 72.3 59.9
Score Aggregation (Softmax) 57.3 65.3 29.9 73.7 60.4
Average Ranking - Tuned 56.4 64.9 29.5 71.5 59.7
RRF - Tuned 56.3 64.6 29.5 70.5 60.7
Score Aggregation (Min-Max) - Tuned 58.5 66.9 30.3 75.5 61.4
Score Aggregation (SoftMax) - Tuned 57.9 65.8 29.6 74.5 61.6
Guided Query Refinement (GOR) 58.6 66.6 29.6 76.0 62.3

Table 14: Recall@5 on ViDoRe 1, by primary and complementary models.

Avg arXivQA DocVQA InfoVQA TabFQuAD TATDQA ShiftProj SynthAI SynthEnergy SynthGov SynthHealth

Model Complementary
Model
Jina-Embeddings 429 809 43.7 69.2 85.6 100.0 94.4 98.9 94.4 97.6 824
(Text)
Ling-Embed 453 738 36.0 782 75.6 94.4 88.9 90.0 933 90.5 459
Qwen3-Embedding 482 764 36.9 772 71.8 97.8 91.1 97.8 91.1 97.2 48.7
Colnomic-Embed 93.1 937 66.2 95.5 95.6 100.0 97.8 100.0 100.0 98.8 89.5
Jina-Embeddings ~ 90.0  93.4 67.2 95.5 95.6 100.0 97.8 100.0 100.0 98.8 89.4
(Text)
Ling-Embed 93.1 937 66.5 95.3 95.6 100.0 97.8 100.0 100.0 98.8 89.7
Qwen3-Embedding 93.1  93.8 66.3 96.0 95.6 100.0 97.8 100.0 100.0 99.2 89.6
Jina-Embeddings 922 942 71.0 95.4 97.8 100.0 97.8 100.0 100.0 98.8 88.5
Jina-Embeddings ~ 90.9  94.0 71.0 95.4 97.8 100.0 97.8 100.0 100.0 98.8 88.5
(Text)
Ling-Embed 920 940 69.6 95.5 97.8 100.0 97.8 100.0 100.0 98.8 88.7
Qwen3-Embedding 92.2  93.9 68.7 95.4 97.8 100.0 97.8 100.0 100.0 98.8 88.5
Llama-Nemoretriever 924 947 73.0 98.0 98.9 100.0 96.7 100.0 100.0 99.6 88.8
Jina-Embeddings 924 94.6 72.7 98.0 97.8 100.0 96.7 100.0 100.0 99.6 89.0
(Text)
Ling-Embed 924 948 724 97.6 98.9 100.0 97.8 100.0 100.0 99.6 88.9
Qwen3-Embedding 91.6 945 715 98.2 98.9 100.0 96.7 100.0 100.0 98.8 88.8
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Table 15: Recall@5 for hybrid retrieval on ViDoRe 1. Results are averaged across 9 retriever pairs.

Method Avg arXivQA DocVQA InfoVQA TabFQuAD TATDQA ShiftProj SynthAI SynthEnergy SynthGov SynthHealth
Average Ranking 84.1 63.9 51.8 81.5 97.1 71.6 87.8 99.3 93.7 98.0 96.7
RRF 83.8 595 513 81.8 972 724 88.4 99.0 93.7 98.3 96.7
Score Aggregation (Min-Max) ~ 91.5  88.4 63.5 93.1 98.6 83.0 923 100.0 97.6 99.9 98.4
Score Aggregation (Softmax) 92.5 87.4 63.5 94.5 99.1 87.0 96.1 100.0 97.3 100.0 100.0
Average Ranking - Tuned 929 922 68.7 95.6 98.8 87.6 952 99.9 933 98.2 100.0
RRF - Tuned 91.5 909 66.2 93.5 98.8 85.0 924 99.5 92.8 98.2 97.2
Score Aggregation (Min-Max) - 93.5  92.3 69.3 96.3 99.0 88.7 96.6 99.5 93.8 99.1 100.0
Tuned

Score Aggregation (SoftMax) - 93.5  91.4 69.4 95.8 99.0 88.9 94.7 99.9 97.1 99.6 98.8
Tuned

Guided Query Refinement 94.1 920 69.5 96.3 99.0 89.0 973 100.0 97.6 100.0 100.0
(GOR)

Table 16: Effect of extra index search on GQR NDCG@5 performance, over ViDoRe 2.

