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Figure 1: Overview of DREAMBENCH++. We collect diverse images and prompts, and utilize
GPT-4o for automated evaluation aligned with human preference.

ABSTRACT

Personalized image generation holds great promise in assisting humans in every-
day work and life due to its impressive function in creatively generating personal-
ized content. However, current evaluations either are automated but misalign with
humans or require human evaluations that are time-consuming and expensive. In
this work, we present DREAMBENCH++, a human-aligned benchmark that ad-
vanced multimodal GPT models automate. Specifically, we systematically design
the prompts to let GPT be both human-aligned and self-aligned, empowered with
task reinforcement. Further, we construct a comprehensive dataset comprising di-
verse images and prompts. By benchmarking 7 modern generative models, we
demonstrate that DREAMBENCH++ results in significantly more human-aligned
evaluation, helping boost the community with innovative findings.

1 INTRODUCTION

Driven by the significant advances in large-scale text-to-image (T2I) generative models (Rombach
et al., 2022; Ramesh et al., 2021; Betker et al., 2023; Ramesh et al., 2022; Nichol et al., 2022;
Saharia et al., 2022b; Yu et al., 2022; Chang et al., 2023; Gafni et al., 2022; Ding et al., 2021;
2022; Balaji et al., 2022; Kang et al., 2023; Dong et al., 2024), it is now possible to generate images
conditioned on not only arbitrary text prompts but also by given reference images—personalized
image generation (Ruiz et al., 2023; Gal et al., 2023a; Li et al., 2023a; Ye et al., 2023; Kumari et al.,
2023; Gal et al., 2023b; Arar et al., 2023; Chen et al., 2023c; Jia et al., 2023; Chen et al., 2023a;
Xiao et al., 2023; Tewel et al., 2023; Wei et al., 2023; Ma et al., 2023; Hua et al., 2023; Wang et al.,
2024b; Lv et al., 2024; Wang et al., 2024a; Chen et al., 2023b; Tumanyan et al., 2023; Zhou et al.,
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Figure 2: Qualitative comparison of concept preservation evaluation between DREAM-
BENCH++ and traditional DINO Caron et al. (2021). DINO often fails to yield human-aligned
evaluation while our DREAMBENCH++ succeeds using multimodal GPT models as the evaluator.

2024; He et al., 2024c; Wang et al., 2024c; Wu et al., 2024a; He et al., 2024a; Xiao et al., 2024;
Arar et al., 2024; Huang et al., 2024b;a; Pang et al., 2024a;b; Qiu et al., 2023; Hu et al., 2024). In
general, to be useful as an artistic creation tool for inspiration or products (Yacoubian, 2022), the
following two basic criteria must be fulfilled: i) Prompt following (image & prompt consistency).
Generated images must follow the prompt description, which is a requirement shared with vanilla
T2I generation (Betker et al., 2023; Ramesh et al., 2022). ii) Concept preservation (image &
image consistency). For personalized image generation, the concept of the reference image, i.e.,
the main subject’s semantic details (e.g., facial characters) or high-level abstractions (e.g., overall
style), must be preserved. For example, a user may want to “imagine his own dog traveling around
the world” (Ruiz et al., 2023), and the generated dog must be the same as his but traveling.

To meet the aforementioned requirements, numerous efforts have been devoted. One line of fine-
tuning-based works focuses on fine-tuning general T2I models to specialist personalization mod-
els by reproducing specific concepts present in training sets (Ruiz et al., 2023; Gal et al., 2023a;
Chen et al., 2023c; Kumari et al., 2023). Meanwhile, another line of encoder-based works, instead,
achieves concept-preservation by training features adaptation to inject reference image features into
a general T2I model (Ye et al., 2023; Gal et al., 2023b; Arar et al., 2023; Dong et al., 2024; Sun
et al., 2024a;b; Pan et al., 2024). Despite remarkable progress, one question arises: can we compre-
hensively evaluate these models to figure out which technical route is superior and where to head?

In this work, we aim to answer this question by developing a new benchmark that properly evaluates
personalized T2I models driven by the above two requirements. We present DREAMBENCH++, a
comprehensive benchmark designed based on the following de-facto principled advantages:

1. Human-Aligned As shown in Fig. 2, traditional metrics like DINO (Caron et al., 2021) and
CLIP (Radford et al., 2021) often result in significant discrepancies from humans. This is caused
by the image similarity measurement nature of DINO and CLIP models, and thus crowd-sourced
human evaluation is typically necessary for obtaining a correct quantitative understanding of gen-
erated images (Lee et al., 2023; Ku et al., 2024; Xu et al., 2023). Therefore, different from
existing works that utilize CLIP and DINO as metrics that may be humanly misaligned, our
DREAMBENCH++ demonstrates surprisingly consistent evaluation results aligned with humans.
For instance, by evaluating 7 modern models, DREAMBENCH++ achieves 79.64% and 93.18%
agreement with human’s evaluation in concept preservation and prompt following capabilities,
respectively. Notably, it is +54.1% and +50.7% higher than traditional DINO and CLIP metrics.

2. Automated However, it is non-standardized and expensive to perform high-quality human eval-
uations. To address this challenge, DREAMBENCH++ achieves automated but human-aligned
evaluation by using advanced multimodal GPT models such as GPT-4o (OpenAI, 2024) as met-
rics. The challenges lie in two aspects: i) prompt design and ii) reasoning procedure for scoring.
We systematically standardize the automated GPT evaluation by first designing the evaluation
instructions that provide overall task requirements, where language is a general interface for in-
structing human preference. Inspired by Self-Align (Sun et al., 2023), we instruct GPT to conduct
internal thinking that aligns itself for better task and preference understanding. Then, GPT pro-
vides the summary & planning for the task and scoring criteria, and the final scores are provided
with optional chain-of-thought (CoT) (Wei et al., 2022; Zhang et al., 2023d).
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GPT-4o
(As Planner)

Evaluation
Instructions

GPT-4o
(As Evaluator)

Summary &
Planning

Image
Samples

[Internal Thinking] Did you understand the task above? 
Please summarize the tasks you need to do and show how 
you will execute the detailed plan for the task.

Internal Thinking
& Self-Alignment

[Task Description] As an experienced evaluator, Your task is to 
evaluate semantic consistency according to the following criteria.

[CP Scoring Criteria]
Compare based on the 
following visual features:
Shape: main body outline, 
structure, and proportions. 
Color: saturation, hue, 
brightness, and distribution. 
Texture: realism, clarity, 
and aesthetic appeal. 
Facial: facial features, only 
apply when subject is a 
person or animal.

[Scoring Range]
Give a specific integer score based on the criteria above, 
ranging from 0 to 4: 
Very Poor (0): No resemblance. The generated image's subject 
has no relation to the reference.
Poor (1): Minimal resemblance. The subject falls within the 
same broad category but differs significantly. 
Fair (2): Moderate resemblance. The subject shows likeness to 
the reference with notable variances. 
Good (3): Strong resemblance. The subject closely matches the 
reference with only minor discrepancies. 
Excellent (4): Near-identical. The subject of the generated 
image is virtually indistinguishable from the reference.

[Input Format]
Every time you will receive two images, the first image is a 
reference image, and the second image is the generated image.

[Output Format]
Score: [Your Score]

[PF Scoring Criteria]
Relevance: whether core 
elements in text are shown. 
Accuracy: objects, settings, 
actions, or characteristics 
Completeness: whether the 
generated image omits 
significant details. 
Context: portrayal of the 
appropriate environment, 
interactions, and background 
elements.

