
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GUIDED QUERY REFINEMENT: MULTIMODAL HYBRID
RETRIEVAL WITH TEST-TIME OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Multimodal encoders have pushed the boundaries of visual document retrieval,
matching textual tokens directly to image patches and achieving state-of-the-art
performance on challenging benchmarks. Recent models relying on this paradigm
have massively scaled the dimensionality of their query and document representa-
tions, presenting obstacles to deployment and scalability in real-world pipelines.
Furthermore, purely vision-centric approaches may be constrained by the inher-
ent modality gap still exhibited by modern vision-language models. In this work,
we connect these challenges to the paradigm of hybrid retrieval, investigating
whether a lightweight dense text retriever can enhance a stronger vision-centric
model. Existing hybrid methods, which rely on coarse-grained fusion of ranks
or scores, fail to exploit the rich interactions within each model’s representation
space. To address this, we introduce Guided Query Refinement (GQR), a novel
test-time optimization method that refines a primary retriever’s query embedding
using guidance from a complementary retriever’s scores. Through extensive ex-
periments on visual document retrieval benchmarks, we demonstrate that GQR
allows ColPali-based models to match the performance of models with signifi-
cantly larger representations, while being up to 14x faster and requiring 54x less
memory. Our findings show that GQR effectively pushes the Pareto frontier for
performance and efficiency in multimodal retrieval. We release our code at this
GitHub repository.

1 INTRODUCTION

Visual document retrieval is the task of returning relevant documents – typically PDFs containing
figures, tables, and other visual elements – in response to a textual query (Mathew et al., 2021b;a; Li
et al., 2024; Zhu et al., 2022; Faysse et al., 2025). To tackle this task, neural retrieval pipelines often
follow a text-centric approach, relying on OCR or vision-language models to convert source docu-
ments into textual chunks, and then constructing an index using semantic text encoders (Karpukhin
et al., 2020; Tanaka et al., 2021). An alternative, vision-centric, approach relies instead on mul-
timodal encoder models. Building on the ColBERT (Khattab & Zaharia, 2020) late-interaction
approach, ColPali-based (Faysse et al., 2025) encoders operate directly on image patches, and yield
multi-vector embedding representations of images and queries.

While this approach achieves state-of-the-art results on public benchmarks of visual document re-
trieval1 (Macé et al., 2025), open challenges within this paradigm remain. First, to pursue state-of-
the-art performance, recent late-interaction multimodal retrievers2 massively scale the length and di-
mensionality of query and document representations. This can incur substantial latency and storage
overhead, hindering the ability to provide an efficient and scalable solution. For example, LLAMA-
NEMORETRIEVER-COLEMBED-3B represents each document page with 10 MB of memory (Xu
et al., 2025), three orders of magnitude more than single-vector dense retrievers (Table 3). Secondly,
a vision-centric approach for matching textual queries to textually rich documents may be limited
by the substantial modality gap (Clavié & Brand, 2025; Li et al., 2025; Role et al., 2025) exhibited
by modern vision-language models. These gaps motivate exploring complementary approaches for
improving the performance of ColPali-based encoders.

1
https://huggingface.co/blog/manu/vidore-v2

2Henceforth, we use retrievers and encoders interchangeably.

1

https://anonymous.4open.science/r/test-time-hybrid-retrieval-5485
https://huggingface.co/blog/manu/vidore-v2
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Figure 1: Hybrid retrieval methods. Aggregating the outputs of two retrievers is typically done at
the level of ranks (§2.1) or scores (§2.2). Utilizing the information of both representations effectively
and efficiently is difficult to achieve in practice. Here we propose a novel approach of Guided Query
Refinement (GQR), using similarity scores from an complementary retriever (left) at test time, to
inform the query representation of a primary retriever (right).

An early concept in the application of neural retrievers has been that of hybrid retrieval (dos Santos
et al., 2015; Kuzi et al., 2020), where the outputs of different retrievers are aggregated at the level
of ranks or query-document similarity scores (see Figure 1) to obtain the final list of retrieved doc-
uments. Hybrid retrieval (or hybrid search) most commonly refers to the combination of a neural
semantic text retriever with a sparse lexical representation (e.g., BM25). More broadly, it reflects the
notion that models relying on different types of representations can capture complementary aspects
of the data, and boost the overall system performance.

In this work, we seek to connect these two threads, testing whether the paradigm of hybrid retrieval
can complement modern multimodal encoders. Specifically, we aim to leverage the low latency and
small storage footprint of dense text retrievers, and the uni-modal signal they provide, along with
the benefits of ColPali-like vision-centric architectures.

Standard hybrid retrieval methods rely on a rather coarse-grained view of the perspective of each
retriever – they cannot utilize the rich query-document interactions within the model representation
space (Figure 1). Aiming to harness this untapped potential for hybrid retrieval, in this work we
propose Guided Query Refinement (GQR), a novel approach for aggregating retriever outputs. Given
a query at test time, GQR iteratively optimizes the query representations of a primary retriever
with gradient descent, using similarity scores from a complementary retriever. The refined query
representation softly incorporates the complementary retriever’s signal, remaining subject to the
query–document interactions in the primary retriever space. This updated query embedding is then
used to score the documents and return an updated document list. Notably, GQR is architecture-
agnostic and can be applied across single- and multi-vector retrievers.

We conduct extensive experiments on established visual retrieval benchmarks, evaluating nine pairs
of state-of-the-art vision and text retrievers and comparing GQR to standard hybrid retrieval ap-
proaches. Our results (§3.2) demonstrate consistent gains for models using GQR over base models
and other hybrid baselines. Despite the fact that text-centric models achieve lower performance
on the task, we find that the complementary signal they provide through GQR proves useful for
ColPali-based models. On ViDoRe 2, COLNOMIC-EMBED-MULTIMODAL-7B with GQR is nearly
on par with LLAMA-NEMORETRIEVER-COLEMBED-3B, while being ≈×14 faster and requiring
≈×54 less memory, and outperforms it while being ≈×7 faster and requiring ≈×24 less memory.
Our results and analysis establish that ColPali-based methods using GQR are on the latency and
memory Pareto-fronts on the task of visual document retrieval.

2
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2 METHODS

Hybrid retrieval variants can be organized into three conceptual levels, reflecting the granularity in
which test-time aggregation is performed (Figure 1): the level of document rankings, the level of
query-document similarity scores, or the level of embedding representations. The earlier the aggre-
gation, the more information is available, and the more informative the exchange between models
can be; however, richer information also increases the burden of normalization and geometrical
alignment across spaces.

We begin this section by outlining prominent methods at each level (§2.1, §2.2). We explain that
while early representation-level aggregation could be desired due to its richness, it is difficult to
achieve in practice. We then present our method, Guided Query Refinement (GQR), which lies
between the levels of scores and of representations (§2.3).

Notations. Given a query q and retriever m, we denote the representation of q by m as eqm. Sim-
ilarly, given a set of documents D = {di}Ni=1, we have edi

m for all di ∈ D. Document relevance
to the query is estimated using a similarity score sm(q, di) between the representations eqm and edi

m,
typically via cosine similarity (Equation 3) or MaxSim (Equation 4). πm(q) denotes the list of the
documents returned by retriever m for query q. K is the length of the retrieved list of documents
and we assume it is constant across retrievers. rankm(d) is the 1-indexed position of πm(q) after
sorting πm(q) by the scores sm(q, ·) in descending order. If d /∈ πm(q), then rankm(q, d) = K+1.
Finally, while the formulation is general and applies to any number of retrievers M , in this work we
focus on the case of M = 2.

2.1 RANKING-LEVEL AGGREGATION

Ranking-level aggregation is the simplest form of information exchange between retrievers: each
query and document pair is reduced to a single integer rank. While limited in its expressivity, it re-
quires no extra normalizations or alignments, and is therefore widely used in production pipelines3.

Reciprocal Rank Fusion (RRF). RRF (Cormack et al., 2009) combines ranked lists by weighting
each item based on the reciprocal of its rank. The RRF constant κ > 0 dampens the impact of very
high ranks and controls how much credit is given to mid-list occurrences.

RRF(d) =

M∑
m=1

1

κ+ rankm(d)
. (1)

We also consider Average Ranking (AvgRank), which directly averages ranks across retrievers;
see Equation 6 for the formal definition.

