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Abstract

Recent breakthroughs in machine learning and artificial intelligence, fueled by sci-
entific data, are revolutionizing the discovery of new materials. Despite the wealth
of existing scientific literature, the availability of both structured experimental
data and chemical domain knowledge that can be easily integrated into data-driven
workflows is limited. The motivation to integrate this information, as well as addi-
tional context from first-principle calculations and physics-informed deep learning
surrogate models, is to enable efficient exploration of the relevant chemical space
and to predict structure-property relationships of new materials a priori. Ultimately,
such a framework could replicate the expertise of human subject-matter experts.
In this work, we present dZiner, a chemist AI agent, powered by large language
models (LLMs), that discovers new compounds with desired properties via inverse
design (property-to-structure). In specific, the agent leverages domain-specific
insights from foundational scientific literature to propose new materials with en-
hanced chemical properties, iteratively evaluating them using relevant surrogate
models in a rational design process, while accounting for design constraints. The
model supports both closed-loop and human-in-the-loop feedback cycles enabling
human-AI collaboration in molecular design with real-time property inference, and
uncertainty and chemical feasibility assessment. We demonstrate the flexibility of
this agent by applying it to various materials target properties including surfactants,
ligand and drug candidates, and metal-organic frameworks. Our approach holds
promise to both accelerate the discovery of new materials and enable the targeted
design of materials with desired functionalities. The methodology is available as
an open-source software on https://github.com/mehradans92/dZiner.

1 Introduction

The discovery of new molecules and materials with advanced properties is essential for tackling
significant challenges, ranging from therapeutic discovery to addressing climate change. The evolution
of materials innovation has gone through four distinct paradigms [1]. Initially, it primarily relied on
empirical trial and error. And then, as disciplines like mathematics, chemistry, and physics advanced,
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Figure 1: dZiner workflow overview. The model starts by inputting the material’s initial structure as
a textual representation. The AI agent dynamically retrieves domain-knowledge (design guidelines)
for Property X from scientific literature, the Internet or other resources. Based on these guidelines, and
any additional design constraints provided in natural language, the agent proposes a new candidate
and assesses its chemical feasibility in real-time. Next, it estimates Property X for the new candidate,
incorporating epistemic uncertainty, using a cost-efficient surrogate model. Optionally, as part
of a human-in-the-loop process, the human chemist can review the agent’s new candidates and
chain-of-thoughts, providing feedback and suggesting further modifications or constraints, creating
an opportunity for human-AI collaboration to guide the exploration process. The agent continues
exploring the chemical space, guided by chemistry-informed rules, until it meets the convergence
criteria.

materials innovation began to follow scientific laws. The third paradigm emerged with the advent of
computational chemistry, illustrated by tools such as Gaussian 70 for ab initio calculations and density
functional theory (DFT) [2, 3]. Currently, the fourth paradigm integrates theoretical, experimental,
and computational methodologies using data-driven techniques including data mining, cluster analysis,
predictive analytics, machine learning (ML), and materials informatics altogether [4, 5].

One major drawback of the traditional materials discovery methods is that it often involves extensive
screening through laboratory experiments or in silico simulations, which are both time-consuming
and resource-intensive [6, 7]. On the other hand, the promising data-driven approaches that use
machine learning surrogate models to predict material structures and properties [8–10] or suggest
novel materials [11, 12] rely heavily on extensive training datasets. However, these models face
challenges when such data is unavailable or when there is only a limited budget for conducting
experiments or simulations. In contrast, a human expert would be much more effective in such cases,
by leveraging their domain knowledge and reasoning from limited examples. This underscores the
need for a new materials design paradigm, where models are built to replicate and/or integrate the
expertise of human domain experts.

The emergence of large language models (LLMs), which excel at understanding and processing
natural language text, presents a promising opportunity to integrate primary sources from complex
scientific literature, diverse datasets, and human expertise toward the acceleration of scientific
discoveries. LLMs have excelled at various tasks, even those they are not explicitly trained for,
which has led to increasing interest in creating LLM-based agents with abilities including human-
mimicking reasoning, self-reflection, and decision-making [13–15]. These autonomous agents can
be augmented with external tools or action modules, enabling them to surpass conventional text
processing and directly interact with the physical world (i.e. robotic manipulation [16–18] and
scientific experimentation [19, 20]). By integrating tools such as plugins specific to domain expertise,
these agents can overcome the inherent deficiencies of LLMs in specific domains and enhance their
overall applicability, performance, and interpretability [21, 22]. For instance, recent studies have
demonstrated the use of LLM agents to extract materials datasets and scientific research [23–27],
chemical innovation [28], experiment planning [29] and predicting experimental outcomes [30],
hypothesis generation [31, 32], and closed-loop or human-in-the-loop molecular discovery [33, 34],
among many other applications. An excellent overview of LLM-based autonomous agents in
chemistry and materials can be found in reference [35].

In this work, we present dZiner, an agent-based framework for rational inverse design of materials,
powered by the state-of-the-art LLMs (Figure 1). Leveraging both human expertise and the existing
knowledge contained in scientific publications, dZiner acts as an intelligent chemist research assis-
tant [36], providing feedback on every step of the iterative inverse design process. Our agent starts
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by inputting the initial molecule as a textual representation, SMILES (Simplified Molecular Input
Line-Entry System) or a sequence string, along with a brief description of the property optimization
task (e.g., increase binding affinity, decrease critical micelle concentration (CMC), or increase CO2

adsorption), all in natural language. The agent then interprets human-provided instructions or any
design constraints, along with retrieving chemical knowledge from relevant scientific literature, the
Internet or other resources to identify possible chemical modifications that could potentially improve
the target molecular property. Following these modulation guidelines, the agent generates a new
candidate molecule. However, since SMILES strings generated by LLMs may sometimes deviate
from proper SMILES grammar, resulting in invalid structures or potential hallucinations, we imple-
ment a validation step. This step serves as a quick check to assess the chemical feasibility, and score
synthesizability of the newly generated molecule. After this validation process, the effectiveness of
the molecule modulation is assessed using a domain-expert model, potentially physics-based. How-
ever, to reduce the computational cost of the framework, we limit our study to use more affordable
surrogate data-driven models for evaluation rather than expensive DFT or Free Energy Perturbation
calculations. The agent then iteratively reviews the modified materials and the entire modification
history, stopping the generation of new candidates once the convergence criteria are met. Optionally,
in a human-in-the-loop process, a chemist can review the agent’s proposed candidates and reasoning,
offering feedback and suggesting additional modifications or constraints. This enables human-AI
collaboration, allowing the chemist to better guide and refine the exploration process.