Avg Biomed Lectures Economics ESG Human ESG Full

Model Complementary Model ~ Variant
Colnomic-Embed Jina-Embeddings GQR 63.0 64.7 57.0 70.3 60.2
GQR + Search  63.1 64.7 57.1 70.3 60.2
Ling-Embed GQR 62.8 65.4 56.7 67.7 61.2
GQR + Search ~ 62.7 65.4 56.5 67.9 61.0
Qwen3-Embedding GQR 61.0 61.9 54.3 70.2 57.5
GQR + Search  61.0 61.7 54.3 70.6 57.5
Jina-Embeddings Jina-Embeddings GQR 60.7 61.7 553 66.9 58.8
GQR + Search  60.7 61.7 55.2 66.9 58.9
Ling-Embed GQR 61.2 64.7 57.2 65.7 57.1
GQR + Search ~ 61.0 64.7 57.2 65.0 57.2
Qwen3-Embedding GQR 59.8 63.2 53.6 67.8 54.4
GQR + Search  59.8 63.2 53.6 67.8 54.4
Llama-Nemoretriever ~ Jina-Embeddings GQR 64.2 64.5 57.6 74.2 60.4
GQR + Search  64.1 64.4 57.6 74.2 60.4
Ling-Embed GQR 65.1 66.4 56.8 74.6 62.8
GQR + Search  65.3 66.5 57.2 74.6 62.8
Qwen3-Embedding GQR 63.3 65.0 554 74.1 58.7
GQR + Search  63.3 64.8 55.4 74.1 58.7

Table 17: Effect of candidate pool on GQR NDCG@5 performance, over ViDoRe 2.

Avg Biomed Lectures Economics ESG Human ESG Full

Model Complementary Model ~ Variant
Colnomic-Embed Jina-Embeddings GQR 63.0 64.7 57.0 70.3 60.2
GQR (Top-K only) 62.9 64.4 56.3 71.2 59.6
Ling-Embed GQR 62.8 65.4 56.7 67.7 61.2
GQR (Top-K only) 62.4 63.5 573 68.6 60.1
Qwen3-Embedding GQR 61.0 61.9 543 70.2 575
GQR (Top-K only) 61.5 63.4 54.3 71.6 56.7
Jina-Embeddings Jina-Embeddings GQR 60.7 61.7 553 66.9 58.8
GQR (Top-K only) 59.7 61.7 55.1 65.0 56.8
Ling-Embed GQR 61.2 64.7 57.2 65.7 57.1
GQR (Top-K only) 61.0 64.7 56.9 66.2 56.2
Qwen3-Embedding GQR 59.8 63.2 53.6 67.8 54.4
GQR (Top-K only) 59.0 63.5 533 65.0 54.0
Llama-Nemoretriever ~ Jina-Embeddings GQR 64.2 64.5 57.6 74.2 60.4
GQR (Top-K only) 64.2 64.4 57.9 74.1 60.3
Ling-Embed GQR 65.1 66.4 56.8 74.6 62.8
GQR (Top-K only) 64.7 65.4 57.7 74.8 60.8
Qwen3-Embedding GQR 63.3 65.0 55.4 74.1 58.7
GQR (Top-K only) 63.6 65.2 56.9 74.1 58.2
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Table 18: Effect of loss function on GQR NDCG®@5 performance, over ViDoRe 2.