2.2 SCORE-LEVEL AGGREGATION

Score-level aggregation operates one step deeper than ranking aggregation, operating on the real-
valued similarity scores sm(q, di) between the query and documents. To ensure that the scores of
different retrievers are in the same scale and range, the common practice (Bruch et al., 2023) is to
first apply a normalization function Nm – yielding s̃m(q, di) – and then aggregate across retrievers:

s̃m(q, di) = Nm(sm(q, di)) , Score(q, di) =
1

M

M∑
m=1

s̃m(q, di). (2)

In this work, we evaluate two variants with different normalizations, Score Fusion (Min-Max) and
Score Fusion (SoftMax). See Appendix C for details.

More generally, these methods can be viewed as a weighted aggregation; where the examples above
are the uniform case, with each retriever assigned a weight α = 1/M (for two retrievers, α = 0.5
for each). Given a development set, these weights can be fit (Bruch et al., 2023). Here, for M = 2,
the two retrievers are assigned relative weights α and 1 − α, yielding the parameterized variants
Average Ranking - Tuned, RRF - Tuned, Score Fusion (Min-Max) - Tuned, and Score Fusion
(SoftMax) - Tuned.

3Milvus docs; Elasticsearch docs.

3

https://milvus.io/docs/rrf-ranker.md
https://www.elastic.co/docs/reference/elasticsearch/rest-apis/reciprocal-rank-fusion
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2.3 GUIDED QUERY REFINEMENT

Representation-level information carries the richest potential for effective aggregation. Embedding-
level projections that align representational spaces are used extensively in modern vision–language
systems to combine visual and textual inputs (Radford et al., 2021; Jia et al., 2021; Li et al., 2021;
2022). At test time, however, operating directly on representations is hindered by heterogeneity:
encoders may use a single vector or many vectors per document and query, and they operate within
differing dimensionalities and scales. Thus, with strict latency and memory budgets and without
access to supervision, aggregation at the this level is not trivial.4

Our goal in this work is to exploit the rich information in the query and documents representations
while remaining architecture agnostic, lightweight, and practical. To this end, we propose Guided
Query Refinement (GQR, Algorithm 1), a novel method for combining the outputs of two retrievers
– a primary retriever m1 and a complementary retriever m2. GQR refines m1’s query representation
based on the signal of m2’s scores. Our approach is inspired by query optimization methods that
rely on pseudo-relevance feedback from a stronger cross-encoder at test time (Yu et al., 2021; Sung
et al., 2023; Gangi Reddy et al., 2025). Here, instead of relying on a heavy cross-encoder, we utilize
feedback from a lightweight bi-encoder, whose performance can be on par or even weaker than the
primary encoder.

At inference time, given a user query q, an index search is run with each retriever to obtain its top K

document list πm(q). The union of these lists, C(q) =
⋃M

m=1 πm(q), serves as the candidate pool.
For each retriever mj ∈ {m1,m2}, we define a distribution over C(q) via a Softmax:

pj(di | eqj) =
exp

(
sj(q, di)

)∑|C(q)|
k=1 exp

(
sj(q, dk)

) for i = 1, . . . , |C(q)|.

We denote the initial query embedding of m1 by z(0) = eq1, and we update it in each step t, z(t) for
T steps.. At step t, the consensus distribution is defined as

p(t)avg(d) =
1
2

(
p1
(
d | z(t)

)
+ p2

(
d | eq2

))
,

such that only p1 depends on t through z(t) and p2 is fixed by eq2.

We minimize
L(t) = KL

(
p(t)avg(d) ∥ p1(d | z(t))

)
.

Here, KL is the Kullback–Leibler divergence (Equation 9). Minimizing it pushes p1(· | z(t)) to place
higher probability where the consensus p(t)avg does, and to reduce probability where the consensus is
low, aligning m1 with the joint signal.

We apply a gradient step on the query representation with step size α5,

z(t+1) = z(t) − α∇zL
(
z(t)

)
,

T and α are hyperparameters.

We compute gradients through m1’s scoring function, so the update remains tied to the interactions
between the query and the documents in that representation space. We then compute the final scores
from retriever m1,

s
(T )
1 (q, d) = s1

(
z(T ), d

)
for d ∈ C(q),

Finally, we produce the retrieval list by sorting C(q) in decreasing order of s(T )
1 (q, d) and return the

first K elements.

4Concatenating single-vector embeddings is feasible, yet under dot-product scoring this reduces to an un-
normalized sum of separate scores, and does not enable interaction between the spaces.

5We defined GQR with gradient descent for simplicity, but in practice we found Adam (Kingma & Ba,
2015) to perform better and use it as the optimizer.

4
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Algorithm 1 Guided Query Refinement (GQR)

Require: Query q, primary encoder m1, complementary encoder m2, iterations T , step size α,
top-K value K

1: z(0) ← eq1 ▷ Initialize the primary encoder’s query embedding
2: C(q)← CANDIDATEPOOL(q,m1,m2,K) ▷ Union of per-encoder top-K lists
3: {s2(q, di)}di∈C(q) ← SCOREm2(q, C(q)) ▷ Fixed guidance scores
4: p2(di | eq2)← softmax

(
s2(q, di)

)
for di ∈ C(q) ▷ Normalize m2’s scores over C(q)

5: for t = 0 to T − 1 do
6: p1(di | z(t))← softmax

(
s1(z

(t), di)
)

for di ∈ C(q) ▷ Primary distribution on C(q)
7: pavg(di | z(t))← 1

2

(
p1(di | z(t)) + p2(di | eq2)

)
▷ Consensus (average) distribution

8: LKL ← KL
(
pavg(di | z(t)) ∥ p1(di | z(t))

)
▷ Compute the loss

9: z(t+1) ← z(t) − α∇z(t)LKL ▷ Gradient step on the query representation
10: end for
11: s

(T )
1 (di)← s1(di | z(T )) for di ∈ C(q) ▷ Final primary scores after refinement

12: R(q)← topKd∈C(q) s
(T )
1 (q, d) ▷ Return ordered top-K by score

13: returnR(q)

3 EXPERIMENTS

3.1 SETUP

Task. Visual document retrieval (Mathew et al., 2021b;a; Li et al., 2024; Zhu et al., 2022; Faysse
et al., 2025) assumes a corpus of documents, that contain visual elements such as charts, images,
and tables, and a set of document-grounded textual queries. The goal is to retrieve most relevant
documents for each query. We run experiment on ViDoRe 1 (Faysse et al., 2025) and ViDoRe 2 (Macé
et al., 2025), which are established benchmarks for this task. Corpus documents are embedded by
encoder models, either directly from page images, or following ingestion of document pages into
text (see Appendix D).

Models. We evaluate a diverse pool of multimodal and textual state-of-the-art retrieval mod-
els. The Colpali-based set includes three encoders: COLNOMIC-EMBED-MULTIMODAL-7B
(Team, 2025b), JINA-EMBEDDINGS-V4 (Günther et al., 2025), and LLAMA-NEMORETRIEVER-
COLEMBED-3B (Xu et al., 2025). The set of text models includes LINQ-EMBED-MISTRAL (Choi
et al., 2024) and QWEN3-EMBEDDING-4B (Zhang et al., 2025), as well as JINA-EMBEDDINGS-V4
in its multi-vector textual configuration. This yields 3 text-based models and 3 image-based models
in total. See Table 3 for details on the models.

Metrics and Evaluation. We use NDCG@5 as the primary metric for our evaluations. We report
Recall@5 in Appendix E. For each ColPali-based vision-centric model, we test each of the text-
centric models as the complementary retriever used for GQR. This yields 9 GQR configurations in
total, 3 per ColPali-based model. We also evaluate 8 different hybrid baseline methods for each
vision-text model pair. We tune GQR and the hybrid methods on a development set for each dataset
(see Appendix D for implementation details).

3.2 RESULTS - PERFORMANCE

Comparison to model baselines. Table 1 reports GQR against the corresponding models on Vi-
DoRe 2. The first block lists the text-only models, which average between 46.8 for Qwen and 55.3
for Linq. In each subsequent block, a ColPali-based retriever is fixed, and we show its score along-
side the GQR variants, with deltas computed relative to the model. For Colnomic-7B, the average
score rises from 60.3 to 63.1 with query refinement from Jina (text) (+2.8) and to 62.8 with Linq-
Embed (+2.5). For Llama-Nemo, the strongest model on ViDoRe2 to date, GQR improves the
average from 63.0 to 65.2 with Linq-Embed (+2.2) and to 64.2 with Jina (text) (+1.2). Notably,
the text models underperform the ColPali-based retrievers, yet with GQR the complementary signal
they provide boosts performance. This is clearest in the Llama-Nemo versus Qwen3 setting, where

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: NDCG@5 over ViDoRe 2, by primary and complementary models. Columns show scores
by subset and the overall average. Deltas are absolute changes vs. the No refinement row within the
same base.