Evaluation Instructions

[Task Summary] Yes, I understand the task. It 
involves […]. The evaluation focuses on four 
main aspects:[…]. The goal is to determine how 
closely the generated image matches the 
reference image in terms of these aspects, 
disregarding changes in background, lighting, 
style, posture, expression, and position of the 
subject. The evaluation should result in a 
specific score ranging from 0 (no resemblance) 
to 4 (near-identical resemblance).

[Task planning] To evaluate the images, I plan 
to follow these steps:
1. Shape: looking at the geometric shape, 
clarity of edges, relative sizes, and spatial 
relationships between various parts.
2. Color: Compare the main colors in terms of 
accuracy and consistency
3. Texture: Examine the details in the local 
parts of the image
4. Facial Features: If the subject includes a 
person or animal, closely compare facial 
features

After analyzing these aspects, I will provide a 
concise analysis and assign a score.

Summary & Planning

[Input Format]
Reference image at 
left. Generated 
image at right. 
Provide scoring 
results regarding 
the above 
instructions.

Evaluation Samples

Score: 1

Final Scoring

Internal Thinking

Figure 3: Overall procedure of prompting GPT-4o for automated evaluation. The evaluation
instructions are meta-prompting information written by humans, including task description, scoring
criteria, scoring range, and format specification. Then, GPT-4o is prompted with reasoning instruc-
tions to perform internal thinking that provides a self-aligned task summary and planning. Finally,
all prompts and reasoning outputs are joined with image samples for score outputs.

3. Diverse To avoid bias from low-diversity evaluation data, DREAMBENCH++ compiles a wide
range of images, covering varying levels of difficulty from simpler animals and styles to more
complex human subjects, objects, and non-natural styles (see Fig. 1). Unlike DreamBench (Ruiz
et al., 2023), which includes only 30 subjects and 25 prompts, DREAMBENCH++ significantly
expands the dataset to 150 images and 1,350 prompts—5× and 54× more, respectively. While
CustomConcept101 (Kumari et al., 2023) offers 101 subjects, its diversity is limited by repetitive
image categories and a focus on photorealistic styles, with simple prompts that restrict its ability
to evaluate models on more complex tasks. Consequently, DREAMBENCH++ enables more robust
and comprehensive conclusions in model evaluation.

Takeaways We present some insightful findings from evaluating seven modern personalized T2I
models: i) DINO-based ratings prioritize overall shape and color over detailed features, making them
suboptimal for evaluating personalized image generation; ii) The primary goal is to achieve a Pareto
optimal balance between concept preservation and prompt adherence. Among the models, Dream-
Booth (Ruiz et al., 2023) excels in preserving detailed visual features while closely following text
prompts; iii) Current models perform well in animal and style categories but struggle with human
images due to sensitivity to facial details and diverse object categories. While existing work (Wang
et al., 2024b; Valevski et al., 2023; Yan et al., 2023; Ye et al., 2023; Xiao et al., 2023) addresses
facial feature preservation, the challenge of object diversity remains underexplored.

We are presenting DREAMBENCH++ with open-sourced codes and evaluation standardization to
promote innovation within the research community. In addition, we believe our design of the human-
aligned & automated evaluation using advanced foundation models is robust and transferrable to
other domains and foundation models (e.g., GPT-5 in the future).

2 DREAMBENCH++

We introduce DREAMBENCH++, a human-aligned, automated, and diverse benchmark that evalu-
ates the two capabilities of personalized image generation models. In the following, we describe
how we construct DREAMBENCH++ from two aspects: prompts and data.

2.1 PROMPTING GPT FOR AUTOMATED & HUMAN-ALIGNED BENCHMARKING

It is challenging to obtain a solid quantitative understanding of generated models, especially when
evaluating visual contents that rely on human evaluations (Lee et al., 2023; Ku et al., 2024). Thus,
it is critical to achieve automated evaluation by utilizing multimodal GPT models, which are trained

3
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A detailed photograph of a kitten 
exploring a stack of books on a 

quiet afternoon.

An anime-style illustration of a 
kitten with sparkling eyes.

A tiny kitten navigating a vast, 
otherworldly landscape on a 

leaf sailboat

……

A photograph of a kitten 
sleeping curled up in a sunbeam.

+ details

+ imagination

Simple

Difficult

+ style transfer

identify the subject in the image,
then generate 4 simple type 
prompts, 3 prompts with style 
transformation, and 2 imagination 
type prompts for this subject, and 
make them as diverse as possible 
without duplication.

Figure 4: Dataset construction process of our DREAMBENCH++. We start by obtaining keywords
through GPT generation, existing datasets, and human proposals. Next, we collect corresponding
images from the internet. These images are then filtered to remove low-quality ones through both
model and human assessment. The remaining high-quality images are used as input for GPT-4o to
generate text prompts of varying difficulty levels.

particularly in the principle of aligning with human preference (Ouyang et al., 2022; Christiano et al.,
2017; OpenAI, 2024; 2023). This is evidenced by the recent progress achieved by Wu et al., which
demonstrates that GPT-4V (OpenAI, 2023) can serve as a human-aligned text-to-3D generation
evaluator. However, as pointed out by Zhang et al. and Ku et al., multimodal GPT models often
fall short in evaluating personalized image generation—often more challenging when distinguishing
subtle difference for concept preservation assessment using GPT—still underexplored. To tackle this
issue, we detail how we systematically design the prompt of multimodal GPT (GPT-4o (OpenAI,
2024), by default) for human alignment reinforcement but also improve the reasoning progress that
helps the GPT models to be more self-aligned, introduced as follows.

Compare or rate? There are typically two schemes for quantitatively evaluating generative models
in human evaluations: rating and comparison (Zhang et al., 2023c; Zheng et al., 2023). The rating
scheme requires human reviewers to assign an absolute score to each instance, while the comparison
scheme asks human reviewers to express a relative preference among different instances. Though
effective as the comparison scheme is when humans are involved, we find that there are two critical
issues. i) Positional Bias: the scoring results of GPT-4V/GPT-4o is sensitive to the order in which
images are presented (OpenAI, 2023; Wang et al., 2023a;b; Zhang et al., 2023c; Wu et al., 2024b;
Zheng et al., 2023), making it unsuitable for comparison scheme. ii) Quadratic Complexity: As the
number of methods increases, the number of essential evaluation runs for numerical rating increases
linearly, while the number of comparative assessments increases quadratically. Therefore, direct
numerical rating is more efficient and scalable when evaluating multiple methods. Hence, in this
work, we adhere to the rating scheme, and we establish a 5-level rating scheme where scores are
integers ranging from 0 (very poor) to 4 (excellent).

Evaluation Instructions The evaluation instructions serve as the meta-prompting that describes
overall tasks, which is shown in Fig. 3. As stated in Section 1, there are two fundamental quality
criteria to be evaluated: i) concept preservation and ii) prompt following. For each aspect, we
use a similar prompt template that contains ❶ task description, ❷ scoring criteria explanation,
❸ scoring range definition, and ❹ format specification. Only the scoring criteria are tailored
for different tasks: for concept preservation evaluation, we prompt GPT to focus on shape, color,
texture, and facial features (if applicable), while for prompt following evaluation we requested for
focus on relevance, accuracy, completeness and context.