Avg  Biomed Lectures Economics ESG Human ESG Full
Model Complementary Model ~ Loss Variant
Colnomic-Embed Jina-Embeddings Jensen—Shannon 62.7 64.6 56.6 69.5 60.2
Kullback-Leibler (Consensus)  63.0 64.7 57.0 70.3 60.2
Kullback-Leibler (Target) 62.1 64.6 53.3 70.6 60.1
Ling-Embed Jensen—Shannon 63.3 65.3 54.9 71.3 61.9
Kullback-Leibler (Consensus)  62.8 65.4 56.7 67.7 61.2
Kullback-Leibler (Target) 63.8 64.9 57.3 71.3 61.7
Qwen3-Embedding Jensen—Shannon 61.4 63.6 54.3 70.5 57.1
Kullback-Leibler (Consensus)  61.0 61.9 543 70.2 57.5
Kullback-Leibler (Target) 61.3 64.2 54.3 70.1 56.7
Jina-Embeddings Jina-Embeddings Jensen—Shannon 60.3 61.7 56.1 67.1 56.5
Kullback-Leibler (Consensus)  60.7 61.7 55.3 66.9 58.8
Kullback-Leibler (Target) 60.9 61.7 553 68.5 57.9
Ling-Embed Jensen—Shannon 62.5 63.7 58.7 69.8 57.8
Kullback-Leibler (Consensus)  61.2 64.7 57.2 65.7 57.1
Kullback-Leibler (Target) 61.5 64.7 55.5 68.9 57.1
Qwen3-Embedding Jensen—Shannon 59.0 62.9 535 64.7 54.7
Kullback-Leibler (Consensus)  59.8 63.2 53.6 67.8 54.4
Kullback-Leibler (Target) 59.5 63.5 51.9 67.4 55.2
Llama-Nemoretriever ~ Jina-Embeddings Jensen—Shannon 64.0 64.1 57.3 74.3 60.4
Kullback-Leibler (Consensus)  64.2 64.5 57.6 74.2 60.4
Kullback-Leibler (Target) 64.2 64.6 57.2 74.3 60.6
Ling-Embed Jensen—Shannon 65.0 66.0 56.3 74.6 63.1
Kullback-Leibler (Consensus)  65.1 66.4 56.8 74.6 62.8
Kullback-Leibler (Target) 64.7 66.2 56.7 74.3 61.5
Qwen3-Embedding Jensen—Shannon 63.4 65.1 55.7 74.1 58.6
Kullback-Leibler (Consensus) ~ 63.3 65.0 554 74.1 58.7
Kullback—Leibler (Target) 63.3 65.1 554 74.1 58.7

Table 19: Swapping primary and complementary roles in GQR across model pairs. The first two
columns specify the role of each encoder. For each setting we report the absolute score on ViDoRe
2 and the absolute gain relative to the primary encoder alone.

Primary model Complementary model NDCG®@5 Gain
Colnomic-7B Jina (text) 63.05 2.8
Jina (text) Colnomic-7B 62.22 8.82
Colnomic-7B Ling-Embed 62.75 2.5
Ling-Embed Colnomic-7B 61.3 6
Colnomic-7B Qwen 3 60.97 0.7
Qwen3 Colnomic-7B 54.4 7.6
Jina (vision) Jina (text) 60.67 3.5
Jina (text) Jina (vision) 59.25 5.85
Jina (vision) Ling-Embed 61.17 4.0
Ling-Embed Jina (vision) 61.37 6.07
Jina (vision) Qwen3 61.17 2.6
Qwen3 Jina (vision) 52.05 5.25
Llama-Nemo Jina (text) 64.17 1.2
Jina (text) Llama-Nemo 59.3 5.9
Llama-Nemo Ling-Embed 65.15 2.2
Ling-Embed Llama-Nemo 60.27 4.97
Llama-Nemo Qwen3 63.3 0.3
Qwen3 Llama-Nemo 52.8 6
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Table 20: Tuned values for the GQR step size parameter « (learning rate) over ViDoRe 2.

Selected « value

Primary model Complementary model Biomedical Economics ESG ESG Human
Colnomic-Embed-Multimodal-7B Jina-Embeddings-V4 - Text 5 x 107* 5x 1072 1x1073%  5x 1074
Ling-Embed-Mistral 5x107%  5x1073 1x1073  5x107°
Qwen3-Embedding-4B 1x1073 1x107% 1x107% 1x107*
Jina-Embeddings-V4 Jina-Embeddings-V4 - Text 1 x 10~° 1x107% 1x107% 5x107%
Ling-Embed-Mistral 5x 1074 1x107% 1x107* 1x1073
Qwen3-Embedding-4B 5x 1074 1x107% 5x107° 1x10°3
Llama-Nemoretriever-Colembed-3B-V1  Jina-Embeddings-V4 - Text 5 x 107° 1x107° 1x10° 1x107°
Ling-Embed-Mistral 1x 1074 5x107° 1x107% 1x107°
Qwen3-Embedding-4B 1x1074 5x107° 1x107° 1x107°

Table 21: Tuned values for the number of GQR optimization steps parameter 1" over ViDoRe 2.