Primary Model GQR complementary
model

Avg Biomed Lectures Economics ESG Human ESG Full

val ∆ val ∆ val ∆ val ∆ val ∆

jina (text) 53.4 0.0 48.6 0.0 51.4 0.0 59.5 0.0 54.1 0.0

Linq-Embed 55.3 0.0 58.0 0.0 52.0 0.0 58.8 0.0 52.4 0.0

Qwen3 46.8 0.0 54.0 0.0 44.6 0.0 50.2 0.0 38.3 0.0

Colnomic-7B
No refinement 60.3 0.0 64.3 0.0 54.4 0.0 68.2 0.0 54.1 0.0

Jina (text) 63.1 ↑+2.8 64.7 ↑+0.4 57.0 ↑+2.6 70.3 ↑+2.1 60.2 ↑+6.1

Linq-Embed 62.8 ↑+2.5 65.4 ↑+1.1 56.7 ↑+2.3 67.7 ↓1.0 61.2 ↑+7.1

Qwen3 61.0 ↑+0.7 61.9 ↓2.4 54.3 ↓0.1 70.2 ↑+2.0 57.5 ↑+3.4

Jina (vision)
No refinement 57.2 0.0 61.6 0.0 53.5 0.0 61.7 0.0 52.0 0.0

Jina (text) 60.7 ↑+3.5 61.7 ↑+0.1 55.3 ↑+1.8 66.9 ↑+5.2 58.8 ↑+6.8

Linq-Embed 61.2 ↑+4.0 64.7 ↑+3.1 57.2 ↑+3.7 65.7 ↑+4.0 57.1 ↑+5.1

Qwen3 59.8 ↑+2.6 63.2 ↑+1.6 53.6 ↑+0.1 67.8 ↑+6.1 54.4 ↑+2.4

Llama-Nemo
No refinement 63.0 0.0 63.7 0.0 56.8 0.0 74.5 0.0 56.9 0.0

Jina (text) 64.2 ↑+1.2 64.5 ↑+0.8 57.6 ↑+0.8 74.2 ↓0.3 60.4 ↑+3.5

Linq-Embed 65.2 ↑+2.2 66.4 ↑+2.7 56.8 0.0 74.6 ↑+0.1 62.8 ↑+5.9

Qwen3 63.3 ↑+0.3 65.0 ↑+1.3 55.4 ↓1.4 74.1 ↓0.4 58.7 ↑+1.8

Table 2: Percentage gain, in NDCG@5, of hybrid retrieval over the primary retriever for ViDoRe 2.
Each cell depicts average gain over 9 retriever pairs (3 multimodal base retrievers× 3 text retrievers).

Method Avg Biomed Lectures Economics ESG Human ESG Full

Average Ranking ↓-3.0% ↓-6.6% ↑+0.5% ↓-6.4% ↑+0.4%
RRF ↓-2.8% ↓-6.5% ↑+0.3% ↓-6.2% ↑+1.3%
Score Aggregation (Min-Max) ↑+0.4% ↓-3.0% ↑+1.7% ↓-1.8% ↑+4.7%
Score Aggregation (Softmax) ↑+1.5% ↓-0.9% ↑+0.8% ↑+0.6% ↑+5.4%

Average Ranking - Tuned ↓-0.3% ↓-2.9% ↑+1.3% ↓-2.8% ↑+3.2%
RRF - Tuned ↓-0.1% ↓-2.9% ↑+1.2% ↓-4.0% ↑+5.5%
Score Aggregation (Min-Max) - Tuned ↑+3.4% ↑+1.2% ↑+2.9% ↑+2.9% ↑+6.7%
Score Aggregation (SoftMax) - Tuned ↑+2.6% ↑+0.3% ↑+0.9% ↑+2.2% ↑+7.1%

Guided Query Refinement (GQR) ↑+3.9% ↑+1.5% ↑+2.0% ↑+3.3% ↑+8.7%

GQR delivers a small gain of ↑+0.3, despite a 14.22 point gap in base NDCG@5 (Llama-Nemo
63.0 vs. Qwen 46.8). Subsets where GQR harms performance are rare for Colnomic-7B and Llama-
Nemo, absent for Jina (vision), and on average across the benchmark GQR consistently improves
retrieval quality. We observe similar patterns for the Recall@5 metric (Table 10).

On ViDoRe 1 (Table 5 in the Appendix) GQR is generally on par with the base models, neither
harming performance nor providing a marked benefit. Notably, the results show that the benchmark
suffers from saturation, with many subset scores reaching 90 or higher (and indeed this was the
direct motivation for the release of ViDoRe 2, Macé et al., 2025).

Comparison to hybrid baselines. Table 2 depicts the aggregated performance of the different
hybrid retrieval methods on ViDoRe 2, presented as the average percentage gain relative to the
base retriever over all pairs (Table 4 in the appendix lists the average absolute values). The ranking
fusion methods (RRF, Average Ranking) generally lead to a deterioration in performance. All fusion
methods benefit from parameter tuning, with tuned score fusion methods achieving consistent gains
over the base retriever. GQR outperforms all other hybrid retrieval variants, with an average gain of
3.9% over the base multimodal retriever.

6
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Figure 2: Latency–quality tradeoff in online querying. The x axis is runtime in milliseconds for
a single query, on a log scale, and the y axis is the average evaluation score (NDCG@5). Marker
color encodes the primary retriever; marker shape encodes the GQR complementary retriever, with
squares indicating the primary retriever alone (without applying GQR).

3.3 RESULTS - TIME AND MEMORY

Online Querying Latency. To characterize the test-time costs of GQR and ColPali-based retriev-
ers, we ran latency measurements on a single NVIDIA A100 GPU, measuring document retrieval for
randomly sampled queries from each ViDoRe 2 subset (averaging across 100 runs). Figure 2 depicts
the quality-latency trade-offs of the different retrievers, where each point on the graph represents ei-
ther a base retriever or a retriever with GQR (Appendix E shows full values). The plot illustrates the
substantial costs of the strongest base model – Llama-Nemo (orange square, right), which attains
NDCG@5 = 62.9 at a cost of 2,591ms per query. Notably, our Colnomic GQR hybrid, with Linq
as the refinement model (green diamond, left), reaches NDCG@5 = 62.7 at 181ms (≈×14 faster),
and the Colnomic hybrid with Jina (green circle) attains NDCG@5 = 63.0 at 350ms (≈×7 faster),
surpassing Nemo. Across base models, applying GQR increases latency by a small relative mea-
sures (≈60− 80 ms with refinement from dense retrievers and ≈200− 350 with refinement from a
multi-vector retriever) with large gains in performance, shifting the Pareto frontier left and upwards.

Storage. Figure 5 in the Appendix shows that the added storage in GQR is modest. As in the
latency plot, GQR dominates the strongest base model by a wide margin. The Llama-Nemo index
represents each document with 10.6 MB of memory, whereas the Colnomic hybrid, using Linq as
the refinement model, nearly matches its quality with 0.20 MB per document (≈ 54× less). Using
Jina, GQR surpasses Nemo while requiring 0.37 MB per document (≈ 28× less).

4 ANALYSIS

4.1 RERANKER COMPARISON

Cross encoder rerankers are widely used in retrieval pipelines, applying full query to document inter-
action via self-attention to the top K documents. Similarly to GQR, rerankers operate at test-time on
a candidate pool returned by a bi-encoder, and thus provide a natural point of comparison. We eval-
uate GQR against lightonai/MonoQwen2-VL-v0.1, an open-weights multimodal reranker (Chaffin
& Lac, 2024) and report the full results in Table 9. Figure 3 illustrates the latency-performance char-
acteristics of GQR against reranking the top 5 (on the left) and the top 10 (on the right) candidates
returned by each retriever. GQR is run with a default K = 10 configuration and with Linq-Embed
as the refinement model. The left plot illustrates that GQR outperforms a top 5 reranking pipeline on
both the latency and performance axes. Against the top 10 reranking pipelines, GQR achieves close
performance while being 21× faster for Colnomic, 16× faster for Jina (vision), and 2× faster for
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Figure 3: Latency–quality tradeoff in online querying. The x axis is runtime in milliseconds for a
single query, on a log scale, and the y axis is the average evaluation score (NDCG@5). Marker color
encodes the primary model; marker shape encodes the usage of GQR or reranking with top 5 (left)
or top 10 (right) candidates. The dashed lines represent the Pareto frontier.

Nemo. Across both comparisons, GQR remains on the Pareto front and indicates attractive latency
performance trade offs.