This manuscript is structured as follows: Section 2 presents the benchmarking and evaluation of the
model’s performance across three distinct materials inverse design tasks. Section 3 follows with a
discussion on the implications of our findings, the strengths of our approach, and potential directions
for future research. The Supplementary Information (section 4) provides model limitations, details
of our methodology, including the agent’s toolkits, domain-expert knowledge, and synthesizability
assessment. Information on the domain-expert surrogate models used in this study, along with the
visualization for the 600 AI-generated molecules, are available in the Supplementary Information
(section 4).

2 Results

2.1 Surfactant Design and Critical Micelle Concentration Inference

Surfactant molecules play important roles in a wide variety of disciplines of study, from lubricants
and coating to pharmaceuticals and drug delivery systems [37]. This wide applicability of study is due
to the role of surfactant molecules which act as compatibilizers between dissimilar materials phases.
While there are many metrics that are used to characterize surfactant molecules, the most common
is the critical micelle concentration (CMC). CMC is traditionally the experimentally determined
concentration at which individual surfactant molecules will self-assemble into larger aggregates
(micelles). This value is critically important as the desirable properties of surfactants (solubilizing
differing phases, enabling biocompatibility etc.) are typically only enabled when the solution
concentration of the surfactant is above the CMC [38]. To design surfactant molecules with a desired
CMC, the task is often challenging and relies heavily on domain-knowledge based expertise. Hence,
the design task of minimizing CMC is both well-suited for an LLM agent, and a desirable objective
to reduce the reliance on domain expertise for chemical synthesis.

Given these considerations, we apply dZiner to the rational design of surfactant molecules, with
the objective of generating synthesizable molecules that minimize their expected CMC in water at
room temperature. The agent was provided with an initial candidate surfactant-like molecule, for
these experiments N-(2-oxotetrahydrofuran-3-yl) decanamide, and was tasked with making additions,
substitutions or deletions to reduce CMC. The expected CMC with uncertainty is evaluated via a
surrogate model as outlined in the methods (section 4.2.2.2). The design guidelines were determined
by the agent via providing exemplary journal articles [39–46] on surfactant design. These general
guidelines include; 1. hydrophobic tail length and structure; increasing the length of the tail generally
reduced CMC while increasing branching reduces CMC, 2. hydrophilic head group size and polarity;
larger and more polar head groups generally increase CMC by increasing aqueous solubility, 3.
functionalization with heteroatoms, aromatic moieties or other functional groups; modifications to
add silicons, fluorines or other groups such as ethylene oxides to the tail or head respectively, reduces
CMC. Additionally, the model is asked to keep the molecular weight of the generated candidates
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Figure 2: dZiner’s chain-of-thoughts in the closed-loop inverse design of surfactants with
lower CMC. The agent is powered by Claude 3.5 Sonnet. The design guidelines are retrieved from
references [39–46], and the model is asked to keep the molecular weight lower than 600 (g/mol) in
natural language text. CMC is reduced by two orders of magnitude via iterative agent-suggested
chemical modifications.

lower than 600 (g/mol) in natural language text. With this information, the agent was applied to
the inverse design task. The resulting iterations of surfactant design powered by Claude 3.5 Sonnet
(Figure 2) demonstrated the introduction of several modifications to the initial SMILES structure,
that ultimately reduced the expected CMC by roughly two orders of magnitude. In the resulting
benchmarking, Sonnet 3.5 agent generally performed better than the one using GPT-4o, generating a
larger proportion of chemically valid surfactant molecules (Table 1). The associated chain-of-thoughts
analysis for GPT-4o generated surfactants is discussed in detail in the supplementary information
(see Figure S1). In analyzing the Sonnet 3.5 agent generated iterations, the agent was able to
initially reduce the log(CMC) by first extending the hydrophobic tail of the initial molecule. After
this initial improvement, the agent attempts to make a series of modifications to the head group
(iterations 2-5) which are rejected. Iterations 5 and 6 yield the largest reduction to the log(CMC)
(improvement by 1.618) with the introduction of fluorine heteroatoms to the tail and head of the
surfactant molecule, respectively. Notably, during this heteroatom addition Claude 3.5 Sonnet is able
to identify potentially invalid molecular structures due to ambiguity in the learned design rules (add
heteroatoms to the end of the tail group), and successfully generates molecules that are valid while
applying an equivalent modification (in this case, modifying the terminal carbon on the tail group).
This behavior was exclusively observed in Claude 3.5 Sonnet agents, and was not reproduced by
GPT-4o, likely contributing to the increased performance of 3.5 Sonnet models. Another noteworthy
behavior is that the suggested changes from iteration 6 were ultimately reverted, as the addition of
head group fluorination dramatically increased the SA score, which the model believed was indicative
of a synthetic pathway that would not yield further improvement. Afterwards, additional modifications
including the introduction of sulfur heteroatoms and addition groups to the hydrophobic section are
able to make modest improvements. Iteration 17 further increased the length of the hydrophobic
tail which reduced the log(CMC) to the ultimate value of -1.257, yielding a total improvement of
roughly two orders of magnitude over the campaign. The Tanimoto similarity between the initial
surfactant molecule and the final molecule was 0.41, demonstrating that for this design task, dZiner is
able to make significant and creative changes to the initial molecule over the course of an experiment.
Throughout the iterations, the SA score ranged from 2.80 to 3.93, where the candidate molecule with
the lowest CMC achieved an SA score of 3.33, only slightly more synthetically complex than the
initial candidate molecule. Visualization of the 200 AI-generated molecules in our experiments can
be found in Figures S2 and S3 in the Supporting Information.
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Figure 3: dZiner’s chain-of-thoughts in the closed-loop inverse design of a drug candidate
against WDR5 protein target. The design guidelines are extracted by the agent from references [56,
57], and the model is asked to keep the molecular weight lower than 600 (g/mol) in natural language
text. Docking score is reduced by just over two orders of magnitude via iterative agent-suggested
chemical modifications (Dock Score ∝ log(kcal/mol)).