Reasoning Instructions Given the evaluation instructions, it is crucial to reinforce the alignment
with both the human instruction and itself to largely leverage the pretrained knowledge. To this end,
we adopt a 2-step evaluation policy as follows: i) Internal Thinking: Inspired by Self-Align (Sun
et al., 2023), we introduce internal thinking to strengthen task understanding and instruction follow-
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DreamBench and DREAMBENCH++
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Figure 5: Data distribution visualization. (a) Images comparison between DreamBench and
DREAMBENCH++ using t-SNE (Van der Maaten & Hinton, 2008; Poličar et al., 2019). (b) Im-
age and prompt distribution of DREAMBENCH++.

ing capabilities. Specifically, we prompt the GPT model by asking if it understands the task or not
and let it summarize the task. ii) Summary & Planning: According to the given internal thinking
instruction, the GPT will summarize and plan for the evaluation task itself. It can also be viewed
as a generalized form of chain-of-thought reasoning (Wei et al., 2022; Zhang et al., 2023d). The
complete procedure is illustrated in Fig. 3.

2.2 SCALING UP PERSONALIZED IMAGE GENERATION BENCHMARKING

Pioneering works like DreamBooth (Ruiz et al., 2023), SuTI (Chen et al., 2023c) and CustomCon-
cept101 (Kumari et al., 2023) have successfully set up baseline datasets for the evaluation of person-
alized image generation, and DREAMBENCH++ follows them to categorize images into three types:
❶ objects, ❷ living subjects, and ❸ styles. However, due to the small-scale nature of DreamBench
and the limited diversity of CustomConcept101, it is limited as some methods may converge well on
its samples while performing unsatisfactorily on other data. To avoid this possible biased evaluation,
we scale up the benchmarking data by increasing both image numbers and diversity.

Data Construction from Internet There are broad images on the Internet, and many datasets are
constructed from it (Schuhmann et al., 2021; Jia et al., 2021). DREAMBENCH++ mainly collects
images from Unsplash (uns), Rawpixel (raw), and Google Image Search (goo), along with con-
tributions from individuals with authorized permissions. Each image’s copyright status has been
verified for academic suitability. As shown in Fig. 4, we collect and construct high-quality data in
DREAMBENCH++ by following 3 steps:

• Keywords Generation First, we generate 200 relevant keywords using GPT-4o and join them
with the 200 most frequent keywords from Unsplash. After filtering out duplicated keywords,
seven human annotators will extend the list to around 300 based on their interests.

• Internet Images Collection Given selected keywords, we retrieved corresponding images from
Unsplash, Rawpixel, and Google Image Search. To filter out images unsuitable for personalized
image generation, SAM (Kirillov et al., 2023) is applied to identify subject regions in images and
discard those with too small subject areas. Human annotators will then filter out images with noisy
backgrounds. Curated images were cropped to centralize the subject, resulting in two images per
keyword. Keywords that fail to yield suitable images will be discarded in this process.

• Prompt Generation After image collection, 9 text prompts per image were generated using
GPT-4o, designed to cover a range of difficulties: 4 prompts for ❶ photorealistic styles, 3 for
❷ non-photorealistic styles, and 2 for ❸ complicated & imaginative contents. To align with
established evaluation methods, we use few-shot prompts selected from PartiPrompts (Yu et al.,
2022). Human calibration ensures that all generated prompts are ethical and without flaws. As a
result, the construction process finally yields 150 high-quality images and 1,350 prompts.
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Table 1: Evaluation of personalized image generation models on DREAMBENCH++. All scores
are normalized to 0-1, and -I & -T represent image & text, respectively.

Method T2I Model Concept Preservation Prompt Following
Human GPT DINO-I CLIP-I Human GPT CLIP-T

•Textual Inversion SD v1.5 0.316 0.378±0.0012 0.437 0.726 0.604 0.624±0.0033 0.302
•DreamBooth SD v1.5 0.453 0.493±0.0012 0.544 0.753 0.679 0.721±0.0016 0.323
•DreamBooth LoRA SDXL v1.0 0.571 0.597±0.0007 0.628 0.784 0.821 0.865±0.0007 0.341
•BLIP-Diffusion SD v1.5 0.513 0.547±0.0010 0.649 0.823 0.577 0.495±0.0005 0.286
•Emu2 SDXL v1.0 0.410 0.528±0.0016 0.539 0.763 0.641 0.689±0.0010 0.310
• IP-Adapter-Plus ViT-H SDXL v1.0 0.755 0.833±0.0008 0.834 0.917 0.541 0.413±0.0005 0.282
• IP-Adapter ViT-G SDXL v1.0 0.570 0.593±0.0018 0.667 0.855 0.688 0.640±0.0017 0.309

Diversity Visualization Internet images are numerous. However, there is a bias towards photore-
alistic styles. To diversify, various non-photorealistic styles are enlisted, and human annotators are
tasked to gather images for each style, including anime, sketches, traditional Chinese paintings, art-
works, and cartoon characters from games. Then, a manual selection process ensures a balanced dis-
tribution across subject classes and between photorealistic and non-photorealistic styles. In Fig. 5(a),
we visualize the t-SNE (Van der Maaten & Hinton, 2008; Poličar et al., 2019) of images from
DreamBench and DREAMBENCH++, which demonstrates the superiority of DREAMBENCH++ in
diversity. Besides, Fig. 5(b) presents the detailed image distribution in DREAMBENCH++.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Reimplementation Details We conduct experiments on two mainstream methods: i) •Fine-
tuning-based methods, including ❶ Textual Inversion (TI) (Gal et al., 2023a), ❷ Dream-
Booth (Ruiz et al., 2023), and ❸ DreamBooth LoRA (DreamBooth-L) (Ruiz et al., 2023;
Hu et al., 2022); ii) •Encoder-based methods that trains feature adaptation, including ❹ BLIP-
Diffusion (BLIP-D) (Li et al., 2023a), ❺ Emu2 (Sun et al., 2024a), ❻ IP-Adapter-Plus ViT-H
(IP-Adapt.-P) (Ye et al., 2023), and ❼ IP-Adapter ViT-G (IP-Adapt.) (Ye et al., 2023). All meth-
ods are based on base T2I models, including SD v1.5 (Rombach et al., 2022) and SDXL v1.0 (Podell
et al., 2024). We stay true to the official implementations wherever possible and dedicate significant
effort to parameter tuning for performance assurance on DreamBench, see Appendix B.

Human Annotators We employ 7 human annotators to score each instance in DREAMBENCH++
to obtain ground truth human preference data. We provide human annotators with sufficient training
to ensure they fully understand the personalized T2I generation task and can provide unbiased and
discriminating scores. The scoring task and scheme given to humans are identical to those used for
GPT, as described in Section 2. The GPT results and human results are isolated to avoid hindsight
bias. Additionally, we ensure that each instance is rated by at least two humans to reduce noise.

Very High
GPT Score

Very High
DINO Score

Reference
Images

Figure 6: Comparison between images of high DINO score and high GPT-4o score. Instances
with high human scores are ticked, and those with low human scores are crossed. DINO tends to
yield high scores to images that preserve overall shape but do not put much weight on color, texture,
and facial features, leading to frequent contradiction with human preference.
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Table 2: DREAMBENCH++ leaderboard. Both scores for concept preservation (CP) and prompt
following (PF) are presented and divided by established concept and prompt categories. The models
are ranked by the product of CP and PF scores (CP·PF).