4.2 GQR DESIGN CHOICES

Extra search stage. Prior works on test-time query optimization often run a second index search
with the optimized query z(T ), aiming to retrieve documents beyond the initial top-K and increase
recall (Sung et al., 2023; Gangi Reddy et al., 2025). This extra pass adds latency as it repeats
index traversal and candidate generation. We test this modification to GQR where we perform an
additional search with the optimized query over the full index, and observe no improvement in
performance (Table 14). This suggests that the effects of GQR in our setting are largely confined to
the original pool C(q) of candidate documents.

Candidate pool policy. In our implementation the pool C(q) of candidate documents used for
query refinement is a union of the top-K documents from the primary and complementary retrievers.
One alternative is to opt for a reranker-like setup, where the only documents considered are those
initially returned in the top-K of the primary retriever. Our analysis shows (Table 15 that this modifi-
cation does not have a consistent positive or negative effect compared to a union pool of candidates.
While the complementary dense retriever’s index search is relatively quick, this configuration can
be adopted in sensitive deployments of GQR for additional latency gains.

Choice of objective. The GQR optimization process minimizes the KL-divergence between the
distribution of the primary retriever and a consensus distribution of the two retrievers, KL(pavg∥ p1).
We additionally test two other loss functions: The Jensen-Shannon divergence, JS(p2∥ p1) =
1
2KL(p2∥ pavg) + 1

2KL(p1∥ pavg) and KL with the target distribution p2, i.e., KL(p2∥ p1). We find
(Table 16) that these GQR variants generally perform similarly well, indicating that GQR applies
across different loss formulations of the two distributions.

Primary and complementary roles We evaluate text-centric and vision-centric retrievers as both
primary and complementary retrievers within GQR, reporting results in Table 17. Across model
pairs, both role assignments improve over the base retrievers. The alternative role configuration
yields larger gains relative to the primary encoder alone, while the default GQR attains the strongest
absolute score on ViDoRe 2.
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5 RELATED WORKS

Multimodal Retrieval. Recent advances in visual document retrieval have been dominated by
late-interaction, multi-vector architectures. This paradigm, first introduced to the multimodal do-
main by ColPali (Faysse et al., 2025), adapts the ColBERT framework (Khattab & Zaharia, 2020)
by treating image patches as visual tokens that interact with textual query tokens via MaxSim op-
erations. Subsequent models built on this foundation, such as Llama-NemoRetriever-ColEmbed
(Xu et al., 2025) and ColNomic-Embed-Multimodal (Team, 2025b), have established state-of-the-
art performance by capturing fine-grained interactions that are lost in single-vector representations.
However, this performance comes at a significant cost: to achieve their results, these models rely
on massively scaled representations, leading to substantial latency and storage overheads that can
hinder practical deployment. This pressing trade-off between performance and efficiency motivates
our work. Instead of pursuing ever-larger monolithic models, we investigate an alternative direc-
tion: enhancing these powerful vision-centric retrievers by fusing their signal with a complementary
lightweight text-based encoder at test time.

Hybrid Search. Numerous works apply hybrid retrieval in the context of combining dense seman-
tic text retrieval with sparse lexical representations (Karpukhin et al., 2020; Kuzi et al., 2020; Luan
et al., 2021; Chen et al., 2022). Bruch et al. (2023) conduct a theoretical and empirical analysis of
the different ways to perform such dense-sparse fusions. Specifically, they compare RRF (Cormack
et al., 2009) to score-based fusion, and analyze the sensitivity to the choice of tuned weights and
normalizations. Hsu & Tzeng (2025) propose to set the score-fusion weights dynamically for each
query at test time, based on (costly) feedback from an LLM judge. In contrast, GQR departs from
these approaches by operating at test time on the representation level of the primary retriever.

Test-time query refinement. Prior work optimizes query representations during inference in text-
only setups using pseudo-relevance feedback, often distilling from a cross-encoder re-ranker to a
single-vector dense retriever (Yu et al., 2021; Sung et al., 2023; Gangi Reddy et al., 2025). Cross-
encoders provide rich interactions but incur substantial test-time cost. We replace the cross-encoder
with a complementary bi-encoder (possibly of a different modality), which preserves low latency
while still providing a strong guidance signal.

6 CONCLUSION

In this work, we introduced Guided Query Refinement (GQR), a novel test-time hybrid retrieval
method that refines the query representations of a primary retriever using signals from a comple-
mentary one. Unlike traditional hybrid techniques that operate on rankings or scores, GQR leverages
representation-level interactions while maintaining efficiency and modularity. Through extensive ex-
periments on the ViDoRe2 benchmarks, we demonstrated that GQR consistently improves retrieval
performance across diverse model pairs, pushing ColPali-based retrievers to the latency–memory
Pareto frontier. Our findings highlight that even weaker retrievers can provide valuable comple-
mentary guidance, underscoring the potential for resource-efficient retrieval systems in multimodal
large-scale settings.

LIMITATIONS

GQR introduces a latency overhead at inference time due to the additional retriever and iterative op-
timization process. We show that it is substantially more efficient than other base models with larger
representations or cross-encoder rerankers, yet for applications with stringent real-time latency con-
straints, this additional cost should be taken into account. Secondly, GQR assumes access to a small,
in-domain development set of queries for tuning its hyperparameters, and thus is not designed for a
zero-shot setting. Finally, our focus in this work is empirical, testing the value of GQR in practical
settings. Elucidating the theoretical foundations of GQR is an avenue for future work.
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REPRODUCIBILITY STATEMENT

Code The complete source code, including implementations of our proposed Guided Query Re-
finement (GQR) method, baseline algorithms, and evaluation scripts required to reproduce our work,
is publicly available in this GitHub repository.

Datasets All experiments are conducted on two publicly available benchmarks for visual docu-
ment retrieval: ViDoRe 1 Faysse et al. (2025) and ViDoRe 2 Macé et al. (2025). For offline doc-
ument processing, page images are encoded using the open-source docling library, as described in
App. D.

Models All retrieval models used in this work are listed in Table 3 and are publicly available from
Hugging Face.

Evaluation Our primary evaluation metric is NDCG@5, and we also report Recall@5. All perfor-
mance results are detailed in Tables 1 and 2, with further breakdowns in the Appendix. All latency
and memory measurements were conducted on a single NVIDIA A100 GPU. Latency is measured
by averaging the runtime over 100 randomly sampled queries from the ViDoRe 2 benchmark.
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Antoine Chaffin and Aurélien Lac. Monoqwen: Visual document reranking, 2024. URL https:
//huggingface.co/lightonai/MonoQwen2-VL-v0.1.

Tao Chen, Mingyang Zhang, Jing Lu, Michael Bendersky, and Marc Najork. Out-of-domain
semantics to the rescue! zero-shot hybrid retrieval models. In Advances in Information Re-
trieval: 44th European Conference on IR Research, ECIR 2022, Stavanger, Norway, April 10–14,
2022, Proceedings, Part I, pp. 95–110, Berlin, Heidelberg, 2022. Springer-Verlag. ISBN 978-
3-030-99735-9. doi: 10.1007/978-3-030-99736-6 7. URL https://doi.org/10.1007/
978-3-030-99736-6_7.

Chanyeol Choi, Junseong Kim, Seolhwa Lee, Jihoon Kwon, Sangmo Gu, Yejin Kim, Minkyung
Cho, and Jy-yong Sohn. Linq-embed-mistral technical report. arXiv:2412.03223, 2024. URL
https://arxiv.org/abs/2412.03223.
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DENSE ENCODERS. have transformed information retrieval by learning semantic representations
of queries and passages in a shared embedding space. These models typically produce a single dense
vector representation for each passage and query, enabling efficient similarity computation through
operations like cosine similarity or inner product. Early work by Karpukhin et al. (2020) introduced
Dense Passage Retrieval (DPR), demonstrating that dense representations could outperform tradi-
tional sparse methods like BM25 for open-domain question answering. For query, q and passage p,
The similarity score S is defined as:

S(q, p) =
q · p
|q||p|

(3)

The BERT-based bi-encoder architecture, where queries and passages are independently encoded
using separate or shared BERT models, became the foundational paradigm for neural retrieval. This
framework has shaped the field, with numerous dense retrieval models building upon it (Reimers
& Gurevych, 2019; Xiong et al., 2020; Qu et al., 2020; Izacard et al., 2021). The bi-encoder de-
sign enables pre-computation of passage embeddings, making real-time retrieval feasible at scale.
Recently, advanced models like LINQ-Embed-Mistral (Choi et al., 2024) and Qwen3-Embedding
Zhang et al. (2025) extend this paradigm by leveraging larger language models as the underlying
encoder to create more powerful dense representations.