2.2 Drug Design and Targeted Docking Inference

The discovery of small molecule ligands that bind or inhibit protein targets is ubiquitous to drug
development. However, the design and development of drug candidates is challenging and time-
consuming given the multi-objective optimization of biological properties including binding affinity
(dissociation constant) (KD), solubility, toxicity, and more. Recent advancements in computational
methods have focused primarily on de novo discovery [47–49], while tools to complete hit-to-lead
optimization are comparatively lacking. For many novel targets, the discovery and design of small
molecules often begins with ligand discovery experiments that discover a “hit” molecule with modest
binding affinity to the target. From this hit, multi-objective optimization must be performed to
improve the candidate for further biological study, with significant emphasis placed upon potency or
binding affinity. Critically, medicinal chemists must be able to synthesize the molecule for testing,
somewhat limiting the scope of generative techniques to those that respect synthesizability [50].

Toward this goal, we applied dZiner to the optimization of ligands against WD repeat-containing
protein 5 (WDR5). WDR5 is a scaffolding protein that plays a critical role in gene expression and
cell differentiation through the assembly of chromatin-modifying complexes, such as the MLL/SET
methyltransferase complex [51, 52]. Thus, WDR5 plays a central role in various cancers by supporting
oncogenic transcription. Ligands and inhibitors to WDR5 have been studied and reported, ranging
in activity with KD and IC50 in the 10s of µM to pM [53, 54]. This rich background of literature
allows the evaluation dZiner’s performance, as well as opportunity for human-based input and
expertise toward the iterative molecular generation and optimization [51, 54]. From this literature,
we are able to jump into the position of medicinal chemists that have discovered a hit to WDR5
from high-throughput screening (HTS), demonstrating KD of 7 ± 1 µM of the native WIN Peptide
substrate (see initial starting molecule in Figure 3) [55, 54]. From this HTS hit, dZiner was tasked to
perform iterative molecular optimization and improve the binding affinity against WDR5. Various
modifications were applied following key guidelines revealed from literature. Additionally, the
model is asked to keep the molecular weight of the generated candidates lower than 600 (g/mol) in
natural language text. These guidelines, extracted from references [56–58], emphasize the following;
1) enhancing hydrophobic interactions, 2) optimizing solvent-exposed regions, and 3) minimizing
steric hindrance without disrupting core binding interactions. To guide dZiner, we used molecular
docking, a common method to approximate the binding affinity of a ligand to a protein. Though
noisy in its recommendation, molecular docking was selected as a surrogate because it is a rapid and
computationally inexpensive way to assess the geometric fit of ligands to protein targets and provide
an estimation of binding affinity in kcal/mol [59]. After each iteration, dZiner docked the generated
molecule with WDR5 (PDB: 3UVL) using AutoDock Vina [60] and a score was computed for each
(see Methods Section 4.2.2.2). For this task, a reduction in docking score indicates lower binding
energy, and thus a higher affinity for WDR5.
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Figure 4: Human-in-the-loop inverse design of a drug candidate against WDR5 protein target.
The agent is powered by Claude 3.5 Sonnet. dZiner found to be highly cooperative, interpretable, and
able to enact changes requested with ease in this human-AI collaboration.

The initial hit provided to dZiner (iteration 0) had a valid structure but relatively modest binding
affinity (-6.7). In iteration 1, dZiner adds an aromatic ring to the core to form a rigid napathalene,
resulting in a significant improvement in docking score (-7.9). In the next iteration, the chloro-
substituent on the benzamide is replaced with a bulky, hydrogen bond donating 4-aminobutanamido
group, which has a small positive effect on predicted binding affinity. In the next iteration, the
piperazine ring is replaced with an ethylenediamine functionality, significantly compromising the
binding affinity (docking score -6.5). This change is reverted for successive analogs. In the following
iterations, the -NO2 group on the napthyl ring is replaced with an alternative electron-withdrawing
group (-CN), a morpholino substituent is added to the benzyl ring, and the benzyl ring itself is swapped
for a pyridine. Each change is found to be detrimental to the docking score and is thus reverted for the
next iteration. The second substantial improvement in docking score occurs in iteration 8 when the
4-aminobutanamido group is replaced with a more rigid piperidine-4-carboxylic acid. The resulting
docking score of -9.2 is significantly better than iteration 0 at -6.7. After implementing and reverting
several unsuccessful alternatives to the piperazine ring (diethylamine, morpholine), dZiner creates a
number of analogs with different H-bond donor and H-bond acceptor groups at variable positions on
the benzamide core. These minor modifications result in a total of 10 analogs with a docking score <
-8.5. All iterations produced adhered to the human-provided guideline of MW below 600 g/mol. No
unstable functional groups were identified in any of the molecules generated by dZiner when using
Claude 3.5 Sonnet. Given that docking is a low fidelity method of evaluating binding affinity, each of
the 10 analogs with docking score < -8.5 would be promising candidates for synthesis in a hit-to-lead
campaign. After 20 iterations, the analogs generated by dZiner have 0.60 Tanimoto similarity to
the starting molecule, demonstrating that dziner is capable of making non-trivial modifications to
structure to improve binding affinity. Furthermore, these designs generally follow those that were
used in the development of OICR-9429 (KD 24 nM) [52], maintaining the piperizine ring while
adding additional hydrophobic or complementary chemical functionalities [54]. When benchmarked
against GPT-4o, Claude 3.5 Sonnet generally performed better than GPT-4o, producing fewer invalid
SMILES and unstable molecules (see comparison in Table 1). Detailed analysis of the GPT-4o agent
generated WDR5 analogs, along with the 200 AI-generated molecules in our experiments can be
found in the supplementary information (Figures S4-6).