Method T2I Model
Concept Preservation Prompt Following CP·PF

Animal Human Object Style Overall Realistic Style Imaginative Overall

•DreamBooth LoRA SDXL v1.0 0.751 0.311 0.543 0.718 0.598 0.898 0.895 0.754 0.865 0.517
• IP-Adapter ViT-G SDXL v1.0 0.667 0.558 0.504 0.752 0.593 0.743 0.632 0.446 0.640 0.380
•Emu2 SDXL v1.0 0.670 0.546 0.447 0.454 0.528 0.732 0.719 0.560 0.690 0.364
•DreamBooth SD v1.5 0.640 0.199 0.488 0.476 0.494 0.789 0.775 0.504 0.721 0.356
• IP-Adapter-Plus ViT-H SDXL v1.0 0.900 0.845 0.759 0.912 0.833 0.502 0.384 0.279 0.413 0.344
•BLIP-Diffusion SD v1.5 0.673 0.557 0.469 0.507 0.547 0.581 0.510 0.303 0.495 0.271
•Textual Inversion SD v1.5 0.502 0.358 0.305 0.358 0.378 0.671 0.686 0.437 0.624 0.236

3.2 MAIN RESULTS

Quantitative & Qualitative Analysis Table 1 shows the overall evaluation results, including hu-
man and GPT-4o rating scores. The results show that: i) DREAMBENCH++ aligns better with hu-
mans than DINO or CLIP models. Driven by our dedicatedly-designed prompts, GPT-4o used by
DREAMBENCH++ yields impressive alignment with humans. This is because humans and DREAM-
BENCH++ are all advanced in evaluating facial and textural characters and producing scores with a
balanced consideration. ii) DINO-I and CLIP-I yield significant divergence from humans in evalu-
ating concept preservation. This could be because DINO/CLIP scores show a preference for images
that preserve shapes or overall styles (see Fig. 6). iii) Traditional CLIP-T scores are as effective
as DREAMBENCH++ in evaluating prompt following, showing strong alignment with humans. See
qualitative results in Appendix C for an intuitive understanding of evaluated models.

Leaderboard Table 2 shows the leaderboard results with respect to the concept and prompt cat-
egories defined in Section 2. Note that: i) the human category shows the lowest average score
of 0.482, which is -0.204 lower than the highest average score of animal. This category is very
challenging in terms of concept preservation because due to facial details, and many works are con-
ducted specifically on it (Wang et al., 2024b; Xiao et al., 2023; Valevski et al., 2023; Yan et al.,
2023). ii) The object is also a relatively difficult category due to object diversity. In contrast,
animals within the same category often share a strong visual similarity. iii) There exists a negative
correlation between concept preservation and prompt following. The primary aim of personalized
T2I evolution is to identify the Pareto optimum that balances both factors.

3.3 ABLATION STUDY

Table 3 shows the ablation study of the prompt design influences on alignment. We observe that:
i) The proposed prompt designs are all necessarily effective, demonstrating the superiority of the
prompting method in DREAMBENCH++. For example, removing the proposed internal thinking
leads to a significant drop, indicating the effectiveness of self-alignment. ii) The capability of the
multimodal GPT used is scalable. This shows that DREAMBENCH++ has the potential to be im-
proved in the future. iii) Some human prior knowledge, such as reminding the GPT not to consider
background when assessing visual concept preservation, leads to performance degradation.

Table 3: Ablation study of prompt design. H, G, D, and C represent Human, GPT-4o, DINO Score,
and CLIP Score, respectively. H-H value is also calculated to illustrate human self-alignment.

Method TI DreamBooth DreamBooth-L BLIP-D Emu2 IP-Adapt.-P IP-Adapt.
T2I Model SD v1.5 SD v1.5 SDXL v1.0 SD v1.5 SDXL v1.0 SDXL v1.0 SDXL v1.0

Concept Preservation
H-H 0.685 0.647 0.656 0.613 0.746 0.602 0.591
G-H 0.544±0.014 0.596±0.003 0.641±0.007 0.362±0.017 0.669±0.005 0.366±0.017 0.458±0.002
- Internal Thinking -0.040 -0.023 -0.012 +0.001 -0.045 -0.038 -0.008
- Scoring Criteria -0.125 -0.116 -0.093 -0.158 -0.103 -0.227 -0.166
- Scoring Range -0.038 -0.017 -0.027 -0.006 -0.016 -0.009 -0.017
+ Human Prior -0.033 -0.022 -0.006 -0.015 -0.022 +0.009 -0.019
+ GPT4V -0.105 -0.067 -0.131 -0.180 -0.016 -0.301 -0.250

Prompt Following
H-H 0.475 0.516 0.469 0.619 0.441 0.576 0.509
G-H 0.461±0.007 0.506±0.002 0.402±0.001 0.541±0.003 0.422±0.011 0.484±0.006 0.531±0.006
- Internal Thinking -0.013 +0.004 -0.032 -0.002 -0.014 +0.012 -0.002
- Scoring Criteria -0.025 -0.012 -0.009 -0.012 -0.018 -0.017 -0.013
- Scoring Range -0.010 -0.013 -0.011 +0.043 -0.038 +0.060 +0.036
+ GPT4V -0.010 +0.012 0.000 -0.111 -0.007 -0.161 -0.134
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4 DISCUSSIONS

4.1 IS DREAMBENCH++ ALIGNED WITH HUMANS?

Table 4 shows a more rigorous study of human alignment level using the mean Krippendorff’s al-
pha value (Hayes & Krippendorff, 2007). The results show that DREAMBENCH++ is a highly
human-aligned benchmark. Notably, DREAMBENCH++ achieves 79.64% and 93.18% evalua-
tion consistency with human’s evaluation in concept preservation and prompt following capabilities,
respectively. This result is +54.1% and +50.7% higher than traditional DINO and CLIP metrics.

Table 4: The human alignment degree among different evaluation metrics, measured by Krip-
pendorff’s alpha value. H, G, D, and C represent Human, GPT-4o, DINO Score, and CLIP Score,
respectively. H-H value is also calculated to illustrate human self-alignment.

Method T2I Model
Concept Preservation KdŌ Prompt Following KdŌ

H-H G-H D-H C-H H-H G-H C-H
•Textual Inversion SD v1.5 0.685 0.544±0.014 0.262 -0.030 0.475 0.461±0.007 0.267
•DreamBooth SD v1.5 0.647 0.596±0.003 0.408 0.229 0.516 0.506±0.002 0.185
•DreamBooth LoRA SDXL v1.0 0.656 0.641±0.007 0.371 0.321 0.469 0.402±0.001 0.022
•BLIP-Diffusion SD v1.5 0.613 0.362±0.017 -0.078 -0.186 0.619 0.541±0.003 0.319
•Emu2 SDXL v1.0 0.746 0.669±0.005 0.518 0.258 0.441 0.422±0.011 0.230
• IP-Adapter-Plus ViT-H SDXL v1.0 0.602 0.366±0.017 -0.141 -0.150 0.576 0.484±0.006 0.256
• IP-Adapter ViT-G SDXL v1.0 0.591 0.458±0.002 -0.073 -0.212 0.509 0.531±0.006 0.196

RatioŌ 100% 79.64% 25.54% 3.34% 100% 93.18% 42.48%

4.2 IS DATA DIVERSITY NECESSARY?

To assess the importance of diverse data, we compare results on DreamBench and DREAM-
BENCH++ using DINO and CLIP metrics. Table 5 shows that the diverse data in DREAM-
BENCH++ is key to unbiased evaluation. While overall results are consistent, TI, DreamBooth,
and Emu2 show notable score drops. These methods perform well on natural images and simple text
but struggle with complex or stylized prompts and anime references, see Fig. 7.