LATE-INTERACTION MODELS. maintain token-level representations and compute similarity
through more fine-grained interaction mechanisms. Rather than compressing all information into
a single vector, these models preserve individual token embeddings for both queries and passages.
ColBERT (Khattab & Zaharia, 2020) pioneered this approach with its MaxSim operation, which
computes the maximum similarity between each query token and all passage tokens, then aggre-
gates these scores. The MaxSim equation, as defined in ColBERT (see eq. 4)), finds for query token
embedding qi the maximum similarity (dot product) with any passage token embedding pj . These
maximum scores are then summed up to get the final relevance score.

S(q, p) =

|Q|∑
i=1

|P |
max
j=1

qi · pTj (4)

This approach balances effectiveness and efficiency, as passage representations can still be pre-
computed and indexed while the token-level matching captures finer details than single-vector ap-
proaches. Subsequent work improved efficiency and retrieval quality through various optimizations
(Santhanam et al., 2021; 2022).

CONTRASTIVE TRAINING. forms the backbone of modern retrieval model optimization. These
methods learn representations by pulling positive query-passage pairs closer while pushing nega-
tive pairs apart in the embedding space. The InfoNCE loss (Oord et al., 2018), which maximizes
the similarity of positive pairs relative to negative ones through a softmax-like normalization, has
become the dominant training objective across retrieval architectures.

L = − log
exp(sim(q, p+)/τ)

exp(sim(q, p+)/τ) +
∑k

i=1 exp(sim(q, p−i )/τ)
(5)

CROSS-ENCODERS: RE-RANKERS. represent a different paradigm where query and passage are
jointly encoded, enabling deep self-attention between their representations. Unlike bi-encoders that
independently encode queries and passages, cross-encoders process query-passage pairs through
a single model, allowing full attention across all tokens. This joint encoding is computationally
expensive, making it impractical for first-stage retrieval over large corpora. However, cross-encoders
excel as re-rankers, refining the top-k results from efficient first-stage retrievers. Examples include
MonoBERT Nogueira et al. (2019) for text retrieval and Chaffin & Lac (2024); Wasserman et al.
(2025) for visual document retrieval.

Visual Document Retrieval.

VERBALIZATION-BASED METHODS were the dominant approach before the advent of end-to-
end vision models. These pipelines convert visual documents into text through various techniques:
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Table 3: Different retrieval models evaluated in our work. The modality column describes the
representation used for the document, text, or page-level images.

Model Size
# Vectors
per Page

Token
Dim

# Floats
per Page

Storage per
1M Docs (GB) Page Modality

Linq-EMBED 7.1B 1 4096 4096 7.63 Text
QWEN3-EMBEDDING-4B 4B 1 2560 2560 4.77 Text
JINA-EMBEDDINGS-V4 (Text) 3.8B – 128 – – Text
JINA-EMBEDDINGS-V4 (Image) 3.8B 767 128 98176 182.87 Image
COLNOMIC-EMBED-MULTIMODAL-7B 7B 767 128 98176 182.87 Image
LLAMA-NEMORETRIEVER-COLEMBED-3B 4.4B 1802 3072 5535744 10311.13 Image

traditional Optical Character Recognition (OCR) tools like docling (Auer et al., 2024) extract printed
text, while Vision-Language Models (VLMs) can generate textual descriptions of visual elements
such as charts, diagrams, and infographics. After verbalization, these methods apply standard text
retrieval techniques to the extracted content. While verbalization-based approaches can leverage
powerful text-only retrieval models, they inherently lose spatial relationships and visual context
during the text extraction process.

COLPALI ARCHITECTURES. introduced a new approach to visual document retrieval by directly
encoding document images without intermediate text extraction. These VLM-based embedding
models transform pre-trained generative-purpose Vision-Language Models (such as PaliGemma
(Beyer et al., 2024) and Qwen-VL (Wang et al., 2024)) into multi-vector embedding models op-
timized for retrieval. ColPali (Faysse et al., 2025) was the first model to introduce this approach,
building upon PaliGemma (Beyer et al., 2024) and adapting the late-interaction framework to vision-
language models by treating image patches as visual tokens that interact with textual query tokens
through MaxSim operations. ColPali provides native text-query support due to its VLM-based de-
sign. Queries remain text, are encoded by the model’s language tower, and are matched directly
against visual page/passage tokens, eliminating any OCR at query time. Training is contrastive, typ-
ically InfoNCE-style with in-batch/hard negatives to align query tokens with relevant visual tokens.
This architecture preserves spatial layout information and visual features that verbalization-based
methods discard. Following ColPali’s success, subsequent models have adopted and extended this
ColPali paradigm by leveraging different base VLMs: Llama-NemoRetriever-ColEmbed (Xu et al.,
2025), COLNOMIC-EMBED-MULTIMODAL (Team, 2025b), Granite-Vision-Embedding (Team,
2025a) and Jina-Embeddings-v4 (Günther et al., 2025).

B MODELS INFORMATION

Table 3 depicts the details of the models evaluated in our work. Storage assumes a 16-bit represen-
tation and follows official reports (Xu et al., 2025). JINA-EMBEDDINGS-V4 supports both text and
image document representations, single vector and multi vector retrieval, and flexible embedding
sizes via a Matryoshka scheme Kusupati et al. (2022). In its multi-vector textual configuation, the
number of vectors per page for Jina varies between pages.

C ADDITIONAL DEFINITIONS

Average Ranking Computes the average rank across retrievers.

AvgRank(d) =
1

M

M∑
m=1

rankm(d). (6)

Min-Max normalization

s̃m(q, di) =
sm(q, di)−mindj∈πm(q) sm(q, dj)

maxdj∈πm(q) sm(q, dj)−mindj∈πm(q) sm(q, dj) + ε
, (7)

with a small ε for numerical stability.
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Softmax normalization

s̃m(q, di) =
exp(sm(q, di))∑

dj∈πm(q) exp(sm(q, dj))
. (8)

If di /∈ πm(q) we set s̃m(q, di) = 0

KL divergence.

KL
(
P∥Q

)
=

∑
d∈C(q)

P (d) log
P (d)

Q(d)
, (9)

where P and Q are distributions over C(q).

D IMPLEMENTATION DETAILS

Offline indexing. For each model and dataset, we construct an offline index of page-level docu-
ment representations. For ColPali-based models, multi-page documents are rendered as page images
and encoded directly. For text-only embedding models, an ingestion pipeline converts each page to
text. We use Docling6(Team, 2024) to ingest the images. Docling is an open library providing OCR
capabilities combined with document layout analysis, allowing us to recover page content via simple
function calls. The resulting text is stored alongside the page images without any chunking, ensuring
consistent alignment between visual and textual page representations across the datasets. We run the
document converter from Docling v2.34 using default parameters.

For JINA-EMBEDDINGS-V4 (Günther et al., 2025)), a single model accepts both image and text
input documents. We thus use it in both a vision configuration and in a text configuration, denoted
Jina (Vision) and Jina (Text), both running in a multi-vector setting. Jina (Text) is thus used to test
the applicability of GQR where a multi-vector architecture is used as the the GQR complementary
encoder.

Hyperparameters For RRF we set κ = 60, a common default (Chen et al., 2022; Cormack et al.,
2009). For tuning the weighted hybrid baselines and GQR, we follow previous works (Sung et al.,
2023; Gangi Reddy et al., 2025; Bruch et al., 2023) and rely on an in-domain development set of
queries. We reserve 10% of each subset and tune the hyperparameters, T , and α for each, selecting
by development set NDCG@5 performance. For the weighted variants, the weight α is tuned over
{0.1, 0.2, . . . , 0.9} for each subset. For GQR, the learning rates are {1×10−5, 5×10−5, 10−4, 5×
10−4, 10−3, 5×10−3}. We consider T ∈ {10, 25, 50}. The splits are fixed for all experiments. We
opted for Adam as the optimizer for GQR, based on preliminary experiments comparing different
optimizer choices. We use K = 10 across all retrievers and methods.

E ADDITIONAL RESULTS

Table 5 presents the results on ViDoRe 1. It is noticeable that this benchmark suffers from saturation,
with many subset scores reaching 90 or higher (and indeed this was the direct motivation for the
release of ViDoRe 2, Macé et al., 2025). Nevertheless, our method does not harm performance, in
contrast to other hybrid retrieval methods, as seen in Tables 6 and 7.