2.2.1 Human-in-the-loop Design

Collaborative efforts between a human expert and AI agents hold significant promise. In the case of
molecular design for WDR5 ligands, we examined human guidance to refine the modifications based
on docking scores and structural generation (Figure S7). Similar to the closed-loop analysis (sec-
tion 2.2), the model initially proposed several modifications to the presented structure in accordance
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with the literature-derived guidelines, including the addition of an amine group to promote hydrogen
bonding with key WDR5 residue Asp107. A human chemist reviewed this structure and identified
the -NO2 group as a potential toxicophore and priority for replacement. Additionally, the human
chemist viewed a published crystal structure of WDR5 (41A9) and hypothesized that the -NH2 group
should be placed on the other benzyl ring to facilitate interaction with Asp107. dZiner was able to
competently execute these suggestions and others made by the human chemist to increase binding
affinity. dZiner was also able to generate multiple positional isomers when tasked with changing the
substitution pattern of an aryl ring. The final molecule generated by dZiner and chemist working in
tandem had a significantly improved docking score (-9.3) relative to the starting molecule. Overall
dZiner was able to accommodate both general (“add a 5 or 6 carbon heterocycle”) and specific (“do
not modify the piperazine”) feedback, and made several creative suggestions for novel WDR5 analogs.
dZiner was found to be highly cooperative, interpretable, and able to enact most changes requested
with ease, even following instructions to revert several iterations and make larger-than-average
changes to the molecule. dZiner was able to effectively generate molecular ligands to WDR5 while
managing input-directed goals. Compared to the closed-loop optimization, the human-in-the-loop
optimization enabled more diverse and targeted generation (e.g., location of modification) that could
be highly beneficial in a variety of contexts to medicinal chemists investigating structure-activity
relationships (SAR). Details on the human-in-the-loop experiment with GPT-4o agent can be found
in the supporting information (Figure S7).

2.3 MOF Organic Linker Design and CO2 Adsorption Capacity Inference

Metal-organic frameworks (MOFs) have gained significant attention in recent years due to their
wide range of industrial applications, such as gas adsorption and storage [61], catalysis [62], and
drug delivery [63]. These nanocrystalline porous materials are modular [64], consisting of three
main building blocks: inorganic nodes, organic nodes, and organic linkers, along with a specific
topology that defines the relative positions and orientations of these building blocks that result
different MOF properties. We demonstrate the utility of our framework by applying it to the rational

Figure 5: dZiner’s chain-of-thoughts in the closed-loop inverse design of organic linkers for
MOFs with high CO2 adsorption capacity. The agent is powered by Claude 3.5 Sonnet. Design
guidelines were retrieved from references [65–68]. CO2 adsorption capacity is improved by 85% via
iterative agent-suggested chemical modifications, while following additional design constraints.

design of likely synthesizable organic linkers for MOFs with high CO2 adsorption capacity at 0.5
bar of pressure. These MOFs come with pcu topology and three types of inorganic nodes: Cu
paddlewheel, Zn paddlewheel, and Zn tetramer (three most frequent node-topology pairs in the
hMOF dataset [69]). In this case, the surrogate CO2 adsorption predictor is an ensemble of fine-tuned
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MOFormers [70] trained on extracted SMILES of the organic linkers from their MOFids in the
hmof dataset (see section 4.2.2.2). Throughout the design iterations, as shown in Figure 5, various
functional groups were introduced to the initial organic-linker’s structure to enhance CO2 adsorption
capacity. These modifications are derived from guidelines emphasizing the alteration of functional
groups, incorporation of nitrogen sites, optimization of pore structures and alkylamines to improve
interactions and uptake, as automatically extracted from references [65–68]. Additionally, the model
includes a set of human design constraints in natural language, specifying to keep the molecular
weight lower than 600 (g/mol), and not to add nitrosylated, chloro-, fluoro- amines, which are
chemically-unstable functional groups (see Figures S9 and S10 for the case study without the latter
constraint) The initial organic linker (iteration 0) showed a moderate CO2 adsorption of 0.885. In
iteration 1, nitrogen-containing functional groups like guanidine were introduced, replacing the cyano
group to increase polarity and nitrogen content, which significantly improved CO2 adsorption to 0.964.
By iteration 3, further modifications involved replacing guanidine with nitrogen-rich heterocycles
like pyridine and pyrazine, boosting adsorption to 1.288. However, adding polar groups like hydroxyl
or carboxyl (iterations 5 and 12) slightly decreased CO2 capture, suggesting that polarity alone was
not sufficient for improvement.

The most successful modifications came in iteration 15, where electron-withdrawing fluorine atoms
were introduced, leading to a substantial improvement (CO2 adsorption of 1.698), and promoting
the electrostatic interactions and hydrogen bonding of the linker. Further fluorination, including the
use of difluoro-substituted and trifluoromethyl groups (iterations 16 to 19), continued to enhance
CO2 adsorption, reaching a maximum of 2.289 in iteration 19. This increase is attributed to the
electron-withdrawing properties of fluorine, which enhance the molecule’s interaction with CO2.
However, adding too much fluorine also introduced higher uncertainty in adsorption values, indi-
cating potential sensitivity to environmental conditions. Ultimately, iteration 19 demonstrated that
maximizing fluorine content, particularly with trifluoromethyl groups, was the most effective strategy
for improving CO2 adsorption. It is important to note that the last three iterations were not accepted,
as the suggested molecules exceeded the 600 g/mol molecular weight limit. The final accepted linker
(iteration 17) showed a significant improvement in CO2 adsorption (1.978) with just 0.50 Tanimoto
similarity to the initial molecule, demonstrating that substantial and creative changes were made
during the experiment. Detailed analysis of the GPT-4o agent generated organic linkers, along with
the 200 AI-generated molecules in our experiments can be found in the supplementary information
(Figures S8, S11 and S12).

3 Discussion

Our workflow, dZiner, represents an agent-based computational framework for accelerated materials
discovery by replicating and incorporating the expertise of human domain experts across various
inverse design tasks and target properties, including surfactants, ligand and drug design, and metal-
organic frameworks. The inclusion of other expert tools is easy, and our examples demonstrate that
dZiner is generally able to adapt across various property-to-structure problems in materials discovery.
To better assess the impact of domain-knowledge in our experiments, we repeated all three case
studies by removing the design guidelines retrieval tool from the scientific literature. This served
as the baseline. In this setting, the agent’s modifications to the core structure of the molecules were
primarily restricted to the addition or removal of random functional groups and elements, due to
the limited non-domain-specific knowledge of the stand-alone LLM at the training time. Tables 1
and 2 provide a detailed breakdown of dZiner’s performance across three inverse design tasks—CMC,
WDR5 docking, and CO2 adsorption—evaluating its success with and without domain-knowledge
(each was used to generate 600 molecules across all tasks). Across these tasks, dZiner, powered
by Claude 3.5 Sonnet, outperforms GPT-4o significantly in both conditions, with especially high
success rates when leveraging domain-knowledge from the literature. This is notable in primary
objectives such as improving log(CMC), binding affinity (docking score), and CO2 adsorption. On
the importance of incorporating literature-gathered and human expert-based design principles in the
workflow, the baseline runs, which operated without design guidelines, exhibited a high failure rate
in terms of both generating valid molecular structures and optimizing the target properties, regardless
of the choice of the LLM.