Table 5: DreamBench and DREAMBENCH++ results comparison with traditional metrics.
∗Unlike DreamBench, DREAMBENCH++ uses a single reference image per instance; thus, the train-
ing steps and learning rate of •fine-tuning-based methods are slightly reduced to avoid overfitting.

Method T2I Model
DreamBench DREAMBENCH++

DINO-I CLIP-I CLIP-T DINO-I CLIP-I CLIP-T
•Textual Inversion∗ SD v1.5 0.557 0.753 0.259 0.437 0.726 0.302
•DreamBooth∗ SD v1.5 0.678 0.786 0.301 0.544 0.753 0.323
•DreamBooth LoRA∗ SDXL v1.0 0.646 0.769 0.325 0.628 0.784 0.341
•BLIP-Diffusion SD v1.5 0.630 0.784 0.293 0.649 0.823 0.286
•Emu2 SDXL v1.0 0.753 0.842 0.283 0.539 0.763 0.310
• IP-Adapter-Plus ViT-H SDXL v1.0 0.846 0.902 0.272 0.834 0.917 0.282
• IP-Adapter ViT-G SDXL v1.0 0.681 0.835 0.295 0.667 0.855 0.309

on the beach

smile, old stone wall

anime, glasses, reading book

with tiny angel wings, sunset

tightrope, skyscrapers, city

mountain landscape in the style of …

bridge, stream, in the tyle of …

gazing at a distant galaxy

Successful case Failure case

complex prompt stylization reference image for anime stylephotorealistic image & simple prompt

Figure 7: Case study of successful and failure case on DREAMBENCH++. The left images are
reference images and the right images are results generated by Emu2, DreamBooth, and TI.
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Table 6: Study of Chain-of-Though (CoT) and In-context Learning (ICL) on human alignment.

Method TI DreamBooth DreamBooth-L BLIP-D Emu2 IP-Adapt.-P IP-Adapt.
T2I Model SD v1.5 SD v1.5 SDXL v1.0 SD v1.5 SDXL v1.0 SDXL v1.0 SDXL v1.0

H-H 0.685 0.647 0.656 0.613 0.746 0.602 0.591

w/o CoT & w/o ICL 0.544 0.596 0.641 0.362 0.669 0.366 0.458
+ 1 shot ICL -0.046 -0.019 -0.043 +0.013 -0.028 -0.098 -0.066
+ 2 shot ICL -0.042 -0.023 -0.022 -0.033 -0.036 -0.085 -0.054

w/ CoT & w/o ICL 0.510 0.576 0.602 0.329 0.644 0.359 0.418
+ 1 shot ICL -0.040 -0.008 -0.009 -0.020 -0.035 -0.145 -0.086
+ 2 shot ICL -0.030 -0.002 -0.002 -0.051 -0.031 -0.155 -0.082

4.3 CAN WE USE FREE LUNCH TO IMPROVE DREAMBENCH++ EVALUATION?

Table 6 shows the result of utilizing free lunch techniques, including chain-of-thought (CoT) (Wei
et al., 2022) and In-Context Learning (ICL) (Alayrac et al., 2022; Brown et al., 2020). CoT indicates
that GPT-4 articulates its reasoning process before scoring, and ICL indicates GPT-4o is provided
with human-written few-shot examples.

Chain-of-Thought: i) CoT is effective in evaluating prompt following capability. Through CoT, the
model more accurately discerns the significance of phrases such as “morphs into a mythical dragon”,
allowing it to assign a more appropriate evaluation score. ii) CoT does not bring improvement in
concept preservation evaluation. We argue that CoT may shift attention to unnecessarily important
background or texture information, as shown in Fig. 8.

Shape: Both images have similar space-
themed backgrounds and landscapes

Color: Features vibrant sunset-like 
colors with hues of pink, orange, blue, 
and purple.

Texture: both using a detailed and smooth 
texture for the elements.

Facial: obscured by a helmet, difficult 
to judge facial resemblance. But 
considering the other matching elements, 
it's reasonable to overlook this 
discrepancy,
hence the score of 3.

w/ CoT

w/o CoT
Score: 1

Human
Score: 1

w/ CoT

w/o CoT
Score: 3

Human
Score: 1

A	heron	casting	
a	shadow	that	
morphs	into	a	
mythical	dragon	
along	the river-
side.

Relevance: The image shows a heron near 
a riverside, which is relevant to the 
text prompt.

Accuracy: The heron is indeed casting a 
shadow; however, the shadow does not 
morph into a mythical dragon.

Completeness: the image lacks the 
critical detail of the shadow 
transitioning into a mythical dragon.

Context: The riverside setting is 
appropriately depicted, aligning with 
the context of the text.

Score: 1

Figure 8: Case study on CoT Prompting. We find that (a) CoT prompting can improve text fol-
lowing evaluation by recognizing important parts of the prompt. (b) However, it may also hinder
visual concept preservation by drifting GPT’s attention away from the subject.

In-Context Learning: ICL counterintuitively leads to a drop in alignment. This could be attributed
to the patching scheme, sample selection, or inherent bias within GPT-4o, making it non-trivial to
prompt effectively. Thus, we provide our detailed prompt and hope to inspire future works.

4.4 ARE MULTIPLE IMAGES FOR EACH INSTANCE NECESSARY?

In practice, multiple reference images are unnecessary for personalized image generation: i) The
limited availability of reference images during daily usage makes single-image personalization more
relevant. ii) Fine-tuning methods perform well with just one image, as shown in Appendix C.

5 CONCLUSIONS

This paper introduces DREAMBENCH++, a human-aligned personalized image generation bench-
mark. Extensive and comprehensive experiments show significant advantages in dataset diversity
and complexity, along with metrics that align with human preferences. In addition, we offer insights
into prompt design for advanced multimodal GPTs, emphasizing the potential and challenges of
enhancing GPT evaluation through chain-of-thought prompting and in-context learning. Our work
aims to support future research on personalized image generation by providing a human-aligned
benchmark and heuristics in utilizing advanced multimodal GPTs in visual evaluation.
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Pavlin G. Poličar, Martin Stražar, and Blaž Zupan. opentsne: a modular python library for t-sne
dimensionality reduction and embedding. bioRxiv, 2019. URL https://github.com/
pavlin-policar/openTSNE. 5, 6

Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. In Int. Conf. Learn. Represent. (ICLR), 2023. 20

Zekun Qi, Muzhou Yu, Runpei Dong, and Kaisheng Ma. VPP: efficient conditional 3d generation
via voxel-point progressive representation. In Adv. Neural Inform. Process. Syst. (NeurIPS), 2023.
20

Zekun Qi, Runpei Dong, Shaochen Zhang, Haoran Geng, Chunrui Han, Zheng Ge, Li Yi, and
Kaisheng Ma. Shapellm: Universal 3d object understanding for embodied interaction. In Com-
puter Vision – ECCV 2024, pp. 214–238, Cham, 2025. Springer Nature Switzerland. ISBN 978-
3-031-72775-7. 20

Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian
Weller, and Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal finetuning.
36:79320–79362, 2023. 2

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In Int. Conf.
Mach. Learn. (ICML), 2021. 2, 19

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In Int. Conf. Mach. Learn. (ICML), 2021.
1

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with CLIP latents. CoRR, abs/2204.06125, 2022. 1, 2

15

https://github.com/pavlin-policar/openTSNE
https://github.com/pavlin-policar/openTSNE