6https://docling-project.github.io/docling/
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Figure 4: Guided Query Refinement (GQR) Architecture. Stage 1: Two retrievers independently
encode the query and retrieve top-K documents, forming candidate pool C(q). Stage 2: complemen-
tary retriever produces fixed distribution p1(C(q); eq1) throughout iterations. Primary query embed-
ding z(t) is iteratively refined over T iterations by minimizing KL divergence LKL = KL(pavg∥p1)
between consensus distribution pavg = 1

2 (p1(C(q); z
(t)) + p2(C(q); eq2)) and primary distribution

p1(C(q); z(t)). Query representation is updated as z(t+1) = z(t) − α∇z(t)LKL. Final ranking R(q)
uses refined scores from z(T ).
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Table 4: NDCG@5 for hybrid retrieval on ViDoRe 2. Results are averaged across 9 model pairs.

Method Avg Biomed Lectures Economics ESG Human ESG Full

Average Ranking 58.1 59.0 55.1 63.6 54.5
RRF 58.2 59.1 55.0 63.8 55.0
Score Aggregation (Min-Max) 60.2 61.3 55.8 66.7 56.8
Score Aggregation (Softmax) 60.9 62.6 55.3 68.4 57.2

Average Ranking - Tuned 59.8 61.3 55.6 66.2 56.0
RRF - Tuned 59.9 61.4 55.5 65.3 57.3
Score Aggregation (Min-Max) - Tuned 62.1 63.9 56.5 70.0 58.0
Score Aggregation (SoftMax) - Tuned 61.6 63.4 55.4 69.5 58.2

Guided Query Refinement (GQR) 62.3 64.2 56.0 70.2 59.0

Table 5: NDCG@5 over ViDoRe 1, by primary and complementary models. Deltas are absolute
changes vs. the No refinement row within the same base.

Primary Model GQR complementary
model

Avg ArXivQA DocVQA InfoVQA TabFQuAD TAT DQA ShiftProj SynDocQA AI SynDocQA Energy SynDocQA Gov SynDocQA Health

val ∆ val ∆ val ∆ val ∆ val ∆ val ∆ val ∆ val ∆ val ∆ val ∆ val ∆

jina (text) 80.9 0.0 42.9 0.0 43.7 0.0 69.2 0.0 97.6 0.0 82.4 0.0 85.6 0.0 100.0 0.0 94.4 0.0 98.9 0.0 94.4 0.0

Linq-Embed 73.8 0.0 45.3 0.0 36.0 0.0 78.2 0.0 90.5 0.0 45.9 0.0 75.6 0.0 94.4 0.0 88.9 0.0 90.0 0.0 93.3 0.0

Qwen3 76.4 0.0 48.2 0.0 36.9 0.0 77.2 0.0 97.2 0.0 48.7 0.0 77.8 0.0 97.8 0.0 91.1 0.0 97.8 0.0 91.1 0.0

Colnomic-7B
No refinement 89.8 0.0 88.6 0.0 60.2 0.0 92.4 0.0 96.7 0.0 81.2 0.0 88.7 0.0 99.6 0.0 95.9 0.0 95.1 0.0 99.2 0.0

Jina (text) 89.7 ↓-0.1 86.9 ↓-1.7 61.3 ↑+1.1 92.4 0.0 96.7 0.0 81.2 0.0 88.7 0.0 99.6 0.0 95.9 0.0 95.1 0.0 99.2 0.0

Linq-Embed 89.8 0.0 88.6 0.0 60.7 ↑+0.5 92.0 ↓-0.4 96.7 0.0 81.3 ↑+0.1 88.7 0.0 99.6 0.0 95.9 0.0 95.1 0.0 99.2 0.0

Qwen3 89.8 0.0 88.4 ↓-0.2 59.9 ↓-0.3 92.4 0.0 97.2 ↑+0.5 81.2 0.0 88.7 0.0 99.6 0.0 95.9 0.0 95.1 0.0 99.2 0.0

Jina (vision)
No refinement 89.9 0.0 88.6 0.0 62.4 0.0 92.0 0.0 96.2 0.0 78.4 0.0 91.5 0.0 99.2 0.0 96.1 0.0 96.5 0.0 98.5 0.0

Jina (text) 89.8 ↓-0.1 87.9 ↓-0.7 62.4 0.0 92.0 0.0 96.2 0.0 78.5 ↑+0.1 91.5 0.0 99.2 0.0 96.1 0.0 96.5 0.0 97.7 ↓-0.8

Linq-Embed 89.8 ↓-0.1 88.8 ↑+0.2 61.0 ↓-1.4 92.1 ↑+0.1 96.2 0.0 78.4 0.0 91.5 0.0 99.2 0.0 96.1 0.0 96.5 0.0 98.5 0.0

Qwen3 89.6 ↓-0.3 88.9 ↑+0.3 59.8 ↓-2.6 92.0 0.0 96.2 0.0 78.4 0.0 91.5 0.0 99.2 0.0 96.1 0.0 96.5 0.0 97.7 ↓-0.8

Llama-Nemo
No refinement 91.0 0.0 88.0 0.0 66.2 0.0 94.9 0.0 96.7 0.0 81.0 0.0 89.9 0.0 100.0 0.0 96.3 0.0 97.7 0.0 99.2 0.0

Jina (text) 91.0 0.0 88.0 0.0 65.9 ↓-0.3 94.7 ↓-0.2 97.0 ↑+0.3 81.5 ↑+0.5 89.6 ↓-0.3 100.0 0.0 96.3 0.0 97.7 0.0 99.2 0.0

Linq-Embed 91.0 0.0 88.0 0.0 65.8 ↓-0.4 94.5 ↓-0.4 96.9 ↑+0.2 80.9 ↓-0.1 89.7 ↓-0.2 100.0 0.0 96.7 ↑+0.4 98.1 ↑+0.4 99.2 0.0

Qwen3 90.8 ↓-0.2 87.2 ↓-0.8 65.7 ↓-0.5 94.9 0.0 96.6 ↓-0.1 80.8 ↓-0.2 89.7 ↓-0.2 100.0 0.0 95.8 ↓-0.5 98.1 ↑+0.4 99.2 0.0

Table 6: NDCG@5 for hybrid retrieval on ViDoRe 1. Results are averaged across 9 retriever pairs.

Method Avg arXivQA DocVQA InfoVQA TabFQuAD TATDQA ShiftProj SynthAI SynthEnergy SynthGov SynthHealth

Average Ranking 77.8 55.6 44.0 76.2 93.4 61.1 78.5 96.0 89.8 91.0 92.7
RRF 78.0 53.8 44.1 76.5 93.5 61.7 79.0 96.1 90.3 91.4 93.3
Score Aggregation (Min-Max) 84.4 74.4 53.0 85.5 95.4 69.4 83.2 97.9 94.0 95.4 95.9
Score Aggregation (Softmax) 88.6 83.3 57.7 91.0 96.5 78.3 88.2 99.6 96.0 96.6 98.6

Average Ranking - Tuned 85.5 79.5 57.3 87.0 95.5 74.4 86.0 97.8 88.3 92.3 96.9
RRF - Tuned 84.5 76.6 55.8 85.9 95.7 73.4 84.4 97.6 88.0 92.3 95.2
Score Aggregation (Min-Max) -
Tuned

88.5 88.0 62.2 92.6 96.1 79.6 88.4 97.7 88.9 93.9 98.0

Score Aggregation (SoftMax) -
Tuned

89.4 87.7 62.4 92.4 96.5 80.2 86.9 99.1 95.3 96.0 97.6

Guided Query Refinement
(GQR)

90.1 88.1 62.5 93.0 96.6 80.2 90.0 99.6 96.1 96.5 98.8

Table 7: Percentage gain, in NDCG@5, of hybrid retrieval over the primary retriever for ViDoRe 1.
Each cell depicts average gain over 9 retriever pairs (3 multimodal base retrievers× 3 text retrievers).