We quantified the success of the model in meeting primary objectives by 1) assessing the average
improvement in log(CMC), docking score, CO2 adsorption (Table 2) for the best candidate in
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Table 1: dZiner’s success rates for the three inverse design tasks with different target properties,
evaluated over the generation of 100 molecules per task. Primary objectives for each task are in bold.
The baselines include model runs without retrieving domain-knowledge (design guidelines) from the
scientific literature.
Target Property Criteria Success Rate without Domain-knowledge (%) Success Rate with Domain-knowledge (%)

GPT-4o (baseline) Claude 3.5 Sonnet (baseline) GPT-4o Claude 3.5 Sonnet
Task 1: CMC Valid SMILES Generation 77 89 79 96

Lower log(CMC) 55 81 91 92
Meeting MW Design Constraint 100 100 95 100

Lower SA Score 31 24 23 19

Task 2: WDR5 Docking Valid SMILES Generation 63 96 83 100
Lower Docking Score 60 89 81 96

Meeting MW Design Constraint 100 100 99 100
Lower SA Score 43 19 22 6

Higher QED Score 47 46 13 18

Task 3: CO2 Adsorption Valid SMILES Generation 44 99 86 100
Higher CO2 Adsorption 39 98 77 98

Meeting MW Design Constraint 97 97 97 95
Lower SA Score 76 98 63 41

each run; 2) by comparing each generated iteration to the initial candidate (iteration 0) to see what
percentage of molecules have improved on the target property (Table 1). GPT-4o struggled to generate
valid SMILES and to suggest new molecules with improved primary objectives. Claude 3.5 Sonnet
consistently performed better than GPT-4o on this metric. For instance, its success rate in valid
SMILES generation for CMC and CO2 adsorption tasks was considerably lower than Claude 3.5
Sonnet, highlighting its limitations in molecule design tasks without specialized guidance. On the
other hand, it adhered to the human design constraints (molecular weight and the choice of forbidden
functional groups), while still optimizing target properties. This efficiency underscores the value of
literature-gathered and human expert-based design principles, in complex molecular design tasks,
where balancing various criteria is essential for overall success.

Our approach offers several key contributions; 1) The model’s flexibility enables the integration of
the complete property optimization task with additional design constraints directly through natural
language, making the workflow easily adaptable to different target properties simply by altering the
input query (prompt) with the use of proper related surrogate model. 2) The augmented domain-expert
surrogate models can be easily customized to target specific properties. This flexibility allows users
to either train their own machine learning or deep learning models, or better yet, leverage the existing
state-of-the-art property predictors from the materials community, avoiding the unnecessary effort of
reinventing the wheel. This approach also opens up the possibility of uncertainty estimations of the
predicted property via an ensemble of inference models, a capability that typical standalone LLMs do
not possess. 3) The model provides chain-of-thought reasoning, enabling more interpretable results
and a clearer understanding of its chemistry-informed decision-making processes. 4) The workflow
supports both closed-loop and human-in-the-loop inverse design. In the human-in-the-loop scenario,
a domain expert can interact with the model through natural language to provide feedback on newly
suggested candidates, propose modifications, or introduce additional design constraints. 5) Because
of the iterative design approach, we observed that most molecular candidates maintained a strong
relative amount of synthesizbility compared to completely generative approaches, especially seen in
the CMC and WDR5 ligand design.

Table 2: dZiner’s improvement rates for the primary objectives in the three inverse design tasks with
different target properties, evaluated over the generation of 100 molecules per task. On average,
improvements are determined by comparing the best candidate from each run to the initial candidate
(iteration 0). The baselines include model runs without retrieving domain-knowledge (design guide-
lines) from the scientific literature.

Target Property Criteria Improvement without Domain-knowledge (%) Improvement with Domain-knowledge (%)
GPT-4o (baseline) Claude 3.5 Sonnet (baseline) GPT-4o Claude 3.5 Sonnet

Task 1: CMC
Average log(CMC) 34 86 95 137

Task 2: WDR5 Docking
Average Docking Score 16 19 31 31

Task 3: CO2 Adsorption
Average CO2 Adsorption 41 28 46 108
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Data and Code Availability

All data, code and model architectures and fine-tuned weights for the surrogate models used
to produce results in this study are publicly available in the following GitHub repository:
https://github.com/mehradans92/dZiner.
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4 Supplementary Information

4.1 Limitations and Future Work

As demonstrated in the previous sections, dZiner works well as an engine for accelerated molecular
discovery and in silico experimentation across a wide range of chemical tasks. Despite this flexibility,
there are still areas where dZiner could be further improved. The incorporation of multi-modal data
(such as the ability to interpret images and schemes) from supporting literature represents a key
advancement that could further improve the performance of the model. This improvement would
be especially impactful for small molecule virtual screening tasks. For example, SMILES can be a
major oversimplification, especially for complex structures like MOFs. Another limitation inherent to
SMILES is that unique SMILES codes can be generated for each substitution pattern, leading to a lack
of a one-to-one mapping between molecules and their SMILES representations. These limitations
may be balanced by considering that SMILES are likely the most prevalent molecular representations
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available in the training data of LLMs, making it easier for LLMs to successfully generate valid new
candidates. While the current framework leverages textual representations of molecules, it is not
necessarily limited to this format, and the agent can easily incorporate other representations. For
example, for stochastic design tasks such as the synthesis of polymers, molecular representations
like BigSMILES [71] or SMILES Arbitrary Target Specification (SMARTS) [72], which may better
capture the complexity of such systems [73]. It should be noted that given that these other molecular
representations are not as popular, the model may lose performance when generating valid candidates.
Finally, the number of molecules generated by the workflow is a hyperparameter. Although it is
important to note that large numbers can easily exceed the context window of the LLMs used.