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy P. Lillicrap, Jean-
Baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, Ioannis
Antonoglou, Rohan Anil, Sebastian Borgeaud, Andrew M. Dai, Katie Millican, Ethan Dyer, Mia
Glaese, Thibault Sottiaux, Benjamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu, James
Molloy, Jilin Chen, Michael Isard, Paul Barham, Tom Hennigan, Ross McIlroy, Melvin Johnson,
Johan Schalkwyk, Eli Collins, Eliza Rutherford, Erica Moreira, Kareem Ayoub, Megha Goel,
Clemens Meyer, Gregory Thornton, Zhen Yang, Henryk Michalewski, Zaheer Abbas, Nathan
Schucher, Ankesh Anand, Richard Ives, James Keeling, Karel Lenc, Salem Haykal, Siamak
Shakeri, Pranav Shyam, Aakanksha Chowdhery, Roman Ring, Stephen Spencer, Eren Sezener,
and et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context.
CoRR, abs/2403.05530, 2024. 19

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In IEEE/CVF Conf. Comput. Vis. Pattern
Recog. (CVPR), 2022. 1, 6

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aber-
man. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation.
In IEEE/CVF Conf. Comput. Vis. Pattern Recog. (CVPR), 2023. 1, 2, 3, 5, 6, 19

Chitwan Saharia, William Chan, Huiwen Chang, Chris A. Lee, Jonathan Ho, Tim Salimans, David J.
Fleet, and Mohammad Norouzi. Palette: Image-to-image diffusion models. In SIGGRAPH, 2022,
pp. 15:1–15:10. ACM, 2022a. 19

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L. Denton, Seyed
Kamyar Seyed Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
Jonathan Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion
models with deep language understanding. In Adv. Neural Inform. Process. Syst. (NeurIPS),
2022b. 1

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Adv. Neural Inform. Process. Syst. (NIPS), 2016. 19

Christoph Schuhmann, Robert Kaczmarczyk, Aran Komatsuzaki, Aarush Katta, Richard Vencu,
Romain Beaumont, Jenia Jitsev, Theo Coombes, and Clayton Mullis. Laion-400m: Open dataset
of clip-filtered 400 million image-text pairs. In NeurIPS Workshop Datacentric AI, number FZJ-
2022-00923. Jülich Supercomputing Center, 2021. 5

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
Yang, Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taigman. Make-a-video:
Text-to-video generation without text-video data. In Int. Conf. Learn. Represent. (ICLR), 2023.
20

Kihyuk Sohn, Lu Jiang, Jarred Barber, Kimin Lee, Nataniel Ruiz, Dilip Krishnan, Huiwen Chang,
Yuanzhen Li, Irfan Essa, Michael Rubinstein, Yuan Hao, Glenn Entis, Irina Blok, and Daniel Cas-
tro Chin. Styledrop: Text-to-image synthesis of any style. In Adv. Neural Inform. Process. Syst.
(NeurIPS), 2023. 19

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Int.
Conf. Learn. Represent. (ICLR), 2021a. 19

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Int. Conf.
Learn. Represent. (ICLR), 2021b. 19

Quan Sun, Yufeng Cui, Xiaosong Zhang, Fan Zhang, Qiying Yu, Zhengxiong Luo, Yueze Wang,
Yongming Rao, Jingjing Liu, Tiejun Huang, and Xinlong Wang. Generative multimodal models
are in-context learners. In IEEE/CVF Conf. Comput. Vis. Pattern Recog. (CVPR), 2024a. 2, 6, 19

Quan Sun, Qiying Yu, Yufeng Cui, Fan Zhang, Xiaosong Zhang, Yueze Wang, Hongcheng Gao,
Jingjing Liu, Tiejun Huang, and Xinlong Wang. Emu: Generative pretraining in multimodality.
In Int. Conf. Learn. Represent. (ICLR), 2024b. 2

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin Zhang, Zhenfang Chen, David D. Cox, Yiming
Yang, and Chuang Gan. Principle-driven self-alignment of language models from scratch with
minimal human supervision. In Adv. Neural Inform. Process. Syst. (NeurIPS), 2023. 2, 4

Yoad Tewel, Rinon Gal, Gal Chechik, and Yuval Atzmon. Key-locked rank one editing for text-to-
image personalization. In ACM SIGGRAPH 2023 Conference Proceedings, SIGGRAPH 2023,
Los Angeles, CA, USA, August 6-10, 2023, pp. 12:1–12:11. ACM, 2023. 1

Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. Plug-and-play diffusion features for
text-driven image-to-image translation. In IEEE/CVF Conf. Comput. Vis. Pattern Recog. (CVPR),
2023. 1, 19

Dani Valevski, Danny Lumen, Yossi Matias, and Yaniv Leviathan. Face0: Instantaneously condi-
tioning a text-to-image model on a face. In SIGGRAPH Asia 2023 Conference Papers, SA 2023,
Sydney, NSW, Australia, December 12-15, 2023, pp. 94:1–94:10. ACM, 2023. 3, 7, 19

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. J. Mach. Learn. Res.
(JMLR), 9(11), 2008. 5, 6

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In Int. Conf. Mach. Learn. (ICML),
volume 307 of ACM International Conference Proceeding Series, pp. 1096–1103. ACM, 2008.
19

Haofan Wang, Matteo Spinelli, Qixun Wang, Xu Bai, Zekui Qin, and Anthony Chen. Instantstyle:
Free lunch towards style-preserving in text-to-image generation. CoRR, abs/2404.02733, 2024a.
1, 19

Peiyi Wang, Lei Li, Liang Chen, Dawei Zhu, Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and
Zhifang Sui. Large language models are not fair evaluators. CoRR, abs/2305.17926, 2023a. 4

Qixun Wang, Xu Bai, Haofan Wang, Zekui Qin, and Anthony Chen. Instantid: Zero-shot identity-
preserving generation in seconds. CoRR, abs/2401.07519, 2024b. 1, 3, 7, 19

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. High-
resolution image synthesis and semantic manipulation with conditional gans. In IEEE/CVF Conf.
Comput. Vis. Pattern Recog. (CVPR), 2018. 19

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
In Association for Computational Linguistics, 2023b. 4

Zhenyu Wang, Aoxue Li, Zhenguo Li, and Xihui Liu. Genartist: Multimodal llm as an agent for
unified image generation and editing. CoRR, abs/2407.05600, 2024c. 2

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Adv. Neural Inform. Process. Syst. (NeurIPS), 2022. 2, 5, 9

Yuxiang Wei, Yabo Zhang, Zhilong Ji, Jinfeng Bai, Lei Zhang, and Wangmeng Zuo. ELITE: en-
coding visual concepts into textual embeddings for customized text-to-image generation. In Int.
Conf. Comput. Vis. (ICCV), 2023. 1, 19

Feize Wu, Yun Pang, Junyi Zhang, Lianyu Pang, Jian Yin, Baoquan Zhao, Qing Li, and Xudong
Mao. Core: Context-regularized text embedding learning for text-to-image personalization.
CoRR, abs/2408.15914, 2024a. 2

Tong Wu, Guandao Yang, Zhibing Li, Kai Zhang, Ziwei Liu, Leonidas J. Guibas, Dahua Lin, and
Gordon Wetzstein. Gpt-4v(ision) is a human-aligned evaluator for text-to-3d generation. In
IEEE/CVF Conf. Comput. Vis. Pattern Recog. (CVPR), 2024b. 4, 19