Method Avg arXivQA DocVQA InfoVQA TabFQuAD TATDQA ShiftProj SynthAI SynthEnergy SynthGov SynthHealth

Average Ranking ↓-14.7% ↓-37.1% ↓-29.9% ↓-18.1% ↓-3.3% ↓-23.9% ↓-12.8% ↓-3.7% ↓-6.6% ↓-5.6% ↓-6.3%
RRF ↓-14.6% ↓-39.1% ↓-29.9% ↓-17.9% ↓-3.2% ↓-23.1% ↓-12.2% ↓-3.5% ↓-6.0% ↓-5.2% ↓-5.7%
Score Aggregation (Min-Max) ↓-7.0% ↓-15.8% ↓-15.7% ↓-8.1% ↓-1.2% ↓-13.5% ↓-7.6% ↓-1.7% ↓-2.2% ↓-1.1% ↓-3.1%
Score Aggregation (Softmax) ↓-2.1% ↓-5.8% ↓-8.1% ↓-2.2% 0.0 ↓-2.3% ↓-2.0% 0.0 ↓-0.1% ↑+0.2% ↓-0.4%

Average Ranking - Tuned ↓-5.5% ↓-10.1% ↓-8.9% ↓-6.6% ↓-1.0% ↓-7.2% ↓-4.5% ↓-1.8% ↓-8.1% ↓-4.3% ↓-2.1%
RRF - Tuned ↓-6.6% ↓-13.4% ↓-11.4% ↓-7.7% ↓-0.9% ↓-8.5% ↓-6.2% ↓-2.0% ↓-8.4% ↓-4.3% ↓-3.8%
Score Aggregation (Min-Max) - Tuned ↓-1.8% ↓-0.4% ↓-1.1% ↓-0.5% ↓-0.4% ↓-0.7% ↓-1.8% ↓-1.9% ↓-7.5% ↓-2.7% ↓-1.0%
Score Aggregation (SoftMax) - Tuned ↓-0.9% ↓-0.8% ↓-0.8% ↓-0.7% ↓-0.1% 0.0 ↓-3.5% ↓-0.5% ↓-0.8% ↓-0.4% ↓-1.3%

Guided Query Refinement (GQR) ↓-0.1% ↓-0.4% ↓-0.7% ↓-0.1% ↑+0.1% ↑+0.1% ↓-0.1% 0.0 0.0 ↑+0.1% ↓-0.2%
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Table 8: Performance, latency (ms per query), and memory (MB per document) by primary and
complementary models.

Primary Model Complementary Model Performance Latency Latency Diff Memory (MB)

Colnomic-7b No refinement 60.25 115.98 0.20
Colnomic-7b Linq-Embedl 62.75 181.21 65.23 0.20
Colnomic-7b Qwen3 60.98 196.16 80.15 0.20
Colnomic-7b Jina (text) 63.05 350.13 194.15 0.39

Jina (vision) No refinement 57.20 153.45 0.20
Jina (vision) Linq-Embedl 61.18 213.97 60.5 0.20
Jina (vision) Qwen3 59.75 233.06 79.61 0.20
Jina (vision) Jina (text) 60.68 394.64 241.19 0.39

Llama-Nemo No refinement 62.98 2591.14 11.07
Llama-Nemo Linq-Embedl 65.15 2674.84 83.7 11.08
Llama-Nemo Qwen3 63.30 2712.12 120.98 11.08
Llama-Nemo Jina (text) 64.18 2934.61 343.47 11.27

Figure 5: Storage–quality tradeoff. The x axis is memory in MB, on a log scale, and the y axis
is the average evaluation score (NDCG@5). Marker color encodes the primary retriever; marker
shape encodes the GQR complementary retriever, with squares indicating the primary retriever alone
(without applying GQR).
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Table 9: Performance and end-to-end latency of reranking pipelines against GQR. Rows are grouped
by reranker candidate size k. A dedicated block reports GQR.

Reranking k Retriever Latency NDCG@5 Recall@5

No-reranking
Colnomic-7B (multi) 115.98 60.25 57.32
Jina (vision, multi) 153.45 57.20 56.17
Llama Nemo 3B (multi) 2591.14 62.97 59.75

GQR

Colnomic-7B (multi) 181.21 62.75 58.0
Jina (vision, multi) 213.97 61.0 57.6
Llama Nemo 3B (multi) 2674.83 65.15 60.1

5
Colnomic-7B (multi) 1823.03 62.12 57.32
Jina (vision, multi) 1860.714 60.70 56.17
Llama Nemo 3B (multi) 4332.55 64.72 59.75

10
Colnomic-7B (multi) 3586.809 64.37 59.92
Jina (vision, multi) 3585.946 63.27 58.8
Llama Nemo 3B (multi) 6027.078 66.10 61.8

20
Colnomic-7B (multi) 7035.953 65.07 60.27
Jina (vision, multi) 7251.81 64.10 59.6
Llama Nemo 3B (multi) 9470.134 65.77 61.02

Table 10: Recall@5 on ViDoRe 2, by primary and complementary models.

Avg Biomed Lectures Economics ESG Human ESG Full
Primary Model Complementary Model

Jina-Embeddings (Text) 50.2 50.7 26.3 68.1 55.5
Linq-Embed 50.1 60.3 25.7 62.7 51.8
Qwen3-Embedding 44.6 57.5 25.5 53.6 41.9
Colnomic-Embed 57.3 66.9 30.9 74.2 57.3

Jina-Embeddings (Text) 58.7 67.1 30.1 74.9 62.7
Linq-Embed 58.0 68.3 29.7 72.6 61.5

Qwen3-Embedding 58.7 65.1 30.8 77.3 61.4
Jina-Embeddings 56.2 64.2 29.6 71.8 59.1

Jina-Embeddings (Text) 57.5 64.2 27.7 75.9 62.1
Linq-Embed 57.6 66.9 29.4 72.3 61.7

Qwen3-Embedding 56.9 66.2 29.4 71.7 60.2
Llama-Nemoretriever 59.8 66.5 30.7 80.1 61.7

Jina-Embeddings (Text) 60.2 65.9 30.5 80.1 64.1
Linq-Embed 60.1 68.4 28.4 79.5 64.1

Qwen3-Embedding 59.9 67.1 30.4 79.3 62.7

Table 11: Recall@5 for hybrid retrieval on ViDoRe 2. Results are averaged across 9 retriever pairs.

Method Avg Biomed Lectures Economics ESG Human ESG Full

Average Ranking 54.3 61.4 29.1 69.4 57.3
RRF 54.6 61.5 29.1 69.7 58.0
Score Aggregation (Min-Max) 56.7 64.7 29.7 72.3 59.9
Score Aggregation (Softmax) 57.3 65.3 29.9 73.7 60.4

Average Ranking - Tuned 56.4 64.9 29.5 71.5 59.7
RRF - Tuned 56.3 64.6 29.5 70.5 60.7
Score Aggregation (Min-Max) - Tuned 58.5 66.9 30.3 75.5 61.4
Score Aggregation (SoftMax) - Tuned 57.9 65.8 29.6 74.5 61.6

Guided Query Refinement (GQR) 58.6 66.6 29.6 76.0 62.3
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Table 12: Recall@5 on ViDoRe 1, by primary and complementary models.

Avg arXivQA DocVQA InfoVQA TabFQuAD TATDQA ShiftProj SynthAI SynthEnergy SynthGov SynthHealth
Model Complementary

Model

Jina-Embeddings
(Text)

42.9 80.9 43.7 69.2 85.6 100.0 94.4 98.9 94.4 97.6 82.4

Linq-Embed 45.3 73.8 36.0 78.2 75.6 94.4 88.9 90.0 93.3 90.5 45.9
Qwen3-Embedding 48.2 76.4 36.9 77.2 77.8 97.8 91.1 97.8 91.1 97.2 48.7
Colnomic-Embed 93.1 93.7 66.2 95.5 95.6 100.0 97.8 100.0 100.0 98.8 89.5

Jina-Embeddings
(Text)

90.0 93.4 67.2 95.5 95.6 100.0 97.8 100.0 100.0 98.8 89.4

Linq-Embed 93.1 93.7 66.5 95.3 95.6 100.0 97.8 100.0 100.0 98.8 89.7
Qwen3-Embedding 93.1 93.8 66.3 96.0 95.6 100.0 97.8 100.0 100.0 99.2 89.6

Jina-Embeddings 92.2 94.2 71.0 95.4 97.8 100.0 97.8 100.0 100.0 98.8 88.5
Jina-Embeddings
(Text)

90.9 94.0 71.0 95.4 97.8 100.0 97.8 100.0 100.0 98.8 88.5

Linq-Embed 92.0 94.0 69.6 95.5 97.8 100.0 97.8 100.0 100.0 98.8 88.7
Qwen3-Embedding 92.2 93.9 68.7 95.4 97.8 100.0 97.8 100.0 100.0 98.8 88.5

Llama-Nemoretriever 92.4 94.7 73.0 98.0 98.9 100.0 96.7 100.0 100.0 99.6 88.8
Jina-Embeddings
(Text)

92.4 94.6 72.7 98.0 97.8 100.0 96.7 100.0 100.0 99.6 89.0

Linq-Embed 92.4 94.8 72.4 97.6 98.9 100.0 97.8 100.0 100.0 99.6 88.9
Qwen3-Embedding 91.6 94.5 71.5 98.2 98.9 100.0 96.7 100.0 100.0 98.8 88.8

Table 13: Recall@5 for hybrid retrieval on ViDoRe 1. Results are averaged across 9 retriever pairs.