For human-in-the-loop runs, the model had limited success in interpreting terms like ortho, meta,
and para when a ring has three or more substituents. As an example, it struggled with prompts
like “move the -NH2 group so it is para to the -CF3 group”. This likely a result of the zero-shot
learning approach and could be resolved with further domain-specific fine-tuning. Alternatively,
adding more instructive human feedbacks or augmenting the agent with additional validation tools to
better incorporate chemical rules is expected to alleviate this limitation.

4.2 Methods

4.2.1 AI Agent

In broader terms, an agent refers to an entity capable of taking action. The AI agent in this work is
powered by an LLM, acting as its brain, expanding its perceptual and action space (environment)
through strategies such as multimodal perception and tool utilization [74–78]. In this work, we
exploit the zero-shot learning capabilities of large language models (LLMs)[79] alongside the ReAct
architecture, which supports both reasoning (e.g., chain-of-thought prompting) and taking actions
(e.g., generating action plans)[75]. Reasoning traces guide the model in creating, overseeing, and
refining action plans, while also addressing exceptions. At the same time, actions enable the model to
interact with external sources like knowledge bases or environments to acquire additional information.
These knowledge bases are structured as toolkits (see section 4.2.2), enabling the agent to extract
relevant molecular design insights from research papers, publicly available datasets, and advanced
built-in chemical knowledge, as well as on-the-fly evaluation of modifications with the related domain-
expert surrogate models and synthesizability assessment (Algorithm 1). Given that the model is not
explicitly provided with labeled data in the input context, the use of these tools is consistent with the
broader definition of zero-shot learning. This specialized materials design guidelines lie beyond the
scope of typical LLM’s training data, enhancing the model’s ability to function as an expert chemist in
various domains in a zero-shot manner. In this work, we used OpenAI’s GPT-4o [80] and Anthropic’s
Claude 3.5 Sonnet [81] with a temperature of 0.3 as our agent’s LLM, and LangChain [82] for the
application framework development.
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Algorithm 1 dZiner Algorithm (closed-loop)
Input: x0: chemical structure of the starting molecule

ytarget: target property label to optimize (can be a minimization or maximization problem).
L: selection of scientific literature on target property optimization.
S(x): surrogate domain-expert model for evaluating target property, given x.
M := ∅: set of history messages, if any.
(xbest, ŷbest, σ̂

2
epibest

)← (x0, (ŷ0, σ̂
2
epi0

) : S(x0)): initialize best molecule.
Output: (xi, yi, σ̂

2
epii

): chemical structure and property of the new molecule.
for i = 1 : N do

mi, gi ← LLM(xi−1, ŷi−1, ytarget,L,M) ▷ m: modification, g: guideline,M: history
x̃i ← LLM: modify structure(xi−1, gi) ▷ x̃i: modified molecule
xi, vi ← V(x̃i) ▷ xi: new molecule, vi: validity check
if vi is invalid then

return Invalid molecule
xi, ŷi, σ̂

2
epii
← xbest, ŷbest, σ̂

2
epibest

▷ Revert to best
continue

end if
ŷi, σ̂

2
epii
← S(xi) ▷ ŷi: property, σ̂2

epii
: epistemic uncertainty

if |ŷi − ytarget| ≥ |ŷbest − ytarget| then
xi, ŷi, σ̂

2
epii
← xbest, ŷbest, σ̂

2
epibest

▷ Revert to best
continue

else
(xbest, ŷbest, σ̂

2
epibest

)← (xi, ŷi, σ̂
2
epii

) ▷ Update best
end if
hi ← create history message(xi, ŷi, σ̂

2
epii

, vi, gi) ▷ hi: history message
M←M∪ {hi} ▷ Update history

end for

Notation:
N : max number of new molecules
V: Chemical feasibility and synthesizeability assessment;M: history

4.2.2 Agent Toolkits

4.2.2.1 Domain-expert Knowledge

This tool enables the agent to do retrieval-augmented generation (RAG), and extract design guidelines
from unstructured text, offering insights on how to modify the core structure of a molecule to optimize
a specific property. It identifies the most relevant sentences from research papers in response to a
query, focusing on suggestions for molecular modifications that enhance the desired property. The
process involves embedding both the paper and the query as numerical vectors, and then selecting the
top k passages within the document that either explicitly mention or implicitly hint at adaptations to
optimize the band gap property of a MOF. The embedding model used is OpenAI’s text-embedding-
3-large. Drawing on our previous work [23], k is set to 9 but is dynamically adjusted based on the
context’s length to prevent OpenAI’s token limitation errors. The semantic similarity search is ranked
using Maximum Marginal Relevance (MMR) [83], based on cosine similarity, which is defined as:

MMR = arg max
di∈R\S

[
λ · cos(di, q)− (1− λ) ·max

dj∈S
cos(di, dj)

]
(1)

Here, di represents a document from the set of retrieved documents R, S is the set of already
selected documents, and q is the query. The parameter λ, which ranges from 0 and 1, controls the
balance between relevance to the query and diversity (i.e., novelty compared to the already selected
documents). In this work, we use the default value of 0.5. The purpose of MMR is to retrieve
documents that are both relevant to the query and diverse, minimizing redundancy in the results.
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4.2.2.2 Domain-expert Surrogate Models

For the case studies in sections 2.1 and 2.3, we use ensemble modeling to estimate prediction
uncertainty, thus enhancing the predictive capability of the domain-expert surrogate model. For a
given data point x⃗, the ensemble prediction average (ŷ(x⃗)) is calculated as follows:

ŷ(x⃗) =
1

N

∑
m

ŷm(x⃗) (2)

σ̂2
epi(x⃗) =

1

N

∑
m

(ŷ(x⃗)− ŷm(x⃗))
2 (3)

where N is the ensemble size, and m indexes the model in the ensemble. σ̂2
epi(x⃗) denotes the epistemic

uncertainty, quantifying the disagreements amongst model estimations.