Guangxuan Xiao, Tianwei Yin, William T. Freeman, Frédo Durand, and Song Han. Fastcomposer:
Tuning-free multi-subject image generation with localized attention. CoRR, abs/2305.10431,
2023. 1, 3, 7, 19

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Shitao Xiao, Yueze Wang, Junjie Zhou, Huaying Yuan, Xingrun Xing, Ruiran Yan, Shuting Wang,
Tiejun Huang, and Zheng Liu. Omnigen: Unified image generation. CoRR, abs/2409.11340,
2024. 2

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
In Adv. Neural Inform. Process. Syst. (NeurIPS), 2023. 2, 19

Paul Yacoubian. Avocado bag, July 2022. URL https://twitter.com/PaulYacoubian/
status/1542867718071779330. 2

Yuxuan Yan, Chi Zhang, Rui Wang, Yichao Zhou, Gege Zhang, Pei Cheng, Gang Yu, and Bin Fu.
Facestudio: Put your face everywhere in seconds. CoRR, abs/2312.02663, 2023. 3, 7, 19

Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
adapter for text-to-image diffusion models. CoRR, abs/2308.06721, 2023. 1, 2, 3, 6, 19

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han, Zarana Parekh, Xin
Li, Han Zhang, Jason Baldridge, and Yonghui Wu. Scaling autoregressive models for content-rich
text-to-image generation. T. Mach. Learn. Res. (TMLR), 2022. 1, 5

Linfeng Zhang, Xin Chen, Junbo Zhang, Runpei Dong, and Kaisheng Ma. Contrastive deep super-
vision. In Eur. Conf. Comput. Vis. (ECCV), 2022. 19

Linfeng Zhang, Xin Chen, Runpei Dong, and Kaisheng Ma. Region-aware knowledge distillation
for efficient image-to-image translation. In Brit. Mach. Vis. Conf. (BMVC), 2023a. 19

Linfeng Zhang, Runpei Dong, Hung-Shuo Tai, and Kaisheng Ma. Pointdistiller: structured knowl-
edge distillation towards efficient and compact 3d detection. In IEEE/CVF Conf. Comput. Vis.
Pattern Recog. (CVPR), 2023b. 20

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In IEEE/CVF Conf. Comput. Vis. Pattern
Recog. (CVPR), 2018. 19

Xinlu Zhang, Yujie Lu, Weizhi Wang, An Yan, Jun Yan, Lianke Qin, Heng Wang, Xifeng Yan,
William Yang Wang, and Linda Ruth Petzold. Gpt-4v(ision) as a generalist evaluator for vision-
language tasks. CoRR, abs/2311.01361, 2023c. 4, 19

Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. Multimodal
chain-of-thought reasoning in language models. In Int. Conf. Mach. Learn. (ICML), 2023d. 2, 5

Liang Zhao, En Yu, Zheng Ge, Jinrong Yang, Haoran Wei, Hongyu Zhou, Jianjian Sun, Yuang Peng,
Runpei Dong, Chunrui Han, and Xiangyu Zhang. Chatspot: Bootstrapping multimodal llms via
precise referring instruction tuning. In Int. Joint Conf. Artif. Intell. (IJCAI), 2024. 20

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena. In Adv. Neural Inform. Process. Syst.
(NeurIPS), 2023. 4

Matthew Zheng, Enis Simsar, Hidir Yesiltepe, Federico Tombari, Joel Simon, and Pinar Yanardag.
Stylebreeder: Exploring and democratizing artistic styles through text-to-image models. CoRR,
abs/2406.14599, 2024. 19

Yufan Zhou, Ruiyi Zhang, Kaizhi Zheng, Nanxuan Zhao, Jiuxiang Gu, Zichao Wang, Xin Eric
Wang, and Tong Sun. Toffee: Efficient million-scale dataset construction for subject-driven text-
to-image generation. CoRR, abs/2406.09305, 2024. 1

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Int. Conf. Comput. Vis. (ICCV), 2017. 19

18

https://twitter.com/PaulYacoubian/status/ 1542867718071779330
https://twitter.com/PaulYacoubian/status/ 1542867718071779330


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A RELATED WORKS

Personalized Image Generation aims to preserve concept consistency while accommodating the
diverse contexts suggested by the instructions. In general, it can be traced back to early efforts on
pixel-to-pixel (Pix2Pix) translation where the personalization orientation is free-form texts (Brooks
et al., 2023; Tumanyan et al., 2023; Parmar et al., 2023) or predefined translation across styles,
seasons, species, or plants, etc (Isola et al., 2017; Zhu et al., 2017; Zhang et al., 2023a; Wang et al.,
2018; Saharia et al., 2022a). Modern efforts go beyond Pix2Pix translation toward a free-form
image generation conditioned on both reference images and prompts. Some works focus on fine-
tuning techniques that turn a general T2I model into a specialist personalization model (Gal et al.,
2023a; Ruiz et al., 2023; Kumari et al., 2023; Sohn et al., 2023; Park et al., 2024) using LoRA (Hu
et al., 2022) or contrastive learning (Zhang et al., 2022; He et al., 2020), learning the subject or style
information by reconstructive autoencoding (Vincent et al., 2008; Dong et al., 2023). However, the
necessity to fine-tune for new subjects limits their scalability. In contrast, encoder-based methods
can generate subject-guided or style-guided images or edit images following prompts with one shot.
Encoder- or adapter-based methods (Zheng et al., 2024; Ye et al., 2023; Wei et al., 2023; Li et al.,
2023a; Jia et al., 2023; Gal et al., 2023b; Chen et al., 2023b; Wang et al., 2024a;b) train an encoder to
encode the conditional image into embeddings, which are integrated into cross-attention mechanism
in the diffusion process (Ho et al., 2020; Song et al., 2021a; Nichol & Dhariwal, 2021; Song et al.,
2021b). Adapter-free methods (Lv et al., 2024; Liu et al., 2023d; Hertz et al., 2023b;a; Brooks et al.,
2023) extract the information, such as attention maps (Hertz et al., 2023a) from reference images,
and fuse them into the image generation process. Furthermore, multimodal large language models
(MLLMs) that are trained on extensive multimodal sequences can also serve as general foundation
models (Dong et al., 2024; Sun et al., 2024a; Pan et al., 2024; Ge et al., 2024). Additionally, some
works (Wang et al., 2024b; Valevski et al., 2023; Yan et al., 2023; Ye et al., 2023; Xiao et al., 2023)
focus on facial feature preservation.

Benchmarking Image Generation involves a variety of metrics that focus on different aspects.
Inception Score (Salimans et al., 2016) and FID (Heusel et al., 2017) judge image quality, while
LPIPS (Zhang et al., 2018), DreamSim (Fu et al., 2023), CLIP-I (Radford et al., 2021), and DINO
Score (Caron et al., 2021) measure perceptual similarity. In text-guided generation, prompt-image
alignment can be assessed by CLIP-T (Radford et al., 2021), CLIPScore (Hessel et al., 2021), and
BLIP Score (Li et al., 2022; 2023b). However, these metrics often fall short of reflecting human
perception. To address this, human-aligned metrics (Ku et al., 2024; Xu et al., 2023; Lee et al.,
2023) have been introduced, offering a more perceptive evaluation. Yet, they face limitations in
scaling with the pace of new model developments. Thus, the necessity for automated and sustain-
able evaluation methods has emerged, with some (Xu et al., 2023; Liang et al., 2023b; Guo et al.,
2024) leveraging reward-model-based methods to encode human preferences, while others (Ku et al.,
2023; Cho et al., 2023; Wu et al., 2024b; Zhang et al., 2023c; Hu et al., 2023; Lu et al., 2023) use
multimodal (Brown et al., 2020; Reid et al., 2024; Anil et al., 2023; Liu et al., 2023b) to automate
the process and better mirror human tastes. While MLLM-based methods show promise in aligning
with human preferences (Zhang et al., 2023c; Wu et al., 2024b; Huang et al., 2023; Cho et al., 2024),
automated personalized evaluation remains an unresolved issue. VIEScore (Ku et al., 2023) assesses
image generation quality by prompting GPT-4V (OpenAI, 2023) and LLaVA (Liu et al., 2023b;a),
but is limited to four models in subject-driven tasks and obtains suboptimal results. Meanwhile,
Dreambench (Ruiz et al., 2023), a common benchmark for personalized generative evaluation, only
consists of 30 simple objects and lacks diversity comprehensiveness.