Selected T value

Primary model Complementary model Biomedical Economics ESG ESG Human
Colnomic-Embed-Multimodal-7B Jina-Embeddings-V4 - Text 10 25 25 25
Ling-Embed-Mistral 25 25 50 10
Qwen3-Embedding-4B 25 10 10 50
Jina-Embeddings-V4 Jina-Embeddings-V4 - Text 10 50 25 25
Ling-Embed-Mistral 25 25 50 25
Qwen3-Embedding-4B 10 50 50 10
Llama-Nemoretriever-Colembed-3B-V1  Jina-Embeddings-V4 - Text 25 50 50 10
Ling-Embed-Mistral 10 50 10 10
Qwen3-Embedding-4B 10 10 50 10

Table 22: Tuned values for the weight parameter « of the Average Ranking baseline over ViDoRe
2.

Selected o value

Primary model Complementary model Biomedical Economics ESG ESG Human
Colnomic-Embed-Multimodal-7B Jina-Embeddings-V4 - Text 0.8 0.7 0.6 0.8
Ling-Embed-Mistral 0.4 0.5 0.7 0.8
Qwen3-Embedding-4B 0.9 0.9 0.9 0.8
Jina-Embeddings-V4 Jina-Embeddings-V4 - Text 0.9 0.5 0.5 0.8
Ling-Embed-Mistral 0.7 0.3 0.9 0.2
Qwen3-Embedding-4B 0.9 0.9 0.8 0.5
Llama-Nemoretriever-Colembed-3B-V1  Jina-Embeddings-V4 - Text 0.8 0.9 0.9 0.9
Ling-Embed-Mistral 0.9 0.5 0.9 0.9
Qwen3-Embedding-4B 0.9 0.9 0.8 0.9

Table 23: Tuned values for the weight parameter « of the RRF baseline over ViDoRe 2.

Selected « value

Primary model Complementary model Biomedical Economics ESG ESG Human
Colnomic-Embed-Multimodal-7B Jina-Embeddings-V4 - Text 0.9 0.7 0.6 0.9
Ling-Embed-Mistral 0.5 0.5 0.9 0.7
Qwen3-Embedding-4B 0.9 0.9 0.9 0.6
Jina-Embeddings-V4 Jina-Embeddings-V4 - Text 0.9 0.5 0.5 0.8
Ling-Embed-Mistral 0.7 0.3 0.8 0.6
Qwen3-Embedding-4B 0.9 0.9 0.8 0.8
Llama-Nemoretriever-Colembed-3B-V1  Jina-Embeddings-V4 - Text 0.8 0.9 0.9 0.9
Ling-Embed-Mistral 0.9 0.4 0.9 0.9
Qwen3-Embedding-4B 0.9 0.9 0.9 0.9
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Table 24: Tuned values for the weight parameter « of the Score Aggregation (Min-Max) baseline
over ViDoRe 2.

Selected « value

Primary model Complementary model Biomedical Economics ESG ESG Human
Colnomic-Embed-Multimodal-7B Jina-Embeddings-V4 - Text 0.8 0.4 0.7 0.8
Ling-Embed-Mistral 0.6 0.5 0.6 0.8
Qwen3-Embedding-4B 0.7 0.8 0.9 0.7
Jina-Embeddings-V4 Jina-Embeddings-V4 - Text 0.8 0.7 0.6 0.8
Ling-Embed-Mistral 0.7 0.5 0.8 0.6
Qwen3-Embedding-4B 0.8 0.9 0.8 0.6
Llama-Nemoretriever-Colembed-3B-V1  Jina-Embeddings-V4 - Text 0.8 0.7 0.8 0.9
Ling-Embed-Mistral 0.7 0.8 0.7 0.9
Qwen3-Embedding-4B 0.8 0.9 0.9 0.9

Table 25: Tuned values for the weight parameter v of the Score Aggregation (Softmax) baseline
over ViDoRe 2.

Selected « value

Primary model Complementary model Biomedical Economics ESG ESG Human
Colnomic-Embed-Multimodal-7B Jina-Embeddings-V4 - Text 0.6 0.1 0.5 0.7
Ling-Embed-Mistral 0.1 0.2 0.1 0.1
Qwen3-Embedding-4B 0.1 0.2 0.4 0.1
Jina-Embeddings-V4 Jina-Embeddings-V4 - Text 0.9 0.5 0.6 0.6
Ling-Embed-Mistral 0.2 0.1 0.2 0.1
Qwen3-Embedding-4B 0.6 0.5 0.9 0.1
Llama-Nemoretriever-Colembed-3B-V1  Jina-Embeddings-V4 - Text 0.8 0.8 0.9 0.9
Ling-Embed-Mistral 0.1 0.1 0.1 0.9
Qwen3-Embedding-4B 0.2 0.6 0.8 0.9
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