Critical Micelle Concentration Inference Model This model is based on the work of Qin et al.
[84] without any adaptations. The authors used a Graph Convolutional Neural Network (GCN) to
predict the critical micelle concentration (CMC) of surfactants based on their molecular structure as
SMILES input. The CMC training data were experimentally measured at room temperature (between
20 and 25 ◦C) in water for 202 surfactants coming from various classes, including nonionic, cationic,
anionic, and zwitterionic. The model architecture leverages graph convolutional layers to process
molecular graphs, where atoms are represented as nodes and bonds as edges, effectively capturing
both topological and constitutional information. The GCN includes average pooling to aggregate
atom-level features into a fixed-size graph-level vector, followed by fully connected layers with ReLU
activations for the final regression of the log CMC value. In terms of performance, the GCN has a
root-mean-squared-error (RMSE) of 0.23 and an R2 of 0.96 on test data for nonionic surfactants,
outperforming previous quantitative structure-property relationship (QSPR) models. The ensemble
of models used in our study are based on an 11-fold cross-validation with mean RMSE of 0.32. For
more details on the model, refer to reference [84].

Targeted Docking Inference Model This model utilizes on Dockstring [85], to predict the fit and
binding affinity of small molecules (ligands) bind to target proteins by using molecular docking.
Dockstring is a user-friendly Python wrapper for AutoDock Vina [60]. WDR5 (PDB: 3UVL) [86] was
accessed on May 30th 2024 and was prepared for molecular docking in MGLTools / Python Molecular
Viewer (1.5.7) by removing the Histone-lysine N-methyltransferase MLL3 peptide ligand, cofactors,
and water. The protein was protonated at pH 7.4 by adding Polar Only Hydrogens. Kollmann charges
were added. Dockstring uses a targeted version as opposed to blind docking and a 30 Angstrom grid
box was defined around the central binding pocket of WDR5. Docking was performed using default
exhaustiveness and energy range. Docking results were returned and used without any rescoring in
single measurements.

CO2 Adsorption Inference Model This model is based on MOFormer, a self-supervised Trans-
former model developed for predicting the properties of Metal-Organic Frameworks (MOFs) using
a structure-agnostic approach [70]. Unlike traditional models that rely on 3D atomic structures,
MOFormer uses a text-based representation of MOFs, known as MOFid. The model utilizes the
self-attention mechanism of Transformers to capture complex relationships within MOFs and is
pretrained on over 400,000 MOF structures using self-supervised learning with Barlow-Twin loss [87].
This pretraining improves the prediction accuracy, as it aligns the textual-based representations of
MOFormer with the structure-based representation leaning of a Crystal Graph Convolutional Neural
Network (CGCNN) [88]. For the specific task of predicting CO2 adsorption capacity at 0.5 bar,
MOFormer achieved a mean absolute error (MAE) of 0.545 mol/kg, whereas our fine-tuned ensemble
of models with 5-fold training on the SMILES of the organic linkers have a MAE of 0.894 mol/kg.
For more details on the model, refer to reference [70].

4.2.2.3 Synthesizability Assessment

This tool uses RDKit [89] to convert a SMILES string into an RDKit Mol object and performs
several validation steps, including syntax parsing, atom and bond validation, checking atomic
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valences, verifying ring closure notation, adding implicit hydrogens, and detecting aromatic systems.
These processes ensure the basic chemical validity of the molecule. In addition to the chemical
feasibility assessment, we use a heuristic measure of synthesizability: synthetic accessibility score
(SA score) [90], which is based on the analysis of one million PubChem molecules and combines
fragment contributions from molecular substructures with a complexity penalty that accounts for
molecular size and structural features. In section 2.2, we also include a quantitative estimate of
drug-likeness (QED) [91], which measures a compound’s drug-likeness by integrating molecular
properties, such as molecular weight, lipophilicity (logP), polar surface area, and the number of
hydrogen bond donors and acceptors, into a single value.

5 Surfactant Design and Critical Micelle Concentration Inference with
GPT-4o

Similar to Section 2.1, and starting from the same initial surfactant molecule, we applied dZiner
powered by GPT-4o to this property optimization task. The resulting iterations of surfactant design
(Figure S1) demonstrated the introduction of several modifications to the initial SMILES structure,
that ultimately reduced the expected CMC by roughly two orders of magnitude. Across the first 3
iterations of design, the agent was able to significantly reduce the CMC by introducing additional
methyl-type units to the hydrophobic tail (iteration 1), as well as replacing hydrogen atoms in the tail
with fluorine (iteration 3).

During this improvement, iteration 2 attempted to introduce branching in the hydrophobic tail, but
was rejected after the CMC evaluation did not yield any improvement between iterations 1 and 2.
Following several iterations with other rational but ultimately unsuccessful modifications, the agent
achieves the largest reduction of log(CMC) in iteration 7 (0.633 to 0.102) by replacing the head group
with a series of amide-linked cyclic ethers. Interestingly, the agent completes this modification at
the expense of the modification in iteration 3, which ultimately further reduces the CMC beyond
what was previously achieved (this behavior also occurred in other benchmarking runs). The final
improvement in log(CMC) was achieved in iteration 8 with a further increase to the length of the
hydrophobic tail unit to the ultimate value of -0.424. Throughout the experiments the SA score
ranged from 2.80 to 4.01, where the candidate molecule with the lowest CMC achieved an SA score
of 3.29, only slightly more complex than the initial candidate molecule.
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Figure S1: dZiner’s chain-of-thoughts in the closed-loop inverse design of surfactants with
lower CMC. The agent is powered by GPT-4o. The design guidelines are retrieved from literature
(same references as in Figure 2), and the model is asked to keep the molecular weight lower than
600 (g/mol) in natural language text. CMC is reduced by two orders of magnitude via iterative
agent-suggested chemical modifications. The accepted molecule bears 0.74 similarity (Tanimoto) to
the starting molecule after 8 iterations.
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Figure S2: Visualization of the 100 molecules generated in the closed-loop inverse design of surfac-
tants with lower CMC. The agent is powered by GPT-4o. No potentially unstable functional groups
were found. Invalid SMILES generated are marked as invalid.
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Figure S3: Visualization of the 100 molecules generated in the closed-loop inverse design of sur-
factants with lower CMC. The agent is powered by Claude 3.5 Sonnet. No potentially unstable
functional groups were found. Invalid SMILES generated are marked as invalid.