B IMPLEMENTATION DETAILS

The configurations for the training hyperparameters used in training-based methods on DreamBench
and DREAMBENCH++, are detailed in Table 7. During the inference stage, all methods employ a
guidance_scale of 7.5 and execute 100 inference steps, with the exception of Emu2, which
uses a guidance_scale of 3 and performs 50 inference steps. Furthermore, BLIP-Diffusion
and IP-Adapter incorporate negative prompts, as demonstrated in Table 8. Specifically, IP-Adapter
includes an additional parameter, ip_adapter_scale, set at 0.6.
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Table 7: Training hyperparameters on DreamBench and DREAMBENCH++. BS: batch size,
LR: learning rate, Steps: training steps.

DreamBench DREAMBENCH++
Method T2I Model BS LR Steps BS LR Steps

Textual Inversion SD v1.5 4 5e-4 3000 1 5e-4 3000
Dreambooth SD v1.5 1 2.5e-6 1000 1 2.5e-6 250

Dreambooth LoRA SDXL v1.0 4 5e-5 500 1 5e-5 500

Table 8: Negative Prompt Templates
Method T2I Model Negative Prompt

BLIP-Diffusion SD v1.5
over-exposure, under-exposure, saturated, duplicate, out of frame, lowres, cropped,

worst quality, low quality, jpeg artifacts, morbid, mutilated, ugly, bad anatomy,
bad proportions, deformed, blurry, duplicate

IP-Adapter ViT-G SDXL v1.0 deformed, ugly, wrong proportion, low res, bad anatomy, worst quality, low quality
IP-Adapter-Plus ViT-H SDXL v1.0 deformed, ugly, wrong proportion, low res, bad anatomy, worst quality, low quality

We dedicate significant effort to tuning hyper-parameters to ensure that the performance of each
method on DreamBench is consistent with results reported in original papers. Table 9 shows the
results of our reproduction are comparable to or even better than the official results.

Table 9: Reproduced results. Our reproduction is comparable to or better than the official results.
N/A denotes that the official paper does not report the corresponding results.

Method T2I Model
DINO-I CLIP-I CLIP-T

Official Reproduction Official Reproduction Official Reproduction
•Textual Inversion SD v1.5 0.569 0.557 0.780 0.753 0.255 0.259
•DreamBooth SD v1.5 0.688 0.678 0.803 0.786 0.305 0.301
•DreamBooth LoRA SDXL v1.0 N/A 0.646 N/A 0.769 N/A 0.325
•BLIP-Diffusion SD v1.5 0.594 0.630 0.779 0.784 0.300 0.293
•Emu2 SDXL v1.0 0.766 0.753 0.850 0.842 0.287 0.283
• IP-Adapter-Plus ViT-H SDXL v1.0 N/A 0.846 N/A 0.902 N/A 0.272
• IP-Adapter ViT-G SDXL v1.0 N/A 0.681 N/A 0.835 N/A 0.295

C QUALITATIVE ANALYSIS

With a more comprehensive and diverse collection of images, we have discovered numerous intrigu-
ing characteristics of these generation methods, as illustrated in Fig. 9, that were not apparent on
existing datasets such as DreamBench. Specifically, we observe that: i) Fine-tuning-based methods
outperform encoder-based methods on images containing more subject-oriented information, such
as an animal or object, as they preserve more intricate details in the generated images. However, for
images containing a person, fine-tuning-based methods often fail to preserve facial and clothing fea-
tures. This suggests that the personalized generation of human images is more demanding for visual
concept preservation than for textual following capabilities, which is an advantage for encoder-based
methods. ii) However, for style-oriented cases when subject details are less critical, encoder-based
methods perform better than fine-tuning-based methods. This further highlights the strengths of
encoder-based methods in that they are more adept at recognizing and extracting high-level visual
semantics, including overall shape, style, and thematic features.

D LIMITATION & FUTURE WORK

Human-aligned evaluation & benchmarking is an emerging but challenging direction, and we have
only made preliminary attempts at personalized image generation. Moreover, our evaluation re-
sults heavily rely on the advancements of multimodal large language models and require carefully
designed system prompts. We believe that as visual world models continue to develop, the evalua-
tion performance will be further optimized. Our future work will focus on more applications with
human-aligned evaluation, such as 3D generation (Poole et al., 2023; Qi et al., 2023; Liu et al.,
2023c; Gafni et al., 2022), video generation (Ho et al., 2022; Singer et al., 2023; Blattmann et al.,
2023), autonomous driving (Han et al., 2024; Li et al., 2023c; Zhang et al., 2023b), and even em-
bodied visual intelligence (Goyal et al., 2022; Liang et al., 2023a; Brohan et al., 2023; Driess et al.,
2023; Qi et al., 2025; Zhao et al., 2024; He et al., 2024b).
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DreamBooth
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flight over a 
misty river

Textual Inversion
SD v1.5

DreamBooth LoRA
SDXL v1.0

BLIP Diffusion
SD v1.5

Emu2
SDXL v1.0

IP-Adapter-Plus ViT-H
SDXL v1.0

IP-Adapter ViT-G
SDXL v1.0

A cartoon style 
illustration of a 
corgi dressed as a 

superhero

A photograph of a 
man playing violin 
in a dimly lit room

A photo of a 
girl playing 

with a puppy on 
a grassy field

A watercolor 
painting of a teddy 
bear dressed as a 
knight, guarding a 

castle

A photograph of a 
guitar hanging on a 
brick wall adorned 
with vintage posters

A digital 
illustration of a 
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patterns

A serene riverside 
scene with fishermen 
in boats, painted in 
watercolor sketch

Reference Image

A detailed 
photograph of a 

teapot in a sunlit 
garden, flowers 
blooming around

Figure 9: A qualitative study of different methods on DREAMBENCH++. We demonstrate the
generation quality of different methods on our DREAMBENCH++, including animals, humans, ob-
jects, and style, with photo and non-photo-realistic examples. The blue block highlights fine-tuning-
based methods, and the green block highlights encoder-based methods. Instances above the dotted
line are evaluated for subject preserving, and instances below are evaluated for style preserving.

BROADER IMPACT

Powerful as the T2I generative models pretrained on large-scale web-scraped data, the models may
be misused as illegal or unethical tools for generating NSFW content. This potential impact can also
be brought by personalized T2I models as they are typically built on the pretrained T2I foundation
models. As a result, it is critical to use tools such as NSFW detectors to avoid such content during
both usage and evaluation. For example, the data used for evaluation must avoid the NSFW content
by data filtering. In this paper, such contents are filtered out by human annotators.
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