Method Avg arXivQA DocVQA InfoVQA TabFQuAD TATDQA ShiftProj SynthAI SynthEnergy SynthGov SynthHealth

Average Ranking 84.1 63.9 51.8 81.5 97.1 71.6 87.8 99.3 93.7 98.0 96.7
RRF 83.8 59.5 51.3 81.8 97.2 72.4 88.4 99.0 93.7 98.3 96.7
Score Aggregation (Min-Max) 91.5 88.4 63.5 93.1 98.6 83.0 92.3 100.0 97.6 99.9 98.4
Score Aggregation (Softmax) 92.5 87.4 63.5 94.5 99.1 87.0 96.1 100.0 97.3 100.0 100.0

Average Ranking - Tuned 92.9 92.2 68.7 95.6 98.8 87.6 95.2 99.9 93.3 98.2 100.0
RRF - Tuned 91.5 90.9 66.2 93.5 98.8 85.0 92.4 99.5 92.8 98.2 97.2
Score Aggregation (Min-Max) -
Tuned

93.5 92.3 69.3 96.3 99.0 88.7 96.6 99.5 93.8 99.1 100.0

Score Aggregation (SoftMax) -
Tuned

93.5 91.4 69.4 95.8 99.0 88.9 94.7 99.9 97.1 99.6 98.8

Guided Query Refinement
(GQR)

94.1 92.0 69.5 96.3 99.0 89.0 97.3 100.0 97.6 100.0 100.0

Table 14: Effect of extra index search on GQR NDCG@5 performance, over ViDoRe 2.

Avg Biomed Lectures Economics ESG Human ESG Full
Model Complementary Model Variant

Colnomic-Embed Jina-Embeddings GQR 63.0 64.7 57.0 70.3 60.2
GQR + Search 63.1 64.7 57.1 70.3 60.2

Linq-Embed GQR 62.8 65.4 56.7 67.7 61.2
GQR + Search 62.7 65.4 56.5 67.9 61.0

Qwen3-Embedding GQR 61.0 61.9 54.3 70.2 57.5
GQR + Search 61.0 61.7 54.3 70.6 57.5

Jina-Embeddings Jina-Embeddings GQR 60.7 61.7 55.3 66.9 58.8
GQR + Search 60.7 61.7 55.2 66.9 58.9

Linq-Embed GQR 61.2 64.7 57.2 65.7 57.1
GQR + Search 61.0 64.7 57.2 65.0 57.2

Qwen3-Embedding GQR 59.8 63.2 53.6 67.8 54.4
GQR + Search 59.8 63.2 53.6 67.8 54.4

Llama-Nemoretriever Jina-Embeddings GQR 64.2 64.5 57.6 74.2 60.4
GQR + Search 64.1 64.4 57.6 74.2 60.4

Linq-Embed GQR 65.1 66.4 56.8 74.6 62.8
GQR + Search 65.3 66.5 57.2 74.6 62.8

Qwen3-Embedding GQR 63.3 65.0 55.4 74.1 58.7
GQR + Search 63.3 64.8 55.4 74.1 58.7
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Table 15: Effect of candidate pool on GQR NDCG@5 performance, over ViDoRe 2.

Avg Biomed Lectures Economics ESG Human ESG Full
Model Complementary Model Variant

Colnomic-Embed Jina-Embeddings GQR 63.0 64.7 57.0 70.3 60.2
GQR (Top-K only) 62.9 64.4 56.3 71.2 59.6

Linq-Embed GQR 62.8 65.4 56.7 67.7 61.2
GQR (Top-K only) 62.4 63.5 57.3 68.6 60.1

Qwen3-Embedding GQR 61.0 61.9 54.3 70.2 57.5
GQR (Top-K only) 61.5 63.4 54.3 71.6 56.7

Jina-Embeddings Jina-Embeddings GQR 60.7 61.7 55.3 66.9 58.8
GQR (Top-K only) 59.7 61.7 55.1 65.0 56.8

Linq-Embed GQR 61.2 64.7 57.2 65.7 57.1
GQR (Top-K only) 61.0 64.7 56.9 66.2 56.2

Qwen3-Embedding GQR 59.8 63.2 53.6 67.8 54.4
GQR (Top-K only) 59.0 63.5 53.3 65.0 54.0

Llama-Nemoretriever Jina-Embeddings GQR 64.2 64.5 57.6 74.2 60.4
GQR (Top-K only) 64.2 64.4 57.9 74.1 60.3

Linq-Embed GQR 65.1 66.4 56.8 74.6 62.8
GQR (Top-K only) 64.7 65.4 57.7 74.8 60.8

Qwen3-Embedding GQR 63.3 65.0 55.4 74.1 58.7
GQR (Top-K only) 63.6 65.2 56.9 74.1 58.2

Table 16: Effect of loss function on GQR NDCG@5 performance, over ViDoRe 2.

Avg Biomed Lectures Economics ESG Human ESG Full
Model Complementary Model Loss Variant

Colnomic-Embed Jina-Embeddings Jensen–Shannon 62.7 64.6 56.6 69.5 60.2
Kullback–Leibler (Consensus) 63.0 64.7 57.0 70.3 60.2
Kullback–Leibler (Target) 62.1 64.6 53.3 70.6 60.1

Linq-Embed Jensen–Shannon 63.3 65.3 54.9 71.3 61.9
Kullback–Leibler (Consensus) 62.8 65.4 56.7 67.7 61.2
Kullback–Leibler (Target) 63.8 64.9 57.3 71.3 61.7

Qwen3-Embedding Jensen–Shannon 61.4 63.6 54.3 70.5 57.1
Kullback–Leibler (Consensus) 61.0 61.9 54.3 70.2 57.5
Kullback–Leibler (Target) 61.3 64.2 54.3 70.1 56.7

Jina-Embeddings Jina-Embeddings Jensen–Shannon 60.3 61.7 56.1 67.1 56.5
Kullback–Leibler (Consensus) 60.7 61.7 55.3 66.9 58.8
Kullback–Leibler (Target) 60.9 61.7 55.3 68.5 57.9

Linq-Embed Jensen–Shannon 62.5 63.7 58.7 69.8 57.8
Kullback–Leibler (Consensus) 61.2 64.7 57.2 65.7 57.1
Kullback–Leibler (Target) 61.5 64.7 55.5 68.9 57.1

Qwen3-Embedding Jensen–Shannon 59.0 62.9 53.5 64.7 54.7
Kullback–Leibler (Consensus) 59.8 63.2 53.6 67.8 54.4
Kullback–Leibler (Target) 59.5 63.5 51.9 67.4 55.2

Llama-Nemoretriever Jina-Embeddings Jensen–Shannon 64.0 64.1 57.3 74.3 60.4
Kullback–Leibler (Consensus) 64.2 64.5 57.6 74.2 60.4
Kullback–Leibler (Target) 64.2 64.6 57.2 74.3 60.6

Linq-Embed Jensen–Shannon 65.0 66.0 56.3 74.6 63.1
Kullback–Leibler (Consensus) 65.1 66.4 56.8 74.6 62.8
Kullback–Leibler (Target) 64.7 66.2 56.7 74.3 61.5

Qwen3-Embedding Jensen–Shannon 63.4 65.1 55.7 74.1 58.6
Kullback–Leibler (Consensus) 63.3 65.0 55.4 74.1 58.7
Kullback–Leibler (Target) 63.3 65.1 55.4 74.1 58.7
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Table 17: Swapping primary and complementary roles in GQR across model pairs. The first two
columns specify the role of each encoder. For each setting we report the absolute score on ViDoRe
2 and the absolute gain relative to the primary encoder alone.

Primary model Complementary model NDCG@5 Gain

Colnomic-7B Jina (text) 63.05 2.8
Jina (text) Colnomic-7B 62.22 8.82

Colnomic-7B Linq-Embed 62.75 2.5
Linq-Embed Colnomic-7B 61.3 6

Colnomic-7B Qwen 3 60.97 0.7
Qwen3 Colnomic-7B 54.4 7.6

Jina (vision) Jina (text) 60.67 3.5
Jina (text) Jina (vision) 59.25 5.85

Jina (vision) Linq-Embed 61.17 4.0
Linq-Embed Jina (vision) 61.37 6.07

Jina (vision) Qwen3 61.17 2.6
Qwen3 Jina (vision) 52.05 5.25

Llama-Nemo Jina (text) 64.17 1.2
Jina (text) Llama-Nemo 59.3 5.9

Llama-Nemo Linq-Embed 65.15 2.2
Linq-Embed Llama-Nemo 60.27 4.97

Llama-Nemo Qwen3 63.3 0.3
Qwen3 Llama-Nemo 52.8 6
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