6 Drug Design and Targeted Docking Inference with GPT-4o

Similar to Section 2.2, and starting from the same initial HTS hit, we applied dZiner powered by
GPT-4o to improve docking against WDR5 (see Figure S4). In iteration 1, an aromatic ring was added
to strengthen hydrophobic interactions, improving the docking score to -7.2. Further modifications
in iteration 3 included replacing the nitro group with a cyano group, yielding a docking score of
-7.4. In iterations 4-8, functional groups like methoxy, ethoxy, and butoxy were added to enhance
hydrophobic interactions, with the best improvement seen in iteration 8, where a butoxy group raised
the docking score to -8.2.

Subsequent iterations aimed to fine-tune the structure by replacing the butoxy group with pentoxy and
hexoxy groups, though these did not lead to further improvements. In iteration 11, a trifluoromethyl
group was added to the butoxy-substituted structure, yielding the highest docking score of -8.4.
This modification optimized interactions within the binding pocket. Other attempts, such as adding
a trifluoromethoxy group in iteration 18 and a trifluoromethylthio group in iteration 20, showed
varying results but did not surpass the best docking score. Overall, the case study demonstrated
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that introducing electron-withdrawing and hydrophobic groups, particularly in iterations 8 and 11,
significantly enhanced binding affinity, aligning with the guidelines for targeting WDR5.

Figure S4: dZiner’s chain-of-thoughts in the closed-loop inverse design of a drug candidate
against WDR5 protein target. The agent is powered by GPT-4o. The design guidelines are
extracted by the agent from the same references as in Figure 3, and the model is asked to keep the
molecular weight lower than 600 (g/mol) in natural language text. Docking score is reduced by just
over two orders of magnitude via iterative agent-suggested chemical modifications (Dock Score =
log(kcal/mol)). The accepted molecule has a Tanimoto similarity score of 0.46 compared to the
initial molecule, indicating that substantial changes have been made to the structure in the process of
improving binding affinity.
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Figure S5: Visualization of the 100 molecules generated in the closed-loop inverse design of drug
molecules with high binding affinity against WDR5. The agent is powered by Claude 3.5 Sonnet. No
molecule was found to be invalid or contain potentially unstable functional groups.
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Figure S6: Visualization of the 100 molecules generated in the closed-loop inverse design of drug
molecules with high binding affinity against WDR5. The agent is powered by GPT-4o. Color red
indicates a potentially unstable functional group. Invalid SMILES generated are marked as invalid.

6.1 Human-in-the-loop design with GPT-4o

As in closed-loop analysis (section 6), the model was provided an initial structure. Examples of
initial modifications include adding hydrophobic groups or optimizing solvent-exposed regions to
the same starting molecule. After each iteration, the human reviewed the changes, provided specific
feedback—such as focusing on different molecular regions or improving solubility—and suggested
further modifications like adding functional groups or tweaking π−π stacking interactions. Accepted
changes, like adding a phenyl or trifluoromethyl (-CF3) group, increased binding affinity and were
incorporated, while less effective modifications were rejected based on the docking score and human
input. Overall, dZiner was cooperative and could be used by medicinal chemists with no prior AI
experience. It was able to enable requested most changes, including instructions to revert to prior
iterations. Compared to the closed-loop optimization, human-in-the-loop experiments were able to
produce diverse structures with improved WDR5 docking scores.
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Figure S7: Human-in-the-loop inverse design of a drug candidate against WDR5 protein target.
Agent is powered by GPT-4o. dZiner was found to be highly cooperative, interpretable, and able to
enact changes requested with ease in this human-AI collaboration.

7 MOF Organic Linker Design and CO2 Adsorption Capacity Inference with
GPT-4o

Similar to Section 2.3, and starting from the same initial organic linker, we applied dZiner powered
by GPT-4o to enhance CO2 adsorption capacity (see Figure S8). In iteration 1, the introduction
of hydroxyl (-OH) and amino (-NH2) groups improved the adsorption to 0.992. However, in
iteration 2, the addition of a sulfonate group resulted in a slight decrease in performance. Significant
improvements were achieved in iteration 7 by incorporating a pyridine ring, which increased nitrogen
interactions and boosted CO2 adsorption to 1.278. The highest adsorption, 1.644, was observed in
iteration 8 when a fluorine atom was introduced, leveraging its high electronegativity to enhance
CO2 capture. A chlorine atom was also added in iteration 9, resulting in a CO2 adsorption of
1.409. Overall, the combination of electronegative atoms and nitrogen-containing functional groups
proved most effective in enhancing CO2 adsorption. Throughout the optimization, the molecular
weight increased from 430.424 g/mol (iteration 0) to 516.945 g/mol (iteration 9). The SA score also
fluctuated, peaking at 4.595 in iteration 5 after the addition of hydroxyl groups, indicating increased
synthetic complexity.
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Figure S8: dZiner’s chain-of-thoughts in the closed-loop inverse design of organic linkers for
MOFs with high CO2 adsorption capacity. The agent is powered by GPT-4o. Design guidelines
were retrieved from scientific literature (same as in Figure 4). The model is asked to keep the
molecular weight lower than 600 (g/mol), and not to add nitrosylated, chloro-, fluoro- amines to the
molecule in natural language text. The accepted molecule bears 63
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Figure S9: dZiner’s chain-of-thoughts in the closed-loop inverse design of organic linkers for
MOFs with high CO2 adsorption capacity. The agent is powered by GPT-4o. Design guidelines
were retrieved from scientific literature, same as in Figure 4. CO2 adsorption capacity is improved
by 75% via iterative agent-suggested chemical modifications, while following the molecular weight
design constraint (MW < 600 g/mol).

28



Figure S10: Visualization of the 100 molecules generated in the closed-loop inverse design of organic
linkers for MOFs with high CO2 adsorption capacity (molecular weight design constraint only case
study). The agent is powered by GPT-4o. Color red indicates a potentially unstable functional group.
Invalid SMILES generated are marked as invalid.

29



Figure S11: Visualization of the 100 molecules generated in the closed-loop inverse design of organic
linkers for MOFs with high CO2 adsorption capacity (molecular weight and functional groups design
constraint case study). The agent is powered by GPT-4o. Color red indicates a potentially unstable
functional group. No invalid SMILES were generated.30



Figure S12: Visualization of the 100 molecules generated in the closed-loop inverse design of organic
linkers for MOFs with high CO2 adsorption capacity (molecular weight and functional groups design
constraint case study). The agent is powered by Claude 3.5 Sonnet. Color red indicates a potentially
unstable functional group. invalid SMILES generated are marked as invalid.
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